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ABSTRACT 

Photoexcited electron injection dynamics from CsPbI3 quantum dots (QDs) to wide gap 

metal oxide nanoparticles are studied by transient absorption measurement. Experimental 

results show under the low pump pulse excitation ~99% of the photoexcited electrons in 

CsPbI3 QDs can be injected into TiO2 nanoparticles with a size-dependent rate constant 

ranged from 1.30  1010 to 2.10  1010 s-1, which is also about 2.5 times faster than that in 

the case of ZnO. To investigate the implications of these findings in photovoltaic cells, a 

demonstration CsPbI3 QD-sensitized solar cell based on CsPbI3 QD-TiO2 junctions is 

fabricated, which delivers a promising power conversion efficiency of 5%. 
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Semiconductor nanocrystals with the three-dimensional size below or equal to their 

exciton Bohr radius are the so called “quantum dots” (QDs). Over the past couple of 

years, much effort has been made to synthesize QD materials for use in solar cells due to 

their unique properties including size-tunable band gap, large extinction coefficients, and 

extended photostability.1-8 Prominently, thermalization of photogenerated electrons in the 

QDs can be slowed by the phonon bottleneck.9 What’s more, potentially, QDs enable 

multiexciton generation, where multiple excited electron-hole pairs are generated 

following absorption of a single photon.10 The above advantages of QDs hence allow to 

overcome the Schockley-Queisser limit for the power conversion efficiency of solar cells 

(31%).9, 11-13 

Compared with the traditional classical QDs such as PbS and CdSe, lead halide 

perovskite QDs are newcomer nanomaterials that have been the subject of numerous 

recent studies.14-19 Initially this family of perovskites is mostly studied as bulk thin films 

and inexpensive solar cells with conversion efficiencies exceeding 22% have been 

achieved using hybrid organic-inorganic perovskites.20-29 Restricting the physical 

dimension of these perovskite crystallites to a few nanometers brings new attractive 

features such as large spectral tunability and extremely high luminescence (˃ 90% 

quantum yield without any further surface treatments).30-33 Now, all-inorganic QDs of 

perovskite-type CsPbX3 (X = Cl, Br, I) can be synthesized with precise size- and 

compositional control, offering highly bright and narrow band luminescence over the 
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whole visible wavelength range.30, 32, 34-36 Following the success of colloidal synthesis, a 

variety of optoelectronic devices such as light-emitting devices, lasers, and photovoltaics 

have been demonstrated using CsPbX3 QDs.14, 37-42 Among the various CsPbX3 

perovskites with different compositions, CsPbI3 stands out as one of the most attractive 

materials for use in solar cells because the light absorption of CsPbI3 can exceed 700 nm 

by virtue of its narrower band gap (~1.73 eV in the bulk), while CsPbBr3 and CsPbCl3 

have band gaps of ~2.25 eV and 3.05 eV, respectively.43-44 In fact, a very impressive 

power conversion efficiency of up to 10% was achieved in thin film solar cells using 

CsPbI3 QDs, which has surpassed most other QD solar cells.37 In order to fully exploit 

the advantages of these perovskite QDs in solar cells, like the traditional implemented 

QDs, it is typically designed that QDs are selectively contacted with other materials of 

interest, for example with metal oxides (MOs) such as TiO2, ZnO and SnO2, to form a 

QD-MO junction.45 The QD-MO junction constitutes an integral part of the solar cell, 

where the main charge separation process within the devices takes place. It thus imposes 

a great impact on the efficiency of the operating cells.45-48 Understanding the electronic 

interactions between QDs and MOs is therefore essential in view of the fundamental 

physics and their potential application in optoelectronics. However, unlike the 

well-established traditional QD-MO systems such as PbS/TiO2 and CdSe/TiO2,
45, 49-52 to 

date, very little knowledge exists concerning the charge-transfer dynamics of the CsPbI3 

QD/MO nano-conjunctions, i.e., the time scale of the electron transfer from CsPbI3 QDs 
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to MOs has not been clearly determined. Transient absorption (TA) spectroscopy is a 

powerful tool capable of investigating ultrafast charge transfer across such interfaces of 

QD/MO.45, 51-55 In this report, using TA measurement we present a comprehensive study 

of electron transport from colloidal CsPbI3 QDs to the MO nanoparticles. An efficient 

electron injection from CsPbI3 QDs to TiO2 nanoparticles with a high injection efficiency 

of near 99% under low pump pulse excitation and a size-dependent injection rate constant 

are observed. Further, our studies show that CsPbI3 QDs coupled with TiO2 exhibit a 

more rapid electron transfer rate than that with ZnO. Initial CsPbI3 QD-sensitized solar 

cells based on CsPbI3 QD-TiO2 junctions deliver a promising power conversion 

efficiency of 5%. 

 

Figure 1. (a) Transmission electron microscopy (TEM) images of monodisperse CsPbI3 

QDs. The inset on the bottom left shows statistic analysis of size distribution for the 
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sample. (b) HRTEM image of the TiO2-QD composite. (c) Pictures of QD solution, neat 

and QD-attached Al2O3 and TiO2 films taken under sunlight and (d) under ultraviolet 

light. 

Colloidal CsPbI3 QDs with particle sizes ranging from ~10 to 15 nm were synthesized 

by literature procedure.36 Purification of the as-synthesized QDs was carried out as 

described by Swarnkar et al. and the resulting QDs dispersed in hexane can be 

phase-stable for months.37 Figure 1a shows typical TEM images of the CsPbI3 QDs as 

well as their size distribution. The lattice fringe with a spacing of 0.62 nm can be 

assigned to (100) plane of the cubic phase CsPbI3. The adsorption of the QDs on TiO2 or 

Al2O3 was performed by directly immersing the TiO2 or Al2O3 films into CsPbI3 QD 

hexane solution. The adsorption process was kept in dark for 24 h. Afterwards, the films 

were washed thoroughly with hexane and dried in N2 atmosphere. Figure 1b shows a 

typical high-resolution TEM image of CsPbI3 QDs with a size of ~12 nm attached to a 

TiO2 nanoparticle after adsorption. The measured interplanar spacings of 0.35 nm and 

0.62 nm respectively confirm the presence of CsPbI3 QDs on TiO2 surface. Notably, it 

was observed that there is an epitaxial interface between the TiO2 and the QDs, indicating 

a direct contact and hence the loss of QD surface ligands at the interface of QD/TiO2. 

Such ligand detachment from surface of the QDs is also implied in Guijarro et al.’s report, 

where part of the surface ligand on CdSe QDs was removed when QDs are directly 

contacted with TiO2.
56 A possible reason for this is that intermolecular interactions 
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between QDs and TiO2 could be stronger than that with its initial surface ligands (i.e., 

oleylammonium oleate). The inset in Figure 1c shows photos of the TiO2 and Al2O3 films 

before and after incorporation of the CsPbI3 QDs. The deep color observation of the film 

samples after adsorption suggests a considerable amount of QDs on both films. 

The prepared colloidal CsPbI3 QDs with different particle sizes exhibit size-dependent 

emissions from 640 to 680 nm, characterized by narrow emission line widths of 30~40 

nm and high quantum yields reaching 90%, indicating that they are highly luminescent in 

the visible range. As expected, as shown in Figure 1d, bright fluorescence emission from 

QDs dispersed in colloidal solution or deposited on Al2O3 films can be seen under 

ultraviolet radiation. However, compared to QDs on Al2O3 films, photoluminescence of 

the CsPbI3 QDs was significantly quenched upon contacting with TiO2. This effect 

indicates that electron transfer occurs on TiO2 surface but not on Al2O3. Further, the 

disappearance of the PL emission signal in QD/TiO2 sample shown in Figure S1 also 

supports this observation and confirms the effective electron transfer from photoexcited 

QDs to TiO2. 
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Figure 2. (a) Steady-state UV-visible (top half) and transient absorption spectra (bottom 

half) of the CsPbI3 QDs with different particle sizes dispersed in hexane and adsorbed on 

TiO2 and Al2O3 mesoporous films (15 nm-QD). TA spectra were recorded 5 ps after 

bandgap excitation with excitation wavelength of 470 nm and power intensity of 0.5 

μJ/cm2. (b-d) TA kinetic traces of different-sized CsPbI3 QDs dispersed in hexane and 

attached to TiO2 and Al2O3 substrates. Excitation wavelength is 470 nm and power 

intensity is 0.5 μJ/cm2. Solid line shows exponential fit to the TA dynamics. 

To obtain direct evidence of electron transfer from CsPbI3 QDs to TiO2 and, 

furthermore, to evaluate the rate of this reaction, femtosecond TA spectroscopy was 

employed. The top half of Figure 2a shows steady-state UV-vis absorption spectra of 



10  
 

different size CsPbI3 QDs and those (QD size: ~15 nm) attached to TiO2 and Al2O3 films. 

It is clearly shown that the excitonic peak of the CsPbI3 QDs blue shifts with decreasing 

particle size as a result of quantum confinement effect.57 Meanwhile, interestingly, CsPbI3 

QDs adsorbed on Al2O3 surface show similar excitonic absorption peak position as in the 

solution, while that of peak in the case of TiO2 seems to be slightly red shifted, which is 

more pronouncedly reflected in its TA spectrum, as described below. The bottom half of 

Figure 2a shows the TA spectra of these various different samples recorded 5 ps after 

bandgap excitation. The bleaching maximum of each coincides with the exciton 

absorption seen in the steady-state absorption spectrum. Now, a notable exciton peak shift 

from 663 to 674 nm is observed when QDs are adsorbed on TiO2. Such red shift can 

originate from the difference in dielectric environment of the surface bound CsPbI3 QDs 

when compared to the solution, which leads to a change in the total energy of an exciton 

confined to the QDs (dielectric constants of CsPbI3, hexane, Al2O3, and TiO2 are 6.0, 2.0, 

4.5, and 80, respectively), as described previously.58-60 

Before proceeding to a detailed analysis of the electron transfer dynamics using TA 

measurement, three-body Auger recombination process in CsPbI3 QDs is studied and 

eliminated as the Auger time scale in QDs could potentially overlap with that of the 

charge transfer between nanoparticles and tend to complicate the discussion.15, 61-65 Figure 

S2 shows the dependence of the normalized TA decays on pump excitation intensities for 

the different-sized QDs dispersed in hexane. For the studied three kinds of QDs, fast 
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decay processes appear in their TA responses when the pump intensity is larger than 0.5 

μJ/cm2, and the TA responses decay faster as the pump intensity increases further. This 

observation indicates the presence of three-body Auger recombination process in CsPbI3 

QDs under the high pump intensity excitation.61, 65-67 However, when the pump intensity 

is smaller than 0.5 μJ/cm2, we found the fast decay process disappeared and the 

waveforms of the TA responses overlapped with each other very well when they were 

normalized at the peak intensity within 1 ns. This means that the three-body Auger 

recombination process is negligible under such low pump intensity excitation. Therefore, 

in the following, for the TA measurements, samples will be excited with pump intensity 

of 0.5 μJ/cm2 to eliminate the potential effects of Auger process. Figure 2b, 2c, 2d show 

the TA trace of the three different size CsPbI3 QDs unattached (i.e., in solution) and 

attached (i.e., adsorbed) to TiO2 and Al2O3 films recorded at their bleaching maximum. It 

is found that the TA kinetics of these unattached QDs can be well fitted using the 

following single-exponential function with a constant component y0: 

0 0Y( ) exp( )
t

t yA



    (1) 

Fitting the TA kinetics of each sample to the above eq (1) gives a decay time constant 

QD of 387 ps, 420 ps, and 430 ps (A0/(A0+y0) = 0.1) for 10 nm-, 12 nm-, and 15 nm-QDs, 

respectively. It is noted that the measured TA dynamics for the unattached CsPbI3 QDs 

are in good line with previous reports.65, 68 Given the absence of three-body Auger 

recombination process at the present measuring conditions, the fitted time constant QD 
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can be assigned to one-body non-radiative recombination in the QDs, i.e., electron and/or 

hole trapping in defect states (more experimental evidence to this assignment can be 

found in Supporting Information, Figure S3).30, 61, 67 The constant component y0 is 

assigned to two-body radiative recombination in the QDs (i.e., photoluminescence 

process), which has lifetime ˃˃ 1 ns. The component proportion of y0/(A0+y0) = 0.9 thus 

explains the previous measured photoluminescence quantum yield of ~90% for the 

CsPbI3 QDs. Further, significantly, it is found the TA signal decay of the QDs attached on 

TiO2 becomes much faster than that of the unattached QDs (dispersed in hexane), while 

TA trace on Al2O3 shows no apparent change on the time scale of the measurement. The 

above difference is indicative of electron transfer from the conduction band of the CsPbI3 

QDs to TiO2 but not to Al2O3. This can be understood by the energy level diagrams of the 

Al2O3, TiO2, and CsPbI3 QDs as shown in Figure 4a, from which we can see the 

conduction band minimum of Al2O3 is much higher than that of the QDs. TA decays of 

the QDs on TiO2 films show single exponential kinetics with time constant QD+TiO2 of 42 

ps, 50 ps, and 65 ps (A0/(A0+y0) = 0.9) for 10 nm-, 12 nm-, and 15 nm-QDs, respectively. 

Kinetic parameters of the fits for all samples are summarized in Table S1. As indicated in 

previous reports,54, 69-71 in the absence of a hole acceptor, TA bleach near band gap of the 

QDs attached to TiO2 is associated with both electron and hole in the photoexcited QDs, 

i.e., trapping of electron and/or hole, Auger recombination, electron relaxation to the 

ground state, and backward charge recombination between injected electron and the hole. 



13  
 

Considering the absence of Auger recombination process as stated above and the much 

longer lifetime of the backward charge recombination process when compared with that 

of the electron injection process typically found in previous reports,54 the TA bleach near 

band gap of the QDs should be dominated by electron transfer process from QDs to TiO2. 

The electron injection is also confirmed by the considerable photocurrent obtained for the 

CsPbI3 QD-sensitized TiO2 solar cells, which will be discussed in the following. The 

background signal y0 here with lifetime ˃1 ns can be assigned to electron relaxation to the 

ground state and backward charge recombination between injected electrons and the 

holes. Further, if we assume the electron transfer is the only added pathway for the 

excited-state interaction between QDs and TiO2, then the electron transfer rate k(QD/TiO2) 

from QDs to TiO2 can be given by 
  22

(QD TiO ) (QD)/
1/ 1/

QD TiO
k    , based on which we 

calculated an effective electron transfer rate k(QD/TiO2) of 2.10  1010 s-1, 1.76  1010 s-1, 

and 1.30  1010 s-1 for 10 nm-, 12 nm-, and 15 nm-QDs, respectively. The electron 

injection efficiency ηinj from CsPbI3 QDs to TiO2 can be given by the following equation: 

2 2

2 2

(QD/TiO ) (QD/TiO )

(QD/TiO ) QD (QD/TiO )

+inj QD PL

PL

k k
C C

k k k k
 

 
  (2) 

where CQD and CPL are component proportions of one-body charge carrier trapping 

process and two-body radiative recombination process (i.e., photoluminescence) in the 

free QDs, respectively, kQD and kPL are their corresponding rate constants, kQD = 1/QD, 

kPL = 1/PL, and k(QD/TiO2) is electron transfer rate from QDs to TiO2. Taking 12 nm-QD as 

an example, the CQD and CPL values have been determined to be ~0.1 (i.e., A0/(A0+y0) in 
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free QDs) and 0.9 (i.e., y0/(A0+y0) in free QDs), respectively, k(QD/TiO2) is 1.76  1010 s-1, 

kQD is 0.24  1010 s-1, and kPL ˂˂ 0.1 1010 s-1 (because photoluminescence lifetime PL 

˃˃ 1 ns). Therefore, eq (2) leads to ηinj value reaching almost 99%, which means that 

about 99% of the photoexcited electrons in the CsPbI3 QDs can be injected into TiO2 

nanoparticles. 

 

Figure 3. (a-c) Normalized TA responses for the free standing QDs and QD/TiO2 

composite measured under different excitation intensity. (d) Dependence of the 

fractional amplitude of Auger recombination in QDs and electron injection efficiency on 

excitation power. 
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Previous studies probing electron injection from dye to TiO2 can observe a clear 

absorption signal around 1000 nm in TA spectra, which corresponds to those electrons 

that have been injected into TiO2.
72-74 Therefore, additionally, for CsPbI3 QD/TiO2 system, 

we also carried out TA measurement, expecting to observe similar absorption signal to 

prove directly the injection of the photoexcited electrons. To do so, probe wavelength in 

TA spectra was changed to near infrared region of 800 to 1600 nm and a low excitation 

intensity of 0.5 μJ/cm2 was first used (pump wavelength was kept as 470 nm), under 

which condition Auger process is negligible and the electron injection efficiency can 

reach 99% as revealed before through probe of the QDs. However, from TA spectra, 

throughout the whole probe range we can not observe clear absorption signal that can be 

considered processible. This can be due to the low pump intensity used, i.e., although the 

electron injection efficiency can reach 99%, the total amount of the photoexcited electrons 

is limited under such low pump intensity. Therefore, we assume unlike the “indirect” way 

probing on the photoexcited QDs (the probe wavelength of 649-679 nm) which features 

high response even at the low excitation intensity, direct probe on the injected electrons in 

TiO2 requires a higher excitation intensity so as to guarantee a high concentration of the 

electrons in TiO2 and therefore meet the minimum requirement for TA response.72 So, 

next, the excitation intensity was increased from 0.5 to 10 μJ/cm2 (further increasing the 

intensity causes damage of the QDs as white spot appears after pump pulse excitation). 

However, it turns out that TA spectra still do not have the necessary signal to noise ratio 
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that can be processed as an indicator of the injected electrons. The reason behind this is 

investigated in detail and we found an unusual Auger recombination behavior in CsPbI3 

QDs, which is actually not the case in most dye sensitizers. In the following we will show 

that the CsPbI3 QDs suffer from a severe Auger recombination process, which reduces 

greatly the total amount of the photoexcited electrons that can be injected into TiO2 for 

larger excitation intensity. Figure 3a-c present TA kinetic traces of the free standing QDs 

(i.e., QD solution) and the QD/TiO2 composite under different excitation intensities. 

Kinetic parameters of the fits are summarized in Table S2 (Supporting Information), from 

which we see a significant Auger recombination in CsPbI3 QDs even at moderate 

excitation intensity and has a long life-time of ~75 ps, comparable to that of the electron 

injection process of ~50 ps. Fractional amplitude of the Auger recombination in free QDs 

and the corresponding electron injection efficiency from QDs to TiO2 under different 

excitation intensities are plotted in Figure 3d (electron injection efficiency was calculated 

using eq 2 by replacing charge carrier trapping parameters with that of Auger process). It 

clearly shows that degree of the Auger recombination process accelerates with the 

increase of excitation intensity, leading to ~30% loss of the total photoexcited electrons 

that should have been injected into TiO2 under moderate excitation intensity of 10 μJ/cm2. 

The prominent Auger recombination process demonstrated here is in line with Liu et al.’s 

report, where they found Auger recombination exists in the relaxation process of CsPbI3 

QDs even though the number of exciton in nanocrystals is as low as 0.67.65 In order to 
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increase the concentration of the injected electrons in TiO2, we should further increase the 

excitation intensity, however, as mentioned before, this would cause damage of the QDs. 

Due to the reasons above, unfortunately, we can not directly probe the injected electrons 

in TiO2 under the present conditions. But we notice another attempt to directly observe the 

injected electrons from QDs to TiO2 or ZnO, where Stockwell et al. employed IR transient 

absorption measurement with a probe wavelength of 5000 nm to investigate the injection 

process from CdSe QDs to TiO2.
69 Note that CdSe QDs also suffer from a certain degree 

of Auger recombination loss. Since the absorption coefficient of free carriers in a 

semiconductor (i.e., the electrons injected to the TiO2 electrode here) at longer IR 

wavelength such as 5000 nm is much larger than that at shorter wavelengths such as 

800-1600 nm used in our TA setup, it would be better to detect the injected electrons in 

TiO2 directly using the longer IR probe wavelength in the TA measurements. However, 

due to our limited lab equipment availability, we are not able to conduct such experiment 

right now, further work is still needed. 

 

Figure 4. (a) Schematic energy level diagrams of the MOs and CsPbI3 QDs with various 
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particle sizes. (b) Electron transfer rate constant as a function of the free energy change 

ΔG. 

Electron transfer kinetics in a quantized semiconducting nanocrystal donor and 

nanoparticulate metal oxide acceptor system has been evaluated in terms of Marcus 

theory.45, 49-50, 75-76 The functional form of Marcus model is described as follows: 
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where ket is the charge transfer rate, ħ is the reduced Planck’s constant, ρ(E) is density of 

states of acceptor, H (E) stands for overlap matrix element, kB is Boltzmann’s constant, T 

is temperature, λ is the system reorganizational energy, ΔG is the free energy change 

between the donor and acceptor systems. Under assumption that overlap matrix element 

H (E) does not significantly depend on energy, we can see the logarithm of the electron 

transfer rate is a quadratic function of the free energy change, i.e., ΔG. In our specific 

QD-TiO2 system, there are three major factors which contribute to ΔG: free energy of 

charging, free energy of coulombic interactions, and the change in electronic energy. 

Therefore, ΔG can be given by the following expression:45 
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where ETiO2 and EQD are conduction band minimum energies of TiO2 and QD, respectively, 

e is the elementary charge, RQD and εQD are radius and dielectric constant of the QDs, εTiO2 

is dielectric constant of TiO2, l is QD-TiO2 separation distance. A depiction of energy state 
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alignment for the CsPbI3 and TiO2 under investigation is shown in Figure 4a. Note that 

the exact band gap for each size QD is determined from their TA spectra using TA bleach 

peak measured under the low excitation intensity (Figure S2). Valence band energy is 

derived from photoelectron yield spectroscopy (PYS) measurement, see Figure S4. 

According to the above measured band energies and the previously reported values for 

CsPbI3 and TiO2 (e.g., εQD = 6.003, εTiO2 = 80),77-78 we calculated the ΔG values for 

CsPbI3 QD-TiO2 system ranging from ~0.67 to 0.73 eV, which are varied with QD size 

(note that l is set to be 0 nm because the distance between QDs and TiO2 is negligible 

compared to QD size). In Figure 4b, the electron transfer rate from CsPbI3 QDs to TiO2 

with respect to ΔG is plotted. It clearly reflects that the small energy difference attained by 

changing particle size of the QDs has led to a considerable variation in the transfer 

kinetics. In fact, plot of ket vs. ΔG for various reorganizational energies has been studied 

in Tvrdy et al.’s report,45 from which we can learn that in the reorganizational energy 

dominated region, where ΔG ≤ λ (λ is system reorganizational energy), the electron 

transfer dynamics is greatly dependent on the energy ΔG, while in the region where ΔG ˃ 

λ, the transfer rate constant is dominated by the density of electron accepting states, i.e., 

ρ(E), and less dependent on ΔG. For CsPbI3 perovskite material in our case, the λ value 

was previously estimated to be ~1642 meV,79 which is much larger than our calculated ΔG 

values of 670~730 meV. Therefore it is reasonable to see that the small difference in ΔG 

in CsPbI3 QD system induces such a noticeable change in transfer rate as recorded in 
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Figure 4b. 

 

Figure 5. Comparison of the TA dynamics of 12 nm-CsPbI3 QDs attached to TiO2 and 

ZnO. The samples were excited at a wavelength of 470 nm with power intensity of 0.5 

μJ/cm2. Solid line shows exponential fit to the TA dynamics. 

Also, we have carried out TA measurement on the samples of QD-ZnO composite. 

Figure 5 shows that compared to the TA trace of the QDs attached to TiO2, QD-ZnO 

composite exhibits slower TA decay dynamics with charge transfer rate of 0.70  1010 s-1, 

which is almost 2.5 times slower than that in the case of TiO2 (1.76  1010 s-1). ΔG values 

calculated for QD-ZnO system are ranged from 0.64 to 0.71 eV, also depending on QD 

size and about 0.03 eV smaller than that in QD-TiO2 system. But of course, according to 

eq (3), the difference of charge transfer dynamics between two QD-MO systems can not 

only attribute to the difference in ΔG value but also related to the difference in both 

coupling degree between two nanoparticles (i.e., H (E)) and the density of accepting 

states in acceptors (i.e., ρ(E)). In addition to Marcus theory, we note that for electron 

injection process from an adsorbate to ZnO, it is also possible that the electron transfer 
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rate is influenced by the presence of a certain intermediate state, as demonstrated in 

previous reports.69, 80 For example, Stockwell et al. found a long-lived interface-bound 

charge-separated pair (IBCSP) state in Coumarin 343/ZnO system, which plays key role 

in determining the electron transfer rate across the interface.69 

 

Figure 6. Current-voltage (J-V) characteristic of the CsPbI3 QD-sensitized TiO2 solar 

cells under 100 mW/cm2 illumination. The inset shows device architecture for the 

fabricated solar cells. 

The ability to inject photoexcited electrons to TiO2 renders CsPbI3 QDs extremely 

suitable for use in QD-sensitized solar cells (QDSCs). Therefore, we fabricated prototype 

QDSCs with CsPbI3 QDs as the sensitizer. Mesoporous films of ~30 nm-TiO2 

nanoparticles with thickness of ~15 μm were prepared to deposit the 12 nm-CsPbI3 QDs; 

Liquid-state iodide electrolyte (I-/I3
-) was used to scavenge the photoexcited holes in the 

QDs (details of the fabrication can be found in Supporting Information). Power 

conversion efficiency of the resulting solar cells reaches 5% with open-circuit voltage of 

0.72 V, short-circuit current density of 14.17 mA/cm2, and fill factor of 0.49 (Figure 6). 
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Considering that no attempt was made to construct the CsPbI3 QD-sensitized solar cells 

and to optimize the performance (e.g., liquid electrolyte and TiO2 film thickness, etc.), 

the results are encouraging, and we notice that the efficiency obtained at this stage is 

slightly higher than that of the first solar cell demonstration of the nanocrystalline 

CH3NH3PbI3, which employed the same cell configuration as well as the same I-/I3
- 

electrolyte as ours, and exhibited efficiency of 3.8%,81 suggesting that CsPbI3 may 

possess greater potential for use in high-efficiency solar cells. 

We have presented experimental results which show direct evidence of electron 

injection from photoexcited CsPbI3 QDs to the metal oxides (TiO2 and ZnO) on a 

picosecond time scale. Apparent electron transfer rate constants from QDs to TiO2 

exhibited strong dependence on particle size of the QDs ranged from 1.30  1010 to 2.10 

 1010 s-1, which can be rationalized by Marcus theory. In addition, we elucidate that the 

electron injection efficiency can reach almost 99% under the low pump pulse excitation. 

Further, electron transfer dynamics from CsPbI3 QDs to TiO2 was proven to be about 2.5 

times faster than that to ZnO. As a demonstration of CsPbI3 QD application in sensitized 

solar cells, liquid-state CsPbI3 QD-sensitized solar cells were fabricated based on TiO2 

mesoporous films, which showed a promising power conversion efficiency of 5%. 
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