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Abstract: Perovskite solar cells have attracted considerable attention 

owing to easy and low-cost solution manufacturing process with high 

power conversion efficiency. However, the fabrication process is 

usually performed inside glovebox to avoid the moisture, as 

organometallic halide perovskite is easily dissolved in water. In this 

study, we propose one-step fabrication of high-quality MAPbI3 

perovskite films in around 50 % RH humid ambient air by using diethyl 

ether as an anti-solvent and methanol as an additive into this anti-

solvent. Because of the existence of methanol, the water molecules 

can be efficiently removed from the gaps of perovskite precursors and 

the perovskite film formation can be slightly controlled leading to 

pinhole-free and low roughness film. Concurrently, methanol can 

modify a proper DMSO ratio in the intermediate perovskite phase to 

regulate perovskite formation. Planar solar cells fabricated by using 

this method exhibited the best efficiency of 16.4 % with a reduced 

current density-voltage hysteresis. This efficiency value is 

approximately 160 % higher than the devices fabrication by using only 

diethyl ether treatment. From the impedance measurement, it is also 

found that the recombination reaction has been suppressed when the 

device prepared with additive anti-solvent way. This method presents 

a new path for controlling the growth and morphology of perovskite 

films in the humid climates and uncontrolled laboratories. 

Introduction 

The efficiency of organometallic halide perovskite solar cells 

(PSCs) has increased from 3.8 % to more than 22 %, due to their 

super charge carrier mobility, high absorption coefficient and 

band gaps close to Shockley-Queisser limit.[1] Besides the 

remarkable photovoltaic performance, anti-solvent assisted one-

step spin coating crystallization method is one of the widely used 

methods to achieve high quality perovskite film.[2] These superior 

characteristics is attributed to the high crystallinity of the 

perovskite material which can be prepared using one-step 

method with anti-solvent process. Perovskite intermediate phase 

is formed when the anti-solvent is dropped during the spin-coating 

process where the evaporation rate of the solvent determines the 

film thickness after which the solution becomes supersaturated, 

leading to nucleation and finally crystal growth. The anti-solvent 

is responsible for controlling the morphology of the perovskite 

material by inducing fast precipitation of perovskite resulting in 

highly dense and smooth perovskite film. Typically used anti-

solvents are diethyl ether,[3] toluene,[4] chlorobenzene[5] and ethyl 

acetate[6] which have low boiling point, a weak electron donating 

capability and a poor coordination ability with perovskite 

precursors. The week coordination of the anti-solvents can modify 

the balance between the reduction of grain boundaries and the 

adjustment of the perovskite films.[7] Therefore, it is important to 

study the effect of the anti-solvent in coordinating perovskite 

crystal growth and film formation as the choice of the anti-solvent 

affects the overall morphology and hence the optoelectronic 

performance of the perovskite layer. In addition, the fabrication 

process of PSCs is usually performed inside nitrogen/argon filled 

glovebox to avoid moisture, as perovskite layer can degrade 

easily in the ambient humidity condition.[8] Moreover, it was 

reported that it was difficult to get a high-quality perovskite film by 

using diethyl ether, chlorobenzene or toluene as the anti-solvent 

in the humid ambient air.[6a] Thus, it is significant chanlengeful and 

meaningful to prepare high-quality perovskite films in the humid 

ambient air. Yan group used lead (II) thiocyanate (Pb(SCN)2) to 

increase the humidity resistance for preparation of MAPbI3-xSCNx 

perovskite film in more than 70 % relative humidity (RH) showing 

efficiency up to 15 %.[9] By employing the assistance of 

hydrochloric acid to accelerate MAPbI3 perovskite film formation, 

Zhao et al prepared high quality MAPbI3 perovskite films which 

showing efficiency of 14.76 % in about 60 % RH air condition.[10]  

Watson and his group reported ethyl acetate as an anti-solvent to 

prepare pinhole-free MAPbI3 perovskite films with efficiency of 

14.5 % in 75 % RH air atmosphere, where ethyl acetate acts as a 

moisture absorber protecting sensitive perovskite intermediate 

phases from water molecules during film formation and 

annealing.[6a] However, there are still quite few reports on 

deposition of perovskite films in the high humidity ambient air 

condition.  

Generally, the morphology of perovskite film could be enhanced 

by controlling growth and crystallization of the perovskite.[11] 

There are many reports about the perovskite crystallinity 

enhancement by adding some additives into perovskite precursor 

solution, which lead to an increased photovoltaic performance of 
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the solar cell devices.[12] Moreover, high performance perovskite 

solar cells need to be fabricated inside glovebox to avoid moisture, 

as organometallic halide perovskite is easily dissolved and 

degrade in water. A dry atmosphere slightly raises the costs of 

fabrication of PSCs, while the ambient air can significantly simplify 

fabrication processes, reduce costs and move forward 

commercial production of PSCs. However, as far as we know, 

there is no report revealing the influence of additive into anti-

solvent on perovskite crystal growth and film formation in the 

humid ambient air. 

In this work, we employed methanol as an additive in diethyl ether 

to control the morphology and investigate the growth mechanism 

of MAPbI3 perovskite films using one-step fabrication process in 

high humidity atmosphere. Compared to diethyl ether, the 

methanol additive anti-solvent has a stronger solubility of water 

and dimethyl sulfoxide (DMSO), which plays a critical role in 

preparing high density, pinhole-free and uniform MAPbI3 

perovskite film as evidenced from scanning electron microscope 

image and atomic force microscopy. When increasing the ratio of 

methanol in diethyl ether, the water resistance of perovskite is 

enhanced, which results in a high quality and pinhole-free 

perovskite film. In addition, methanol can modify a proper DMSO 

ratio to form in the intermediate perovskite phase accelerating 

perovskite crystal formation. The best solar cells exhibited PCE of 

16.4 % prepared with 3 % additive anti-solvent, which is 

approximately 160 % higher than the devices fabricated using 

diethyl ether without methanol additive. We believe that this 

additive anti-solvent method would be useful for understanding 

the formation mechanism of perovskite layer and indicate a 

desirable direction for PSCs fabrication in humid and uncontrolled 

condition.  

Results and Discussion 

Figure 1a shows the X-ray diffraction (XRD) patterns of 
perovskite films prepared on glass substrates by different ratio 
methanol in the diethyl ether (0 %, 1 %, 2 %, 3 %, 4 %). Strong 
diffraction peaks locate at 14.1°, 28.4°, 31.9°, 40.7° and 43.1° for 
2θ scan are observed, corresponding to the planes of (110), (220), 
(222), (224) and (314) of perovskite which are in agreement with 
previous reports.[13] Therefore, we can make sure from the XRD 
results that the perovskite films are highly crystallized perovskite 
phase. In addition, a weak diffraction peak of PbI2 appeared at 
12.7°, where the intensity of the peak increased upon higher 
methanol ratio. This increment of PbI2 concentration could be 
ascribed to the high solubility of methylammonium iodide (MAI) in 
methanol in which the methylammonium component is removed 
from the perovskite structure leaving behind PbI2.[14] It is noticed 
that (110) peaks shifted to the left (Figure 1b) when compared to 
the control sample, suggesting that the crystallites are 
experiencing homogenous strain as there was only peak shift but 
not peak broadening.[15] Figure 1c shows the UV-vis absorption 
spectra of the different perovskite samples. The absorbance 
increased upon addition of methanol reaching the highest 
absorbance at 3% methanol concentration and then started to 
decrease when more methanol is added. This is mainly due to 
improved surface coverage and reduction of pinholes of the 
perovskite thin film. [16] 

 

  

Figure 1. (a) XRD of MAPbI3 films on glass substrates prepared by different 

methanol additive in diethyl ether (0%, 1%, 2%, 3%, 4%). (b) Normalized XRD 

plot of (110) peak. (c) UV-vis absorption spectra of perovskite films prepared by 

various concentration of additive anti-solvent. 

Figure 2 shows the surface morphology of annealed MAPbI3 

perovskite films prepared by different methanol additive ratio anti-

solvent by SEM. With diethyl ether, it can be seen the crystals are 

badly formed with the presence of pinholes. When 1 % addition 

of methanol, similar morphology was observed. However, adding 

2 % and more methanol changed the morphology significantly. 

The crystallinity of the perovskite sample was improved in which 

the size distribution is homogenous throughout the sample in 

addition to the reduction of pinholes. The largest crystal size was 

obtained with the sample prepared using 4 % methanol although 

there was a big inhomogeneity in size between grains. The 

statistical result of grain size of the film has been summarized in 

Figure S2, with an average grain size of 240 nm for 2 % additive 

anti-solvent, 340 nm for 3 % additive anti-solvent, and 280 nm for 

4 % additive anti-solvent. For the 0 % and 1 % additive anti-

solvent sample, the average size could not be determined due to 

the poorly formed crystals. 

 

 

Figure 3 shows the AFM images of perovskite film prepared by 

different methanol ratio additive anti-solvent. The Rq roughness 

values were measured to be 26.9, 23.1, 11.6, 10.4 and 10.1 for 

samples prepared by different methanol content of 0 %, 1 %, 2 %, 

3 % and 4 %, respectively. The decreased roughness from 

methanol content from 0 % to 4 % supports the data obtained from 

SEM images in which high quality with improved surface 

morphology is obtained with methanol addition. The 3D surface 

images shown in Figure 3 b, d, f, h, j clearly shows the decrease 

of surface roughness of the perovskite films. It is expected that 

these improvements will be reflected at the perovskite/Spiro-

OMeTAD interface which could enhance the performance of the 

solar cells. 
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Figure 2. SEM images of annealed MAPbI3 perovskite film on FTO substrates 

prepared by different methanol content in diethyl ether. (a) (b) 0 %; (c) (d) 1 %; 

(e) (f) 2 %; (g) (h) 3 %; (i) (j) 4 %.  

  

Figure 3. AFM images (a, c, e, g, i) and the corresponding 3D surface plot 

images (b, d, f, h, j) of MAPbI3 films prepared by different methanol additive 

content anti-solvent. (a) (b) 0 %; (c) (d) 1 %; (e) (f) 2 %; (g) (h) 3 %; (i) (j) 4 %. 

Figure 4 shows FTIR spectra of perovskite films prior to annealing 

prepared by various methanol concentration in the additive anti-

solvent (0 %, 1 %, 2 %, 3 %, 4 %). The films of perovskite 

intermediate phase demonstrated similar peak positions. The S–

O stretching vibration and N–H stretching vibration are located at 

1020 cm−1 and around 3190 cm−1, respectively, as shown in 

Figure 4a.[17] The N-H peak shifted to long wavenumber when N-

H bond coordinated to DMSO, implying that an intermediate 

phase of MAI-PbI2-DMSO has been formed.[18] The N-H peak of 

the intermediate phase is at 3190 cm-1 for 0 % methanol 

concentration in the additive anti-solvent, 2189 cm-1 for 1 % 
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methanol additive , 3184 cm-1 for 2 % methanol additive , 3181 

cm-1 for 3 % methanol additive and 3179 cm-1 for 4 % methanol 

additive . This means that amount of DMSO is extracted by the 

additive anti-solvent method. In addition, the change of DMSO 

concentration in the intermediate phase can be deduced by 

calculating the ratio of S-O intensity peak at 1020 cm-1 to N-H 

intensity peak at around 3190 cm-1 shown in Figure 4c. The ratio 

decreased from 1.32, 1.08, 1.05, and 1.04 to 1.02 as the methanol 

content is increased. Park et al. reported that excessive amount 

of DMSO in the perovskite intermediate phase would lead to an 

inhomogeneous perovskite film because of the gradual 

vaporization of DMSO from the perovskite film.[3] In addition, the 

less DMSO in the intermediate phase also means that the time 

needed for the phase change from perovskite intermediate phase 

to perovskite film is accelerated.[19] Inversely, excessive amount 

of DMSO in the intermediate phase also lead to inhomogeneous 

perovskite film with small grain size. Therefore, by adjusting the 

methanol ratio in the additive anti-solvent, a proper amount of 

DMSO into the perovskite intermediate phase can be controlled 

to assist crystallization leading to a pinhole-free homogenous 

perovskite film. 

  

Figure 4. (a) Attenuated Total Reflectance FTIR spectra of MAPbI3 films (on Pt 

substrates) prepared by different methanol concentration additive anti-solvent 

(0%, 1%, 2%, 3%, 4%). (b) The N-H stretch peak position of the non-annealed 

film by different methanol additive anti-solvent.  (c) Ratio of intensity of 

absorbance at 1020 cm-1 to 3190 cm-1 (1020 cm-1: 3190 cm-1). 

 

In the anti-solvent based one-step preparation process, the 

perovskite layer is formed by spin coating of the precursor solution 

followed by thermal annealing. This preparation process usually 

has two stages. In the first stage, the liquid film is thinning by 

centrifugal forces. After a transition point, evaporation rate of the 

solvent dominates the film thinning, which depends on the vapor 

pressure of the solvent. Then at the second stage, solution 

becomes supersaturated, nucleation occurs leading to crystal 

growth and solid intermediate (or perovskite) film forms. Thus, in 

order to prepare high-quality perovskite film, the important stage 

is to accelerate the evaporation rate of excess DMF and control 

the perovskite crystallization process.[20] For two immiscible 

solvents, the total vapor pressure of the mixed solution is close to 

the sum of the two solvents’ vapor pressures, and the boiling point 

of the mixture should be lower than of  each solvent.[21] Following 

this rule, introducing the high vapor pressure anti-solvent for one-

step preparing perovskite film will help to promote a uniform and 

high-quality film. In addition, after the perovskite intermediate 

phase formed in the humid air atmosphere, it is better to reduce 

contact time of this intermediate phase with the moisture within 

the air to avoid degradation by the water. Therefore, the second 

way is to speed up the perovskite nucleus growth rate to reduce 

the formation time of perovskite intermediate phase to perovskite.  

Figure 5 shows the schematic diagram representing the 

perovskite crystal growth mechanism between pure diethyl ether 

and the additive anti-solvent. It is known that diethyl ether has 

high vapor pressure (71.8 Kpa at 25 oC) and is immiscible in both 

DMSO and water (1.5 vol% of water). [22] However, DMSO, water 

and methanol are mutual miscible. During the normal diethyl ether 

anti-solvent process, diethyl ether quickly extracts DMF from the 

perovskite film. As the same time, perovskite and perovskite 

precursors are insoluble in diethyl ether. Therefore, after diethyl 

ether extracting the solvents from the perovskite film in the 

washing process, some water from the humid air atmosphere 

remains on the wet MAI-PbI2-DMSO perovskite intermediate film 

before annealing and can only be removed upon heating above 

100 oC. Hence, an inhomogeneous film with many pinholes and 

rough surface is formed, which was proved by the SEM image of 

Figure 2a. When methanol is added into the diethyl ether, 

methanol removes the residual water quickly through its infinite 

solubility with water, which lead to a pinhole-free homogeneous 

film with a smoother surface, shown in SEM image of Figure 2g. 

Meanwhile, methanol could also remove redundant DMSO from 

the perovskite intermediate phase to accelerate the perovskite 

formation as methanol can slightly dissolve DMSO, which was 

proved by the FTIR spectra in Figure 4. It is suggested a proper 

intermediate phase is a key point for preparing the perovskite 

layer with desirable morphology.[23] Thus, an optimum methanol 

concentration can extract suitable amount of DMSO content from 

the precursor solutions to accelerate the perovskite formation and 

give an appropriate MAI-PbI2-DMSO intermediate phase.  On the 

other hand, in the perovskite film growth process, the crystal grain 

growth rate is determined by the Gibbs free energy, which 

includes chemical energy difference, surface energy and interface 

energy of the grains. Acik and co-workers have proposed that the 

overall Gibbs free energy was lower when using alcohols 

(including methanol) to catalyze the growth of MAPbI3 crystals.[24] 

In common homogenous nucleation, the relationship of overall 

Gibbs free energy change (∆G) and nucleus radius (r) can be 

given as the equation:[25] 

 

 ∆𝐺(𝑟) = −
4𝜋𝑟3

3𝑉𝑀
𝑅𝑇 ln(𝑆) + 4𝜋𝑟2𝛾                                       

 

where R, T, S, γ and VM represent gas constant, absolute 

temperature,  supersaturation ratio, energy of liquid-crystalline 

nucleus interface and nucleus` molar volume, respectively. 

Figure 6b and 6d schematically depict the Gibbs free energy 

diagrams as a function of nuclei radius in case of the anti-solvent 

treatment without or with methanol additive. When methanol is 

used as an additive in the anti-solvent for preparing the perovskite 

film, the Gibbs free energy is lower than that of without methanol 

additive because of the chemical heterogeneity effect.[26] As a 
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result, more nuclei are formed, which lead to the small size grain 

growth, shown in Figure 2c.  

 

Figure 5. (a) Schematic diagram of anti-solvent step using diethyl ether and 

methanol additive diethyl ether. (b) Gibbs free energy diagrams for nucleation 

and growth of MAPbI3 perovskite film by diethyl ether anti-solvent. (c) Gibbs free 

energy diagrams for nucleation and growth of MAPbI3 perovskite film by 

methanol additive diethyl ether anti-solvent. 

The effect of methanol additive into diethyl ether anti-solvent 

method on solar cells performance was investigated via planar 

FTO/SnO2/MAPbI3/Spiro/Au perovskite solar cells. Devices were 

fabricated under around 50 % RH humid air condition. Figure 6a, 

6b illustrates the schematic structure and energy diagram of the 

PSCs. Figure 6c shows the J−V curves of devices prepared with 

various methanol concentration in the additive anti-solvent. The 

measured photovoltaic parameters of the champion the different 

devices are listed in Table 1. Device prepared using only diethyl 

ether showed the lowest power conversion efficiency of 6.3 % 

mainly due to the low VOC. Upon addition of methanol into the anti-

solvent, there is an increasing trend of all the parameters of PSCs. 

The most efficient device was prepared by 3 % methanol additive 

anti-solvent, with a champion PCE of 16.4 %, Jsc of 22.48 mA/cm2, 

VOC of 1.04 V, and FF of 70.0 %. The efficiency value is 

approximately 160 % higher than the cell fabricated using pure 

diethyl ether as anti-solvent treatment. The obtained JSC follows 

the same trend as the UV-Vis absorption spectra in which 3 % 

sample has the highest absorption followed by 2 %, 4%, 1 % and 

finally 0 %. The high absorptance resulted in higher number of 

photons being absorbed by the perovskite active layer and be 

converted into electrons. The calculated JSC is obtained by 

integrating the IPCE curve shown in Figure 7d. The value 

obtained is in agreement with the measured value from the J-V 

curve. Figure S3 demonstrates the J-V curve of reverse and 

forward direction for each type of device. Figure S4 shows the 

photovoltaic statistics for the planar PSCs prepared by different 

additive anti-solvent condition.   

  

Figure 6. Schematic structure (a) and (b) energy diagram of the planar 

FTO/SnO2/ MAPbI3/Spiro-OMeTAD/Au planar perovskite solar cells. (c) J−V 

curves of the control and additive anti-solvent as anti-solvent treated devices 

measured under illumination of an AM 1.5 solar simulator (100 mW·cm −2) in air. 

The scanning direction is from open-circuit voltage to short-circuit current 

(reverse).  (d) EQE spectra of the control and additive anti-solvent as anti-

solvent treated devices measured in air. (e) Hysteresis index value calculated 

from the J-V curves; (f) The Nyquist plots of different condition additive anti-

solvent based planar champion devices measured in the dark under 0.7 V 

applied bias and the equivalent circuit diagram, the fitted curves and the 

experimental data are shown as solid lines corresponding points, respectively. 

(a) Attenuated Total Reflectance FTIR spectra of MAPbI3 films (on Pt 

substrates) prepared by different methanol concentration additive anti-solvent 

(0 %, 1 %, 2 %, 3 %, 4 %). (b) The N-H stretch peak position of the non-annealed 

film by different methanol additive anti-solvent.  (c) Ratio of intensity of 

absorbance at 1020 cm-1 to 3190 cm-1 (1020 cm-1: 3190 cm-1). 

In order to compare the quality of the perovskite layers and hence 

the PSCs, the hysteresis index (HI) value was calculated.[27] The 

HI value was 0.81 for 0 % methanol additive, 0.70 for 1 % 

methanol additive, 0.18 for 2 % methanol additive, 0.17 for 3 % 

methanol additive, and 0.38 for 4 % methanol additive, 

respectively which means the hysteresis of PSCs decreased an 

the methanol content increased. There are many reports 

analyzing the origin of hysteresis in perovskite solar cells such as 

ionic motions within perovskite, charge trapping and de-trapping 

due to crystal defects and band bending between the different 

interfaces. Such low HI index could be attributed to the uniform 

growth of the MAPbI3 layer obtained by additive anti-solvent 
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deposition process, effectively reducing the presence of grain 

boundaries and thus charge transfer between grains are more 

efficient. To investigate the charge transfer mechanism at the 

interfaces, electrochemical impedance spectroscopy (EIS) 

measurement was performed. The Nyquist plots of PSC devices 

are shown in Figure 6f where the illustrated equivalent circuit 

diagram was used to fit the plot. Here, one semicircle is seen at 

high frequency corresponding to the charge transport at the back 

electrode and hole transporting material (HTM) as reported 

previously.[28] From Figure 6f, the same trend as the J-V curve is 

observed with the Nyquist plot where the sample prepared with 

3 % methanol additive anti-solvent has the highest recombination 

resistance (Rrec) as determined from the width of the semicircle 

and decreased when less methanol content was employed. The 

large Rrec suggests that the electron-hole recombination is 

suppressed at the MAPbI3/Spiro interface due to better interfacial 

contact because of the pinhole-free perovskite layer. This allows 

for efficient charge extraction at both the electron and hole 

transporting materials. 

 

 

Table 1. Photovoltaic parameters of champion planar PSCs devices. 

Condition[a] Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

0% 18.93 0.61 53.9 6.3 

1% 

 

2% 

 

3% 

 

4% 

19.60 

 

21.71 

 

22.48 

 

21.06 

0.93 

 

1.03 

 

1.04 

 

0.98 

63.4 

 

63.5 

 

70.0 

 

63.4 

11.6 

 

14.2 

 

16.4 

 

13.1 

[a] The ratio of different methanol concentration in diethyl ether (0%, 1%, 

2%, 3%, 4%). 

 

Upon addition of a small amount of methanol into the anti-

solvent, it is assumed that the water retention of the additive 

anti-solvent is enhanced compared to pure diethyl ether. To 

confirm this hypothesis, deionized water was deliberately 

added to the anhydrous diethyl ether and 3 % methanol 

additive anti-solvent. Figure 7 shows the SEM images of 

perovskite films fabricated with different water content added 

to diethyl ether and 3 % methanol additive anti-solvent. In the 

case of 0.5 % volume water added to pure diethyl ether, the 

formation of more pinholes was observed as shown in Figure 

7a. This is due to more water molecules present in the 

perovskite intermediate phase during crystal growth. However, 

the 3 % additive anti-solvent contaminated with even 1 % water 

exhibited crystalline and a pinhole-free surface which is due to 

the miscibility of water in methanol and thus the water 

molecules are extracted together with methanol. Furthermore, 

planar perovskite solar cells were prepared by 3 % additive 

anti-solvent contaminated with 0.5 % and 1 % water, shown in 

Figure S5. For 0.5 % water in 3% additive methanol anti-

solvent treatment device, we can get the PCE up to 14.3%. 

And for 1 % water in 3% additive methanol anti-solvent 

treatment device, the champion PCE was 12.3%. However, for 

the 0.5 % water in only diethyl ether anti-solvent, the champion 

PCE is just 4.6 %. Those results mean that disadvantage in the 

presence of moisture (water) can be limited by utilizing the 

methanol additive anti-solvent method.  

  

Figure 7. SEM images of annealed MAPbI3 perovskite film on FTO 

substrates by water contaminated additive anti-solvent. (a) (b) 0.5 % water 

in diethyl ether; (c) (d) 0.5 % water in 3 % methanol additive anti-solvent; (e) 

(f) 1 % water in 3 % methanol additive anti-solvent.  

To further investigate universality of the additive method, other 

alcohols including ethanol, 2-propanol and 1-butanol were 

used as the additive into diethyl ether anti-solvent for preparing 

MAPbI3 perovskite films and solar cells. An interesting 

observation is that when increasing the alcohol additive 

content in diethyl ether, similar results as in the case of 

methanol additive were achieved. With the raise of alcohol` 

content, the perovskite film showed less pinholes, shown in 

Figure S7. Pinhole free perovskite films were obtained by 5% 

ethanol, 8% 2-propanol and 12% 1-butanol, respectively, 

shown in Figure 8. Then planar solar cells were prepared by 

5% ethanol, 8% 2-propanol and 12% 1-butanol additive in 

diethyl ether anti-solvent. The champion device for 5% ethanol 

additive anti-solvent is 15.4%, for 8% 2-propanol additive anti-

solvent is 14.8% and for 12% 1-butanol additive is 15.2 %, 

shown in Figure S8. Those results demonstrated that the 

additive method is a universal method for preparing the high 

quality perovskite films in the humid air atmosphere. Therefore, 

from the above discussion, we can draw the conclusion that 

alcohols additive in diethyl ether will be a good direction for the 

fabrication of high performing perovskite solar cells in humid 
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ambient atmosphere which is beneficial from the low-cost and 

mass-production point of view. 

  

Figure 8. SEM images of annealed MAPbI3 perovskite film on FTO 

substrates by by different kind of alcohol additive anti-solvent. (a) (b) 5% 

ethanol additive in diethyl ether; (c) (d) 8 % 2-propanol additive in diethyl 

ether anti-solvent; (e) (f) 12 % 1-butanol additive in diethyl ether anti-solvent.  

Conclusions 

In conclusion, high performing planar MAPbI3 perovskite solar 

cells has been fabricated at high relative humidity (around 50 % 

RH) using methanol additive into diethyl ether anti-solvent. The 

highest solar cell efficiency was obtained with perovskite layer 

prepared with 3 % methanol in diethyl ether showing a PCE of 

16.4 %, Voc of 1.04 V, Jsc of 22.48 mA/cm2, and FF of 70.0 %. The 

reason for this high performing device can be attributed to the 

formation of dense perovskite film with smooth surface due to fast 

extraction of water molecules during annealing as methanol has 

high water solubility. This has been proved experimentally by 

deliberately adding water into the perovskite precursor solution 

and prepared the perovskite solar cells using 3 % methanol-

diethyl ether anti-solvent. Despite the addition of water in the 

precursor solution, the film still showed highly crystalline and 

smooth surface morphology. Additionally, addition of methanol 

can provide the optimum DMSO content in the intermediate 

perovskite phase to accelerate perovskite formation. Moreover, 

due to the improved interfacial contact of the highly crystalline 

perovskite, the hysteresis issue has been improved together with 

the reduction of electron-hole recombination reaction as seen 

from the impedance measurement. Furthermore other alcohols 

including ethanol, 2-propanol and 1-butanol were tried as the 

additive into diethyl ether similarly worked as well, which proved 

the universal usage of the additive into anti-solvent method. This 

work provides a good direction for the fabrication of high 

performing perovskite solar cells at high humidity ambient 

atmosphere which is beneficial from the low-cost and mass-

production point of view.  

Experimental Section 

Preparation of perovskite solar cells 

All reagents including diethyl ether (Aldrich, 99.8 %) and methanol 
(Wako, 99.5 %) were used without further purification. For 

preparing the additive ant-solvent, different volume methanol was 
added in diethyl ether, i. e 60 µl methanol was added in 2 mL 
diethyl ether for getting 3% methanol additive anti-solvent. F-

doped SnO2 (FTO glass, Nippon Sheet Glass Co. Ltd) substrates 
were first patterned and cleaned using zinc powder and 6 N 
hydrochloric acid solution. Tin (II) chloride (Aldrich, 98 %) was 

dissolved in ethanol (Wako, 99.8 %) to form 0.1 M SnCl2 solution. 
Then the SnCl2 solution was spin-coated on the cleaned FTO 
glass at 2000 rpm for 30 seconds.[29] The substrate was annealed 

at 180 °C for 60 minutes on a hot plate to form a dense SnO2 
electron transport layer. Equal molar ratio of MAI (TCI, 98 %) and 
PbI2 (TCI, 99.99 %) were dissolved in anhydrous 

dimethylformamide (DMF, Aldrich, 99.8 %) and anhydrous 
dimethyl sulfoxide (DMSO, Aldrich, 99.8 %) (DMF: DMSO, 4:1) to 
prepare 1.5 M MAPbI3 precursor solution and stirred at room 

temperature for 1 hour. The perovskite precursor solution was 
spin-coated on SnO2-coated substrate at 4000 rpm for 25 
seconds and the anti-solvent (0.5 ml) was dripped on the 

substrate 10 seconds after starting the spin-coating process, 
followed by heating at 100 °C for 10 minutes. The Spiro-MeOTAD 
layer was prepared by spin-coating a chlorobenzene solution 

containing 180 mM Spiro-MeOTAD (Aldrich, 99 %), 60 mM tert-
butylpyridine (Aldrich, 96 %), 30 mM Li-TFSI (Aldrich, 99.95 %) 
(520 mg/mL in acetonitrile) and 33 mM FK209 (Aldrich, 99 %) 

(300 mg/mL in acetonitrile) at 4000 rpm for 30 seconds. Finally, 
80 nm-thick Au counter electrode was deposited by thermal 
evaporation. All procedures were performed at around 50 % 

relative humidity in ambient air condition (Relative humidity was 
recorded using a hygrometer accurate to ± 5 % RH between 25 % 
and 69.9 % RH, ±10 % RH between 70 % and 90 % RH) (A&D 

Company, AD-5681)). 

Characterization 

Solar cell performance was measured by a solar simulator (CEP-

2000SRR, Bunkoukeiki Inc., AM 1.5G 100 mWcm-2) and a mask 
with exposure area 0.10 cm2 was used during the photovoltaic 
measurements with a 0.1 V/s scanning rate in reverse (from the 

open-circuit voltage (Voc) to the short-current density (Jsc)) and 
forward (from Jsc to Voc) modes under standard global AM 1.5 
illumination. The IPCE spectra were recorded using a 

monochromatic Xenon lamp (Bunkouki CEP-2000SRR). X-ray 
Diffraction (XRD) Study. The surface morphology of the samples 
was observed through a scanning electron microscope (SEM) 

(JEOL, Neoscope, JCM-6000) and a Bruker Innova atomic force 
microscopy (AFM) (JSPM-5200). Attenuated Total Reflectance 
Fourier transform IR spectras (FT-IR) were tested by FT-IR 

spectrometer (JASCO, FT/IR-4100 Series) via an attenuated total 
reflectance (ATR) crystal. The XRD patterns were obtained by a 
Rigaku Smartlab X-ray diffractometer with monochromatic Cu-Kβ 
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irradiation (45 kV/200 mA). The UV-Vis measurement was 

performed using a JASCO V-670. Spectrophotometer. 
Electrochemical impedance spectroscopic (EIS) measurements 
were performed in the dark using an electrochemical workstation 

with a frequency range from 1 Hz to 1 MHz at 0.7 V applied bias. 

Keywords: perovskite solar cell • anti-solvent • humid 
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Layout 1: 
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High-quality MAPbI3 perovskite films 

were achieved by using diethyl ether 

as an anti-solvent and methanol as 

an additive prepared in around 50% 

RH humid ambient air. Planar solar 

cells fabricated by using this method 

exhibited the best efficiency of 

16.4 %, which is approximately 160 % 

higher than the devices fabricated by 

using only diethyl ether anti-solvent.  

 

 

 
Fu Yang*, Muhammad Akmal 

Kamarudin, Putao Zhang, Gaurav 

Kapil, Tingli Ma, Shuzi Hayase* 

Page 1. – Page 7. 

Enhanced Crystallization by 

Methanol Additive in Anti-solvent for 

Achieving High-quality MAPbI3 

Perovskite Films in Humid 

Atmosphere 

 

  

Enhanced Crystallization by Methanol Additive in Anti-solvent for 

Achieving High-quality MAPbI3 Perovskite Films in Humid 

Atmosphere 
 

 

 
Fu Yang*, Muhammad Akmal Kamarudin, PuTao Zhang, Gaurav Kapil, Tingli Ma, Shuzi Hayase* 

 

 

Kyushu Institute of Technology, 204 Hibikino Wakamatsu-ku, Kitakyushu 808-0196, Japan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FULL PAPER    

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S1 Photographs of MAPbI3 perovskite films of glasses by different methanol additive 
concentration anti-solvent. (a) 0 %; (b) 1 %; (c) 2 %; (d) 3 %; (e) 4 %. 
 

 
Figure S2 The statistics of grain size based on the SEM image of MAPbI3 perovskite films on 
FTO glasses prepared by 2%, 3%, and 4% methanol additive anti-solvent. 
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Figure S3 J−V curves of the best-performing MAPbI3 solar cells prepared by different methanol additive 

anti-solvent under reverse and forward voltage scans. (a) 0 %; (b) 1 %; (c) 2 %; (d) 3 %; (i) (e) 4 %. 
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Figure S4 Photovoltaic statistics for the planar perovskite solar cells processed by different methanol 

additive mixed anti-solvent. (a) JSC, (b) VOC, (c) Fill factor, (d) Efficiency. The boxes represent 40 data from 

the VOC-to-JSC scan direction. 

 
Figure S5 J−V curves of the best-performing MAPbI3 solar cells prepared by different volum ratio water in 

anti-solvent under reverse scan. (a) 0.5 % water in 3 % methanol additive diethyl ether anti-solvent. (b) 

1 % water in 3 % methanol additive diethyl ether anti-solvent. (c)  0.5 % water in diethyl ether anti-

solvent. 
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Figure S6 (a) (c) SEM images of MAPbI3 perovskite film prepared by diethyl ether anti-solvent in around 

30% RH air atmosphere.  (b) (d) SEM images of MAPbI3 perovskite film prepared by 3% methanol 

additive diethyl ether anti-solvent in around 30% RH air atmosphere. (e) J-V curve of the champion 

perovskite solar cell prepared by diethyl ether anti-solvent in 30% RH air atmosphere. (f) J-V curve of 

the champion perovskite solar cell prepared by 3% methanol additive diethyl ether anti-solvent in around 

30% RH air atmosphere. 
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Figure S7 SEM images of MAPbI3 perovskite film prepared by different kind of alcohol additive into 

diethyl ether anti-solvent.  (a) 2% ethanol. (b) 3% ethanol. (c) 4% ethanol. (d) 5% ethanol. (e) 2% 2-

propanol. (f) 4% 2-propanol. (g) 6% 2-propanol. (h) 8% 2-propanol. (i) 3% 1-butanol. (j) 6% 1-butanol. 

(k) 9% 1-butanol. (l) 12% 1-butanol. 

 

 
Figure S8 J-V curve of the champion perovskite solar cell prepared by 3% different kind of alcohol 

additive into diethyl ether anti-solvent. (a) 5% ethanol.  (b) 8% 2-propanol (c) 12% 1-butanol. 

 

 

 

 

 

 

 




