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COMMENTS ON SOME EXISTENCE THEOREMS OF BEST
PROXIMITY POINTS FOR CONTRACTIVE-TYPE MAPPINGS

Misako KikkAawaA and Tomonari SUZUKI

Abstract

In 2010, Sadiq Basha proved two existence theorems of best proximity points for contractive-type
mappings. The purpose of this paper is to clarify the mathematical structure of these theorems.

1. Introduction

Throughout this paper we denote by N the set of all positive integers and by R
the set of all real numbers. We let (X,d) be a metric space and let 4 and B be non-
empty subsets of X. Let 7" be a mapping from A4 into B and let S be a mapping from
B into A. Define d(A4,B) e R and a function d* from X x X into [0,c0) by

d(A,B) =inf{d(x,u) : x€ A, u € B}
and

d*(a,b) = d(a,b) — d(A4, B)

for any a,be X.

A point xe A4 is said to be a best proximity point of T if d*(x,Tx) =0 holds.
Also, a point u € B is said to be a best proximity point of S if d*(Su,u) =0 holds. In
the case where 4 N B # (, it is obvious that d(4, B) = 0 holds. Hence x € 4 is a fixed
point of T iff x is a best proximity point of 7. In the other case, where 4 N B = F,
best proximity points of 7 are minimizers of the problem: min{d(x,7Tx):xe A}.
Similarly for y e B.

We human beings have studied the existence of best proximity points; see [3, 4,
5, 8, 10, 11] and others. In 2013, Sadiq Basha, Shahzad and Jeyaraj in [7] proved
two existence theorems of best proximity points for Kannan-type and Chatterjea-type
mappings. Very recently, in [9], the mathematical structure of these theorems were
clarified.
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In 2010, Sadiq Basha [6] proved two existence theorems, Theorems 2 and 7 below,
of best proximity points for contractive-type mappings. Motivated by the results in [9],
in this paper, we clarify the mathematical structure of these theorems.

2. Banach contraction principle

The fixed point theorem for contractions is referred to as the Banach contraction
principle.  The proof of this is easy and well known. However, for the sake of com-
pleteness, we give a proof.

THEOREM 1 ([1, 2]). Let (Y,d) be a metric space and let U be a contraction on Y,
that is, there exists r € [0,1) satisfying

(1) d(Ua, Ub) < rd(a,b)

for all a,be Y. Then the following hold:

(1) {U"a} is a Cauchy sequence for all ae'Y.

(ii) U has at most one fixed point.

(i) If Y is complete, then U has a unique fixed point.
(iv)

iv) If U has a fixed point c, then {U"a} converges to ¢ for any a€Y.

Proor. Fix ae Y. We first show (i). We have

0

' d(U’a, U a) < ;rjd(a, Ua) = id(a, Ua) < o0.

j=1

So, a standard argument shows that {U"a} is a Cauchy sequence.
In order to show (ii), we let ¢,¢’ € Y be fixed points of U. Then we have

d(c,c") =d(Uc, Uc") < rd(c,c").

Since r < 1, we have d(c,¢’) =0. Thus, (ii) holds.
We next show (iii). By (i), we note that {U"a} is Cauchy. Since Y is complete,
{U"a} converges to some ce Y. We have

d(c, Uc) = lim d(U"a,Uc) < lim rd(U" 'a,c) = 0.

n—oo n—oo

Hence Uc = ¢ holds, thus, ¢ is a fixed point of U.
In order to prove (iv), we let c€ Y be a fixed point of U. We have

lim d(U"a,c) = lim d(U"a,U"c) < lim r"d(a,c) = 0.

n— o0 n— o0 n— o0

Thus, (iv) holds. O
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3. Theorem 3.1 in [6]

In this section, we study Theorem 3.1 in [6], which is Theorem 2 in this paper.
We begin with the notations and definitions that appear in the statement of Theorem
2.

Define two subsets 4y and By of A and B, respectively, by
Ao ={ae A:d(a,b) =d(A,B) for some b e B},
By={beB:d(a,b)=d(A,B) for some ac A}.

B is said to be approximatively compact with respect to A if every sequence {y,} in
B satisfying the condition that d(x, y,) — d(x,B) for some xe A has a convergent
subsequence. 7T is said to be a proximal contraction if there exists r € [0,1) such that

(2) d(u, Tx) +d(Tx, Ty) +d(Ty,v) < rd(x,y)

whenever x and y are distinct elements in A satisfying the condition that
(3) d(u,Tx) =d(A,B) and d(v, Ty) =d(A, B)

for some u,v e A.

THEOREM 2 (Theorem 3.1 in [6]). Assume the following:

(@) X is complete and A and B are closed.

(b) B is approximatively compact with respect to A.

() Ao and By are nonempty.

(d) T(A4p) C By.

(e) T is a proximal contraction.

Then the following hold:

(1) There exists a unique best proximity point z in A of T.

(i) For each fixed xoe€ Ao, there is a sequence {x},.nujop in A such that
d(xps1, Tx,) = d(A, B) for every neNU{0}, where at least one of the x,’s
is the same as z, or the sequence {x,} converges to z.

It is important to confirm the following fact.

LemmA 3. Assume (c) and (d) of Theorem 2. Then the following hold:

(1) For every x € Ay, there exists u € Ay satisfying d(u, Tx) = d(A, B).

(ii) For each fixed xy € Ay, there is a sequence {x,} in Ay such that d(xui1, Txy)
=d(A, B) for every neNU{0}.

(i) If xe Ao and ue A satisfy d(u, Tx) = d(A,B), then ue Ay holds.

(iv) 1If a sequence {xn},cnuqoy in A satisfies xo € Ay and d(xn+1, Tx,) = d(A, B) for
neNU{0}, then x, e Ay holds for all neN.

Proor. (i), (iii) and (iv) obviously hold. (ii) follows from (i). O
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We give a slight improvement of Theorem 2.

THEOREM 4. Assume (c)—(e) of Theorem 2. Assume additionally (a) of Theorem 2
in the case where d(A,B) =0. Then the following hold:
(1) There exists a unique best proximity point z in A of T.
(ii) If a sequence {xy},cnupoy in A satisfies xo € Ay and d(xpi1, Tx,) = d(A, B) for
neNU{0}, then {x,} converges to z.

Considering two cases of d(4,B) >0 and d(4,B) =0, we will prove Theorem 4.

LemMa 5. Assume d(A,B) >0 and (c)—(e) of Theorem 2. Then the following
hold:

(1) If a sequence {xy},cnuqoy in A satisfies xo € Ay and d(xy+1, Txy) = d(A4, B) for
neNU{0}, then there exists ve N satisfying Xx,11 = X,.

(ii) There exists a unique element z € A satisfying d(z,Tz) = d(4, B).

(i) If d(x,Tz) =d(A,B) for x€ A, then x =z holds.

(iv) If a sequence {xy}, Ny in A satisfies xo € Ay and d(x+1, Txy) = d(A, B) for
neNU{0}, then there exists ve N satisfying x, =z for all n > v.

Proor. In order to prove (i), we let {x,},. Ny be a sequence in A satisfying
xo € Ao and d(x,+1, Tx,) = d(A4,B) for ne NU{0}. By Lemma 3 (iv), we note x, € Ay
for all ne N. Arguing by contradiction, we assume x,;; # X, for all ne N. Then
since 7 is a proximal contraction, we have

d(xmanrl) < d(xna Txnfl) + d(Txnfla Txn) + d(Tx}’Hanrl)
<rd(xp-1,%,) < -+ <1r"d(x0,x1).

Hence

lim (d(x,, Txp—1) + d(Txp—1, Txy) + d(Txp, Xp41)) = 0

holds. So we obtain

0 <d(A4,B) = lim d(Tx,,xy+1) =0.

n— o0

This is a contradiction. Therefore there exists v e N satisfying x,;; = x,. We put
Z=X,.

We next show (ii). Arguing by contradiction, we assume that there exists an
element w of A4 satisfying

w#z and d(w,Tw) = d(A4, B).
Since 7 is a proximal contraction, we have

dw,z) <dw,Tw) +d(Tw,Tz) + d(Tz,z) < rd(w,z).
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Since re[0,1), we obtain d(w,z) =0 and hence w ==z This is a contradiction.
Therefore we have shown (ii).

In order to show (iii), suppose d(x,Tz)=d(A,B) for some x € A. Arguing by
contradiction, we assume x # z. Then we have x € 4y and hence Tx € By. So there
exists u € Ao satisfying d(u, Tx) = d(A4, B). Since T is a proximal contraction, we have

2d(A,B) <2d(A,B) +d(Tz, Tx)
=d(x,Tz) +d(Tz,Tx) + d(Tx,u)

< rd(z,x)

Hence, d(A4,B) =0 holds. This is a contradiction. Therefore we obtain (iii).

In order to prove (iv), we let {x,}, Ny, be a sequence in 4 satisfying xo € 49 and
d(xp1,Tx,) = d(A,B) for ne NU{0}. From (i), there exists v e N satisfying x, = z.
By (iii), we have x,;; =z. Thus, we obtain x, =z for all neN with n > v. O

LEMMA 6. Assume d(A,B) =0, (a) and (c)—(e) of Theorem 2. Then the following
hold:
( ) Ay = By = AN B holds.
(ii) Ao is complete.
(i) The restriction U of T to Ay is a contraction on Ay.
(iv) There exists a unique element z € Ay satisfying Uz = z.
(v) z is a unique element of A satisfying d(z,Tz) = d(A, B).
(Vi) 1If a sequence {xn},cnuqoy in A satisfies xo € Ay and d(xp+1, Txn) = d(A, B) for
neNU{0}, then x, = U"xy holds for all neN and {x,} converges to z.

PROOE. (i) obviously holds.

We next show (ii). Since 4 and B are closed, A4 is closed. Since X is complete,
Ao is complete.

In order to prove (iii), we let U be the restriction of 7 to 4g. Fix x,y e 4p. Itis
obvious that Ux = Tx € By = Ay holds. So U is a mapping on 4y. Put u = Tx and
v=Ty. Then

d(u,Tx) =d(v,Ty) =0=d(A4,B)
holds. In the case where x # y, since T is a proximal contraction, we have
d(Ux, Uy) = d(u, Tx) + d(Tx, Ty) + d(Ty,v) < rd(x, y).

It the other case, where x =y, it is obvious that d(Ux, Uy) =0 <rd(x,y) holds.
Therefore we have shown that U is a contraction on A.
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(iv) follows from Theorem 1.
We next show (v). We have

d(z,Tz) =d(z,Uz) =0=d(A, B).
Arguing by contradiction, we assume that there exists an element w of A satisfying
w#z and d(w, Tw) = d(A, B).

Then we have we Ay. Hence w is a fixed point of U. This is a contradiction.
Therefore we have shown (v).

In order to prove (vi), we let {x,},cnuqoy be @ sequence in A satisfying xo € 4o
and d(x,41, Tx,) = d(A4,B) for ne NU{0}. By Lemma 3 (iv), we note that {x,} is a
sequence in Ay. We have

d(xp11, Uxy) = d(x41, Txy) =d(A,B) =0

for neN. Thus, we obtain x, = U"xyg. By Theorem 1, {x,} converges to z. O

4. Theorem 3.3 in [6]
In this section, we study Theorem 3.3 in [6], which is Theorem 7 in this paper.

THEOREM 7 (Theorem 3.3 in [6]). Assume the following:
(@) X is complete and A and B are closed.
(b) S is nonexpansive, that is, d(Su,Sv) < d(u,v) for any u,v € B.
() T is a contraction with contraction constant r.
(d) If (x,y) € A x B satisfies d(A,B) < d(x,y), then d(Sy, Tx) < d(x,y) holds.
Define a sequence {an}neNU{O} by aye A, ay = Tar, and ay,.» = Sar,y for ne
NU{0}. Then the following hold:
(i) There exist z€ A and w € B satisfying d(z,Tz) = d(A, B), d(Sw,w) = d(A, B)
and d(z,w) =d(A4, B).
(i1) {aon} and {ay1} converge to some best proximity points in A and B of T and
S, respectively.
(i) If x,ye A are best proximity points in A of T, then

2
1—r

d(x,y) < d(4, B)

holds.
We give a slight improvement of Theorem 7.

THEOREM 8. Assume the following:
(a) Either A or B is complete.
(b) S is nonexpansive.
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() T is a contraction with contraction constant r.

(d) d*(x,Tx) > 0 implies d*(STx, Tx) # d*(x, Tx).
Define a sequence {aﬂ}neNU{O} by aye A, axyy = Tay, and az,in = Saz,1 for ne
NU{0}. Then the following hold:

(1) ST and TS are contractions on A and B, respectively.

(ii) ST and TS have unique fixed points z€ A and w € B, respectively.

(i) z and w are best proximity points in A and B of T and S, respectively, which

satisfy Tz=w and Sw = z.
(iv) {az.} and {ax,+1} converge to z and w, respectively.
(v) If x,ye A are best proximity points of T, then

d(x,y) < %d(A,B)

holds.
(vi) If xe A is a best proximity point of T, then

+r

d(4, B)

d(z,x) < %d(A,B) and d(x,w) < i

hold.

REMARK. It is obvious that (a) of Theorem 8 is weaker than (a) of Theorem 7.
It is also obvious that (d) of Theorem 8 is weaker than (d) of Theorem 7.

Proor. We first show (i). For x,ye 4 and u,ve B, we have

d(STx,STy) <d(Tx,Ty) < rd(x,y)
and

d(TSu, TSv) < rd(Su, Sv) < rd(u,v),

thus, ST and TS are contractions with contraction constant r.
We next prove (ii). We consider the following two cases:
* A is complete.
* B is complete.
In the first case, by Theorem 1 (iii), S7 has a unique fixed point z € 4. Since

TS(Tz) = T(STz) = Tz,

w:= Tz is a fixed point of 7'S. By Theorem 1 (ii), w is a unique fixed point of T'S.
In the second case, by Theorem 1 (iii), 7S has a unique fixed point we B. Since
STSw = Sw, z:= Sw is a fixed point of S7. By Theorem 1 (ii), z is a unique fixed
point of ST.
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Let us prove (iii). We have already shown 7z = w and Sw =z. It follows from
(d) and STz =z that d*(STz,Tz) =d*(z, Tz) =0 holds. Thus, z is a best proximity
point in 4 of T. Since

0=d*(STz,Tz) = d*(Sw,w),

w is a best proximity point in B of S. We have proved (iii).

It is obvious that (iv) follows from Theorem 1 (iv).

Let us prove (v). Let x,yeAd be best proximity points of 7. Then we
have

d(x,y) <d(x,Tx)+d(Tx,Ty)+d(Ty, y)
<d(x,Tx)+rd(x,y)+d(y, Ty)
=rd(x,y)+2d(A4,B).

Hence (v) holds.
We finally prove (vi). Let x € 4 be a best proximity point of 7. Since z is also a
best proximity point of T, we have from (v)

d(z,x) < %d(A,B).

We also have
d(x,w) < d(x, Tx) +d(Tx,w)
=d(x,Tx) +d(Tx, Tz)
<d(A4,B) +rd(x,z)

2r
1—r

A

<({1+

)d(A,B)

1+7r
=1 _rd(A,B).

Thus, (vi) holds. U

The following examples tell that three numbers that appear in (v) and (vi) of
Theorem 8 are best possible.

ExaMpLE 9. Let re(0,1) and put o:=2/(1 —r) € (2,00). Define sequences
{xﬂ}neNu{O} and {u”}neN by

xn = (0,0r™) and u, = (1,0r").

Put z=(0,0) and w = (1,0). Define subsets 4, B and X of R’ by
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A={z} U{x,:ne NU{0}},
B={w}U{u,:neN}
and X = AU B. Define mappings 7 and S by

Tx, = Unt1, Tz = W,

Su, = X, Sw = z.

Define a function e from X x X into [0,00) by

ea,b) = 1 if' (a, b.) = (xo,u1) or (a,b) = (u1,xo)
lla —b||, otherwise,
where |-, is the /;-norm on R>. Define a function d from X x X into [0, 00)
by

n

4 d(a,b) = min elai_,a): (ag,....an) e X"\ ay=a,a,=b .
( i1, dj

J=1

Then the following hold:
) A, B and X are complete.
S is nonexpansive.
T is a contraction.
(d) of Theorem 8 holds.
xo and z are best proximity points of 7.
d(4,B) = 1.
2
1—r

(viil)  d(xo,w) = i tr

i
il
il
v
v
vi

(
(
(i
(i
(
(
(

~ — — — — —

vil)  d(z,x0) =

J— }/’ :
Proor. We first note

d

X(],X) = e(X(),X) = ||X() - x”la

Y

Xo,u) = e(xo,u1) + e(ur, u) = ||xo —ul|; —2,

QU

(
(
(x, ») = e(x, y) =[x = ylly,
d(

u,v) = e(u,v) = [[u— vl

for x,y e A\{xo} and u,v e B; see also Lemma 12 below. So, (vii) and (viii) hold.
(i) obviously holds.
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Since
d(Su, Sv) = d(u,v)

for any u,v e B, (ii) holds.
Since

d(Tx,Ty) =rd(x,y)

for any x, y € 4, (iii) holds.
Since d*(STx,Tx) =0 for any x e A4, (iv) holds.
(v) and (vi) obviously hold. O

We show that even in the case where r = 0, three numbers that appear in (v) and
(vi) of Theorem 8 are best possible.

ExamMpPLE 10. Put r =0, ¢ =2 and

xo = (0,2), z=(0,0), w=(1,0).
Define subsets 4, B and X of R? by

A ={xo,z}, B = {w}, X =AUB.
Define mappings 7' and S by

Txo=w, Tz =w, Sw=z.
Define a function e from X x X into [0, 00) by
(a.b) = { 1 if (a,b) = (xo,w) or (a,b) = (w,xp)

lla— b, otherwise.

Define a function d from X x X into [0, 00) by (4). Then (i)—(viii) of Example 9 hold.

5. Lemma

In this section, we prove one lemma, connected with the underlying metric spaces
in Examples 9 and 10. See also Examples 10 and 13 in [9].

We give the definition of metric space, though it is well known. Let X be a
nonempty set and let d be a function from X x X into [0, c0). Then (X,d) is said to be
a metric space if the following hold:

(D1) d(x,x)=0

(D2) d(x,y)=0=>x=y
(D3) d(x,y) =d(y,x)

(D4) d(x,z) <d(x,y)+d(y,z)

We can easily prove the following.
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LemMmA 11.  Let X be a nonempty set and let e be a function from X x X into [0, o0)
satisfying (D1) and (D3) with d :=e. Define a function d from X x X into [0, 0) by

n

d(x,y):inf{z e(uj1,u;) = (o, - .- un) € X" up = x, un:y}.

=1
Assume (D2). Then (X,d) is a metric space.
We finally prove the following.

LemmA 12. Let (X,p) be a metric space and let A and B be nonempty subsets
of X. Put Y:=AUB and ¢ :=p(A,B) € (0,0). Assume that there exist a subset A
of A and mappings Q and R from A, into A and B, respectively, satisfying

pla,v) =2/ + p(a, Qv),

(5) (a,

(6) pla,Rv) =/ + p(a, Qu),
(7 (

(8)

7 p(v,b) =3¢+ p(Rv,b),

8 p(Qv,b) = £+ p(Ro,b)

for any ae A, be B, ve Ay with a#v. Put Ay = A\A,. Define a function e from
Y x Y into [0,00) by

e(v, Rv) = e(Rv,v) =/ for all ve Ay,
e(x,y) =p(x,p) otherwise.

Define a function d from Y x Y into [0,00) by

n

d(x,y) = min{z e(u1,u) : (o, ... un) € Y™ g = x, u, = y}.
=1

Then the following hold:

(i) Que A for all ve A,.

(i) e(x,y) <e(x,v)+e(v,y) for x,ye Y and v e A».

(1iit) ( y) <e(x,z)+e(z,y) for x,y,zeY with (x,z),(y,z) ¢ Gr(R), where
R) is the graph of R
e( x,y) <e(x,z)+e(z,y) for x,ye AyUB and z€ Y.
y)=p(x,y) for x,ye A\ UB.
d(u,v = p(u,v) for ue Ay and ve A,.

(v,b) = 2¢ = ¢+ p(Rv,b) for ve Ay and b € B.

) = v, v') =2/ =2/ + p(Ru, Rv') for v,v' € Ay with v #v'.

Ittt
s E'::§;5.< =
—_ e = e e
QU
—~
\'@
<
S N
I
)

is a metric space.
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REMARK. A, = (J is possible. On the other hand, A4, = A cannot be possible
from (i).

ProOF. We first redefine d by

n
d(x,y) = inf{Ze(ujl,uj) S(uo, .. uy) € Y ug = x, u, = y}.

J=1

After showing (viii), we will find that the above infimum is the minimum.
We have by (7)

9) e(v, Rv) = ¢ <3¢ = p(v, Rv)
for all ve 4,. So we note
e(x, y) < p(x, »)
for all x,ye Y. It is obvious that
e(x,x) =p(x,x) =0 and e(x,y) =e(y,x)

hold for all xe Y. Thus, (D1) and (D3) with d := ¢ hold.
We will show (i). Arguing by contradiction, we assume that Quve A, for some
ve Ay. Then we have by (7) and (8)

3/ <34+ p(RQv, Rv) = p(Qu, Rv) = < 3/,

which implies a contradiction. Therefore we obtain (i).
In order to show (ii), we let v e A,. We observe the following:

e(v,v) + e(v, Rv) = e(v, Rv)
e(a,v) + e(v, Rv) = p(a,v) + ¢ = 3/ + p(a, Qv)
=2/ + p(a, Rv) > p(a, Rv) > e(a, Rv),
e(b,v) + e(v, Rv) = p(b,v) + ¢ = 4/ + p(b, Rv)
> p(b, Rv) = e(b, Rv),
e(Rv,v) + e(v, Rv) = 2/ > 0 = e(Ruv, Rv)

for ae A, be B, ve A, with a# v and b # Rv. So (ii) holds in the case where Rv e
{x,y}. In the other case, where Rv ¢ {x, y}, we have

e(x, ) < p(x,y) < p(x,v) +p(v, p) = e(x,v) + e(v, ).
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We have shown (ii). So we note
. - n—1
d(x,y) = 1nf{Ze(uj1,uj) s(ur, o up) € (ATUB)T up =X, uy = y}.
=1

In order to show (iii), we let x,y,ze Y satisfy (x,z),(y,z) ¢ Gr(R). We have
already shown (iii) in the case where z € 4>. So suppose z € A1 UB. Then we have
(z,x),(z,y) ¢ Gr(R) and hence

e(x,y) <p(x,y) < p(x,2) +p(z,y) = e(x, ) + ez, p).
We have shown (iii). In particular, (iv) holds. So we note
d(x,y) = min{e(x, y),inf{e(x,z) + e(z,y) : z€ A U B},
inf{e(x,z) +e(z,w) +e(w,y) : z,we A UB}}.

Using (ii)—(iv), we will prove (v)—(viii). We can easily prove (v). For ue€ A; and
ve Ay, we have

e(v, Rv) + e(Rv,u) = £ + p(Rv,u) = 2¢ + p(Qu,u) = p(v,u) = e(v, u),
which implies (vi). For be B and ve A, with b # Rv, we have
e(v, Rv) + e(Rv,b) = £ + p(Rv,b) = p(v,b) — 2/ = e(v,b) — 2¢.
We also have by (9)
e(v, Rv) = ¢ = p(v, Rv) — 2/.
These imply (vii). For v,v’ € 4, with v # v/, we further observe the following.
e(v, Rv) + e(Rv, Rv') + e(Rv',v") = 2¢ + p(Rv, Rv")
— p(Qv, R') + £ = p(Qu, QV') +2/ = p(v, Q')
=p(v,0") =2/ =1,
e(v, Rv) + e(Rv,v") = ¢ + p(Rv,v") = 4/ + p(Rv, Rv") > 5 (Rv # Rv'),
e(v, Rv') + e(Rv',v") = p(v, Rv") + ¢ = 4/ + p(Rv, Rv") > (Rv # Rv'),
e(v,v") = p(v,v") = 1.

From these observations, we obtain (viii).
Let us prove (ix). Since d(x,y) <e(x,y) < p(x,y) holds for x,y e Y, we have
d(A4,B) <p(A4,B)=/¢. Fix (a,b)e A x B. In the case a € 4, we have by (v)

{ =p(A4,B) < p(a,b) =d(a,b).
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In the other case, where a € 4, we have by (vii)

/ </ + p(Ra,b) = d(a,b).

Thus, we obtain (ix).

(10]

(11]

From (v)—(viii), we obtain (D2). So by Lemma 11, (X,d) is a metric space.
O
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