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Abstract

In this paper, the intensity of the singular stress field (ISSF) for a bonded cylinder and boned pipe is compared with
the ISSF for the bonded plate. The analysis method focuses on the FEM stress at the interface end by applying the
same mesh pattern to the unknown and reference problems. It is found that the mesh-independent technique useful
for the bonded plate cannot be directly applied to the bonded axisymmetric structures because the circumferential
strain causes non-singular stress disturbs singular stress evaluation. In order to eliminate this disturbance, explicit
non-singular expressions are derived from the boundary conditions and subtracted from the FEM results. Then, the
ISSFs for the bonded cylinder and the bonded pipe are calculated by changing the material combinations
systematically. Since Dundurs’ parameters cannot totally control the axisymmetric bonded structures, the maximum
and minimum values of ISSF are shown in tables and charts under arbitrary material combination. It is found that
the ISSFs of bonded cylinder and bonded pipe are at most 1.5 times larger than that of the bonded plate.
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Nomenclature

a radius of bonded cylinder a, p Dundurs’ parameters

d radius of bonded cylinder est real circumferential strain of

E Young’s modulus bonded cylinder

i minimum element size Eorem » ¥orew  FEM strain of bonded cylinder at
interface end
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Normalized ISSF for cylindrical butt
joint

Normalized ISSF for bonded cylinder
Normalized ISSF for bonded pipe
Normalized ISSF for bonded plate
shear modulus

ISSF for butt joint

ISSF for cylindrical butt joint

Critical ISSF for cylindrical butt joint
at debonding fracture

ISSF for bonded cylinder

ISSF for bonded pipe

ISSF for bonded plate

plate length and cylinder length
distance from the end on the interface

adhesive layer thickness of butt joint
real radial displacement of bonded
cylinder

FEM radial displacement of bonded
cylinder

plate width
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FEM strain of bonded plate at
interface end

singular index

Poisson’s ratio

real stress of butt joint

real stress of bonded cylinder

real stress of bonded plate

FEM stress of butt joint at interface
end

FEM stress of bonded cylinder at
interface end

FEM stress of bonded pipe at
interface end

FEM stress of bonded plate at
interface end

non-singular FEM stress of bonded
cylinder at interface end
non-singular FEM stress of bonded
pipe at interface end

uniform applied stress

inner radius of the bonded pipe

1. Introduction

Adhesive bonding is used in various industries such as automobiles, marines and airplanes on account of

developments of high performance adhesives [1 - 3]. The structural adhesives have several advantages such as high

fatigue strength, weight reduction, high sealability and high productivity compared to welding, bolts and screws [1].

In general, the structural adhesive is developed so that the adhesive strength becomes higher than the static strength

of the structural materials such as steels and aluminum alloys. However, when the debonding fracture occurs at the

interface between the adhesive and the adherend, the adhesive strength decreases remarkably. It is therefore

important to grasp the debonding strength. Although the experimental evaluation methods have been standardized

by ASTM, ISO and JIS, the debonding strength cannot be estimated conveniently. This is because the adhesive

strength is prescribed by the fracture load regardless of the fracture modes in those standards. Therefore, a

convenient method for evaluating the deboning strength is strongly required.

In the previous studies [4 - 11], the debonding strength of the adhesively bonded joints was expressed by the
intensity of the singular stress field (ISSF). The ISSF K, for the butt joint as shown in Fig. 1 is defined by the

following equation.




K, =0y F,W"* =limR"* &, (1)
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Here, oy is the remote stress, F, is the normalized ISSF, A is the singular index, W is the plate width, R
is the local distance from the interface edge and o, is the stress in the y direction. To calculate the ISSF, a
mesh-independent technique was proposed by the authors [7, 8]. Then, the debonding strength of the adhesive joint
was expressed as K, =K. [9 - 11] for the butt joints in Fig. 1 [7, 8] and the single lap joints [9]. Here, K.,
denotes the ISSF and K,. denotes the critical value of ISSF. As can be seen in those studies [4 - 11], the
debonding strength can be predicted from the two dimensional modeling although actual specimens have three
dimensional geometries. However, since actual specimens are always three dimensional, 3D effect on the ISSF
should be studied.

In this study, therefore, the bonded cylinder (Fig. 3(a)) and the bonded pipe (Fig. 3(b)) will be considered as
the most fundamental 3D bonded structures, which should be compared with the bonded plate in the first place.
Under the same material combination, the ISSF can be compared among those three problems since the same
singular index and the similar singular stress field appears [12]. In this study, the same FE mesh pattern will be
applied for the bonded plate in Fig. 2 and the bonded cylinder in Fig. 3 as well as the bonded pipe. Then, the
analytical differences will be discussed by comparing with those FE results. Since it is known that the non-singular
stress occurs at the interface end for the axisymmetric bonded structures [13 - 15], the applicability of the
mesh-independent technique has to be considered to analyze the bonded cylinder and the bonded pipe accurately.
Then, the analysis method will be newly proposed for the bonded axisymmetric bodied. Finally, the ISSFs for the
bonded cylinder and the bonded pipe will be calculated by varying the material combinations. Quite generally, the
bonded pipe has been regarded as the bonded plate when the inner radius of the bonded pipe p approaches o.
Therefore, the singular stress fields between the bonded pipe and the bonded plate will be discussed as the most

fundamental 3D and 2D problems.

2. A mesh-independent technique useful for evaluating the ISSF for bonded cylinder and bonded pipe
2.1 Stress/strain continuity or discontinuity across the interface

The method of analysis will be explained for bonded cylinder. The bonded pipe can be analyzed in a similar
way. Fig. 2 shows the schematic illustration of the bonded plate and Fig. 3 shows the one of bonded cylinder. The
dimensions are set as L=W =2a in those models. Table 1 shows an example of a bad pair satisfying
a(a—Zﬂ)>0 to explain the analysis method. Note that Table 1 is just an example to analyze all material
combinations whose results are indicated in Figs. 7, 12 and Tables 6, 7, 10, 11. Table 1 includes Young's modulus
E., E,, Poisson's ratio v,, v,, Dundurs' [16] parameters (a,,b’) and singular index A . Here, the subscript m
differentiates the material 1 and material 2. The parameters (a, ,b’) are defined by Eq. (2). For the bad pair
a(a - Zﬂ) >0, it is known that the singular stress field A <1 appears at the interface end.

By using the material combination shown in Table 1, the analysis method will be examined for Fig. 2 and Fig.
3 in this Sect. 2. After the validity is confirmed, the method will be applied to all material combinations for bonded

cylinder as shown in Sect. 3 and bonded pipe as shown in Sect. 4.
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Figure 8 shows (a,,b’) for several engineering material combinations [19]. Since in most cases (a,ﬂ) is in the
range of 0< <0.3 included in the bad pair region a(a —2,B)> 0, the parameters in Table 1 were chosen from
the bad pair region as typical example. The parameters are not real material parameters.

In this analysis, the commercial FEM code MSC Marc 2008 R1 is used. The linear elastic analyses are
performed on the bonded plate as shown in Fig. 2 and the bonded cylinder as shown in Fig. 3. The multifrontal
method is used in the solution of simultaneous equations. In the case of the bonded plate, the plane strain condition
is assumed. Figure 4 shows the schematic illustration of the FE mesh pattern. The same FE mesh patterns are used
in all analyses. The standard four-node quadrilateral plane strain and axisymmetric ring elements are used for the
bonded plate and the bonded cylinder, respectively. In order to confirm the usefulness of the mesh independent
technique, the FE analyses are performed by using the coarse mesh and the fine mesh. The minimum element sizes
are eyn/(W/2)=e,,/a=3"° for the coarse meshand 32 for the fine mesh.

Table 2 shows the stress/strain components of the bonded cylinder under the remote stress oy =1,
(o-jCoY,LFEM s TEA0.FEM + £ 50 EEM + ¥ F20.EEM ) and the stress/strain components of the bonded plate under the remote stress
oy =1, (ai%,LEEM,rfyLJYFEM,gi%EEEM, 75%,FEM), where j=r, z, 8 and i=x, y, z. The stress/strain values are
the nodal solutions obtained by FE analyses and they are referred to as “FEM stress/strain”. In Table 2, the values
in the parentheses are the singular components and the non-singular components that will be explained in Sect. 2.3.
The real stress/strain components (af“,crﬁ“,gf“, ;/FZYL), (af LT of TL,gf”,;/fy”) are discontinuous across the
interface, but the components (af“,rfz“,grc“,gg“), (af”,rfy”,gf LT el ”) must be continuous across the
interface. However, in the FEM analysis even the continuous-should-be stress/strain components
(S, o rem 68 ke v e50kem ) > (O 8 kem 20 rem £k Few 655 Few ) OF the materials 1 and 2 do not always
coincide with each other because of the FEM error. In this case, average values for the materials 1 and 2 are used
and indicated in Table 2.

In Table 2, most of the stress/strain components are mesh-dependent except for &, . This can be explained in

the following way. In axisymmetric bodies, the circumferential strain &, is given as [20]:
u
Eg = T’ , 4)

where r is the radial distance from the z axis, u, isthe displacementinthe r direction. The circumferential
strain at the interface end 5"~ is given by Eq. (5) from the cylinder radius a and the displacement at the

interface end u&"“.
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Table 3 shows the &g5%em Values calculated by substituting the FEM radial displacement u%sen into Eq. (5).
The &53%em Value obtained from ufkew is —0.5137 independent of the element size e, , and coincides with
the FEM stress in Table 2. Usually, the stress and strain at the singular point cannot be calculated by FEM
accurately. However, the only &4'sew is not influenced by the stress singularity and can be calculated accurately
by FE analysis.

As shown in Table 2 and Table 3, ¢5;- for the bonded cylinder has a non-zero value and quite different from
el for the bonded plate. This is the reason why the non-singular stress/strain components are caused by &5".
Therefore, the FEM stress at the interface end consists of the singular stress and the non-singular stress. Since 53"

is not affected by the stress singularity and it can be calculated easily and accurately.

2.2 Mesh-independent technique useful for analyzing bonded plate

In the earlier studies [7, 8, 11], the ISSFs for the butt joints in Fig. 1 and the bonded plate in Fig. 2 were
calculated accurately. In this section, first, the same analysis method is applied to the bonded cylinder as shown in
Fig. 3 by FEM, then the analytical difficulty for bonded cylinder and pipe will be clarified. For Fig. 1 and Fig. 2,

the singular stress at the end of interface is expressed as shown in the following equations.
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Here, the index i can be x, y or z, R is the distance from the end on the interface. Since those singular
stress fields are similar as shown in Eqs (6) and (7), the ISSF ratio is equal to the stress ratio obtained by FEM as
shown in Eqg. (8) [7, 8, 11].
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In other words, the error of FEM stress ojsrem and oo rem Can be cancelled out by taking the ratio. It was
shown that Eq. (8) is valid to the other stress components, and therefore all stress ratios have the same value
independent of the stress components. The method does not require the special singular element such as Akin
singular element and the mesh refinement procedure for the convergence of the solution. Since the reference
solution K™ was obtained by the body force method (BFM) [21] and the FEM error can be eliminated in Eq. (8),
the present method has the same accuracy as the BFM.

Table 4 shows the FEM results of the bonded cylinder and butt joint. Here, 1=L, I/W =1.0 and t/I =0.1
are set in the butt joint model (Fig. 1). The butt joint and the bonded plate are subdivided by the same mesh pattern
and analyzed under the same conditions and the same material combinations by FEM. The stress ratios of the butt
joint and the bonded cylinder are also shown in Table 4. Although the non-singular stress components will be
derived in the following Sect. 2.3 explicitly, the singular and non-singular components are shown in Table 4
beforehand so that the existence of the non-singular components can be confirmed at a glance. All ratios of the butt

joint correspond to 0.6674 and are independent of the mesh pattern. From this result, it is confirmed that the
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influence of the stress singularity is cancelled completely by taking a ratio and the mesh refinement procedure for

the convergence of the solution is not required. In the case of the bonded cylinder, the oS kew /ofarem and

% rem /7o rem  COMTespond to 0.9948. However, the other ratios ogorem /Otorem and o@kem /ofskew do not
correspond to 0.9948. That is because the non-singular stresses as mentioned in Sect. 2.1 are included in the FEM

stresses oo rem and ogorem Cannot be ignored.

2.3 Derivation of the non-singular stresses

In this section, the asymptotic solution of the stress distribution in the vicinity of the interface end of the
bonded cylinder is discussed based on theory of elasticity. In order to distinguish from FE analysis, the notation’s
subscript excludes "FEM". The non-singular stresses explained in Sect. 2.1 are denoted by o' and 75", where

j=r, z, 6.The interface stresses of™ and 7"

can be expressed as shown in Eq. (9) at the vicinity of the
interface end of the bonded cylinder. Note that the bonded plate and the bonded cylinder have the same singular

index A.

CYL CyL
CcyL _ —~CYL CyL _ rz ~CYL
oj = R +G] v Tz —F"’Trz (9)

From the interfacial continuity conditions for the stress and the displacement, Eq. (9) has to be satisfied with the

following conditions at the interface between the materials 1 and 2.

(2 f =(of, (e ) =) (10)

e f =ef (5 ) = (s (1

Here, the subscripts 1 and 2 refer to the materials 1 and 2, respectively. From the stress-free boundary conditions at
r=a, Eq. (9) also has to be satisfied with the following conditions at the interface end on both materials.

(o7 f =l f =0 (220) (12)

(e F =(z9f =0---(z<0) (13)

Two right-hand side terms of Eq. (9) have to be satisfied with the conditions (10), (11), (12) and (13) independently.

The non-singular stresses were solved analytically by Li et al. [15]. In this paper, such non-singular stresses as meet

CYL CYL

the conditions and cause the strain &5 = U / a are derived.

From the stress-free conditions (12) and (13), the non-singular stresses at the interface end, %" and 750",

are equal to 0 on both materials.

S =@Fs) =0 (14)
(G =(Fey =0 (15)

Letting (65" ) = (69" f =65* from the condition (10) leads the following relation from (sS*) = (sS*



which is effected by Eq. (11).

~cyL ~cyL |
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Similarly, the following relation can be obtained from (ggco“)l = (g(%L )2 which is effected by Eq. (11).
V; V. ~ Vi (= Vy (~ 2
(&g Jp - (o} - o) )

Solving Egs. (5), (16) and (17), the (550“)1 and (550“)2 are obtained as:

~cvL | _ (1+V2)(V2E1_V1E2)E1 .U,CJL
(090 )L T (l+vvE -(Q+v)vE  a ’ (18)
~cvL R _ (1"!‘ Vl)(VzEl _V1E2)E2 ) Urc(;(l'
(Ggo ) T (l+vvE, -(L+w)vE a - (19)
Then, the (65" ) and (G5 ) are obtained as:
~cvL} _ (o P _ (Vl _VZ)El E, . u"
(5 = (o5 f - @+ v )viE -+ va)v,E @ (20)

The equivalent expressions were obtained by Lie et al [15]. The non-singular stresses are uniquely determined from
the displacement u&™ in the radial direction. The non-singular stresses can be calculated by Egs. (14), (15), (18),
(19) and (20). The mesh-independent technique [7, 8] is applicable to the bonded cylinder by subtracting the
non-singular stress from the FEM stress. However, when « =2/, the denominators of the equations become 0 and
the non-singular stresses diverge to oo. The full attention is required when « =24, which will be discussed in

Section 3.

2.4 Mesh-independent technique useful for analyzing bonded cylinder and bonded pipe
The non-singular stress components were derived explicitly in Sect. 2.3. In this section the usefulness and the
validity will be discussed by taking an example of the results of Tables 1 - 4. Table 5(a) shows the non-singular
stresses obtained from u&Q%ew by using explicit Egs. (14), (15), (18), (19), (20) in Sect.2.3. Here, the radial
displacement u%key and the non-singular FEM stresses are independent of the minimum element size e,;, as
shown in Table 5(a). Table 5(b) shows the singular stresses by subtracting the non-singular stresses in Table 5(a)
from the stresses at the interface end in Table 2. The singular FEM stress components in Table 5 (b) are depending
on the mesh size. Table 5(c) shows the ratios of the bonded cylinder over the bonded plate by excluding the
non-singular stress in Table 5(a). In Table 5(c), all components have the same ratio 0.9948 independent of the
element size e, quite differently from Table 4(a). Because the o%Frev and 75w do not include the
non-singular stresses as o9 eem = Zr20Fem =0, the subtraction process is not necessary. Therefore, by using
oS remand 785w , the ratio of the ISSF for the bonded cylinder to the bonded plate can be calculated easily.

The ISSF for the bonded plate with L/W =1 as shown in Fig. 2, K!'T, has been solved by Noda et al. [21].

Then, the non-dimensional function of @ has been already clarified by Carpenter and Byers [22]. Therefore, the
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ISSFs  for  the  bonded  cylinder, Ks*:  and Ko can  be  calculated  from

Trz

KE/KET = KS /KO =K /KT = K /KT =0.9948 . Table 5(d) shows the dimensionless ISSFs for the

Trz Txy

bonded plate and the bonded cylinder, where the FJ'" and F[-", FS™ and FS* are defined by Egs. (21) and

Txy !

(22). The FS™ and FS“ have three significant digits as well asthe FS-" and FF'7.

Trz Txy

K PLT K PLT

FO'PiLT = 0_;0\7\}17/1 > Frf;j = y\;\71 20 (21)
o _ KC(T:J‘YL o _ KrCrZL . 22)

As for the bonded cylinder, the stresses on the interface in the vicinity of the interface end can be described as

follows.
CyYL CYL
cyL _ "9  ZCvL CYL _ rz ~CYL
O-j Rl,/l +O-j0 y Trz = Rl,ﬂ +7rz0 (23)

Table 5(e) shows the o¢few along the R coordinate in Fig. 3 in comparison with the o/ in Fig. 2. Also the
ratio of the (aZCYFLEM 5z%kaM) to the o)%ew along the R coordinate, (o-ZCYFLEM — 0% Eem )/ay L, 1S shown in
Table 5(e). By subtracting the non-singular term, the ratio is constant at 0.9948 along the R coordinate and has
four significant digits as shown in Table 5(e). The ISSF is calculated accurately by Eq. (24). Only the FEM stresses

at the interface end are enough to obtain the ratio.

cYL cyL ~cyL
K(rz _ O030,FeM — O70,FEM

(24)

K O V0. Fem
Equation (24) can be used to obtain other stress components. Since the derivation of the non-singular stresses is
quite general, the present method can be applied to analyzing other axisymmetric bodies such as bonded pipes and
cylindrical butt joints. As an example of adhesive joint specimens, the cylindrical butt joint is analyzed accurately
in Appendix A. The present method is useful for the engineers and the researchers to evaluate the debonding

strength easily and conveniently.

3. Intensity of singular stress field for bonded cylinder in comparison with bonded plate

In our earlier studies [8, 9], the ISSFs for the bonded plate and the butt joint have been clarified under
arbitrary material combinations. In this paper, the ISSFs for the bonded cylinder and the bonded pipe will be
discussed in a similar way. The singular stress field of two dimensional problems in Figs. 1 and 2 is totally
controlled by Dundurs' parameters (a, ﬂ) regardless of the plane stress condition or the plane strain condition.
However, the singular stress field of axisymmetric problems such as the bonded cylinder in Fig. 3 is a 3D problem
and cannot be controlled by (a,,B). Since the axisymmetric bonded problems have some similarities to 2D bonded
problems, the usefulness of (a,ﬁ) to the axisymmetric bonded problems will be examined.

Figure 5 shows E,/E, and v, by varying v, from 0 to 0.5 when (e, /3)=(0.8,0.3). As shown in Figs. 5
(a) and 5(b), under fixed (e, /3)=(0.8,0.3) E,/E, can be changed from 0.1074 to 0.1389 and v, can be
changed from 0.1818 to 0.2500. Then, otem /oy6rew and KE' /KPS are calculated as shown in Fig. 5 (c) by
using the fine mesh pattern of the standard four-node quadrilateral element with e,;,/a=3"2. Since

mesh-independent technique [7, 8] is used, singular elements such as Akin singular element are not necessary. Here,
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K&t /KT is obtained by using Eq. (24) for the bad pair. For the good and equal pairs, however, since the
singular stress does not appear, o rem / oyorem Will be focused in order to compare the bonded cylinder and the
bonded plate. It is found that okew /o5 rew  Changes from 0.962 to 1.066 and K™ /K™ changes from 0.957
to 1.087. For axisymmetric bonded structures, although (a, ﬂ) cannot totally control the results, it is found that
the variation is not very large as shown in Fig. 5(c). In this paper, therefore, the maximum and minimum values
will be focused under fixed (a,ﬁ). To evaluate the bonded structures under arbitrary material combination, the
maximum value is important since this is the most severe case under the same (a, ).

Figure 6 shows the maximum values of K& /KT and o@kew /ojsrem by varying o from 0.2 to 1.0 for
fixed 4=0.3. For the bad pair a(a—24)>0, the solid line indicates the ISSF ratio (KCYL) /KT and the

broken line indicates the stress ratio (azo kem /O o Fem )max For the good pair a(a 2ﬂ)< 0, the solid line indicates

max

(azo kem /O Eem )max and for the equal pair a(a Zﬁ) 0, the open circle mark indicates the (afOYLFEM /56 kem )max .
When o >2p, the stress singularity occurs at the interface end, and therefore, K™ /K" may be useful for
predicting the debonding strength. On the other hand, when « <24, the stress singularity does not occur at the
interface end. Then, it is found that (KS}L)maX/KPLT — o as a— 28 . However, as shown in Fig. 6(b), the
singular stress field disappears since the index 4—>1 as «a—28 . Therefore, the stress ratio
(GZoFEM [o i em )maX may be more useful than the ISSF ratio K(SZYL/K;’YLT around a=2p. In Fig. 6(c), the
dimensionless ISSF F,"" defined in Eq. (21) is also indicated.

Figure 7 and Tables 6, 7 show the maximum and minimum values of K" /K> and oreu /o-yO Eew
varying (a,). As above mentioned, K<™ /KST may be useful for predicting the debonding strength when
a(a—2ﬁ)>0 since the singular stress appears at the interface end. On the other hand, when a(a—z,ﬁ)so,
oSkem [olitew IS very important for predicting the debonding strength. However, when « =24, it is unknown
whether K™ /K™ or ofreu Joiekew s suitable for predicting the strength because (KS}L)maX JKST goes to
0 as a—2p.

Although (K(SZYL )max/K(E’yLT goes to infinity around the equal pair condition, (KE}L )max/K(f,’yLT is less than 1.5

in the region a(a—2kB)>0, k=1.35-0.7|4 indicated in Fig. 8.

CYL
(KE#Q 5 for most of the bad pair a(e—2kB)>0, k=1.35-0.7| inFig.8 (25)

As shown in Fig. 8, since almost all (a,,B) of engineering materials [19] are distributed in 0 < |ﬂ| <0.3, the stress

ratio o5kem /oiorew Can be discussed in this range. Note that the stress ratio (aZCJ'-FEM /o5 em )max is always
finite. Comparing Fig. 7(a) with Fig. 7(b), it is found that the value of o&%'tew /oferem Varies depending on
(@,8) but the value range of (oeew /ofikew )., iS not very wide in the region a(a—28)<0 and

0£|ﬂ| <0.3. Also, the difference between (af(ILFEM /56 kem )max and (aZCOY'-FEM /36 kem )mm is not very large in this

region. Therefore, the value range and the maximum and minimum value difference can be expressed in Eq. (26).



min < 0 1
cyL CYL -
[O-ZO,FEM ] +(5z0,FEM j (26)
PLT PLT
Oyo.FEM ) o OyoFeM J i

for most of the good pair 0<|4/<0.3 and a(a-28)<0

PLT
O'yo,FEM

oYL cYL
[Gzo,FEM j _[GZO,FEM j
cyL PLT PLT
1.0< [GZOYFEM J <15 \OvoFEM Jny  \ Oyorem
0< <15,
max

If the differences between (o-ZCJ Lem /O 6 Fem )maX and (JZCJ'-FEM /o ke )min is very large, Dundurs' parameters is not
useful enough to discuss the ISSF of the axisymmetric bonded structure. However, the difference is less than 10%
in Eqg. (26); and therefore, Dundurs' parameters almost control the results and they may be useful for axisymmetric
bonded structures.
Since (Kf,?z“)maX/K(E’y” goes to infinity as « — 2/, it is not clear whether K& /K™ or ofkem o ke
is suitable for predicting the strength at present.
Useful parameter is unknown near the equal pair

ala-2kp)<0, k=135-0.7|4 and a(a-28)>0 inFig.8 @

4. Intensity of singular stress field for bonded pipe in comparison with bonded plate

In this paper, the bonded pipe in Fig. 3(b) is also considered as another example of the most fundamental 3D
bonded structures, which should be compared with the bonded plate. The schematic illustration of the bonded pipe
is shown in Fig. 3(b). Here, assume that the inner radius of the pipe is infinitely large as shown in Fig. 3(b). In this
case, the plain strain condition has been usually assumed. Therefore, in this paper, The ISSFs will be compared and
the difference will be clarified.

Assume L/W =1 and p/W =1.0x10° in the model. Figure 9 shows the schematic illustration of the FE
mesh pattern. The same FE mesh patterns are used in all analyses. Note that the standard four-node quadrilateral
plane strain elements are used for the bonded plate [7-9, 11], and similarly the standard four-node quadrilateral
axisymmetric ring elements are used for the bonded pipe. Since the mesh-independent technique is used [7, 8], the
singular elements such as Akin singular element are not necessary. In order to confirm the mesh dependence of the
solution, the FE analyses are performed by using the coarse mesh and the fine mesh. The minimum element sizes
are €nin /(W/ 2): 27 for the coarse mesh and 2% for the fine mesh.

FEM analysis shows that efgrem =—7.380x10™ is independent of the mesh pattern. The strain &g rem
causes the non-singular stresses o 3", (55’5")1, (5§3P )2 . Table 8 shows the FEM results of the bonded pipe in Fig.

3(b) and the bonded plate in Fig. 2. The stress ratios of the bonded pipe and the bonded plate are shown in Table 8.
The singular and non-singular components are also shown in Table 8 so that the non-singular components can be
confirmed at a glance. The stress ratios o /ovem /O foFem = Tib.rem /Tayo.rem =1.02 are mesh-independent. However,
the other ratios ojorem /Oisren and ofiew /ofskew are depending on the mesh because of the non-singular
stresses as mentioned in Sect. 2.1 are included in the FEM stresses.

Table 9 shows the ratios of the bonded pipe over the bonded plate by excluding the non-singular stress in
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Table 8. In Table 9, all components have the same ratio 1.02 independent of the element size e,;, quite differently
from Table 8(a).

Figure 10 shows ofiew/ojrew and K /KPT  calculated by varying v, from 0 to 0.5 when
(a,8)=(0.5,0.2). Here, the fine mesh pattern of ey,/(W/2)=2" is used to calculate /ey /ofsFew and
K2 /KST . Figure 10 shows that ofgem /o-yO rev  Changes from 0.984 to 1.111 and K[ /K" changes from
0.953 to 1.384.

Figure 11 shows the maximum values of K" /K " and offfew /of5kew When S =0.3. For the bad pair
a(a - 2ﬂ)> 0, the solid line indicates (Kﬁ’jp )W/K(E’yLT and the broken line indicates (afo'f’FEM /o3 kem )max . For the
good pair a(a—28)<0, the solid line indicates the (offrew /o f5kem )., and for the equal pair afa—24)=0

the open circle mark indicates (afo'f’FEM /56 kem )max. When a(a—2ﬁ)>0, (KEZ'P) /KST may be useful for

predicting the debonding strength since the singular stress appears. On the other hand, when a(a—Zﬂ)so,
(azo FEM / O 30 Fem )maX may be useful since there is no singular stress.

Figure 12 and Tables 10, 11 show the maximum values and the minimum values of KZ'*/K’" and
o ew [ofskew  calculated by varying (e, ). When a(a—28)>0, the ISSF ratio K2® /K?" may be useful
predicting the debonding strength. When a(a—Zﬂ)SO, the stress ratio oy rem /Gyo,FEM may be important for
predicting the debonding strength. However, when « =24 , it is not clear whether KZ2*/K>" or
o rem /ayo few IS suitable for predicting the strength at present because (K(E’Z'F’)max J/KST goes to o as
a—>20.

As shown in Table 10, for most cases, (KZ®),. /KT value is larger than 1. This is the reason why KZ'7
does not correspond to the K™ even in the case p — . Table 10 shows that the bonded pipe is more severe

than the bonded plate mechanically. Although the ISSF ratio (Kﬁjp )max JKZT goes to oo under the equal pair,

(K2 ) /KT is less than about 1.5 in the region (e —2kg)20, k=1.3-0.6/4].

%q 5 for most of the bad pair a(x —2k3)>0, k=1.3-0.6/4| inFig.8 (28)
As shown in Fig. 8, the bonded pipe ISSF ratio satisfies < 1.5 in the wider range of the bonded cylinder. This is
because the bonded pipe is much closer to the bonded plate compared to the bonded cylinder. The stress ratio
(GZoFEM oS kem )maX does not diverge. Comparing Fig. 12(a) with Fig. 12(b), it is found that the value of
O o0 FeM /ayo rev  varies depending on (a ,B) For all of the good pair a(a—Z,H)<0 the range of
(GZoFEM o kem )maX is not very large and the difference between (o-ZO rem /06 Fem )maX and (o-ZOFEM [olt FEM)

min

is in the following region.

PIP PIP
[GZOFEMJ [GzoFEMj
PIP
10< ( O 20.FEM j <14 O'yo FEM J hax Uyo FEM

! PIP PIP ™ <0.105
O20,FEM " O20,FEM (29)
PLT PLT
O'y0,FEM O'yo,FEM

for all of the good pair a(a—2,8)< 0 inFig.8

PLT
O'yo,FEM

As shown in Eq. (29), since the difference between (afgf’FEM oS kem )maX and (o-fo'f’pEM ey )mm is small enough,

Dundurs' parameters (a,ﬂ) is suitable for expressing the interface stress of the bonded pipe. FEM stress ratio of
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the bonded pipe is smaller than that of the bonded cylinder. From Figs 7, 12 and Tables 6, 7, 10, 11, it may be
concluded that the ISSF of the bonded cylinder is more severe than the ISSF of the bonded pipe in all material
combination.
Since the ratio (K2®), /K7 goes to o as a—>2f, it is not clear whether KZ2®/KPT or
orovem [oSerem S suitable for predicting of the strength is not clarified in the following range at present.
Useful parameter is unknown near the equal pair

ala-2kp)<0, k=1.3-06|8 and ale-28)=0 inFig.8 (30)

5. Conclusion

The authors have shown that the bonded strength can be expressed as a constant value of the ISSF assuming
two dimensional modelling [9-11]. Since real structures always have three dimensional geometries, in this paper,
the most fundamental bonded problems were considered. From the comparison among the bonded cylinder (KS'™,
Ozorem ), the bonded pipe (K2, o5en ) and the bonded plate (K!'", oJGkeu ), the following conclusion can
be drawn. Here, K&, K2, K 'Tare ISSFsand oforem , Oiorem . Oyorew are the stress at the interface end.
1. The maximum and minimums values of KS /K" and oQ%ew /ofskew Of the bonded cylinder were

shown in the charts and tables. For most of the bad pair satisfying a{a—(2.7—1.4|,8|)ﬂ}20 in Fig. 8, it was

found that the ISSF ratio (K<), /K?T <1.5. For most of the good pair 0<|8|<0.3 and a(a-25)<0,

the stress ratio satisfies 1.0< (GSOYLFEM o 6 kem )maX <15 . It was found that the difference between
(o-ZC(ILFEM /o S kem )maX and (o-ZCJLFEM [o i kem )mm is less than about 10%; and therefore, Dundurs' parameters
almost control the results and they may be useful for axisymmetric bonded structures.

2. The maximum and minimum values of K /K " and o} eu [otkew OF the bonded pipe were shown in
the charts and tables when the pipe inner radius p — oo . The results of the bonded pipe do not coincide with

the ones of the bonded plate completely even when p— o . For most of the bad pairs satisfying
a{a—(2.6—1.2|ﬂ|)ﬂ}20 in Fig. 8, the ISSF ratio (K" ), . /KET <1.5. As shown in Fig.8, the bonded pipe

ISSF ratio satisfies < 1.5 in the wider range of the bonded cylinder. This is because the bonded pipe is more
closer to the bonded plate compared to the bonded cylinder. For all of the good pair a(a - 2,H)< 0, the stress

ratio is in the region 1.Os(afAF’FEM /Gfé,Tpem) <1.4. The differences between (o-fgf’pEM [o St em )maX and

(o-fgf’FEM /o6 em )min were less than about 10%. The stress ratio of the bonded pipe is smaller than that of the
bonded cylinder. It was found that the ISSF of the bonded cylinder is more severe than the ISSF of the bonded
pipe in all material combination.

3. For the bad pair a(a-28)>0, the ISSF ratio KS /K™ and KZP /KT may be useful for evaluating
the debonding strength since the singular stress appears. For good pair a(a—2,8)<0, the stress ratio
okew [olttew and o fen /oitRew  may be useful although equal pair region o =2/, useful parameter is

not known. It was found that (KS}L)max/KﬁyLT — o as a—2f . However, as shown in Fig. 6(b), the
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singular stress field disappears since the index 42 —1 as a — 24 . The future experimental study may be
necessary to confirm the usefulness of those results.

It was found that the mesh-independent technique is useful for analyzing the bonded cylinder and the bonded
pipe by subtracting the non-singular stress from FEM stresses. In the FE analysis, it was found that the
non-singular stresses caused by the circumferential strain are contained in the FEM stresses at the interface

end. The non-singular stresses were derived from the boundary conditions explicitly.
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Appendix A: Debonding strength evaluation for cylindrical butt joint

In this paper, the ISSF for the bonded cylinder and the bonded pipe was discussed under arbitrary material
combination. To clarify the usefulness of the present results, the debonding strength of the cylindrical butt joints is
discussed by using experiment of Naito et al [23]. Figure Al shows the schematic illustration of the specimens. In
the experiment, the adherend and adhesive are aluminum alloy 5052-H34 (Young’s modulus E; =69.6 GPa,
Poisson's ratio v; =0.33) and polyimide adhesive (E, =3.77 GPa, v, =0.342), respectively. Table Al shows
Dundurs' parameters (a,ﬂ) and singular index A. The length of the adherend, I, is 38.1 mm; the adhesive
thickness t is varied from 0.2mm to 0.6 mm. Figure A2 shows the experimentally obtained tensile strength. Here,
the debonding crack was initiated from the end of the interface between the adhesive and the adherend. The tensile
strength o increases with increasing the adhesive thickness.

The cylindrical butt joint in Fig. A1 was analyzed by applying the same analytical method. Figure A3 shows
the dimensionless ISSF, FS* =KZSY /(a?d“) for Fig. Al. The FS® value increases with increasing the

14



adhesive thickness t and coincides with the value in Fig. 7 and Table 6. Figure A4 shows the critical value of

KS® defined as K& =KZE¥ o It is seen that the KS¥ values are almost constant independent of the

adhesive thickness. It is confirmed that the ISSF is useful for evaluating the debonding strength.
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Table1 An example of bad pair (o, 8)=(0.8,0.3) satisfying a(a—2/)>0 used to explain the present analysis

Material 1 Material 2

= Vi E, Va2

1.0 0.2555 0.1138 0.2066 0.8 0.3 0.8655

34



Table 2 Mesh-dependent FEM stress / strain at the interface end when (e, 8)=(0.8,0.3) and v; =0.2555 in Table 1
(a) Bonded cylinder (Mesh-dependent except for &,)

Stress components (= singular stress + non-singular stress)
e O'EOV,IEEM O'SJIEEM O'gg,l'FEM T::;&FEM
a Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat.1 | Mat 2
0.2803 0.7653
o -0.6785 0.6515 3.561 0.3210
3 (=0.7974 (=0.8265
(=-0.6785+0.0) | (= 0.6515 + 0.0) (=3.575-0.01344) (=0.3210 + 0.0)
-0.5171) -0.06124)
0.7251 1.226
12 -1.057 1.015 5.555 0.5000
3 (=1.242 (=1.288
(=-1.057 +0.0) | (=1.015+0.0) (=5.569 - 0.01344) (= 0.5000 + 0.0)
-0.5172) —0.06124)
Strain components (= singular strain + non-singular strain)
ngOV‘IIEEM gzcoY‘IEEM S%LFEM VFQ(L)L,FEM
Emin _ Orokem *V(Uﬁc(‘{IEEM + 050 Fem ) _ O—SOV,IEEM _V(O_FOV,IEEM + O'gg,IEEM ) _ O eem _V(O-S(;IIEEM +O-SOYI|EEM) _ TrCzVOITFEM
a E E E G
Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2
3.888 26.75 0.2105 11.83
o -1.719 -0.5137
3 (=3.769 (=26.75 (=0.2105 | (=11.83
(=-1.854 + 0.1356) (=0.0-0.5137)
+0.1187) —0.006950) +0.0) +0.0)
5.991 41.67 0.3282 18.43
12 -2.753 -0.5137
3 (=5.872 (=41.67 (=0.3282 | (=18.43
=-2.889 + 0.1356) (=0.0-0.5137)
+0.1187) —0.006950) +0.0) +0.0)
O—E(;Il;EM = {(O—?(;'EEM )l + (O'S"Eem )2 }/2 ’ rSZ‘(&FEM = {(T::Z\((;_,FEM )l + (T::;L;TFEM )2 }/2 for continuity of stress
£kem = {(ngOV,IIEEM )l + (ESOYII_:EM )2 }/ 2, &hokem = {(ggg,liw )1 + (Eg(rliem )Z }/2 for continuity of strain
(b) Bonded plate (Mesh-dependent except for &, )
Stress components [= singular stress + non-singular stress (=0)]
e O‘:&LEM O-;ll)_“II;EM O'zPOITTFEM fxplig,FEM
a Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2
39 -0.6821 0.6549 3.593 0.8016 0.8308 0.3226
(=-0.6821 + 0.0) | (=0.6549 + 0.0) (=3.593 + 0.0) (=0.8016 + 0.0) | (=0.8308 + 0.0) (=0.3226 + 0.0)
312 -1.063 1.020 5.598 1.249 1.294 0.5026
(=-1.063 + 0.0) | (=1.020 +0.0) (=5.598 + 0.0) (=1.249 +0.0) | (=1.294 +0.0) (=0.5026 + 0.0)
Strain components (= singular strain + non-singular strain)
EF&LEM SWFEM gzPoL,lT:EM }/fng.FEM
€min _ OSrem — V(O-)?lliLEM + Ol kem ) _ Gf(liLEM - V(O-ZPOL,LEM + O\orem ) _ Olokem — V(O-E&LEM + O'yptﬂ:sm ) _ Tfly.g,FEM
‘a E E E G
Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2
- -1.864 3.789 4.347 0.0 0.2118 11.90
(=-1.864 + 0.0) (=3.789 + 0.0) | (=4.347 +0.0) (=0.0+0.0) (=0.2118 + 0.0) | (=11.90 + 0.0)
22 -2.904 5.903 6.772 0.0 0.3299 18.53
(=-2.904 +0.0) (=5.903 +0.0) | (=6.772+0.0) (=0.0+0.0) (=0.3299 + 0.0) | (=18.53 + 0.0)

O_;&LEM = {(O';OL,TFEM )1 + (U;OL.TFEM )2 }/ 2, Tfng,FEM = {(TxPng,FEM )1 + (Tfng,FEM )2 }/2 for continuity of stress
g;&‘lr:EM = {(g:&}EM )l + (EEOL;EM )2 }/2 ’ SzPOL.TFEM = {(SZF:JL;EM )1 + (SzPOL;EM )2 }/2 for continuity of strain
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Table 3 Mesh-independent &g '%ew Values obtained by ugtew and ofew (=sSingular strain + non-singular
strain) when (e, #)=(0.8,0.3) and v, =0.2555 in Table 1

eun | on {_ Ut } {_ Ofiten —v(o%sen + 0% ken )}
— oFEM | =T Ego,FEM | = E

a r=a

3° -0.5137 -0.5137 (= 0.0 - 0.5137)

3% -0.5137 -0.5137 (= 0.0 - 0.5137)
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Table 4

(singular sress + non-singular stress) / singular stress ] (See Sect. 2.3)

(a) Bonded cylinder / bonded plate (Mesh-independent if non-singular stress is zero)

FEM stress ratio for the bonded cylinder when (a,/)=(0.8,0.3) and v, =0.2555 in Table 1 [ =

e O-rCOV,IIEEM /O'foL.T:EM Uf{{'ﬁsm /U:&LEM O-HC(\;.II:EM /O-ZPOL,T:EM TFz‘(oITFEM /Tfly_g‘FEM
Zmin_
a Mat. 1 Mat. 2 Mat.1 | Mat 2 Mat. 1 Mat. 2 Mat.1 | Mat. 2
0.9948 0.9948 0.9911 0.3497 0.9211 0.9948
-9
3 _ —0.6785+0.0 _ 0.6515+0.0 _3.575-0.01344 _0.7974-0.5171 _ 0.8265-0.06124 _0.3210+0.0
T -0.6821 T 0.6549 B 3.593 B 0.8016 B 0.8308 " 0.3226
0.9948 0.9948 0.9924 0.5807 0.9475 0.9948
-12
3 _ —-1.057+0.0 ~1.015+0.0 _ 5.569 -0.01344 1.242-0.5172 ~1.288-0.06124 _ 0.5000+0.0
- -1.063 - 1.020 B 5.598 B 1.249 B 1.294 " 0.5026

(b) Butt joint / bonded plate (Mesh-independent because non-singular stress is always zero)

e O-XB(‘)]‘FEM /O-:OL.T:EM O'%FEM /O';OL.TFEM O-zBOJ‘FEM /O-ZPOLI:EM TE;O‘FEM /Tfly-g,FEM
a Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2
0.6745 0.6745 0.6746 0.6747 0.6746 0.6750
-9
3 ~ —0.4601+0.0 ~0.4417+0.0 ~2424+0.0 ~0.5408+0.0 _0.5604 + 0.0 ~0.2178+0.0
T -0.6821 ~0.6549 ~ 3593 ~0.8016 ~0.8308 ~ 03226
0.6746 0.6747 0.6747 0.6747 0.6747 0.6747
-12
3 ~—0.7168+0.0 _0.6883+0.0 ~3.777+0.0 ~0.8425+0.0 ~0.8732+0.0 ~0.3391+0.0
B -1.063 ~1.020 ~ 5598 B 1.249 B 1.294 ~ 05026

(©)

FEM stress of butt joint [ = singular stress + non-sinular stress (= 0) ] (Mesh-dependent)
- Cirem Oy Fem Olorem 7350, Fem
a Mat. 1 Mat. 2 Mat. 1 | Mat. 2 Mat. 1 Mat. 2 Mat.1 | Mat. 2
. -0.4601 0.4417 2.424 0.5408 0.5604 0.2178
’ (=-0.4601 +0.0) | (= 0.4417 +0.0) | (=2.424+0.0) | (=0.5408 +0.0) | (=0.5604 +0.0) | (=0.2178+0.0)
. -0.7168 0.6883 3.777 0.8425 0.8732 0.3391
’ (=-0.7168 +0.0) | (= 0.6883+0.0) | (=3.777+0.0) | (=0.8425+0.0) | (=0.8732+0.0) | (=0.3391+0.0)

O'%FEM = {(O-)%],FEM )1 + (o-)%],FEM )2 }/2 ) Z'XB;O,FEM = {(pr;O,FEM )1 + (Tfjo,FEM )2 }/2 for continuity of stress
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Table5 FEM stress ratio by excluding non-singlar stress (a) as shown in Table 5(c) when (a,ﬂ): (0.8,0.3) and
v, =0.2555 in Table 1

(@ Non-singular FEM stress of the bonded cylinder obtained by using explicit Egs. (14), (15), (18), (19), (20)
(Mesh-independent)

. G Sken 5 5kew Gken P e
a Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2
3¢ 0.0 0.0 -0.01344 -0.5171 -0.06124 0.0
3% 0.0 0.0 -0.01344 -0.5172 -0.06124 0.0
(b) Singular FEM stress of the bonded cylinder by excluding non-singlar stress in Table 5 (a) (Mesh-dependent)
e | OGSt | ofben -GSt | oS —GRber | oSrew — Elven
a Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2
3°? -0.6785 0.6515 3.575 0.7974 0.8265 0.3210
3% -1.057 1.015 5.569 1.242 1.288 0.5000

(c) FEM stress ratio of the bonded cylinder over the bonded plate (Mesh-independent quite differently from Table

4(a) by excluding the non-singlar stress in Table 5 (a))

O FOYII_:EM -0 rCoY,FEM O SJ,II_:EM -c ZCUYII_:EM O'goY,LFEM - 5'§JLFEM T rc zYoL.FEM - ;r%EFEM
Emin 0 Few Oyo Fem 0 Fem Tiy0,Fem
] Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2
3° 0.9948 0.9948 0.9948 0.9948 0.9948 0.9948
3% 0.9948 0.9948 0.9948 0.9948 0.9948 0.9948

(d) Dimensionless ISSFs in Eq. (21) and Eq. (22) obtained from the unique ratio in Table 5 (c)

Bonded cylinder Bonded plate
Y TR [ Ree [ R [ R | R [ R | RO R
1 -0.269 0.0929 -0.270 0.0934
0.633 0.0958 0.636 0.0963
2 0.111 0.154 0.111 0.154
(e) Mesh-independent FEM stress ratio also independent of distance R in Fig. 2 and Fig. 3
| ot | ofth | DO
0 5.555 5.598 0.9948
1 4.064 4.099 0.9948
2 3.754 3.787 0.9948
3 3.571 3.603 0.9948
4 3.449 3.481 0.9948
5 3.356 3.387 0.9948
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Table 6 Maximum and minimum values of K(EZYL/K)?YLT

B
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.45
0789 | 0.855 | 0.996
o 0.781 | 0.835 | 0.896
0861 | 0.986
02 | 0775
0825 | 0.885
0856 | 0.972 | 1.234
03 0.814 | 0870 | 0.944
0845 | 0.955 | 1.084
o4 0.808 | 0.854 | 0916
0827 | 0937 | 1.022 | 1.346
oS 0804 | 0.843 | 0.895 | 0.962
0918 | 0981 | 1.121
0.6 0.802
0.837 | 0.880 | 0.936
0899 | 0948 | 1.032 | 1.321
o 0833 | 0.870 | 0.918 | 0.976
0879 | 0919 | 0977 | 1.089
o8 0832 | 0.865 | 0.906 | 0.957
0859 | 0.892 | 0.935 | 0.996 | 1.146
o3 0834 | 0.863 | 0.899 | 0944 | 0.992
1 0839 | 0.866 | 0.898 | 0.937 | 0981 | 0.995

Upper: maximum value, lower: minimum value
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Table 7 Maximum and minimum values of & %kew /o fs Fem
B
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.45
0.987 0.997 0.997 0.978
0.0 1.000
0.948 0.981 0.981 0.948
01 0.903 0.956 0.996 1.032 1.065
' 0.878 0.936 0.989 1.000 1.022
0.920 0.986 1.052 1.145
0.2 0.844 1.246
0.896 0.955 1.000 1.060
03 0.889 0.972 1.050 1.184 1.444
' 0.850 0.914 0.984 1.036 1.358
04 0.863 0.955 1.031 1.172 1.525
' 0.826 0.880 0.948 1.000 1.343
05 0.838 0.937 1.000 1.127 1.447
' 0.812 | 0857 | 0914 | 0983 | 1.134
0.918 0.975 1.071 1.299
0.6 0.808 3.117
0.843 0.890 0.951 1.000
07 0.899 0.946 1.020 1.165 1.862
' 0.835 0.875 0.925 0.986 1.564
0.879 0.919 0.974 1.066 1.327
0.8 2.276
0.833 0.866 0.909 0.962 1.000
09 0.859 0.892 0.934 0.993 1.098 1.237
' 0.834 0.864 0.900 0.945 0.994 1.000
1 0.839 0.866 0.898 0.937 0.981 0.995

Upper: maximum value, lower: minimum value
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Table8 FEM stress ratio for the bonded pipe when (a,/)=(0.8,0.3) and 1,=0.2555 in Table 1

[ = (singular sress + non-singular stress) / singular stress ]

(a) Bonded pipe / bonded plate (Mesh-independent if non-singular stress is zero)
- T rem [ Oorem Oloteem [ Oy Feu Ohtreem /Ol Fem Tt rem [ Thyo rem
w2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2
1.021 1.021 1.014 -0.1284 0.8847 1.021
)
‘.m-!E 2% (z -0.7412 +0.0j (z 0.4562+ 0.0] (z 3.031- 0.0193) [z 0.659&0.7428) (z 0.660070.0880) (z O.2008+0.0j
.- -0.7261 0.4469 2.970 0.6465 0.6465 0.1967
1.020 1.020 1.016 0.2291 0.9268 1.020
27 (z -1.076+ 0.0] (z 0.6622+ 0.0] (z 4.400 70.0193) (z 0.957870.7427) (z 0.957970.0879) (z 0.2913+ 0.0)
-1.054 0.6490 4.312 0.9387 0.9388 0.2855
(b) FEM stress of bonded pipe (Mesh-dependent) [ = singular sress + non-singular stress]
- Ororem Olorem Tlorem T z0.rem
w/2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2
imi » -0.7412 0.4562 3.012 -0.0830 0.5720 0.2008
.- ’ (=-0.7412 +0.0) | (=0.4562 +0.0) | (=3.031-0.0193) | (= 0.6598 - 0.7428) | (= 0.6600 —0.0880) | (=0.2008 +0.0)
» -1.076 0.6622 4.381 0.2151 0.8700 0.2913
’ (=-1.076 +0.0) |(=0.6622+0.0) | (= 4.400-0.0193) | (=0.9578 —0.7427) |(=0.9579-0.0879)| (=0.2913+0.0)
oftran =\ ) (o P}/ 25 w0 eew ={(e0een | +(eFeew /2 for continuity of stress

(c) FEM stress of bonded plate (Mesh-dependent) [ = singular stress + non-sinular stress (= 0) ]
Cmin UfoL,LEM UYPOLI:EM O-ZPOL‘LEM Tfng,FEM

w2 Mat. 1 Mat. 2 Mat. 1 | Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2
B -0.7261 0.4469 2.970 0.6465 0.6465 0.1967

? (=-0.7261+0.0) | (=0.4469 +0.0) | (=2.970+0.0) | (=0.6465+0.0) | (=0.6465+0.0) | (=0.1967 +0.0)
. -1.054 0.6490 4312 0.9387 0.9388 0.2855

? (=-1.054+0.0) | (=0.6490 +0.0) | (=4.312+0.0) | (=0.9387+0.0) | (=0.9388+0.0) | (=0.2855+0.0)

OfTew = {(US&TFEM )1 4 (055;EM )Z} / 2, o eew = {(rfyLJ,FEM )1 4 (rfb&pm )2} / 2 for continuity of stress
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FEM stress ratio of the bonded cylinder over the bonded plate (Mesh-independent differently from Table

Table 9
8(a) by excluding the non-singlar stress)
O rPo',PFEM -0 rPOI,PFEM O zP(Jl,PFEM -0 ZFE)l,PFEM O';(lJ',)FEM - 5-;(;?FEM Trp Z'S,FEM - ;r%P,FEM
V?/m/mZ O'40.FeM Oy0Fem O30, Fem T3y0,FEM
Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2
21 1.021 1.021 1.021 1.021 1.021 1.021
2" 1.020 1.020 1.020 1.020 1.020 1.020
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Table 10  Maximum and minimum values of K(E’Z'P/K('iyLT
B
0.2 -0.1 0 0.1 0.2 03 0.4 0.45
0.808 | 0923 | 0.999
o 0.807 | 0.845 | 0.896
0.879 | 0.999
02 | 0.794
0.840 | 0.888
0.882 | 1.000 | 1.249
03 0.832 | 0874 | 0939
0.879 | 1.000 | 1.114
o4 0.829 | 0.862 | 0.911
0.870 | 0999 | 1.069 | 1.382
oS 0.830 | 0.856 | 0.893 | 0.953
1.002 | 1.047 | 1172
0.6 0.842
0.859 | 0.884 | 0.927
1.000 | 1.034 | 1.101 | 1.383
o 0.865 | 0.885 | 0915 | 0.963
0998 | 1.023 | 1.064 | 1.160
o8 0885 | 0.897 | 0.916 | 0.947
05 0998 | 1.014 | 1.035 | 1.075 | 1.210
0920 | 0.927 | 0937 | 0953 | 0.980
1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

Upper: maximum value, lower: minimum value
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Table 11  Maximum and minimum values of &g /ayPOETFEM
B
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.45
0.986 0.998 0.998 0.986
0.0 1.000
0.975 0.990 0.990 0.975
01 0.947 0.981 1.000 1.020 1.036
' 0.931 0.936 0.992 1.002 1.013
0.953 1.000 1.036 1.082
0.2 0.904 1.098
0.929 0.971 1.000 1.030
03 0.932 1.000 1.044 1.111 1.191
' 0.898 0.941 0.988 1.019 1.152
04 0.921 1.000 1.045 1.119 1.252
' 0.875 0.913 0.961 1.000 1.132
05 0.898 1.000 1.041 1.111 1.259
' 0.861 0.892 0.933 0.985 1.059
1.001 1.035 1.093 1.234
0.6 0.862 1.405
0.880 0.912 0.958 1.000
07 1.000 1.028 1.073 1.158 1.377
' 0.878 0.902 0.937 0.976 1.186
1.000 1.021 1.054 1.109 1.228
0.8 1.395
0.891 0.906 0.929 0.963 1.000
09 1.000 1.013 1.032 1.063 1.116 1.162
' 0.924 0.931 0.942 0.960 0.989 1.000
1 1.000 1.000 1.000 1.000 1.000 1.000

Upper: maximum value, lower: minimum value
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Table A1 Dundurs' parameters (a,ﬂ) and singular index A4

Adherend Adhesive ) )
o Dundurs’ parameter Singular index
(Al alloy) (Polyimide)
E, [GPa] Vi E, [GPa] Vv, a B A
69.9 0.33 3.77 0.342 0.8963 0.2145 0.7398
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