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COMMENTS ON SOME EXISTENCE THEOREMS OF BEST

PROXIMITY POINTS FOR CONTRACTIVE-TYPE MAPPINGS

Misako Kikkawa and Tomonari Suzuki

Abstract

In 2010, Sadiq Basha proved two existence theorems of best proximity points for contractive-type

mappings. The purpose of this paper is to clarify the mathematical structure of these theorems.

1. Introduction

Throughout this paper we denote by N the set of all positive integers and by R

the set of all real numbers. We let ðX ; dÞ be a metric space and let A and B be non-

empty subsets of X . Let T be a mapping from A into B and let S be a mapping from

B into A. Define dðA;BÞ A R and a function d � from X � X into ½0;yÞ by

dðA;BÞ ¼ inffdðx; uÞ : x A A; u A Bg

and

d �ða; bÞ ¼ dða; bÞ � dðA;BÞ

for any a; b A X .

A point x A A is said to be a best proximity point of T if d �ðx;TxÞ ¼ 0 holds.

Also, a point u A B is said to be a best proximity point of S if d �ðSu; uÞ ¼ 0 holds. In

the case where A \ B0q, it is obvious that dðA;BÞ ¼ 0 holds. Hence x A A is a fixed

point of T i¤ x is a best proximity point of T . In the other case, where A \ B ¼ q,

best proximity points of T are minimizers of the problem: minfdðx;TxÞ : x A Ag.
Similarly for y A B.

We human beings have studied the existence of best proximity points; see [3, 4,

5, 8, 10, 11] and others. In 2013, Sadiq Basha, Shahzad and Jeyaraj in [7] proved

two existence theorems of best proximity points for Kannan-type and Chatterjea-type

mappings. Very recently, in [9], the mathematical structure of these theorems were

clarified.
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In 2010, Sadiq Basha [6] proved two existence theorems, Theorems 2 and 7 below,

of best proximity points for contractive-type mappings. Motivated by the results in [9],

in this paper, we clarify the mathematical structure of these theorems.

2. Banach contraction principle

The fixed point theorem for contractions is referred to as the Banach contraction

principle. The proof of this is easy and well known. However, for the sake of com-

pleteness, we give a proof.

Theorem 1 ([1, 2]). Let ðY ; dÞ be a metric space and let U be a contraction on Y,

that is, there exists r A ½0; 1Þ satisfying

dðUa;UbÞa rdða; bÞð1Þ

for all a; b A Y. Then the following hold:

( i ) fU nag is a Cauchy sequence for all a A Y.

( ii ) U has at most one fixed point.

(iii) If Y is complete, then U has a unique fixed point.

(iv) If U has a fixed point c, then fU nag converges to c for any a A Y.

Proof. Fix a A Y . We first show (i). We have

Xy
j¼1

dðU ja;U jþ1aÞa
Xy
j¼1

r jdða;UaÞ ¼ r

1� r
dða;UaÞ < y:

So, a standard argument shows that fU nag is a Cauchy sequence.

In order to show (ii), we let c; c 0 A Y be fixed points of U . Then we have

dðc; c 0Þ ¼ dðUc;Uc 0Þa rdðc; c 0Þ:

Since r < 1, we have dðc; c 0Þ ¼ 0. Thus, (ii) holds.

We next show (iii). By (i), we note that fU nag is Cauchy. Since Y is complete,

fU nag converges to some c A Y . We have

dðc;UcÞ ¼ lim
n!y

dðU na;UcÞa lim
n!y

rdðU n�1a; cÞ ¼ 0:

Hence Uc ¼ c holds, thus, c is a fixed point of U .

In order to prove (iv), we let c A Y be a fixed point of U . We have

lim
n!y

dðU na; cÞ ¼ lim
n!y

dðU na;U ncÞa lim
n!y

rndða; cÞ ¼ 0:

Thus, (iv) holds. r
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3. Theorem 3.1 in [6]

In this section, we study Theorem 3.1 in [6], which is Theorem 2 in this paper.

We begin with the notations and definitions that appear in the statement of Theorem

2.

Define two subsets A0 and B0 of A and B, respectively, by

A0 ¼ fa A A : dða; bÞ ¼ dðA;BÞ for some b A Bg;

B0 ¼ fb A B : dða; bÞ ¼ dðA;BÞ for some a A Ag:

B is said to be approximatively compact with respect to A if every sequence fyng in

B satisfying the condition that dðx; ynÞ ! dðx;BÞ for some x A A has a convergent

subsequence. T is said to be a proximal contraction if there exists r A ½0; 1Þ such that

dðu;TxÞ þ dðTx;TyÞ þ dðTy; vÞa rdðx; yÞð2Þ

whenever x and y are distinct elements in A satisfying the condition that

dðu;TxÞ ¼ dðA;BÞ and dðv;TyÞ ¼ dðA;BÞð3Þ

for some u; v A A.

Theorem 2 (Theorem 3.1 in [6]). Assume the following:

(a) X is complete and A and B are closed.

(b) B is approximatively compact with respect to A.

(c) A0 and B0 are nonempty.

(d) TðA0Þ � B0.

(e) T is a proximal contraction.

Then the following hold:

( i ) There exists a unique best proximity point z in A of T.

(ii) For each fixed x0 A A0, there is a sequence fxngn AN[f0g in A such that

dðxnþ1;TxnÞ ¼ dðA;BÞ for every n A N [ f0g, where at least one of the xn’s

is the same as z, or the sequence fxng converges to z.

It is important to confirm the following fact.

Lemma 3. Assume (c) and (d) of Theorem 2. Then the following hold:

( i ) For every x A A0, there exists u A A0 satisfying dðu;TxÞ ¼ dðA;BÞ.
( ii ) For each fixed x0 A A0, there is a sequence fxng in A0 such that dðxnþ1;TxnÞ

¼ dðA;BÞ for every n A N [ f0g.
(iii) If x A A0 and u A A satisfy dðu;TxÞ ¼ dðA;BÞ, then u A A0 holds.

(iv) If a sequence fxngn AN[f0g in A satisfies x0 A A0 and dðxnþ1;TxnÞ ¼ dðA;BÞ for

n A N [ f0g, then xn A A0 holds for all n A N.

Proof. (i), (iii) and (iv) obviously hold. (ii) follows from (i). r
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We give a slight improvement of Theorem 2.

Theorem 4. Assume (c)–(e) of Theorem 2. Assume additionally (a) of Theorem 2

in the case where dðA;BÞ ¼ 0. Then the following hold:

( i ) There exists a unique best proximity point z in A of T.

(ii) If a sequence fxngn AN[f0g in A satisfies x0 A A0 and dðxnþ1;TxnÞ ¼ dðA;BÞ for

n A N [ f0g, then fxng converges to z.

Considering two cases of dðA;BÞ > 0 and dðA;BÞ ¼ 0, we will prove Theorem 4.

Lemma 5. Assume dðA;BÞ > 0 and (c)–(e) of Theorem 2. Then the following

hold:

( i ) If a sequence fxngn AN[f0g in A satisfies x0 A A0 and dðxnþ1;TxnÞ ¼ dðA;BÞ for

n A N [ f0g, then there exists n A N satisfying xnþ1 ¼ xn.

( ii ) There exists a unique element z A A satisfying dðz;TzÞ ¼ dðA;BÞ.
(iii) If dðx;TzÞ ¼ dðA;BÞ for x A A, then x ¼ z holds.

(iv) If a sequence fxngn AN[f0g in A satisfies x0 A A0 and dðxnþ1;TxnÞ ¼ dðA;BÞ for

n A N [ f0g, then there exists n A N satisfying xn ¼ z for all nb n.

Proof. In order to prove (i), we let fxngn AN[f0g be a sequence in A satisfying

x0 A A0 and dðxnþ1;TxnÞ ¼ dðA;BÞ for n A N [ f0g. By Lemma 3 (iv), we note xn A A0

for all n A N. Arguing by contradiction, we assume xnþ1 0 xn for all n A N. Then

since T is a proximal contraction, we have

dðxn; xnþ1Þa dðxn;Txn�1Þ þ dðTxn�1;TxnÞ þ dðTxn; xnþ1Þ

a rdðxn�1; xnÞa � � �a rndðx0; x1Þ:

Hence

lim
n!y

ðdðxn;Txn�1Þ þ dðTxn�1;TxnÞ þ dðTxn; xnþ1ÞÞ ¼ 0

holds. So we obtain

0 < dðA;BÞ ¼ lim
n!y

dðTxn; xnþ1Þ ¼ 0:

This is a contradiction. Therefore there exists n A N satisfying xnþ1 ¼ xn. We put

z ¼ xn.

We next show (ii). Arguing by contradiction, we assume that there exists an

element w of A satisfying

w0 z and dðw;TwÞ ¼ dðA;BÞ:

Since T is a proximal contraction, we have

dðw; zÞa dðw;TwÞ þ dðTw;TzÞ þ dðTz; zÞa rdðw; zÞ:
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Since r A ½0; 1Þ, we obtain dðw; zÞ ¼ 0 and hence w ¼ z. This is a contradiction.

Therefore we have shown (ii).

In order to show (iii), suppose dðx;TzÞ ¼ dðA;BÞ for some x A A. Arguing by

contradiction, we assume x0 z. Then we have x A A0 and hence Tx A B0. So there

exists u A A0 satisfying dðu;TxÞ ¼ dðA;BÞ. Since T is a proximal contraction, we have

2dðA;BÞa 2dðA;BÞ þ dðTz;TxÞ

¼ dðx;TzÞ þ dðTz;TxÞ þ dðTx; uÞ

a rdðz; xÞ

a rðdðz;TzÞ þ dðTz; xÞÞ

¼ 2rdðA;BÞ:

Hence, dðA;BÞ ¼ 0 holds. This is a contradiction. Therefore we obtain (iii).

In order to prove (iv), we let fxngn AN[f0g be a sequence in A satisfying x0 A A0 and

dðxnþ1;TxnÞ ¼ dðA;BÞ for n A N [ f0g. From (i), there exists n A N satisfying xn ¼ z.

By (iii), we have xnþ1 ¼ z. Thus, we obtain xn ¼ z for all n A N with nb n. r

Lemma 6. Assume dðA;BÞ ¼ 0, (a) and (c)–(e) of Theorem 2. Then the following

hold:

( i ) A0 ¼ B0 ¼ A \ B holds.

( ii ) A0 is complete.

(iii) The restriction U of T to A0 is a contraction on A0.

(iv) There exists a unique element z A A0 satisfying Uz ¼ z.

( v ) z is a unique element of A satisfying dðz;TzÞ ¼ dðA;BÞ.
(vi) If a sequence fxngn AN[f0g in A satisfies x0 A A0 and dðxnþ1;TxnÞ ¼ dðA;BÞ for

n A N [ f0g, then xn ¼ U nx0 holds for all n A N and fxng converges to z.

Proof. (i) obviously holds.

We next show (ii). Since A and B are closed, A0 is closed. Since X is complete,

A0 is complete.

In order to prove (iii), we let U be the restriction of T to A0. Fix x; y A A0. It is

obvious that Ux ¼ Tx A B0 ¼ A0 holds. So U is a mapping on A0. Put u ¼ Tx and

v ¼ Ty. Then

dðu;TxÞ ¼ dðv;TyÞ ¼ 0 ¼ dðA;BÞ

holds. In the case where x0 y, since T is a proximal contraction, we have

dðUx;UyÞ ¼ dðu;TxÞ þ dðTx;TyÞ þ dðTy; vÞa rdðx; yÞ:

It the other case, where x ¼ y, it is obvious that dðUx;UyÞ ¼ 0a rdðx; yÞ holds.

Therefore we have shown that U is a contraction on A0.
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(iv) follows from Theorem 1.

We next show (v). We have

dðz;TzÞ ¼ dðz;UzÞ ¼ 0 ¼ dðA;BÞ:

Arguing by contradiction, we assume that there exists an element w of A satisfying

w0 z and dðw;TwÞ ¼ dðA;BÞ:

Then we have w A A0. Hence w is a fixed point of U . This is a contradiction.

Therefore we have shown (v).

In order to prove (vi), we let fxngn AN[f0g be a sequence in A satisfying x0 A A0

and dðxnþ1;TxnÞ ¼ dðA;BÞ for n A N [ f0g. By Lemma 3 (iv), we note that fxng is a

sequence in A0. We have

dðxnþ1;UxnÞ ¼ dðxnþ1;TxnÞ ¼ dðA;BÞ ¼ 0

for n A N. Thus, we obtain xn ¼ U nx0. By Theorem 1, fxng converges to z. r

4. Theorem 3.3 in [6]

In this section, we study Theorem 3.3 in [6], which is Theorem 7 in this paper.

Theorem 7 (Theorem 3.3 in [6]). Assume the following:

(a) X is complete and A and B are closed.

(b) S is nonexpansive, that is, dðSu;SvÞa dðu; vÞ for any u; v A B.

(c) T is a contraction with contraction constant r.

(d) If ðx; yÞ A A� B satisfies dðA;BÞ < dðx; yÞ, then dðSy;TxÞ < dðx; yÞ holds.

Define a sequence fangn AN[f0g by a0 A A, a2nþ1 ¼ Ta2n and a2nþ2 ¼ Sa2nþ1 for n A
N [ f0g. Then the following hold:

( i ) There exist z A A and w A B satisfying dðz;TzÞ ¼ dðA;BÞ, dðSw;wÞ ¼ dðA;BÞ
and dðz;wÞ ¼ dðA;BÞ.

( ii ) fa2ng and fa2nþ1g converge to some best proximity points in A and B of T and

S, respectively.

(iii) If x; y A A are best proximity points in A of T, then

dðx; yÞa 2

1� r
dðA;BÞ

holds.

We give a slight improvement of Theorem 7.

Theorem 8. Assume the following:

(a) Either A or B is complete.

(b) S is nonexpansive.
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(c) T is a contraction with contraction constant r.

(d) d �ðx;TxÞ > 0 implies d �ðSTx;TxÞ0 d �ðx;TxÞ.
Define a sequence fangn AN[f0g by a0 A A, a2nþ1 ¼ Ta2n and a2nþ2 ¼ Sa2nþ1 for n A
N [ f0g. Then the following hold:

( i ) ST and TS are contractions on A and B, respectively.

( ii ) ST and TS have unique fixed points z A A and w A B, respectively.

(iii) z and w are best proximity points in A and B of T and S, respectively, which

satisfy Tz ¼ w and Sw ¼ z.

(iv) fa2ng and fa2nþ1g converge to z and w, respectively.

( v ) If x; y A A are best proximity points of T, then

dðx; yÞa 2

1� r
dðA;BÞ

holds.

(vi) If x A A is a best proximity point of T, then

dðz; xÞa 2

1� r
dðA;BÞ and dðx;wÞa 1þ r

1� r
dðA;BÞ

hold.

Remark. It is obvious that (a) of Theorem 8 is weaker than (a) of Theorem 7.

It is also obvious that (d) of Theorem 8 is weaker than (d) of Theorem 7.

Proof. We first show (i). For x; y A A and u; v A B, we have

dðSTx;STyÞa dðTx;TyÞa rdðx; yÞ

and

dðTSu;TSvÞa rdðSu;SvÞa rdðu; vÞ;

thus, ST and TS are contractions with contraction constant r.

We next prove (ii). We consider the following two cases:
� A is complete.
� B is complete.

In the first case, by Theorem 1 (iii), ST has a unique fixed point z A A. Since

TSðTzÞ ¼ TðSTzÞ ¼ Tz;

w :¼ Tz is a fixed point of TS. By Theorem 1 (ii), w is a unique fixed point of TS.

In the second case, by Theorem 1 (iii), TS has a unique fixed point w A B. Since

STSw ¼ Sw, z :¼ Sw is a fixed point of ST . By Theorem 1 (ii), z is a unique fixed

point of ST .
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Let us prove (iii). We have already shown Tz ¼ w and Sw ¼ z. It follows from

(d) and STz ¼ z that d �ðSTz;TzÞ ¼ d �ðz;TzÞ ¼ 0 holds. Thus, z is a best proximity

point in A of T . Since

0 ¼ d �ðSTz;TzÞ ¼ d �ðSw;wÞ;

w is a best proximity point in B of S. We have proved (iii).

It is obvious that (iv) follows from Theorem 1 (iv).

Let us prove (v). Let x; y A A be best proximity points of T . Then we

have

dðx; yÞa dðx;TxÞ þ dðTx;TyÞ þ dðTy; yÞ

a dðx;TxÞ þ rdðx; yÞ þ dðy;TyÞ

¼ rdðx; yÞ þ 2dðA;BÞ:

Hence (v) holds.

We finally prove (vi). Let x A A be a best proximity point of T . Since z is also a

best proximity point of T , we have from (v)

dðz; xÞa 2

1� r
dðA;BÞ:

We also have

dðx;wÞa dðx;TxÞ þ dðTx;wÞ

¼ dðx;TxÞ þ dðTx;TzÞ

a dðA;BÞ þ rdðx; zÞ

a 1þ 2r

1� r

� �
dðA;BÞ

¼ 1þ r

1� r
dðA;BÞ:

Thus, (vi) holds. r

The following examples tell that three numbers that appear in (v) and (vi) of

Theorem 8 are best possible.

Example 9. Let r A ð0; 1Þ and put s :¼ 2=ð1� rÞ A ð2;yÞ. Define sequences

fxngn AN[f0g and fungn AN by

xn ¼ ð0; srnÞ and un ¼ ð1; srnÞ:

Put z ¼ ð0; 0Þ and w ¼ ð1; 0Þ. Define subsets A, B and X of R2 by

Misako Kikkawa and Tomonari Suzuki8



A ¼ fzg [ fxn : n A N [ f0gg;

B ¼ fwg [ fun : n A Ng

and X ¼ A [ B. Define mappings T and S by

Txn ¼ unþ1; Tz ¼ w;

Sun ¼ xn; Sw ¼ z:

Define a function e from X � X into ½0;yÞ by

eða; bÞ ¼ 1 if ða; bÞ ¼ ðx0; u1Þ or ða; bÞ ¼ ðu1; x0Þ
ka� bk1 otherwise;

�

where k � k1 is the l1-norm on R2. Define a function d from X � X into ½0;yÞ
by

dða; bÞ ¼ min
Xn

j¼1

eðaj�1; ajÞ : ða0; . . . ; anÞ A X nþ1; a0 ¼ a; an ¼ b

( )
:ð4Þ

Then the following hold:

( i ) A, B and X are complete.

( ii ) S is nonexpansive.

( iii ) T is a contraction.

( iv ) (d) of Theorem 8 holds.

( v ) x0 and z are best proximity points of T .

( vi ) dðA;BÞ ¼ 1.

( vii ) dðz; x0Þ ¼
2

1� r
.

(viii) dðx0;wÞ ¼
1þ r

1� r
.

Proof. We first note

dðx0; xÞ ¼ eðx0; xÞ ¼ kx0 � xk1;

dðx0; uÞ ¼ eðx0; u1Þ þ eðu1; uÞ ¼ kx0 � uk1 � 2;

dðx; yÞ ¼ eðx; yÞ ¼ kx� yk1;

dðu; vÞ ¼ eðu; vÞ ¼ ku� vk1

for x; y A Anfx0g and u; v A B; see also Lemma 12 below. So, (vii) and (viii) hold.

(i) obviously holds.
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Since

dðSu;SvÞ ¼ dðu; vÞ

for any u; v A B, (ii) holds.

Since

dðTx;TyÞ ¼ rdðx; yÞ

for any x; y A A, (iii) holds.

Since d �ðSTx;TxÞ ¼ 0 for any x A A, (iv) holds.

(v) and (vi) obviously hold. r

We show that even in the case where r ¼ 0, three numbers that appear in (v) and

(vi) of Theorem 8 are best possible.

Example 10. Put r ¼ 0, s ¼ 2 and

x0 ¼ ð0; 2Þ; z ¼ ð0; 0Þ; w ¼ ð1; 0Þ:

Define subsets A, B and X of R2 by

A ¼ fx0; zg; B ¼ fwg; X ¼ A [ B:

Define mappings T and S by

Tx0 ¼ w; Tz ¼ w; Sw ¼ z:

Define a function e from X � X into ½0;yÞ by

eða; bÞ ¼ 1 if ða; bÞ ¼ ðx0;wÞ or ða; bÞ ¼ ðw; x0Þ
ka� bk1 otherwise.

�

Define a function d from X � X into ½0;yÞ by (4). Then (i)–(viii) of Example 9 hold.

5. Lemma

In this section, we prove one lemma, connected with the underlying metric spaces

in Examples 9 and 10. See also Examples 10 and 13 in [9].

We give the definition of metric space, though it is well known. Let X be a

nonempty set and let d be a function from X � X into ½0;yÞ. Then ðX ; dÞ is said to be

a metric space if the following hold:

(D1) dðx; xÞ ¼ 0

(D2) dðx; yÞ ¼ 0 ) x ¼ y

(D3) dðx; yÞ ¼ dðy; xÞ
(D4) dðx; zÞa dðx; yÞ þ dðy; zÞ
We can easily prove the following.
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Lemma 11. Let X be a nonempty set and let e be a function from X � X into ½0;yÞ
satisfying (D1) and (D3) with d :¼ e. Define a function d from X � X into ½0;yÞ by

dðx; yÞ ¼ inf
Xn

j¼1

eðuj�1; ujÞ : ðu0; . . . ; unÞ A X nþ1; u0 ¼ x; un ¼ y

( )
:

Assume (D2). Then ðX ; dÞ is a metric space.

We finally prove the following.

Lemma 12. Let ðX ; rÞ be a metric space and let A and B be nonempty subsets

of X. Put Y :¼ A [ B and l :¼ rðA;BÞ A ð0;yÞ. Assume that there exist a subset A2

of A and mappings Q and R from A2 into A and B, respectively, satisfying

rða; vÞ ¼ 2lþ rða;QvÞ;ð5Þ

rða;RvÞ ¼ lþ rða;QvÞ;ð6Þ

rðv; bÞ ¼ 3lþ rðRv; bÞ;ð7Þ

rðQv; bÞ ¼ lþ rðRv; bÞð8Þ

for any a A A, b A B, v A A2 with a0 v. Put A1 ¼ AnA2. Define a function e from

Y � Y into ½0;yÞ by

eðv;RvÞ ¼ eðRv; vÞ ¼ l for all v A A2;

eðx; yÞ ¼ rðx; yÞ otherwise:

Define a function d from Y � Y into ½0;yÞ by

dðx; yÞ ¼ min
Xn

j¼1

eðuj�1; ujÞ : ðu0; . . . ; unÞ A Y nþ1; u0 ¼ x; un ¼ y

( )
:

Then the following hold:

( i ) Qv A A1 for all v A A2.

( ii ) eðx; yÞa eðx; vÞ þ eðv; yÞ for x; y A Y and v A A2.

( iii ) eðx; yÞa eðx; zÞ þ eðz; yÞ for x; y; z A Y with ðx; zÞ; ðy; zÞ B GrðRÞ, where

GrðRÞ is the graph of R.

( iv ) eðx; yÞa eðx; zÞ þ eðz; yÞ for x; y A A1 [ B and z A Y.

( v ) dðx; yÞ ¼ rðx; yÞ for x; y A A1 [ B.

( vi ) dðu; vÞ ¼ rðu; vÞ for u A A1 and v A A2.

( vii ) dðv; bÞ ¼ rðv; bÞ � 2l ¼ lþ rðRv; bÞ for v A A2 and b A B.

(viii) dðv; v 0Þ ¼ rðv; v 0Þ � 2l ¼ 2lþ rðRv;Rv 0Þ for v; v 0 A A2 with v0 v 0.

( ix ) dðA;BÞ ¼ l.

( x ) ðX ; dÞ is a metric space.
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Remark. A2 ¼ q is possible. On the other hand, A2 ¼ A cannot be possible

from (i).

Proof. We first redefine d by

dðx; yÞ ¼ inf
Xn

j¼1

eðuj�1; ujÞ : ðu0; . . . ; unÞ A Y nþ1; u0 ¼ x; un ¼ y

( )
:

After showing (viii), we will find that the above infimum is the minimum.

We have by (7)

eðv;RvÞ ¼ l < 3l ¼ rðv;RvÞð9Þ

for all v A A2. So we note

eðx; yÞa rðx; yÞ

for all x; y A Y . It is obvious that

eðx; xÞ ¼ rðx; xÞ ¼ 0 and eðx; yÞ ¼ eðy; xÞ

hold for all x A Y . Thus, (D1) and (D3) with d :¼ e hold.

We will show (i). Arguing by contradiction, we assume that Qv A A2 for some

v A A2. Then we have by (7) and (8)

3la 3lþ rðRQv;RvÞ ¼ rðQv;RvÞ ¼ l < 3l;

which implies a contradiction. Therefore we obtain (i).

In order to show (ii), we let v A A2. We observe the following:

eðv; vÞ þ eðv;RvÞ ¼ eðv;RvÞ

eða; vÞ þ eðv;RvÞ ¼ rða; vÞ þ l ¼ 3lþ rða;QvÞ

¼ 2lþ rða;RvÞb rða;RvÞb eða;RvÞ;

eðb; vÞ þ eðv;RvÞ ¼ rðb; vÞ þ l ¼ 4lþ rðb;RvÞ

b rðb;RvÞ ¼ eðb;RvÞ;

eðRv; vÞ þ eðv;RvÞ ¼ 2lb 0 ¼ eðRv;RvÞ

for a A A, b A B, v A A2 with a0 v and b0Rv. So (ii) holds in the case where Rv A
fx; yg. In the other case, where Rv B fx; yg, we have

eðx; yÞa rðx; yÞa rðx; vÞ þ rðv; yÞ ¼ eðx; vÞ þ eðv; yÞ:
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We have shown (ii). So we note

dðx; yÞ ¼ inf
Xn

j¼1

eðuj�1; ujÞ : ðu1; . . . ; un�1Þ A ðA1 [ BÞn�1; u0 ¼ x; un ¼ y

( )
:

In order to show (iii), we let x; y; z A Y satisfy ðx; zÞ; ðy; zÞ B GrðRÞ. We have

already shown (iii) in the case where z A A2. So suppose z A A1 [ B. Then we have

ðz; xÞ; ðz; yÞ B GrðRÞ and hence

eðx; yÞa rðx; yÞa rðx; zÞ þ rðz; yÞ ¼ eðx; yÞ þ eðz; yÞ:

We have shown (iii). In particular, (iv) holds. So we note

dðx; yÞ ¼ minfeðx; yÞ; inffeðx; zÞ þ eðz; yÞ : z A A1 [ Bg;

inffeðx; zÞ þ eðz;wÞ þ eðw; yÞ : z;w A A1 [ Bgg:

Using (ii)–(iv), we will prove (v)–(viii). We can easily prove (v). For u A A1 and

v A A2, we have

eðv;RvÞ þ eðRv; uÞ ¼ lþ rðRv; uÞ ¼ 2lþ rðQv; uÞ ¼ rðv; uÞ ¼ eðv; uÞ;

which implies (vi). For b A B and v A A2 with b0Rv, we have

eðv;RvÞ þ eðRv; bÞ ¼ lþ rðRv; bÞ ¼ rðv; bÞ � 2l ¼ eðv; bÞ � 2l:

We also have by (9)

eðv;RvÞ ¼ l ¼ rðv;RvÞ � 2l:

These imply (vii). For v; v 0 A A2 with v0 v 0, we further observe the following.

eðv;RvÞ þ eðRv;Rv 0Þ þ eðRv 0; v 0Þ ¼ 2lþ rðRv;Rv 0Þ

¼ rðQv;Rv 0Þ þ l ¼ rðQv;Qv 0Þ þ 2l ¼ rðv;Qv 0Þ

¼ rðv; v 0Þ � 2l ¼: h;

eðv;RvÞ þ eðRv; v 0Þ ¼ lþ rðRv; v 0Þ ¼ 4lþ rðRv;Rv 0Þb h ðRv0Rv 0Þ;

eðv;Rv 0Þ þ eðRv 0; v 0Þ ¼ rðv;Rv 0Þ þ l ¼ 4lþ rðRv;Rv 0Þb h ðRv0Rv 0Þ;

eðv; v 0Þ ¼ rðv; v 0Þb h:

From these observations, we obtain (viii).

Let us prove (ix). Since dðx; yÞa eðx; yÞa rðx; yÞ holds for x; y A Y , we have

dðA;BÞa rðA;BÞ ¼ l. Fix ða; bÞ A A� B. In the case a A A1, we have by (v)

l ¼ rðA;BÞa rða; bÞ ¼ dða; bÞ:
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In the other case, where a A A2, we have by (vii)

la lþ rðRa; bÞ ¼ dða; bÞ:

Thus, we obtain (ix).

From (v)–(viii), we obtain (D2). So by Lemma 11, ðX ; dÞ is a metric space.

r
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