
 1 

Dependence of acetate based anti-solvent for high 

humidity fabrication of CH3NH3PbI3 perovskite 

devices in ambient atmosphere 

Fu Yang, Gaurav Kapil, PuTao Zhang, Zhaosheng Hu, Muhammad Akmal Kamarudin, Tingli 

Ma, Shuzi Hayase* 

Kyushu Institute of Technology, 204 Hibikino Wakamatsu-ku, Kitakyushu 808-0196, Japan 

ABSTRACT 

High efficiency perovskite solar cells (PSCs) need to be fabricated in the nitrogen filled glove box 

by atmosphere-controlled crystallization process. However, the use of glove box process is of great 

concern for mass level production of PSCs. In this work, notable efficient CH3NH3PbI3 solar cells 

can be obtained in high humidity ambient atmosphere (60%-70% relative humidity) by using 

acetate as anti-solvent, in which dependence of methyl, ethyl, propyl, and butyl acetate on the 

crystal growth mechanism are discussed. It is explored that acetate screens the sensitive perovskite 

intermediate phases from water molecules during perovskite film formation and annealing. It is  

revealed that relatively high vapor pressure and high water solubility of methyl acetate (MA) leads 

to the formation of highly dense and pinhole free perovskite films guiding to the best power 

conversion efficiency of 16.3% with a reduced hysteresis. The devices prepared using MA showed 
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remarkable shelf life stability of more than 80% for 360 hours in ambient air condition, when 

compared to the devices fabricated using other anti-solvents with low vapor pressure and low water 

solubility. Moreover, the PCE still kept at 15.6% even though 2 v% deionized water was added in 

the MA for preparing the perovskite layer. 

INTRODUCTION 

Organometallic halide perovskite solar cells (PSCs) have attracted considerable attention around 

the world owing to the high absorption coefficient, ambipolar charge transport, long diffusion 

length, and fast mobility of both electrons and holes.1-6 The efficiency of solid-state PSCs has 

increased from 3.8 % in 2009 to 22.7 % so far, which is much higher than other third-generation 

solar cells.7-8 Besides their remarkable photovoltaic performance, the easy and cheap solution-

based fabrication process also could lower the fabrication cost and promote their wide 

commercialization around the world.9-11 One of key points for preparing high-performance PSCs 

is to control the morphology and crystal structure of perovskite materials. Numerous techniques 

for preparing the perovskite films have been reported, such as one-step spin-coating, sequential 

deposition, thermal evaporation and vapor processing of components.12-15 One-step spin-coating 

method is widely used for fabricating the perovskite layer, as the method is simple to control. 

However, the films always have incomplete surface coverage and poor morphology, which results 

in charge recombination in solar cells. To address this issue, anti-solvent washing method has been 

developed using solvents such as chlorobenzene, toluene, or diethyl ether during spin-coating 

process of perovskite films. A mixture of N,N-dimethylformamide (DMF) and dimethyl sulfoxide 

(DMSO) is well known polar solvents for the preparation of perovskite precursor solution. The 

function of the anti-solvent is to remove the high boiling point solvent DMF and form a transparent 
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intermediate adduct (CH3NH3I-PbI2-DMSO) from its perovskite precursor solution, which leads 

to a smooth, pinhole free and homogenous perovskite film with high electronic properties.16  

Despite the high efficiency of PSCs, the perovskite layer is very sensitive to moisture and easily 

degrades in high humidity either during fabrication process or device measurement.17-19 To solve 

this problem, most researchers prepared PSCs inside nitrogen/argon filled glovebox to avoid water, 

which increases the solar cells manufacturing cost. Therefore, research in the area of fabricating 

perovskite films in ambient air is desirable. Yan and co-workers reported use of lead (II) 

thiocyanate (Pb(SCN)2) precursor for fabricating CH3NH3PbI3-x(SCN)x PSCs in more than 70 % 

humidity showing efficiency up to 15 %.20 With the assistance of hydrochloric acid, Zhao and co-

workers prepared high-quality CH3NH3PbI3 perovskite films in ~60 % humidity.21 Recently, 

Watson and co-workers used ethyl acetate as an anti-solvent during one-step deposition; where 

they suggested that ethyl acetate acted as a moisture absorber protecting sensitive perovskite 

intermediate phases from water molecules during film formation and annealing.22 However, there 

are still quite few reports on one-step deposition of perovskite film in the high humidity ambient 

air condition. 

In this report, four different acetate-based solvents (methyl acetate (MA), ethyl acetate (EA), 

propyl acetate (PA), butyl acetate (BA)) were used as the anti-solvent for preparing high-quality 

CH3NH3PbI3 perovskite film in high humidity (60-70 % RH) air condition. It was explored that 

MA could give a high-quality perovskite film with more homogeneous morphology than other 

three kinds of acetate anti-solvents. Upon optimization, the best solar cell by MA washing 

exhibited a stabilized PCE of 16.3% with low hysteresis. Moreover, the PCE still kept at 15.6 % 

even though 2 v% deionized water was added in the MA for preparing the perovskite layer. We 
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believe that this study would give a good direction for PSCs fabrication in humid climate and 

uncontrolled laboratories, potentially enabling the commercialization of devices. 

RESULTS AND DISCUSSION 

 

Figure 1. Schematic illustration of the one-step process using anti-solvent for fabricating 

perovskite films. 

In the anti-solvent based one-step preparation process, the perovskite layer is formed by spin 

coating of the precursor solution followed by the thermal annealing. This preparation process 

usually has two stages, which shown in Figure 1. In the first stage, the liquid film is thinning by 

the centrifugal forces. After a transition point, evaporation rate of the solvent dominates the film 

thinning, which depends on the vapor pressure of the solvent. Then at the second stage, solution 

becomes supersaturated, nucleation happens and growths, solid intermediate (or perovskite) film 

forms. Thus, in order to prepare high-quality perovskite film, the important stage is to accelerate 

the evaporation rate of excess DMF and control the perovskite crystallization process.23 For two 

immiscible solvents, the total vapor pressure of the mixed solution is close to the plus of the two 

solvents’ vapor pressures, and the boiling point of the mixture should be lower than each solvent.24 

Follow this rule, introducing the high vapor pressure anti-solvent for one-step preparing perovskite 

film will help promote a uniform and high-quality film.  
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As perovskite layer is sensitive to moisture within the air during spin coating.  Watson and co-

workers proposed that when using EA as the anti-solvent in one-step deposition, moisture in the 

air is preferred in solution with the anti-solvent rather than reacting with the perovskite 

intermediate phase.22 So one way to solve this problem is to introduce more water-soluble anti-

solvent to avoid the water absorption of the perovskite intermediate phase during the spin coating 

process. In addition, after the perovskite intermediate phase formed, it is better to reduce contacting 

time of this intermediate phase with the moisture within the air to avoid the water affection. 

Therefore, the second way is to speed up the perovskite forming procession to reduce the formation 

time of perovskite intermediate phase to perovskite. So from the above discussions, we assume 

that using the solvent which has high vapor pressure and more water solubility as the anti-solvent 

in one step spin-coating progression will be great helpful to fabricate a high-quality perovskite 

film. 

 

Table 1. Physical properties (vapor pressure, boiling point, solubility in water) of solvents. 

Solvent Vapor pressure 

at 25 oC (Kpa) 

  Boiling point 

(oC) 

Solubility in H2O 

(g/100 mL) 

MA 

EA 

PA 

BA 

28.8 

12.4 

4.8 

1.1 

56.9 

77.1 

101.5 

126.1 

24.4 

8 

1.6 

0.68 
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Figure 2. (a) Attenuated Total Reflectance Fourier transform IR spectra of CH3NH3PbI3 films 

(on Pt/glass substrates) prepared by MA, EA, PA and BA without annealing. (b) Ratio of 

intensity of absorbance at 1050 cm-1 and 3190 cm-1 ( 1050 cm-1 : 3190 cm-1). (c) The perovskite 

film on FTO/compact SnO2 after spinning by different anti-solvents before and after annealing. 

(d) UV-vis absorption spectra of perovskite films prepared with by different solvents without 

annealing and (e) with annealing. 
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Physical properties (vapor pressure, boiling point and water solubility) of the four acetate-based 

solvents were illustrated in Table 1. Among those four acetates, MA had the relative highest vapor 

pressure (28.8 Kpa), lowest boiling point (56.9 oC) and best water solubility. The high vapor 

pressure and low boiling point would accelerate the evaporation rate of excess DMF and control 

the perovskite crystallization process. Moreover, the more water solubility of the anti-solvent 

could decrease the moisture affection of the perovskite intermediate phase during the spin coating 

process. Hence, it could be noticed that perovskite fabrication by MA treatment would give a high-

quality perovskite film with more homogeneously morphology than other three acetates (EA, PA, 

BA). 

Figure 2a showed FT-IR spectra of CH3NH3PbI3 film prepared with different anti-solvents (MA, 

EA, PA and BA) without annealing. The non-annealing films showed similar absorbance peak 

positions. All the films showed N-H vibration peaks at 3200 cm-1 and at approximately 1470 cm-1 

attributed to CH3NH3I, and S-O stretching at 1020 cm-1 attributed to DMSO.25 By taking the ratio 

(absorbance at 1020 cm-1 to the absorbance at 3200 cm-1), the concentration of DMSO in the 

intermediate phase can be deduced. From this ratio, it was found that the DMSO content decreased 

form MA to BA, as shown in the Figure 2b. The less DMSO ratio mean the few intermediate phase 

of CH3NH3I-PbI2-DMSOx, which indicated the speeding up of perovskite formation process.26 

Figure 2c showed the fresh perovskite film by different anti-solvents with or without annealing. 

The color of the annealing-free film gradually changed from dark brown (MA) to transparent (BA), 

which meant increased DMSO content in the intermediate phase films.27 This result was in 

agreement with the FT-IR spectra. Furthermore, the annealed films exhibited decreased glossiness 

of the perovskite films from MA to BA, which indicated that the CH3NH3PbI3 perovskite films 

became more inhomogeneous. Ahn et al. reported that the DMSO intermediate phase was 
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unfavorable due to the gradual vaporization of DMSO from the surface of the spin-coated film, 

which led to an inhomogeneous CH3NH3PbI3 film.16 Figure 2d and 2e showed the absorption 

spectra of perovskite films prepared by different anti-solvents treatment before and after annealing. 

The UV-vis absorption spectrum of a freshly perovskite film prepared by MA treatment was 

almost close to that of the annealed film, indicating that the using of MA resulted in nearly 

complete CH3NH3PbI3 crystallization at room temperature. Therefore, from the above results, we 

concluded that a large amount of redundant DMSO in the annealing-free perovskite layers might 

be harmful for the performance of PSCs when preparing perovskite in high humidity air condition. 

 

Figure 3. The scanning electron microscopy of annealed CH3NH3PbI3 films of FTO/Compact 

SnO2 by different anti-solvents. (a), (e) MA; (b) (f) EA; (c) (g) PA; (d) (h) BA. 

Figure 3 showed the surface morphology of the annealed CH3NH3PbI3 perovskite films based on 

different anti-solvents by scanning electron microscopy (SEM). The perovskite film prepared by 

MA treatment showed extremely dense, homogeneous and almost no pinholes, which shown in 

Figure 3a and 3e. However, with EA treatment, the perovskite film became slightly 
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inhomogeneous and the presence of pinholes could be observed in Figure 3b and 3f. Especially in 

the case of BA, the presence of pinholes was very prominent (Figure 3d and 3h). This result was 

consistent with the image in Figure 2c where the film appeared the least luminous. Moreover, the 

grain size of the CH3NH3PbI3 perovskite gradually increased, which maybe owning to the increase 

of DMSO content in the intermediate perovskite phase.11  

 

 

Figure 4. Atomic force microscopy (AFM) height (a, b, c, d) and 3D surface plot images (e, f, g, 

h) of the perovskites film on FTO/SnO2 prepared by MA (a, e) or EA (b, f), PA (c, g) and BA (d, 

h) treatment processes. The scanning range of the images is 1 μm×1 μm. 

Atomic force microscopy (AFM) was employed to study the surface morphology perovskite films 

prepared by different anti-solvents, as shown in Figure 4. The annealing time was fixed at 10 min. 

It was found that the grain sizes of perovskite samples were graduate increased by the treatment 

way from MA, EA, PA, to BA, which was in consistence with Figure 3. The Rq roughness values 

were measured to be 10.2, 13.8, 22.7 and 25.8 nm for samples prepared by MA, EA, PA and BA, 

respectively. The roughness value was smallest for perovskite film prepared by MA treatment, and 

increased from MA, EA, PA to BA, which is in accordance with the Figure 3a-d. The 3D surface 
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plot images shown in Figure 4e-h could clearly show the increase of the surface roughness for 

perovskite films. This surface topography indicated that perovskite films prepared by MA had 

better coverage on the top of perovskite film, resulting in larger parallel resistance and lower serial 

resistance, as evidenced by the improved diode characteristics. 

 

Figure 5.  X-ray diffraction (XRD) of CH3NH3PbI3 films on FTO/compact SnO2 substrates 

prepared by different anti-solvents. 

Figure 5 showed the X-ray diffraction (XRD) patterns of CH3NH3PbI3 layer on FTO/SnO2 

substrate with different anti-solvents. Peaks from the substrates were indicated by triangles. Strong 

diffraction peaks located at  14.1°, 20.0°, 23.5°, 24.5°, 28.4°, 31.9°, 40.7°, 43.1° and 50.2° for 2θ 

scan were observed corresponding to the planes of (110), (112), (211), (202), (220), (222), (224), 

(314) and (404), which were in good agreement with the previous reports.15, 28-29 The result 

confirmed the films are highly crystallized perovskite phase.30-31 Meanwhile, a weak diffraction 
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pattern of PbI2 appeared at 12.7°, where the intensity of the peak decreases upon changing the anti-

solvent from MA to BA. This decrease of PbI2 content in perovskite film could be ascribed to the 

different solubility of PbI2 and CH3NH3I compounds in various anti-solvents.32 Although there 

were many discussions about the function of residual PbI2, it was hard to tell the exact impact of 

such little remaining PbI2 on this anti-solvent process for perovskite formation. 

Table 2. Devices performance data of FTO/c-SnO2/CH3NH3PbI3/Spiro-OMeTAD/Au by different 

anti-solvents.  

 
Solvent 

 
Classification 

 
Voc (V) 

 

 
Jsc (mA/cm2) 

 

 
FF (%) 

 

 
PCE (%) 

 
 
 

MA 

 
Champion a 

 
1.05 

 
22.21 

 
70.0 

 
16.3 

 
Average b 

 
1.04±0.02 

 

 
21.78±0.45 

 
68.9±1.42 

 
15.6±0.7 

 
 
 

EA 

 
Champion 

 
1.04 

 
21.71 

 
66.9 

 
15.1 

 
Average 

 

 
1.02±0.03 

 
21.44±0.82 

 
64.6±3.89 

 
14.2±1.1 

 
 
 

PA 

 
Champion 

 

 
0.97 

 
20.67 

 
66.8 

 
13.4 

 
Average 

 

 
0.95±0.05 

 
20.30±0.75 

 
62.9±5.60 

 
12.2±1.0 

 
 
 

BA 

 
Champion 

 

 
0.96 

 
19.97 

 
66.5 

 
12.7 

 
Average 

 

 
0.94±0.04 

 
20.26±0.34 

 
60.4±2.61 

 
11.4±0.7 

 

a, the best performance of PSCs. b, the average performance of 20 PSCs. 
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Figure 6. Schematic structure (a) and (b) energy diagram of the planar FTO/c-SnO2/ 

CH3NH3PbI3/Spiro-OMeTAD/Au planar perovskite solar cells. Photovoltaic statistics for the 

planar perovskite solar cells processed by anti-solvents. (c) Short-circuit current, (d) Open circuit 

voltage, (e) Fill factor, (f) Efficiency. The boxes represent 80 data from the Voc-to-Jsc scan direction. 
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To show the reproducibility of devices efficiency, the PCEs of 20 planar perovskite solar cells 

prepared by different anti-solvents were measured. High efficiency PSCs generally uses titanium 

oxide (TiO2) as an electron transport layer; however, some drawbacks such as UV light instability 

because of the photocatalytic activity hinder reproducibility over the time. Tin-oxide (SnO2) as an 

alternative to TiO2, has been reported to exhibit better electron mobility and stability. In addition, 

a higher band gap with deep valence band maximum is supposed to effectively block the photo-

generated holes from the absorber layer to recombine with the electrons in conducting oxide layer 

(TCO). Therefore, a planar PSC structure employing SnO2 was chosen for preparing high-quality 

CH3NH3PbI3 perovskite films in high humidity (60-70% RH). Figure 6a and 6b exhibited 

schematic structure and energy diagram of the PSCs. The current density-voltage (J-V) 

performance data were shown in Figure 6c-f, and Table 2 summarized the photovoltaic parameters 

of the solar cells. There was a clear decreasing trend of all the parameters of PSCs (Voc, Jsc, FF, 

PCE) among the four anti-solvents treatments, because of the inhomogeneous perovskite layer.33-

35 We could see from Figure 6c-f that an average Voc of 1.04±0.02 V, Jsc of 21.78±0.45 mA/cm2, 

FF of 68.9±1.42 %, and PCE of 15.6±0.7 % were obtained for devices fabricated using MA 

treatment. The champion device of MA treatment perovskite devices had a Voc of 1.05 V, a Jsc of 

22.21 mA/cm2, a FF of 70.0 % and an efficiency of 16.3 %. Such high efficiency could be 

attributed to the reproducible and uniform growth of CH3NH3PbI3 layer obtained by anti-solvent 

deposition process. The performance of EA treated perovskite film was marginally lower than MA 

with an average Voc of 1.02±0.03 V, Jsc of 21.44±0.82 mA/cm2, FF of 64.6±3.89 %, and PCE of 

14.2±1.1 %. However, the performances with PA and BA treatments decreased significantly, with 

an average Voc of 0.95±0.05 V, Jsc of 20.30±0.75 mA/cm2, FF of 62.9±5.60 %, PCE of 12.2±1.0 %, 

and Voc of 0.94±0.04 V, Jsc of 20.26±0.34 mA/cm2, FF of 60.4±2.61 %, PCE of 11.4±0.7 %, 
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respectively. Figure 7 showed the J-V curves and the corresponding IPCE for the PSCs. The 

calculated Jsc from the IPCE agreed well with the measured Jsc. Figure S3 demonstrated the J-V 

curve of reverse direction and forward direction. Importantly, intended to quantitatively compare 

the hysteresis effect across diverse samples, a modified hysteresis index (HI) values were 

calculated from the J-V curves, shown in Figure 7a.36 The hysteresis of the solar cell performance 

indicated an approximate increasing trend, which was demonstrated by the HI values of MA (HI, 

0.10), EA (0.21), PA (0.40) and PA (0.56).  

 

Figure 7. (a) Hysteresis index value calculated from the J-V curve of four acetate based champion 

devices. J-V (b) and the correspondent IPCE (c) curves of different anti-solvents based planar 

FTO/c-SnO2/CH3NH3PbI3/Spiro-OMeTAD/Au champion devices. (d) Stability test for 360 h of 

the different anti-solvents based planar FTO/c-SnO2/MAPbI3/Spiro-OMeTAD/Au devices under 

ambient atmosphere without sealing, and the average humidity is about 60% RH. 
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Furthermore, the indoor environment stability of the different anti-solvents processed devices were 

investigated as shown in Figure 7a. The perovskite devices were stored at ambient room 

temperature and under controlled humidity about 60-70% RH without sealing. After 360 h, the 

PCE of the perovskite devices prepared by MA treatment still retain over 80% of its original 

efficiency, while the PCE of perovskite devices prepared by the other three acetates decreased to 

less than 60% of the fresh devices. It is interesting to note that all the PSC devices` fabrication 

processes were accomplished in the 60-70% RH air condition. In addition, for comparison, the 

devices based on commonly used anti-solvents (diethyl ether, chlorobenzene, and toluene) were 

also prepared in the 60-70% RH air condition. However, all those devices showed poor 

performances compared to acetate-based solvents (Table S1). Hence, it is safe to assume that the 

MA treated devices are the most stable compared with other acetate solvents processed devices.  

Watson and co-workers claimed that when using EA as the anti-solvent in one-step deposition 

perovskite film, the moisture in air tend to mix with the anti-solvent rather than with the perovskite 

intermediate phase.22 Therefore, we assumed high water solubility of the anti-solvent would be 

beneficial during the fabrication of PSCs. In order to prove this hypothesis, 2 v % deionized water 

was deliberately added to the anhydrous MA, EA, PA and BA were used during the fabrication of 

PSCs. The current density-voltage (J-V) performance data were shown in Figure 8, and the 

resulting photovoltaic parameters of the solar cells were summarized in Table S2. In the case of 

MA, the addition of 2 v % deionized water had nearly no influence on devices performance with 

high efficiency of 15.6 % (average PCE, 14.8±0.5 %, kept at 94%). However, for the other three 

acetates, there was a significant decrease in the device performance from EA (average PCE, 

9.9±1.7 %, kept at 69.5 %), PA (average PCE, 5.1±1.2 %, kept at 42.5 %) to BA (average PCE, 
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2.9±1.1 %, kept at 25.4 %). This could be attributed to the high solubility of water in MA which 

screens the perovskite film from getting dissipated by water molecules.  

 

 

Figure 8. Photovoltaic statistics for FTO/c-SnO2/CH3NH3PbI3/Spiro-OMeTAD/Au planar 

perovskite solar cells processed by 2 v% deionized water added into anti-solvents. (a) Short-circuit 

current, (b) Open circuit voltage, (c) Fill factor, (d) Efficiency. The boxes represent 40 data from 

the Voc-to-Jsc scan direction. 

CONCLUSION 

In conclusion, four different acetate-based solvents (MA, EA, PA, BA) were used as anti-solvent 

for preparing the CH3NH3PbI3 PSCs in high humidity ambient atmosphere (60%-70% RH). The 
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highest solar cell efficiency was obtained with CH3NH3PbI3 perovskite layer prepared by 

employing MA, showing the best PCE of 16.3% along with the improved photovoltaic parameters 

such as Voc of 1.05 V, Jsc of 22.21 mA/cm2, FF of 70.0%. Moreover, the performance decreases 

from using MA to BA. In addition, the stability test was performed which showed the superior 

performance of the MA based perovskite solar cell, reserving more than 80% of its original 

performance. The notable performance of the solar cell was attributed to the better film 

morphology of the perovskite film with condensed grains and no pinholes. The high water 

solubility of MA also meant that the perovskite layer was protected from contact with water due 

to the water molecules tend to remain in MA as the PCE still kept at 15.6 % when 2 v% deionized 

water added in MA for preparing PSCs. All the experiments were accomplished without the 

requirement for stringent atmospheric control. This study would give a direction for PSC 

production at commercial level in robust environment, which could lower the cost and reduce the 

time for fabricating the high efficiency PSCs. 

EXPERIMENTAL SECTION 

Preparation of perovskite solar cells. 

All reagents were directly used without further purification, if not specified. F-doped SnO2 layered 

glass (FTO glass, Nippon Sheet Glass Co. Ltd) glass was first patterned and cleaned by using Zinc 

powder and 6 N hydrochloric acid solution. Tin (II) chloride (Aldrich, 98%) was dissolved in 

anhydrous ethanol (Wako, 99.8%) to form a 0.1 M SnCl2 concentration solution. Then the SnCl2 

solution was spun on the FTO glass at 2000 rpm for 30 seconds. The substrate was heated at 100 °C 

for 5 minutes and then annealed at 180 °C for 60 minutes on a hot plate to get a compact SnO2 

electron transport layer.37 1.5 M CH3NH3PbI3 in anhydrous dimethylformamide (DMF, Aldrich, 
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99.8%) and anhydrous dimethyl sulfoxide (DMSO, Aldrich, 99.8) solution (DMF: DMSO, 4:1) 

were prepared by mixing equal molar ratio of CH3NH3I (TCI, 98%) and PbI2 (TCI, 99.99%) and 

stirred at room temperature for more than 1 hour. The perovskite precursor solution was spun on 

the substrate at 4000 rpm for 25 seconds and 10 seconds after starting the spin-coating process, 

0.5 mL of the anti-solvent was slowly dropped onto the film. After that, the immediate perovskite 

phase was heated at 65 °C for 1 minute and 100 °C for 10 minutes. The spiro-MeOTAD layer was 

prepared by spin coating a chlorobenzene solution containing 180 mM spiro-MeOTAD (Aldrich, 

99 %), 60 mM tert-butylpyridine (Aldrich, 96 % ), 30 mM Li-TFSI (Aldrich, 99.95 %) (520 mg/mL 

in acetonitrile) and 33 mM FK209 (Aldrich, 99 %) (300 mg/mL in acetonitrile) at 4000 rpm for 

30 seconds. Finally, a 80 nm thickness Au counter electrode was deposited by thermal evaporation. 

All procedures were performed in  60-70 % relative humidity ambient air condition, Relative 

humidity was recorded using a hygrometer accurate to ± 5% RH between 25 % and 69.9 % RH, 

±10 % RH between 70 % and 90.0 % RH) (A&D Company, AD-5681).  

Characterization 

Solar cell performances were evaluated using a solar simulator (CEP-2000SRR, Bunkoukeiki Inc., 

AM 1.5G 100 mWcm-2) and a black mask on top of the devices with an exposure area 0.10 cm2 

was used during the photovoltaic measurements. The current-voltage (J-V) curves of these solar 

cells were measured with a 0.01V/s scanning rate in reverse (from the open-circuit voltage (Voc) 

to the short-current density (Jsc)) and forward (from Jsc to Voc) modes under standard global AM 

1.5 illumination. X-ray Diffraction (XRD) Study. X-ray diffraction analyses (RINT-Ultima III, 

Rigaku, Japan) were performed in the range 3°−80°. The surface morphology of the samples were 

observed through a scanning electron microscope (SEM) (JEOL, Neoscope, JCM-6000) and a 

Bruker Innova atomic force microscopy (AFM) (JSPM-5200). Attenuated Total Reflectance 
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Fourier transform IR spectras (FT-IR) were tested by FT-IR spectrometer (JASCO, FT/IR-4100 

Series) via an attenuated total reflectance (ATR) crystal. 
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Graphical Abstract for Table of Contents 

 

Methyl acetate (MA) leads to the formation of highly dense and pinhole free perovskite films 

guiding to the best power conversion efficiency of 16.3% with a reduced hysteresis in high 

humidity air condition. 
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Figure S1 Annealed CH3NH3PbI3 film of FTO/Compact SnO2 by different anti-solvents. 

 

 

Figure S2 XRD of CH3NH3PbI3 film of FTO/Compact SnO2 by different anti-solvents. 
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Figure S3 J−V curves of the best-performing perovskite CH3NH3PbI3-based solar cell under 

reverse and forward voltage scans. 

 

Materials   Voc 

 (V) 

Jsc 

 (mA cm-2) 

FF 

 (%) 

PCE 

 (%) 

Diethyl ether 0.60±0.03  16.02±1.98  53.0±6.5  5.1±1.8  

Chlorobenzene 0.45±0.02  0.89±0.22  52.2±7.8  0.2±0.1  

Toluene 0.39±0.02  0.81±0.32  57.6±7.2  0.2±0.1  

 

Table S1 Photovoltaic parameters derived from J-V measurements of FTO/c-

SnO2/CH3NH3PbI3/Spiro-OMeTAD/Au by different anti-solvents. 
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Materials Voc (V) Jsc (mA cm-2) FF (%) PCE (%) 

Methyl acetate 1.03±0.02  20.97±1.02  65.37±4.07  14.8±0.4  

Ethyl acetate 0.99±0.03  18.93±1.24  55.25±2.46  9.9±1.7  

Propyl acetate 0.84±0.07  14.43±1.26  46.23±4.15  5.1±1.2  

Butyl acetate 0.74±0.10  8.81±2.95  38.40±50.34  2.9±1.1  

 

Table S2 Photovoltaic parameters derived from J-V measurements of FTO/c-

SnO2/MAPbI3/Spiro-OMeTAD/Au by different contaminated with 2 v% deionized water anti-

solvents. 

 

 

Figure S4 J−V curves of the CH3NH3PbI3-based solar cells by different acetate treatment under 

reverse and forward direction scans by different scan rates of 0.1 V/s, 0.05 V/s and 0.025 V/s. (a1) 

(a2) (a3), MA; (b1) (b2) (b3), EA; (c1) (c2) (c3), PA; (d1) (d2) (d3), BA. 
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Figure S5 SEM images of annealed CH3NH3PbI3 films of FTO/Compact SnO2 by different anti-solvents 

with 2v % water. (a) MA; (b) EA; (c) PA; (d) BA. 

 

 

 

 


