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Abstract

In this paper, the intensity of the singular stress field (ISSF) for a bonded cylinder and boned pipe is compared with 

the ISSF for the bonded plate. The analysis method focuses on the FEM stress at the interface end by applying the 

same mesh pattern to the unknown and reference problems. It is found that the mesh-independent technique useful 

for the bonded plate cannot be directly applied to the bonded axisymmetric structures because the circumferential 

strain causes non-singular stress disturbs singular stress evaluation. In order to eliminate this disturbance, explicit 

non-singular expressions are derived from the boundary conditions and subtracted from the FEM results. Then, the 

ISSFs for the bonded cylinder and the bonded pipe are calculated by changing the material combinations 

systematically. Since Dundurs’ parameters cannot totally control the axisymmetric bonded structures, the maximum 

and minimum values of ISSF are shown in tables and charts under arbitrary material combination. It is found that 

the ISSFs of bonded cylinder and bonded pipe are at most 1.5 times larger than that of the bonded plate.  
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Nomenclature 

a  radius of bonded cylinder  ,   Dundurs’ parameters 

d  radius of bonded cylinder CYL
0  real circumferential strain of 

bonded cylinder E  Young’s modulus 

mine minimum element size CYL
FEMj ,0 , CYL

FEMzr ,0  FEM strain of bonded cylinder at 

interface end 
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CBJ
z

F  Normalized ISSF for cylindrical butt 

joint 

 PLT
FEMi ,0 , PLT

FEMyx ,0  FEM strain of bonded plate at 

interface end 
CYL

j
F , CYL

zr
F  Normalized ISSF for bonded cylinder    singular index 

PIP
j

F , PIP
zr

F  Normalized ISSF for bonded pipe    Poisson’s ratio 
PLT
i

F , PLT
yx

F  Normalized ISSF for bonded plate  BJ
i , BJ

yx  real stress of butt joint 

G  shear modulus  CYL
j , CYL

zr  real stress of bonded cylinder 
BJ

i
K , BJ

yx
K  ISSF for butt joint  PLT

i , PLT
yx  real stress of bonded plate 

CBJ
z

K  ISSF for cylindrical butt joint  BJ
FEMi ,0 , BJ

FEMyx ,0  FEM stress of butt joint at interface 

end CBJ
cK  Critical ISSF for cylindrical butt joint 

at debonding fracture 

 

 CYL
FEMj ,0 , CYL

FEMzr ,0  FEM stress of bonded cylinder at 

interface end CYL
j

K , CYL
zr

K  ISSF for bonded cylinder  
PIP

j
K , PIP

zr
K  ISSF for bonded pipe  PIP

FEMj ,0 , PIP
FEMzr ,0  FEM stress of bonded pipe at 

interface end PLT
i

K , PLT
xy

K  ISSF for bonded plate  

L , l  plate length and cylinder length  PLT
FEMi ,0 , PLT

FEMyx ,0  

 

FEM stress of bonded plate at 

interface end R  distance from the end on the interface  

 CYL
FEMj ,0

~ , CYL
FEMzr ,0

~  

 

non-singular FEM stress of bonded 

cylinder at interface end t  adhesive layer thickness of butt joint  
CYL
ru 0  real radial displacement of bonded 

cylinder 

 PIP
FEMj ,0

~ , PIP
FEMzr ,0

~  non-singular FEM stress of bonded 

pipe at interface end 
CYL

FEMru ,0  FEM radial displacement of bonded 

cylinder 

 
y , 

z  uniform applied stress 

   inner radius of the bonded pipe 

W  plate width    

 

1. Introduction 

Adhesive bonding is used in various industries such as automobiles, marines and airplanes on account of 

developments of high performance adhesives [1 - 3]. The structural adhesives have several advantages such as high 

fatigue strength, weight reduction, high sealability and high productivity compared to welding, bolts and screws [1]. 

In general, the structural adhesive is developed so that the adhesive strength becomes higher than the static strength 

of the structural materials such as steels and aluminum alloys. However, when the debonding fracture occurs at the 

interface between the adhesive and the adherend, the adhesive strength decreases remarkably. It is therefore 

important to grasp the debonding strength. Although the experimental evaluation methods have been standardized 

by ASTM, ISO and JIS, the debonding strength cannot be estimated conveniently. This is because the adhesive 

strength is prescribed by the fracture load regardless of the fracture modes in those standards. Therefore, a 

convenient method for evaluating the deboning strength is strongly required.  

In the previous studies [4 - 11], the debonding strength of the adhesively bonded joints was expressed by the 

intensity of the singular stress field (ISSF). The ISSF K  for the butt joint as shown in Fig. 1 is defined by the 

following equation. 
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y
R

y RWFK  






  1

0

1 lim  (1) 

Here, 
y  is the remote stress, F  is the normalized ISSF,   is the singular index, W  is the plate width, R  

is the local distance from the interface edge and y  is the stress in the y  direction. To calculate the ISSF, a 

mesh-independent technique was proposed by the authors [7, 8]. Then, the debonding strength of the adhesive joint 

was expressed as cKK    [9 - 11] for the butt joints in Fig. 1 [7, 8] and the single lap joints [9]. Here, K

denotes the ISSF and cK  denotes the critical value of ISSF. As can be seen in those studies [4 - 11], the 

debonding strength can be predicted from the two dimensional modeling although actual specimens have three 

dimensional geometries. However, since actual specimens are always three dimensional, 3D effect on the ISSF 

should be studied. 

In this study, therefore, the bonded cylinder (Fig. 3(a)) and the bonded pipe (Fig. 3(b)) will be considered as 

the most fundamental 3D bonded structures, which should be compared with the bonded plate in the first place. 

Under the same material combination, the ISSF can be compared among those three problems since the same 

singular index and the similar singular stress field appears [12]. In this study, the same FE mesh pattern will be 

applied for the bonded plate in Fig. 2 and the bonded cylinder in Fig. 3 as well as the bonded pipe. Then, the 

analytical differences will be discussed by comparing with those FE results. Since it is known that the non-singular 

stress occurs at the interface end for the axisymmetric bonded structures [13 - 15], the applicability of the 

mesh-independent technique has to be considered to analyze the bonded cylinder and the bonded pipe accurately. 

Then, the analysis method will be newly proposed for the bonded axisymmetric bodied. Finally, the ISSFs for the 

bonded cylinder and the bonded pipe will be calculated by varying the material combinations. Quite generally, the 

bonded pipe has been regarded as the bonded plate when the inner radius of the bonded pipe   approaches  . 

Therefore, the singular stress fields between the bonded pipe and the bonded plate will be discussed as the most 

fundamental 3D and 2D problems. 

 

2. A mesh-independent technique useful for evaluating the ISSF for bonded cylinder and bonded pipe 

2.1 Stress/strain continuity or discontinuity across the interface 

The method of analysis will be explained for bonded cylinder. The bonded pipe can be analyzed in a similar 

way. Fig. 2 shows the schematic illustration of the bonded plate and Fig. 3 shows the one of bonded cylinder. The 

dimensions are set as aWL 2  in those models. Table 1 shows an example of a bad pair satisfying 

  02    to explain the analysis method. Note that Table 1 is just an example to analyze all material 

combinations whose results are indicated in Figs. 7, 12 and Tables 6, 7, 10, 11. Table 1 includes Young's modulus 

1E , 2E , Poisson's ratio 1 , 2 , Dundurs' [16] parameters   ,  and singular index  . Here, the subscript m  

differentiates the material 1 and material 2. The parameters   ,  are defined by Eq. (2). For the bad pair 

  02   , it is known that the singular stress field 1  appears at the interface end. 

By using the material combination shown in Table 1, the analysis method will be examined for Fig. 2 and Fig. 

3 in this Sect. 2. After the validity is confirmed, the method will be applied to all material combinations for bonded 

cylinder as shown in Sect. 3 and bonded pipe as shown in Sect. 4. 
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Here, mm  43 . Then,   value is obtained by solving the following eigenequation [12, 17, 18]. 
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2

sin2
2
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2
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2
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


 










 






   (3) 

Figure 8 shows   ,  for several engineering material combinations [19]. Since in most cases   ,  is in the 

range of 3.00    included in the bad pair region   02   , the parameters in Table 1 were chosen from 

the bad pair region as typical example. The parameters are not real material parameters. 

In this analysis, the commercial FEM code MSC Marc 2008 R1 is used. The linear elastic analyses are 

performed on the bonded plate as shown in Fig. 2 and the bonded cylinder as shown in Fig. 3. The multifrontal 

method is used in the solution of simultaneous equations. In the case of the bonded plate, the plane strain condition 

is assumed. Figure 4 shows the schematic illustration of the FE mesh pattern. The same FE mesh patterns are used 

in all analyses. The standard four-node quadrilateral plane strain and axisymmetric ring elements are used for the 

bonded plate and the bonded cylinder, respectively. In order to confirm the usefulness of the mesh independent 

technique, the FE analyses are performed by using the coarse mesh and the fine mesh. The minimum element sizes 

are   9
minmin 32  aeWe  for the coarse mesh and 123  for the fine mesh.  

Table 2 shows the stress/strain components of the bonded cylinder under the remote stress 1
z , 

 CYL
FEMzr

CYL
FEMj

CYL
FEMzr

CYL
FEMj ,0,0,0,0 ,,,  ,  and the stress/strain components of the bonded plate under the remote stress 

1
y ,  PLT

FEMyx
PLT

FEMi
PLT

FEMyx
PLT

FEMi ,0,0,0,0 ,,,  , where rj  , z ,   and xi  , y , z . The stress/strain values are 

the nodal solutions obtained by FE analyses and they are referred to as “FEM stress/strain”. In Table 2, the values 

in the parentheses are the singular components and the non-singular components that will be explained in Sect. 2.3. 

The real stress/strain components  CYL
zr

CYL
z

CYLCYL
r   ,,, ,  PLT

yx
PLT
y

PTL
z

PLT
x  ,,,  are discontinuous across the 

interface, but the components  CYLCYL
r

CYL
zr

CYL
z  ,,, ,  PLT

z
PLT
x

PLT
yx

PLT
y  ,,,  must be continuous across the 

interface. However, in the FEM analysis even the continuous-should-be stress/strain components 

 CYL
FEM

CYL
FEMr

CYL
FEMzr

CYL
FEMz ,0,0,0,0 ,,,  ,  PLT

FEMz
PLT

FEMx
PLT

FEMyx
PLT

FEMy ,0,0,0,0 ,,,   of the materials 1 and 2 do not always 

coincide with each other because of the FEM error. In this case, average values for the materials 1 and 2 are used 

and indicated in Table 2. 

In Table 2, most of the stress/strain components are mesh-dependent except for  . This can be explained in 

the following way. In axisymmetric bodies, the circumferential strain   is given as [20]: 

r
ur , (4) 

where r  is the radial distance from the z  axis, ru  is the displacement in the r  direction. The circumferential 

strain at the interface end CYL
0  is given by Eq. (5) from the cylinder radius a  and the displacement at the 

interface end CYL
ru 0 . 

a
uCYL

rCYL 0
0   (5) 
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Table 3 shows the CYL
FEM,0  values calculated by substituting the FEM radial displacement CYL

FEMru ,0  into Eq. (5). 

The CYL
FEM,0  value obtained from CYL

FEMru ,0  is 5137.0  independent of the element size mine , and coincides with 

the FEM stress in Table 2. Usually, the stress and strain at the singular point cannot be calculated by FEM 

accurately. However, the only CYL
FEM,0  is not influenced by the stress singularity and can be calculated accurately 

by FE analysis.  

As shown in Table 2 and Table 3, CYL
0  for the bonded cylinder has a non-zero value and quite different from  

PLT
z0  for the bonded plate. This is the reason why the non-singular stress/strain components are caused by CYL

0 . 

Therefore, the FEM stress at the interface end consists of the singular stress and the non-singular stress. Since CYL
0  

is not affected by the stress singularity and it can be calculated easily and accurately. 

 

2.2 Mesh-independent technique useful for analyzing bonded plate 

In the earlier studies [7, 8, 11], the ISSFs for the butt joints in Fig. 1 and the bonded plate in Fig. 2 were 

calculated accurately. In this section, first, the same analysis method is applied to the bonded cylinder as shown in 

Fig. 3 by FEM, then the analytical difficulty for bonded cylinder and pipe will be clarified. For Fig. 1 and Fig. 2, 

the singular stress at the end of interface is expressed as shown in the following equations. 


 
1R

K PLT
PLT
i

i , 
 
1R

K PLT
PLT

yx
yx  (6) 


 
1R

K BJ
BJ
i

i , 
 
1R

K BJ
BJ

yx
yx  (7) 

Here, the index i  can be x , y  or z , R  is the distance from the end on the interface. Since those singular 

stress fields are similar as shown in Eqs (6) and (7), the ISSF ratio is equal to the stress ratio obtained by FEM as 

shown in Eq. (8) [7, 8, 11]. 

PLT
FEMy

BJ
FEMy

PLT
y

BJ
y

RPLT
y

R

BJ
y

R
PLT

BJ

R

R

K

K

y

y

,0

,0

01

0

1

0 lim
lim

lim
















 






  (8) 

In other words, the error of FEM stress PLT
FEMy ,0  and BJ

FEMy ,0  can be cancelled out by taking the ratio. It was 

shown that Eq. (8) is valid to the other stress components, and therefore all stress ratios have the same value 

independent of the stress components. The method does not require the special singular element such as Akin 

singular element and the mesh refinement procedure for the convergence of the solution. Since the reference 

solution PLT
y

K  was obtained by the body force method (BFM) [21] and the FEM error can be eliminated in Eq. (8), 

the present method has the same accuracy as the BFM. 

Table 4 shows the FEM results of the bonded cylinder and butt joint. Here, Ll  , 0.1Wl  and 1.0lt  

are set in the butt joint model (Fig. 1). The butt joint and the bonded plate are subdivided by the same mesh pattern 

and analyzed under the same conditions and the same material combinations by FEM. The stress ratios of the butt 

joint and the bonded cylinder are also shown in Table 4. Although the non-singular stress components will be 

derived in the following Sect. 2.3 explicitly, the singular and non-singular components are shown in Table 4 

beforehand so that the existence of the non-singular components can be confirmed at a glance. All ratios of the butt 

joint correspond to 0.6674 and are independent of the mesh pattern. From this result, it is confirmed that the 
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influence of the stress singularity is cancelled completely by taking a ratio and the mesh refinement procedure for 

the convergence of the solution is not required. In the case of the bonded cylinder, the PLT
FEMx

CYL
FEMr ,0,0   and 

PLT
FEMyx

CYL
FEMzr ,0,0   correspond to 0.9948. However, the other ratios PLT

FEMz
CYL

FEM ,0,0   and PLT
FEMy

CYL
FEMz ,0,0   do not 

correspond to 0.9948. That is because the non-singular stresses as mentioned in Sect. 2.1 are included in the FEM 

stresses CYL
FEMz ,0  and CYL

FEM,0  cannot be ignored.  

 

2.3 Derivation of the non-singular stresses 

In this section, the asymptotic solution of the stress distribution in the vicinity of the interface end of the 

bonded cylinder is discussed based on theory of elasticity. In order to distinguish from FE analysis, the notation’s 

subscript excludes "FEM". The non-singular stresses explained in Sect. 2.1 are denoted by CYL
j~  and CYL

zr~ , where  

rj  , z ,  . The interface stresses CYL
j  and CYL

zr  can be expressed as shown in Eq. (9) at the vicinity of the 

interface end of the bonded cylinder. Note that the bonded plate and the bonded cylinder have the same singular 

index  . 

CYL
j

CYL
CYL
j

R

K j  
 ~
1

  , CYL
zr

CYL
CYL

zr
R

K
zr  

 ~
1

   (9) 

From the interfacial continuity conditions for the stress and the displacement, Eq. (9) has to be satisfied with the 

following conditions at the interface between the materials 1 and 2.  

   21 CYL
z

CYL
z   ,    21 CYL

zr
CYL

zr    (10)

   21 CYL
r

CYL
r uu  ,    21 CYLCYL uu    (11)

Here, the subscripts 1 and 2 refer to the materials 1 and 2, respectively. From the stress-free boundary conditions at

ar  , Eq. (9) also has to be satisfied with the following conditions at the interface end on both materials. 

     00
11  zCYL

zr
CYL
r   (12)

     00
22  zCYL

zr
CYL
r   (13)

Two right-hand side terms of Eq. (9) have to be satisfied with the conditions (10), (11), (12) and (13) independently. 

The non-singular stresses were solved analytically by Li et al. [15]. In this paper, such non-singular stresses as meet 

the conditions and cause the strain auCYL
r

CYL
00   are derived.  

From the stress-free conditions (12) and (13), the non-singular stresses at the interface end, CYL
r 0

~  and CYL
zr 0

~ , 

are equal to 0 on both materials. 

    0~~ 1
0

1
0  CYL

zr
CYL
r   (14)

    0~~ 2
0

2
0  CYL

zr
CYL
r   (15)

Letting     CYL
z

CYL
z

CYL
z 0

2
0

1
0

~~~    from the condition (10) leads the following relation from    20
1

0
CYL
r

CYL
r    
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which is effected by Eq. (11). 

   
2

2
0

1

1
0

0
2

2

1

1
~~

~
EEEE

CYLCYL
CYL
z

  





   (16)

Similarly, the following relation can be obtained from    20
1

0
CYLCYL
    which is effected by Eq. (11). 

   20
2

21
0

1

1
0

2

2

1

1 ~~~ CYLCYLCYL
z EEEE   






   (17)

Solving Eqs. (5), (16) and (17), the  10
~CYL
  and  20

~CYL
  are obtained as: 

    
    a

u
EE

EEE CYL
rCYL 0

122211

1211221
0 11

1~ 


 
 , (18)

    
    a

u
EE

EEE CYL
rCYL 0

122211

2211212
0 11

1~ 


 
 . (19)

Then, the  10
~CYL

z  and  20
~CYL

z  are obtained as: 

     
    a

u
EE

EE CYL
rCYL

z
CYL
z

0

122211

21212
0

1
0 11

~~ 


 
 . (20)

The equivalent expressions were obtained by Lie et al [15]. The non-singular stresses are uniquely determined from 

the displacement CYL
ru 0  in the radial direction. The non-singular stresses can be calculated by Eqs. (14), (15), (18), 

(19) and (20). The mesh-independent technique [7, 8] is applicable to the bonded cylinder by subtracting the 

non-singular stress from the FEM stress. However, when  2 , the denominators of the equations become 0 and 

the non-singular stresses diverge to  . The full attention is required when  2 , which will be discussed in 

Section 3. 

 

2.4 Mesh-independent technique useful for analyzing bonded cylinder and bonded pipe 

The non-singular stress components were derived explicitly in Sect. 2.3. In this section the usefulness and the 

validity will be discussed by taking an example of the results of Tables 1 - 4. Table 5(a) shows the non-singular 

stresses obtained from CYL
FEMru ,0  by using explicit Eqs. (14), (15), (18), (19), (20) in Sect.2.3. Here, the radial 

displacement CYL
FEMru ,0  and the non-singular FEM stresses are independent of the minimum element size mine  as 

shown in Table 5(a). Table 5(b) shows the singular stresses by subtracting the non-singular stresses in Table 5(a) 

from the stresses at the interface end in Table 2. The singular FEM stress components in Table 5 (b) are depending 

on the mesh size. Table 5(c) shows the ratios of the bonded cylinder over the bonded plate by excluding the 

non-singular stress in Table 5(a). In Table 5(c), all components have the same ratio 0.9948 independent of the 

element size mine  quite differently from Table 4(a). Because the CYL
FEMr ,0  and CYL

FEMzr ,0  do not include the 

non-singular stresses as 0~~
,0,0  CYL
FEMzr

CYL
FEMr  , the subtraction process is not necessary. Therefore, by using 

CYL
FEMr ,0 and CYL

FEMzr ,0 , the ratio of the ISSF for the bonded cylinder to the bonded plate can be calculated easily. 

The ISSF for the bonded plate with 1WL  as shown in Fig. 2, PLT
y

K , has been solved by Noda et al. [21]. 

Then, the non-dimensional function of   has been already clarified by Carpenter and Byers [22]. Therefore, the 



8 
 

ISSFs for the bonded cylinder, CYL
j

K  and CYL
zr

K  can be calculated from 

9948.0 PLTCYLPLTCYLPLTCYLPLTCYL
yxzrzyzxr

KKKKKKKK   . Table 5(d) shows the dimensionless ISSFs for the 

bonded plate and the bonded cylinder, where the PLT
i

F  and PLT
yx

F , CYL
j

F  and CYL
zr

F  are defined by Eqs. (21) and 

(22). The CYL
j

F  and CYL
zr

F  have three significant digits as well as the PLT
i

F  and PLT
yx

F . 




  
1W

K
F

y

PLT
PLT i

i , 


  
1W

K
F

y

PLT
PLT zr

yx
, (21)

  



 


12a

K
F

z

CYL
CYL j

j , 
  



 


12a

K
F

z

CYL
CYL zr

zr . (22)

As for the bonded cylinder, the stresses on the interface in the vicinity of the interface end can be described as 

follows. 

CYL
j

CYL
CYL
j

R

K j

01
~ 

   , CYL
zr

CYL
CYL

zr
R

K zr

01
~ 

    (23)

Table 5(e) shows the CYL
FEMz ,  along the R  coordinate in Fig. 3 in comparison with the PLT

FEMy,  in Fig. 2. Also the 

ratio of the  CYL
FEMz

CYL
FEMz ,0,

~   to the PLT
FEMy ,  along the R  coordinate,   PLT

FEMy
CYL

FEMz
CYL

FEMz ,,0,
~   , is shown in 

Table 5(e). By subtracting the non-singular term, the ratio is constant at 0.9948 along the R  coordinate and has 

four significant digits as shown in Table 5(e). The ISSF is calculated accurately by Eq. (24). Only the FEM stresses 

at the interface end are enough to obtain the ratio. 

PLT
FEMy

CYL
FEMz

CYL
FEMz

PLT

CYL

y

z

K
K

,0

,0,0
~






   (24)

Equation (24) can be used to obtain other stress components. Since the derivation of the non-singular stresses is 

quite general, the present method can be applied to analyzing other axisymmetric bodies such as bonded pipes and 

cylindrical butt joints. As an example of adhesive joint specimens, the cylindrical butt joint is analyzed accurately 

in Appendix A. The present method is useful for the engineers and the researchers to evaluate the debonding 

strength easily and conveniently. 

 

3. Intensity of singular stress field for bonded cylinder in comparison with bonded plate 

In our earlier studies [8, 9], the ISSFs for the bonded plate and the butt joint have been clarified under 

arbitrary material combinations. In this paper, the ISSFs for the bonded cylinder and the bonded pipe will be 

discussed in a similar way. The singular stress field of two dimensional problems in Figs. 1 and 2 is totally 

controlled by Dundurs' parameters   ,  regardless of the plane stress condition or the plane strain condition. 

However, the singular stress field of axisymmetric problems such as the bonded cylinder in Fig. 3 is a 3D problem 

and cannot be controlled by   , . Since the axisymmetric bonded problems have some similarities to 2D bonded 

problems, the usefulness of   ,  to the axisymmetric bonded problems will be examined. 

Figure 5 shows 12 EE  and 2  by varying 1  from 0 to 0.5 when    3.0,8.0,  . As shown in Figs. 5 

(a) and 5(b), under fixed    3.0,8.0,   12 EE  can be changed from 0.1074 to 0.1389 and 2  can be 

changed from 0.1818 to 0.2500. Then, PLT
FEMy

CYL
FEMz ,0,0   and PLTCYL

yz
KK   are calculated as shown in Fig. 5 (c) by 

using the fine mesh pattern of the standard four-node quadrilateral element with 12
min 3ae . Since 

mesh-independent technique [7, 8] is used, singular elements such as Akin singular element are not necessary. Here, 
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PLTCYL
yz

KK   is obtained by using Eq. (24) for the bad pair. For the good and equal pairs, however, since the 

singular stress does not appear, PLT
FEMy

CYL
FEMz ,0,0   will be focused in order to compare the bonded cylinder and the 

bonded plate. It is found that PLT
FEMy

CYL
FEMz ,0,0   changes from 0.962 to 1.066 and PLTCYL

yz
KK   changes from 0.957 

to 1.087. For axisymmetric bonded structures, although   ,  cannot totally control the results, it is found that 

the variation is not very large as shown in Fig. 5(c). In this paper, therefore, the maximum and minimum values 

will be focused under fixed   , . To evaluate the bonded structures under arbitrary material combination, the 

maximum value is important since this is the most severe case under the same   , . 

Figure 6 shows the maximum values of PLTCYL
yz

KK   and PLT
FEMy

CYL
FEMz ,0,0   by varying   from 0.2 to 1.0 for 

fixed 3.0 . For the bad pair   02   , the solid line indicates the ISSF ratio   PLTCYL
yz

KK  max  and the 

broken line indicates the stress ratio  
max,0,0

PLT
FEMy

CYL
FEMz  . For the good pair   02   , the solid line indicates 

 
max,0,0

PLT
FEMy

CYL
FEMz  and for the equal pair   02   , the open circle mark indicates the  

max,0,0
PLT

FEMy
CYL

FEMz  . 

When  2 , the stress singularity occurs at the interface end, and therefore, PLTCYL
yz

KK   may be useful for 

predicting the debonding strength. On the other hand, when  2 , the stress singularity does not occur at the 

interface end. Then, it is found that   PLTCYL
yz

KK  max  as  2 . However, as shown in Fig. 6(b), the 

singular stress field disappears since the index 1  as  2 . Therefore, the stress ratio 

 
max,0,0

PLT
FEMy

CYL
FEMz   may be more useful than the ISSF ratio PLTCYL

yz
KK   around  2 . In Fig. 6(c), the 

dimensionless ISSF PLT
y

F  defined in Eq. (21) is also indicated.  

Figure 7 and Tables 6, 7 show the maximum and minimum values of PLTCYL
yz

KK   and PLT
FEMy

CYL
FEMz ,0,0   by 

varying   , . As above mentioned, PLTCYL
yz

KK   may be useful for predicting the debonding strength when 

  02    since the singular stress appears at the interface end. On the other hand, when   02   , 
PLT

FEMy
CYL

FEMz ,0,0   is very important for predicting the debonding strength. However, when  2 , it is unknown 

whether PLTCYL
yz

KK   or PLT
FEMy

CYL
FEMz ,0,0   is suitable for predicting the strength because   PLTCYL

yz
KK  max  goes to 

  as  2 . 

Although   PLTCYL
yz

KK  max  goes to infinity around the equal pair condition,   PLTCYL
yz

KK  max  is less than 1.5 

in the region   02   k , 7.035.1 k  indicated in Fig. 8. 

 
5.1max 

PLT

CYL

y

z

K

K



  for most of the bad pair   02   k , 7.035.1 k  in Fig. 8 (25)

As shown in Fig. 8, since almost all   ,  of engineering materials [19] are distributed in 3.00   , the stress 

ratio PLT
FEMy

CYL
FEMz ,0,0   can be discussed in this range. Note that the stress ratio  

max,0,0
PLT

FEMy
CYL

FEMz   is always 

finite. Comparing Fig. 7(a) with Fig. 7(b), it is found that the value of PLT
FEMy

CYL
FEMz ,0,0   varies depending on 

  ,  but the value range of  
max,0,0

PLT
FEMy

CYL
FEMz   is not very wide in the region   02    and 

3.00   . Also, the difference between  
max,0,0

PLT
FEMy

CYL
FEMz   and  

min,0,0
PLT

FEMy
CYL

FEMz   is not very large in this 

region. Therefore, the value range and the maximum and minimum value difference can be expressed in Eq. (26). 
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5.10.1
max,0

,0 









PLT
FEMy

CYL
FEMz




, 1.0

min,0

,0

max,0

,0

min,0

,0

max,0

,0







































PLT
FEMy

CYL
FEMz

PLT
FEMy

CYL
FEMz

PLT
FEMy

CYL
FEMz

PLT
FEMy

CYL
FEMz













 

for most of the good pair 3.00    and   02    

(26)

If the differences between  
max,0,0

PLT
FEMy

CYL
FEMz   and  

min,0,0
PLT

FEMy
CYL

FEMz  is very large, Dundurs' parameters 	is not 

useful enough to discuss the ISSF of the axisymmetric bonded structure. However, the difference is less than 10% 

in Eq. (26); and therefore, Dundurs' parameters almost control the results and they may be useful for axisymmetric 

bonded structures. 

Since   PLTCYL
yz

KK  max  goes to infinity as  2 , it is not clear whether PLTCYL
yz

KK   or PLT
FEMy

CYL
FEMz ,0,0   

is suitable for predicting the strength at present.  

Useful parameter is unknown near the equal pair 

  02   k , 7.035.1 k  and   02    in Fig. 8 
(27)

 

4. Intensity of singular stress field for bonded pipe in comparison with bonded plate 

In this paper, the bonded pipe in Fig. 3(b) is also considered as another example of the most fundamental 3D 

bonded structures, which should be compared with the bonded plate. The schematic illustration of the bonded pipe 

is shown in Fig. 3(b). Here, assume that the inner radius of the pipe is infinitely large as shown in Fig. 3(b). In this 

case, the plain strain condition has been usually assumed. Therefore, in this paper, The ISSFs will be compared and 

the difference will be clarified. 

Assume 1WL  and 5100.1 W  in the model. Figure 9 shows the schematic illustration of the FE 

mesh pattern. The same FE mesh patterns are used in all analyses. Note that the standard four-node quadrilateral 

plane strain elements are used for the bonded plate [7-9, 11], and similarly the standard four-node quadrilateral 

axisymmetric ring elements are used for the bonded pipe. Since the mesh-independent technique is used [7, 8], the 

singular elements such as Akin singular element are not necessary. In order to confirm the mesh dependence of the 

solution, the FE analyses are performed by using the coarse mesh and the fine mesh. The minimum element sizes 

are   13
min 22 We  for the coarse mesh and 172  for the fine mesh.  

FEM analysis shows that 4
,0 10380.7 PIP
FEM  is independent of the mesh pattern. The strain PIP

FEM,0

causes the non-singular stresses PIP
z 0

~ ,  10
~PIP
 ,  20

~PIP
 . Table 8 shows the FEM results of the bonded pipe in Fig. 

3(b) and the bonded plate in Fig. 2. The stress ratios of the bonded pipe and the bonded plate are shown in Table 8. 

The singular and non-singular components are also shown in Table 8 so that the non-singular components can be 

confirmed at a glance. The stress ratios 02.1,0,0,0,0  PLT
FEMyx

PIP
FEMzr

PLT
FEMx

PIP
FEMr   are mesh-independent. However, 

the other ratios PLT
FEMz

PIP
FEM ,0,0   and PLT

FEMy
PIP

FEMz ,0,0   are depending on the mesh because of the non-singular 

stresses as mentioned in Sect. 2.1 are included in the FEM stresses. 

Table 9 shows the ratios of the bonded pipe over the bonded plate by excluding the non-singular stress in 
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Table 8. In Table 9, all components have the same ratio 1.02 independent of the element size mine  quite differently 

from Table 8(a). 

Figure 10 shows PLT
FEMy

PIP
FEMz ,0,0   and PLTPIP

yz
KK   calculated by varying 1  from 0 to 0.5 when 

   2.0,5.0,  . Here, the fine mesh pattern of   17
min 22 We  is used to calculate PLT

FEMy
PIP

FEMz ,0,0   and 
PLTPIP

yz
KK  . Figure 10 shows that PLT

FEMy
PIP

FEMz ,0,0   changes from 0.984 to 1.111 and PLTPIP
yz

KK   changes from 

0.953 to 1.384. 

Figure 11 shows the maximum values of PLTPIP
yz

KK   and PLT
FEMy

PIP
FEMz ,0,0   when 3.0 . For the bad pair 

  02   , the solid line indicates   PLTPIP
yz

KK  max  and the broken line indicates  
max,0,0

PLT
FEMy

PIP
FEMz  . For the 

good pair   02   , the solid line indicates the  
max,0,0

PLT
FEMy

PIP
FEMz   and for the equal pair   02   , 

the open circle mark indicates  
max,0,0

PLT
FEMy

PIP
FEMz  . When   02   ,   PLTPIP

yz
KK  max  may be useful for 

predicting the debonding strength since the singular stress appears. On the other hand, when   02   , 

 
max,0,0

PLT
FEMy

PIP
FEMz   may be useful since there is no singular stress. 

Figure 12 and Tables 10, 11 show the maximum values and the minimum values of PLTPIP
yz

KK   and 
PLT

FEMy
PIP

FEMz ,0,0   calculated by varying   , . When   02   , the ISSF ratio PLTPIP
yz

KK   may be useful 

predicting the debonding strength. When   02   , the stress ratio PLT
FEMy

PIP
FEMz ,0,0   may be important for 

predicting the debonding strength. However, when  2 , it is not clear whether PLTPIP
yz

KK   or 
PLT

FEMy
PIP

FEMz ,0,0   is suitable for predicting the strength at present because   PLTPIP
yz

KK  max  goes to   as 

 2 . 

As shown in Table 10, for most cases,   PLTPIP
yz

KK  max  value is larger than 1. This is the reason why ܭఙ೥
௉ூ௉ 

does not correspond to the PLT
y

K  even in the case  . Table 10 shows that the bonded pipe is more severe 

than the bonded plate mechanically. Although the ISSF ratio   PLTPIP
yz

KK  max  goes to   under the equal pair, 

  PLTPIP
yz

KK  max  is less than about 1.5 in the region   02   k , 6.03.1 k .  

 
5.1max 

PLT

PIP

y

z

K

K



  for most of the bad pair   02   k , 6.03.1 k  in Fig. 8 (28)

As shown in Fig. 8, the bonded pipe ISSF ratio satisfies < 1.5 in the wider range of the bonded cylinder. This is 

because the bonded pipe is much closer to the bonded plate compared to the bonded cylinder. The stress ratio 

 
max,0,0

PLT
FEMy

PIP
FEMz    does not diverge. Comparing Fig. 12(a) with Fig. 12(b), it is found that the value of 

PLT
FEMy

PIP
FEMz ,0,0   varies depending on   , . For all of the good pair   02   , the range of 

 
max,0,0

PLT
FEMy

PIP
FEMz   is not very large and the difference between  

max,0,0
PLT

FEMy
PIP

FEMz   and  
min,0,0

PLT
FEMy

PIP
FEMz   

is in the following region.  

4.10.1
max,0

,0 









PLT
FEMy

PIP
FEMz




, 105.0

min,0

,0

max,0

,0

min,0

,0

max,0

,0







































PLT
FEMy

PIP
FEMz

PLT
FEMy

PIP
FEMz

PLT
FEMy

PIP
FEMz

PLT
FEMy

PIP
FEMz













 

for all of the good pair   02    in Fig. 8  

(29)

As shown in Eq. (29), since the difference between  
max,0,0

PLT
FEMy

PIP
FEMz   and  

min,0,0
PLT

FEMy
PIP

FEMz   is small enough, 

Dundurs' parameters   ,  is suitable for expressing the interface stress of the bonded pipe. FEM stress ratio of 
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the bonded pipe is smaller than that of the bonded cylinder. From Figs 7, 12 and Tables 6, 7, 10, 11, it may be 

concluded that the ISSF of the bonded cylinder is more severe than the ISSF of the bonded pipe in all material 

combination.  

Since the ratio   PLTPIP
yz KK  max  goes to   as  2 , it is not clear whether PLTPIP

yz KK   or 
PLT

FEMy
PIP

FEMz ,0,0   is suitable for predicting of the strength is not clarified in the following range at present. 

Useful parameter is unknown near the equal pair 

  02   k , 6.03.1 k  and   02    in Fig. 8 
(30)

 

5. Conclusion 

The authors have shown that the bonded strength can be expressed as a constant value of the ISSF assuming 

two dimensional modelling [9-11]. Since real structures always have three dimensional geometries, in this paper, 

the most fundamental bonded problems were considered. From the comparison among the bonded cylinder ( CYL
z

K , 
CYL

FEMz ,0 ) , the bonded pipe ( PIP
z

K , PIP
FEMz ,0 ) and the bonded plate ( PLT

yK , PLT
FEMy ,0 ), the following conclusion can 

be drawn. Here, CYL
z

K , PIP
z

K , PLT
yK are ISSFs and CYL

FEMz ,0 , PIP
FEMz ,0 , PLT

FEMy ,0  are the stress at the interface end.  

1. The maximum and minimums values of PLTCLY
yz KK   and PLT

FEMy
CYL

FEMz ,0,0   of the bonded cylinder were 

shown in the charts and tables. For most of the bad pair satisfying    04.17.2    in Fig. 8, it was 

found that the ISSF ratio   5.1
max

PLTCYL
yz

KK  . For most of the good pair 3.00    and   02   , 

the stress ratio satisfies   5.10.1 max,0,0  PLT
FEMy

CYL
FEMz  . It was found that the difference between 

 
max,0,0

PLT
FEMy

CYL
FEMz   and  

min,0,0
PLT

FEMy
CYL

FEMz   is less than about 10%; and therefore, Dundurs' parameters 

almost control the results and they may be useful for axisymmetric bonded structures. 

2. The maximum and minimum values of PLTPIP
yz KK   and PLT

FEMy
PIP

FEMz ,0,0   of the bonded pipe were shown in 

the charts and tables when the pipe inner radius  . The results of the bonded pipe do not coincide with 

the ones of the bonded plate completely even when  . For most of the bad pairs satisfying 

   02.16.2    in Fig. 8, the ISSF ratio   5.1max PLTPIP
yz KK  . As shown in Fig.8, the bonded pipe 

ISSF ratio satisfies < 1.5 in the wider range of the bonded cylinder. This is because the bonded pipe is more 

closer to the bonded plate compared to the bonded cylinder.	For all of the good pair   02   , the stress 

ratio is in the region   4.10.1 max,0,0  PLT
FEMy

PIP
FEMz  . The differences between  

max,0,0
PLT

FEMy
PIP

FEMz   and 

 
min,0,0

PLT
FEMy

PIP
FEMz   were less than about 10%. The stress ratio of the bonded pipe is smaller than that of the 

bonded cylinder. It was found that the ISSF of the bonded cylinder is more severe than the ISSF of the bonded 

pipe in all material combination. 

3. For the bad pair   02   , the ISSF ratio PLTCLY
yz KK   and PLTPIP

yz KK   may be useful for evaluating 

the debonding strength since the singular stress appears. For good pair   02   , the stress ratio 
PLT

FEMy
CYL

FEMz ,0,0   and PLT
FEMy

PIP
FEMz ,0,0   may be useful although equal pair region  2 , useful parameter is 

not known. It was found that   PLTCYL
yz KK  max  as  2 . However, as shown in Fig. 6(b), the 
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singular stress field disappears since the index 1  as  2 . The future experimental study may be 

necessary to confirm the usefulness of those results. 

4. It was found that the mesh-independent technique is useful for analyzing the bonded cylinder and the bonded 

pipe by subtracting the non-singular stress from FEM stresses. In the FE analysis, it was found that the 

non-singular stresses caused by the circumferential strain are contained in the FEM stresses at the interface 

end. The non-singular stresses were derived from the boundary conditions explicitly. 
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Appendix A: Debonding strength evaluation for cylindrical butt joint 

In this paper, the ISSF for the bonded cylinder and the bonded pipe was discussed under arbitrary material 

combination. To clarify the usefulness of the present results, the debonding strength of the cylindrical butt joints is 

discussed by using experiment of Naito et al [23]. Figure A1 shows the schematic illustration of the specimens. In 

the experiment, the adherend and adhesive are aluminum alloy 5052-H34 (Young’s modulus 6.691 E GPa, 

Poisson's ratio 33.01  ) and polyimide adhesive ( 77.32 E GPa, 342.02  ), respectively. Table A1 shows 

Dundurs' parameters   ,  and singular index  . The length of the adherend, l , is 38.1 mm; the adhesive 

thickness t  is varied from 0.2 mm to 0.6 mm. Figure A2 shows the experimentally obtained tensile strength. Here, 

the debonding crack was initiated from the end of the interface between the adhesive and the adherend. The tensile 

strength f  increases with increasing the adhesive thickness. 

The cylindrical butt joint in Fig. A1 was analyzed by applying the same analytical method. Figure A3 shows 

the dimensionless ISSF,     1dKF z
CBJCBJ

zz
 for Fig. A1. The CBJ

z
F  value increases with increasing the 
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adhesive thickness t  and coincides with the value in Fig. 7 and Table 6. Figure A4 shows the critical value of 

CBJ
z

K  defined as 
fz

z

CBJCBJ
c KK

  . It is seen that the CBJ
cK  values are almost constant independent of the 

adhesive thickness. It is confirmed that the ISSF is useful for evaluating the debonding strength. 
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FEMz ,0,0   and PLTPIP

yz KK   values depending on 1  when   ,  is fixed as  2.0,5.0   

Fig. 11 Maximum values of PLTPIP
yz KK   and PLT

FEMy
PIP

FEMz ,0,0   when 3.0  

Fig. 12 PLTPIP
yz KK   and PLT

FEMy
PIP

FEMz ,0,0   in   ,  map 

(a) Maximum values 
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Fig. A1 Schematic illustration of cylindrical butt joint 

Fig. A2 Relation between the tensile strength f  and adhesive thickness t  

Fig. A3 Dimensionless ISSF for the cylindrical butt joint, CBJ
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Fig. A4 The critical ISSF, CBJ
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analysis 

Table 2 Mesh-dependent FEM stress/strain at the interface end when    3.0,8.0,   and 

2555.01   in Table 1 

(a) Bonded cylinder (Mesh-dependent except for  ) 

(b) Bonded plate (Mesh-dependent except for z ) 

Table 3 Mesh-independent CYL
FEM,0  values obtained by CYL
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non-singular strain) when    3.0,8.0,   and 2555.01   in Table 1 
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(Mesh-dependent) 
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Fig. 1 Schematic illustration of butt joint 
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Fig. 2 Schematic illustration of bonded plate 
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(a) Bonded cylinder 

 

(b) Bonded pipe 

Fig. 3 Schematic illustration of bonded cylinder and bonded pipe 
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Fig. 4 FE mesh pattern used in analyses of bonded cylinder and bonded plate 
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(a) 12 EE  vs 1  (b) 2  vs 1  

(c) PLTCYL
yz

KK   and PLT
FEMy

CYL
FEMz ,0,0   vs 1  

Fig. 5 Variation of elastic parameters 12 EE  and 2  under fixed    3.0,8.0,   and variations of 

stress ratio PLT
FEMy

CYL
FEMz ,0,0   and ISSF ratio PLTCYL

yz
KK   under fixed    3.0,8.0,   
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(a) Maximum values of PLTCYL
yz

KK   and PLT
FEMy

CYL
FEMz ,0,0   

 

(b)   

 

(c) PLT
y

F  

Fig. 6 Maximum values of PLTCYL
yz

KK   and PLT
FEMy

CYL
FEMz ,0,0   when 3.0  
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(a) Maximum values 

(b) Minimum values 

Fig. 7 PLTCYL
yz

KK  and	 PLT
FEMy

CYL
FEMz ,0,0  in	   , map	
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Fig. 8 Dundurs'	parameters	for	several	engineering	materials	
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Fig. 9 FE	mesh	pattern	used	in	analyses	of	bonded	pipe	and	bonded	plate	
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Fig. 10 PLT

FEMy
PIP

FEMz ,0,0   and PLTPIP
yz

KK   values depending on 1  

when   ,  is fixed as  2.0,5.0  
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Fig. 11 Maximum values of PLTPIP
yz

KK   and PLT
FEMy

PIP
FEMz ,0,0   when 3.0  
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(a) Maximum values 

(b) Minimum values 

Fig. 12 PLTPIP
yz

KK   and PLT
FEMy

PIP
FEMz ,0,0   in   ,  map 
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Fig. A1 Schematic illustration of cylindrical butt joint 
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Fig. A2 Relation between the tensile strength f  and adhesive 

thickness t  
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Fig. A3 Dimensionless ISSF for the cylindrical butt joint, CBJ
z

F  
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Fig. A4 The critical ISSF, CBJ
cK  
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Table 1 An example of bad pair    3.0,8.0,   satisfying   02    used to explain the present analysis 

 

Material 1 Material 2 
      

1E  1  2E  2  

1.0 0.2555 0.1138 0.2066 0.8 0.3 0.8655 
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Table 2 Mesh-dependent FEM stress / strain at the interface end when    3.0,8.0,   and 2555.01   in Table 1 

(a) Bonded cylinder (Mesh-dependent except for  ) 

 

Stress components (= singular stress + non-singular stress) 

a
emin  

CYL
FEMr ,0  CYL

FEMz ,0  CYL
FEM,0  CYL

FEMzr ,0  

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

3-9 
-0.6785 

(= -0.6785 + 0.0)

0.6515 

(= 0.6515 + 0.0) 

3.561 

(= 3.575 – 0.01344) 

0.2803 

(= 0.7974 

 – 0.5171) 

0.7653 

(= 0.8265 

 – 0.06124) 

0.3210 

(= 0.3210 + 0.0) 

3-12 
-1.057 

(= -1.057 + 0.0) 

1.015 

(= 1.015 + 0.0) 

5.555 

(= 5.569 – 0.01344) 

0.7251 

(= 1.242 

 – 0.5172) 

1.226 

(= 1.288 

 – 0.06124) 

0.5000 

(= 0.5000 + 0.0) 

Strain components (= singular strain + non-singular strain) 

a
emin  

CYL
FEMr ,0  

 







 


E

CYL
FEMz

CYL
FEM

CYL
FEMr ,0,0,0    

CYL
FEMz ,0  

 







 


E

CYL
FEM

CYL
FEMr

CYL
FEMz ,0,0,0 

CYL
FEM,0  

 







 
E

CYL
FEMr

CYL
FEMz

CYL
FEM ,0,0,0   

CYL
FEMzr ,0  











G

CYL
FEMzr ,0  

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

3-9 
-1.719 

(= –1.854 + 0.1356) 

3.888 

(= 3.769 

+ 0.1187) 

26.75 

(= 26.75  

– 0.006950) 

-0.5137 

(= 0.0 – 0.5137) 

0.2105

(= 0.2105

+ 0.0) 

11.83 

(= 11.83

+ 0.0) 

3-12 
-2.753 

(= –2.889 + 0.1356) 

5.991 

(= 5.872 

 + 0.1187) 

41.67 

(= 41.67 

– 0.006950) 

-0.5137 

(= 0.0 – 0.5137) 

0.3282

(= 0.3282

+ 0.0) 

18.43 

(= 18.43

+ 0.0) 

      2
2

,0
1

,0,0
CYL

FEMz
CYL

FEMz
CYL

FEMz   ,      2
2

,0
1

,0,0
CYL

FEMzr
CYL

FEMzr
CYL

FEMzr    for continuity of stress

     2
2

,0
1

,0,0
CYL

FEMr
CYL

FEMr
CYL

FEMr   ,      2
2

,0
1

,0,0
CYL

FEM
CYL

FEM
CYL

FEM     for continuity of strain

 

(b) Bonded plate (Mesh-dependent except for z ) 

 

Stress components [= singular stress + non-singular stress (=0)] 

a
emin  

PLT
FEMx ,0  PLT

FEMy ,0  PLT
FEMz ,0  PLT

FEMyx ,0  

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

3-9 
-0.6821 

(=-0.6821 + 0.0) 

0.6549 

(=0.6549 + 0.0) 

3.593 

(=3.593 + 0.0) 

0.8016 

(=0.8016 + 0.0)

0.8308 

(=0.8308 + 0.0) 

0.3226 

(=0.3226 + 0.0) 

3-12 
-1.063 

(=-1.063 + 0.0) 

1.020 

(=1.020 + 0.0) 

5.598 

(=5.598 + 0.0) 

1.249 

(=1.249 + 0.0)

1.294 

(=1.294 + 0.0) 

0.5026 

(=0.5026 + 0.0) 

Strain components (= singular strain + non-singular strain) 

a
emin  

PLT
FEMx ,0  

 







 


E

PLT
FEMz

PLT
FEMy

PLT
FEMx ,0,0,0   

PLT
FEMy ,0  

 







 


E

PLT
FEMx

PLT
FEMz

PLT
FEMy ,0,0,0 

PLT
FEMz ,0  

 







 


E

PLT
FEMy

PLT
FEMx

PLT
FEMz ,0,0,0   

PLT
FEMyx ,0  











G

PLT
FEMyx ,0  

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

3-9 
-1.864 

(=-1.864 + 0.0) 

3.789 

(=3.789 + 0.0)

4.347 

(=4.347 + 0.0)

0.0 

(= 0.0 + 0.0) 

0.2118 

(=0.2118 + 0.0)

11.90 

(=11.90 + 0.0)

3-12 
-2.904 

(=-2.904 + 0.0) 

5.903 

(=5.903 + 0.0)

6.772 

(=6.772 + 0.0)

0.0 

(= 0.0 + 0.0) 

0.3299 

(=0.3299 + 0.0)

18.53 

(=18.53 + 0.0)

     2
2

,0
1

,0,0
PLT

FEMy
PLT

FEMy
PLT

FEMy   ,      2
2

,0
1

,0,0
PLT

FEMyx
PLT

FEMyx
PLT

FEMyx    for continuity of stress

     2
2

,0
1

,0,0
PLT

FEMx
PLT

FEMx
PLT

FEMx   ,      2
2

,0
1

,0,0
PLT

FEMz
PLT

FEMz
PLT

FEMz    for continuity of strain
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Table 3 Mesh-independent CYL
FEM,0  values obtained by CYL

FEMru ,0  and CYL
FEMj ,0  (=singular strain + non-singular 

strain) when    3.0,8.0,   and 2555.01   in Table 1 

 

a
emin  










ar

CYL
FEMrCYL

FEM r
u ,

,0  
 








 
E

CYL
FEMr

CYL
FEMz

CYL
FEMCYL

FEM
,0,0,0

,0
 

  

3-9 – 0.5137 – 0.5137 (= 0.0 – 0.5137) 

3-12 – 0.5137 – 0.5137 (= 0.0 – 0.5137) 
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Table 4 FEM stress ratio for the bonded cylinder when    3.0,8.0,   and 2555.01   in Table 1 [ = 

(singular sress + non-singular stress) / singular stress ] (See Sect. 2.3) 

(a) Bonded cylinder / bonded plate (Mesh-independent if non-singular stress is zero) 

 

a
emin  

PLT
FEMx

CYL
FEMr ,0,0   PLT

FEMy
CYL

FEMz ,0,0   PLT
FEMz

CYL
FEM ,0,0   PLT

FEMyx
CYL

FEMzr ,0,0   

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2

3-9 

0.9948 












6821.0
0.06785.0

0.9948 







 

6549.0
0.06515.0

0.9911 







 

593.3
01344.0575.3

0.3497 







 

8016.0
5171.07974.0

0.9211 







 

8308.0
06124.08265.0  

0.9948 







 

3226.0
0.03210.0  

3-12 

0.9948 












063.1
0.0057.1

0.9948 







 

020.1
0.0015.1  

0.9924 







 

598.5
01344.0569.5

0.5807 







 

249.1
5172.0242.1

0.9475 







 

294.1
06124.0288.1  

0.9948 







 

5026.0
0.05000.0  

(b) Butt joint / bonded plate (Mesh-independent because non-singular stress is always zero) 

 

a
emin  

PLT
FEMx

BJ
FEMx ,0,0   PLT

FEMy
BJ

FEMy ,0,0   PLT
FEMz

BJ
FEMz ,0,0   PLT

FEMyx
BJ

FEMyx ,0,0   

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2

3-9 

0.6745 












6821.0
0.04601.0  

0.6745 







 

6549.0
0.04417.0

0.6746 







 

593.3
0.0424.2  

0.6747 







 

8016.0
0.05408.0

0.6746 







 

8308.0
0.05604.0  

0.6750 







 

3226.0
0.02178.0  

3-12 

0.6746 












063.1
0.07168.0  

0.6747 







 

020.1
0.06883.0

0.6747 







 

598.5
0.0777.3  

0.6747 







 

249.1
0.08425.0

0.6747 







 

294.1
0.08732.0  

0.6747 







 

5026.0
0.03391.0  

(c) FEM stress of butt joint [ = singular stress + non-sinular stress (= 0) ] (Mesh-dependent) 

 

a
emin  

BJ
FEMx ,0  BJ

FEMy ,0  BJ
FEMz ,0  BJ

FEMyx ,0  

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

3-9 
-0.4601 

(= -0.4601 + 0.0) 

0.4417 

(= 0.4417 + 0.0)

2.424 

(= 2.424 + 0.0)

0.5408 

(= 0.5408 + 0.0)

0.5604 

(= 0.5604 + 0.0) 

0.2178 

(= 0.2178 + 0.0) 

3-12 
-0.7168 

(= -0.7168 + 0.0) 

0.6883 

(= 0.6883 + 0.0)

3.777 

(= 3.777 + 0.0)

0.8425 

(= 0.8425 + 0.0)

0.8732 

(= 0.8732 + 0.0) 

0.3391 

(= 0.3391 + 0.0) 

     2
2

,0
1

,0,0
BJ

FEMy
BJ

FEMy
BJ

FEMy   ,      2
2

,0
1

,0,0
BJ

FEMyx
BJ

FEMyx
BJ

FEMyx    for continuity of stress
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Table 5 FEM stress ratio by excluding non-singlar stress (a) as shown in Table 5(c) when    3.0,8.0,   and 

2555.01   in Table 1 

(a) Non-singular FEM stress of the bonded cylinder obtained by using explicit Eqs. (14), (15), (18), (19), (20) 

(Mesh-independent) 

a
emin  

CYL
FEMr ,0

~  CYL
FEMz ,0

~  CYL
FEM,0

~
  CYL

FEMzr ,0
~  

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

3-9 0.0 0.0 -0.01344 -0.5171 -0.06124 0.0 

3-12 0.0 0.0 -0.01344 -0.5172 -0.06124 0.0 

(b) Singular FEM stress of the bonded cylinder by excluding non-singlar stress in Table 5 (a) (Mesh-dependent) 

a
emin  

CYL
FEMr

CYL
FEMr ,0,0

~   CYL
FEMz

CYL
FEMz ,0,0

~   CYL
FEM

CYL
FEM ,0,0

~
    CYL

FEMzr
CYL

FEMzr ,0,0
~   

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

3-9 -0.6785 0.6515 3.575 0.7974 0.8265 0.3210 

3-12 -1.057 1.015 5.569 1.242 1.288 0.5000 

(c) FEM stress ratio of the bonded cylinder over the bonded plate (Mesh-independent quite differently from Table 

4(a) by excluding the non-singlar stress in Table 5 (a)) 

a
emin  

PLT
FEMx

CYL
FEMr

CYL
FEMr

,0

,0,0
~


 

 PLT
FEMy

CYL
FEMz

CYL
FEMz

,0

,0,0
~


 

 
PLT

FEMz

CYL
FEM

CYL
FEM

,0

,0,0
~


  

 PLT
FEMyx

CYL
FEMzr

CYL
FEMzr

,0

,0,0
~


 

 

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

3-9 0.9948 0.9948 0.9948 0.9948 0.9948 0.9948 

3-12 0.9948 0.9948 0.9948 0.9948 0.9948 0.9948 

(d) Dimensionless ISSFs in Eq. (21) and Eq. (22) obtained from the unique ratio in Table 5 (c) 

Mat. 
Bonded cylinder Bonded plate 

CYL
r

F  CYL
z

F  CYLF   CYL
zrF  PLT

x
F  PLT

yF  PLT
z

F  PLT
yxF  

1 -0.269 
0.633 

0.0929 
0.0958 

-0.270 
0.636 

0.0934 
0.0963 

2 0.111 0.154 0.111 0.154 

(e) Mesh-independent FEM stress ratio also independent of distance R  in Fig. 2 and Fig. 3 

 

mine
R

 CYL
FEMz ,  PLT

FEMy ,  PLT
FEMy

CYL
FEMz

CYL
FEMz

,

,0,
~


 

 

0 5.555 5.598 0.9948 

1 4.064 4.099 0.9948 

2 3.754 3.787 0.9948 

3 3.571 3.603 0.9948 

4 3.449 3.481 0.9948 

5 3.356 3.387 0.9948 

01344.0~
,0 CYL
FEMz  
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Table 6 Maximum and minimum values of PLTCYL
yz

KK   

 
  

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.45 

  

0.1 
0.789 

0.781 

0.855 

0.835 

0.996 

0.896 
     

0.2 0.775 
0.861 

0.825 

0.986 

0.885 
     

0.3  
0.856 

0.814 

0.972 

0.870 

1.234 

0.944 
    

0.4  
0.845 

0.808 

0.955 

0.854 

1.084 

0.916 
    

0.5  
0.827 

0.804 

0.937 

0.843 

1.022 

0.895 

1.346 

0.962 
   

0.6  0.802 
0.918 

0.837 

0.981 

0.880 

1.121 

0.936 
   

0.7   
0.899 

0.833 

0.948 

0.870 

1.032 

0.918 

1.321 

0.976 
  

0.8   
0.879 

0.832 

0.919 

0.865 

0.977 

0.906 

1.089 

0.957 
  

0.9   
0.859 

0.834 

0.892 

0.863 

0.935 

0.899 

0.996 

0.944 

1.146 

0.992 
 

1   0.839 0.866 0.898 0.937 0.981 0.995 

Upper: maximum value, lower: minimum value 
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Table 7 Maximum and minimum values of PLT
FEMy

CYL
FEMz ,0,0   

 
  

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.45 

  

0.0 
0.987 

0.948 

0.997 

0.981 
1.000 

0.997 

0.981 

0.978 

0.948 
   

0.1 
0.903 

0.878 

0.956 

0.936 

0.996 

0.989 

1.032 

1.000 

1.065 

1.022 
   

0.2 0.844 
0.920 

0.896 

0.986 

0.955 

1.052 

1.000 

1.145 

1.060 
1.246   

0.3  
0.889 

0.850 

0.972 

0.914 

1.050 

0.984 

1.184 

1.036 

1.444 

1.358 
  

0.4  
0.863 

0.826 

0.955 

0.880 

1.031 

0.948 

1.172 

1.000 

1.525 

1.343 
  

0.5  
0.838 

0.812 

0.937 

0.857 

1.000 

0.914 

1.127 

0.983 

1.447 

1.134 
  

0.6  0.808 
0.918 

0.843 

0.975 

0.890 

1.071 

0.951 

1.299 

1.000 
3.117  

0.7   
0.899 

0.835 

0.946 

0.875 

1.020 

0.925 

1.165 

0.986 

1.862 

1.564 
 

0.8   
0.879 

0.833 

0.919 

0.866 

0.974 

0.909 

1.066 

0.962 

1.327 

1.000 
2.276 

0.9   
0.859 

0.834 

0.892 

0.864 

0.934 

0.900 

0.993 

0.945 

1.098 

0.994 

1.237 

1.000 

1   0.839 0.866 0.898 0.937 0.981 0.995 

Upper: maximum value, lower: minimum value 
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Table 8 FEM stress ratio for the bonded pipe when    3.0,8.0,   and 2555.01   in Table 1          

[ = (singular sress + non-singular stress) / singular stress ] 

(a) Bonded pipe / bonded plate (Mesh-independent if non-singular stress is zero) 

 

2
min

W
e  

PLT
FEMx

PIP
FEMr ,0,0   PLT

FEMy
PIP

FEMz ,0,0   PLT
FEMz

PIP
FEM ,0,0   PLT

FEMyx
PIP

FEMzr ,0,0   

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

2-13 

1.021 












7261.0
0.07412.0

1.021 







 

4469.0
0.04562.0

1.014 







 

970.2
0193.0031.3

-0.1284 







 

6465.0
7428.06598.0

0.8847 







 

6465.0
0880.06600.0  

1.021 







 

1967.0
0.02008.0  

2-17 

1.020 












054.1
0.0076.1

1.020 







 

6490.0
0.06622.0

1.016 







 

312.4
0193.0400.4

0.2291 







 

9387.0
7427.09578.0

0.9268 







 

9388.0
0879.09579.0  

1.020 







 

2855.0
0.02913.0  

 

(b) FEM stress of bonded pipe (Mesh-dependent) [ = singular sress + non-singular stress] 

 

2
min

W
e  

PIP
FEMr ,0  PIP

FEMz ,0  PIP
FEM,0  PIP

FEMzr ,0  

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

2-13 
–0.7412 

(= – 0.7412 + 0.0) 

0.4562 

(= 0.4562 + 0.0)

3.012 

(= 3.031 – 0.0193)

-0.0830 

(= 0.6598 – 0.7428)

0.5720 

(= 0.6600 – 0.0880) 

0.2008 

(= 0.2008 + 0.0) 

2-17 
–1.076 

(= – 1.076 + 0.0) 

0.6622 

(= 0.6622 + 0.0)

4.381 

(= 4.400 – 0.0193)

0.2151 

(= 0.9578 – 0.7427)

0.8700 

(= 0.9579 – 0.0879) 

0.2913 

(= 0.2913 + 0.0) 

     2
2

,0
1

,0,0
PIP

FEMz
PIP

FEMz
PIP

FEMz   ,      2
2

,0
1

,0,0
PIP

FEMzr
PIP

FEMzr
PIP

FEMzr    for continuity of stress

 

(c) FEM stress of bonded plate (Mesh-dependent) [ = singular stress + non-sinular stress (= 0) ] 

 

2
min

W
e  

PLT
FEMx ,0  PLT

FEMy ,0  PLT
FEMz ,0  PLT

FEMyx ,0  

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

2-13 
– 0.7261 

(= – 0.7261 + 0.0) 

0.4469 

(= 0.4469 + 0.0)

2.970 

(= 2.970 + 0.0)

0.6465 

(= 0.6465 + 0.0)

0.6465 

(= 0.6465 + 0.0) 

0.1967 

(= 0.1967 + 0.0) 

2-17 
– 1.054 

(= – 1.054 + 0.0) 

0.6490 

(= 0.6490 + 0.0)

4.312 

(= 4.312 + 0.0)

0.9387 

(= 0.9387 + 0.0)

0.9388 

(= 0.9388 + 0.0) 

0.2855 

(= 0.2855 + 0.0) 

     2
2

,0
1

,0,0
PLT

FEMy
PLT

FEMy
PLT

FEMy   ,      2
2

,0
1

,0,0
PLT

FEMyx
PLT

FEMyx
PLT

FEMyx    for continuity of stress
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Table 9 FEM stress ratio of the bonded cylinder over the bonded plate (Mesh-independent differently from Table 

8(a) by excluding the non-singlar stress) 

2
min

W
e

 PLT
FEMx

PIP
FEMr

PIP
FEMr

,0

,0,0
~


 

 PLT
FEMy

PIP
FEMz

PIP
FEMz

,0

,0,0
~


 

 
PLT

FEMz

PIP
FEM

PIP
FEM

,0

,0,0
~


  

 PLT
FEMyx

PIP
FEMzr

PIP
FEMzr

,0

,0,0
~


 

 

Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

2-13 1.021 1.021 1.021 1.021 1.021 1.021 

2-17 1.020 1.020 1.020 1.020 1.020 1.020 
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Table 10 Maximum and minimum values of PLTPIP
yz

KK   

 
  

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.45 

  

0.1 
0.808 

0.807 

0.923 

0.845 

0.999 

0.896 
     

0.2 0.794 
0.879 

0.840 

0.999 

0.888 
     

0.3  
0.882 

0.832 

1.000 

0.874 

1.249 

0.939 
    

0.4  
0.879 

0.829 

1.000 

0.862 

1.114 

0.911 
    

0.5  
0.870 

0.830 

0.999 

0.856 

1.069 

0.893 

1.382 

0.953 
   

0.6  0.842 
1.002 

0.859 

1.047 

0.884 

1.172 

0.927 
   

0.7   
1.000 

0.865 

1.034 

0.885 

1.101 

0.915 

1.383 

0.963 
  

0.8   
0.998 

0.885 

1.023 

0.897 

1.064 

0.916 

1.160 

0.947 
  

0.9   
0.998 

0.920 

1.014 

0.927 

1.035 

0.937 

1.075 

0.953 

1.210 

0.980 
 

1   1.000 1.000 1.000 1.000 1.000 1.000 

Upper: maximum value, lower: minimum value 
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Table 11 Maximum and minimum values of PLT
FEMy

PIP
FEMz ,0,0   

 
  

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.45 

  

0.0 
0.986 

0.975 

0.998 

0.990 
1.000 

0.998 

0.990 

0.986 

0.975 
   

0.1 
0.947 

0.931 

0.981 

0.936 

1.000 

0.992 

1.020 

1.002 

1.036 

1.013 
   

0.2 0.904 
0.953 

0.929 

1.000 

0.971 

1.036 

1.000 

1.082 

1.030 
1.098   

0.3  
0.932 

0.898 

1.000 

0.941 

1.044 

0.988 

1.111 

1.019 

1.191 

1.152 
  

0.4  
0.921 

0.875 

1.000 

0.913 

1.045 

0.961 

1.119 

1.000 

1.252 

1.132 
  

0.5  
0.898 

0.861 

1.000 

0.892 

1.041 

0.933 

1.111 

0.985 

1.259 

1.059 
  

0.6  0.862 
1.001 

0.880 

1.035 

0.912 

1.093 

0.958 

1.234 

1.000 
1.405  

0.7   
1.000 

0.878 

1.028 

0.902 

1.073 

0.937 

1.158 

0.976 

1.377 

1.186 
 

0.8   
1.000 

0.891 

1.021 

0.906 

1.054 

0.929 

1.109 

0.963 

1.228 

1.000 
1.395 

0.9   
1.000 

0.924 

1.013 

0.931 

1.032 

0.942 

1.063 

0.960 

1.116 

0.989 

1.162 

1.000 

1   1.000 1.000 1.000 1.000 1.000 1.000 

Upper: maximum value, lower: minimum value 
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Table A1 Dundurs' parameters   ,  and singular index   

Adherend 

(Al alloy) 

Adhesive 

(Polyimide) 
Dundurs’ parameter Singular index 

1E  [GPa] 1  2E  [GPa] 2        

69.9 0.33 3.77 0.342 0.8963 0.2145 0.7398 

 


