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It is theorized that a mutualistic ecosystem’s resilience against

perturbations (e.g. species extinction) is determined by a single

macroscopic parameter (network resilience), calculable from

the network. Given that such perturbations occur owing to

environmental changes (e.g. climate change and human

impact), it has been predicted that mutualistic ecosystems

that exist despite extensive environmental changes exhibit

higher network resilience; however, such a prediction has not

been confirmed using real-world data. Thus, in this study,

the effects of climate change velocity and human activities on

mutualistic network resilience were investigated. A global

dataset of plant–animal mutualistic networks was used, and

spatial analysis was performed to examine the effects.

Moreover, the potential confounding effects of network size,

current climate and altitude were statistically controlled. It

was demonstrated that mutualistic network resilience was

globally influenced by warming velocity and human impact,

in addition to current climate. Specifically, pollination

network resilience increased in response to human impact,

and seed-dispersal network resilience increased with

warming velocity. The effect of environmental changes on

network resilience for plants was remarkable. The results

confirmed the prediction obtained based on the theory and

imply that real-world mutualistic networks have a structure

that increases ecosystem resilience against environmental

changes. These findings will enhance the understanding of

ecosystem resilience.
1. Introduction
Understanding the dynamics of ecosystems is a significant

challenge in ecology [1–4]. Specifically, the resilience of

ecosystems against environmental perturbations (e.g. climate
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change) has attracted attention [5–7] in the context of biodiversity maintenance and environmental

assessment [3,8]. According to [6], resilience is defined as a system’s ability to adjust its activity so

that basic functionality may be retained when errors, failures and environmental changes occur; it is a

striking feature in real-world complex systems such as ecosystems. Ecological resilience has long been

discussed theoretically [9,10] and is often considered to be related to the probability of species

(co)extinction. Species coextinction can be considered a series of complex extinction cascades and is

often explained in the context of stochastic processes [11]. For decades, the resilience of ecological

assemblages has been theoretically studied using a network approach [12]. Networks describe the

relationships among elements and are thus simple and powerful tools for describing complicated

systems such as ecosystems. Ecological communities consist of a number of species that are connected

via interspecific interactions, such as trophic and mutualistic relationships, and they are represented as

networks (so-called ecological networks, in which nodes and edges correspond to species and

interspecific interactions, respectively). As the availability of ecological data has increased, network

science has also been applied to ecology [13], in addition to biology [14] and medicine [15]. Network

science enhances the understanding of ecological resilience. For example, Allesina & Pascual [16]

demonstrated that the consequence of species extinction resulting from the loss of a single species is

predictable using eigenvector measures such as Google PageRank, under the assumption that a

species is important if other important species rely on it for their survival. Vieira & Almeida-Neto [11]

proposed a simple stochastic model for complex species coextinctions in mutualistic networks (e.g.

pollination networks and seed-dispersal networks), and they showed that ecological resilience

decreases with the level of connectedness (connectance or graph density). Fricke et al. [17] extended

the stochastic model and found that seed-dispersal networks have an optimal structure that minimizes

species coextinction. Using the stochastic model, Schleuning et al. [18] showed that mutualistic

networks are more sensitive to plant than to animal extinction.

The studies reviewed above are primarily based on numerical simulation, but the recent theoretical

study [6] on universal resilience patterns of complex networks is of particular interest because it

provides an analytical framework of resilience for multi-dimensional systems. This study considered a

mathematical model for mutualistic ecosystems and showed that a multi-dimensional complex system

is reducible to an effective one-dimensional system. In particular, the study [6] postulates that a single

resilience parameter (beff ), calculable from an ecological network, determines the state of the

ecosystem (i.e. coexistence or extinction of species) against perturbations (e.g. species or interaction

loss, interaction strength reduction, or any combination thereof). As the perturbations occur owing to

environmental changes [19–22] (e.g. climate change and human impact), it has been hypothesized

that mutualistic ecosystems that exist despite extensive environmental changes exhibit higher network

resilience; however, such a hypothesis has not yet been evaluated in the real world.

In this context, macroecological approaches are useful. A significant amount of data on real-world

ecological networks are available from such sources as GlobalWeb [8], the Interaction Web DataBase

and the Web-of-Life Database, among others. Several studies have reported an association between

environmental or external factors and ecological network structure, inspired by the hypothesis that

ecological networks have an optimal structure that maximizes ecosystem stability against such

perturbations [23–25]. For example, it was found that climate seasonality affects ecological networks

[26]; in particular, the network structure of terrestrial ecosystems (pollination networks) was affected

by temperature seasonality. Dalsgaard et al. [27] reported that the pollination network structure

correlated with the historical rate of warming, and Sebastián-González et al. [28] demonstrated that

the structure of seed-dispersal networks changed in response to human impact. In [29], it was

reported that such a structural change in response to warming velocity and other forms of human

impact was globally observed in various types of ecological networks (i.e. food webs, pollination

networks and seed-dispersal networks). These studies indicated that the change in network structure

was due to the perturbations (e.g. species/interaction loss) that occur subsequent to environmental

changes; thus, it is also expected that network resilience is responsive to these environmental changes.

A large dataset of real-world ecological networks, constructed in [29], was used to evaluate the

relationship between ecological network resilience and environmental changes. As in the study [6] on

network resilience, the focus was on mutualistic networks (i.e. pollination networks and seed-

dispersal networks), and the plant network resilience and animal network resilience of each plant–

animal network were calculated. Spatial analysis was used to evaluate the contributions of

environmental changes to ecological network resilience. Moreover, potential confounding effects were

taken into consideration, in addition to the application of ordinary least-squares (OLS) regression

analysis. As in [30], pollination networks and seed-dispersal networks were separately investigated
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2. Methods
2.1. Mutualistic network dataset
A large dataset of real-world plant–animal mutualistic networks constructed in [29] was used. The

dataset contained 62 pollination (plant–pollinator) networks and 30 seed-dispersal (plant–disperser)

networks, which were collected from the supporting online material in [31], the Interaction Web

DataBase (www.nceas.ucsb.edu/interactionweb/), and the Web-of-Life Database (www.web-of-life.es).

The mutualistic networks were represented as bipartite networks because mutualistic links are drawn

only between two types of organisms (i.e. plants and animals) [32]. These networks were represented

as binary networks because the references included a large amount of binary data: approximately 71%

(44/62) of pollination networks and approximately 53% (16/30) of seed-dispersal networks were binary.

2.2. Environmental data
In the dataset from [29], environmental data (i.e. climatic parameters, elevation, human impact and

climate change velocities) were also available. The climatic parameters were obtained from the

WorldClim database [33] (v. 1.4, release 3; www.worldclim.org) based on the latitudes and longitudes

of identified observation sites at a spatial resolution of 2.50. The values for each parameter were

obtained from the coordinate centre. The available parameters were annual mean temperature

(Tmean) (�108C), temperature seasonality (standard deviation) (Tseasonality), annual precipitation

(Pann) (mm), and precipitation, or rainfall seasonality (coefficient of variation) (Pseasonality). Elevations

(m) were extracted using the Google Elevation Application Programming Interface

(developers.google.com/maps/documentation/elevation/). The human footprint (HF) score was used

for evaluating human impact. HF scores are provided with a spatial resolution of 1 km grid cells in

the ‘Last of the Wild Project’ [34] (version 2), and they were defined based on human population

density, human land use and infrastructure (built-up areas, night-time lights, and land use or land

cover), and human access (coastlines, roads, railroads and navigable rivers). Two types of historical

climate-change velocities were considered: temperature-change velocity or warming velocity (Tvelocity),

and precipitation-change velocity (Pvelocity). As in [28,35], climate-change velocity was defined as the

temporal climate gradient divided by the spatial climate gradient, where the temporal gradient is

defined as the absolute difference between the current and the CCSM3 model-based Last Glacial

Maximum climate conditions, available in the WorldClim database (www.worldclim.org/past), and

the spatial gradient was the local slope of the current climate surface at the study site, calculated

using the R package raster.

2.3. Network resilience
As in [6], the network resilience of plant–animal mutualistic networks was calculated using the single

macroscopic resilience parameter beff ¼
P

ij AijA ji=
P

ij Aij: The matrix Aij corresponds to the weighted

plant (animal) network constructed by projecting the binary plant–animal bipartite network on the

plant (animal) set. Plant network resilience (beff for plant networks) and animal network resilience

(beff for animal networks) were calculated because the plant and animal networks were obtained from

a plant–animal mutualistic network. If a plant–animal bipartite network consists of n plants and m
animals, the matrix Aij for the n � n plant network (for the m � m animal network) is obtained as

Aij ¼
Xm

k¼1

MikM jkPn
s¼1 Msk

Aij ¼
Xn

k¼1

MkiMkjPm
s¼1 Mks

 !
,

where Mik is the n � m incidence matrix of the bipartite mutualistic network. Mik ¼ 1 if plant i interacts

with animal k via mutualistic relationships, and Mik ¼ 0 otherwise. That is, Aij for the plant (animal)

network is the sum of the inverse degrees of common neighbours between plants (animals) i and j in

the bipartite mutualistic network. According to [6], Aij indicates the weight of the interaction between

i and j, and it is defined as the density of mutual symbiotic relationships between i and j based on the

following concepts: (i) stronger mutualistic interaction between plants (animals) i and j are observed

http://www.nceas.ucsb.edu/interactionweb/
http://www.web-of-life.es
http://www.worldclim.org
http://www.worldclim.org/past


rsos.royalsocietypublishing.org
R.Soc.open

sci.5:180706
4
when the plants (animals) share more mutual animals (plants) k; (ii) by contrast, the contribution to each

plant (animal) is smaller when animals (plants) k mutually interact with more plants (animals).

2.4. Statistical analysis
The statistical analysis was based on the procedures in [29]. To evaluate the contribution of each variable

to network resilience (beff ), regression analysis was performed using the R software package, v. 3.4.3

(www.r-project.org). Both OLS regression and the spatial analysis approach were considered

(electronic supplementary material, source code S1). For the OLS regression, full models were

constructed encompassing all explanatory variables (Tmean, Tseasonality, Pann, Pseasonality, elevation,

human impact (HF score), Tvelocity and Pvelocity), and the best model was selected to obtain the most

simplified (easy-to-interpret) model and simultaneously avoid multi-collinearity in the full model. The

best model was selected based on the sample-size-corrected v. of the Akaike information criterion

(AICc) values using the R package MuMIn, v. 1.15.6. To examine the effects of environmental factors

on network resilience and statistically control the potentially confounding effects of network size,

species richness, or the number of species S, was also considered according to [27–29]. As a single

selected model is the best model, the importance of certain variables may be overestimated, whereas

important variables may be overlooked. To avoid such a model selection bias, a model-averaging

approach using MuMIn was adopted. The averaged model was obtained in the top 95% confidence

set of models. A global Moran’s test was performed to evaluate spatial autocorrelation in the

regression residuals using the function lm.morantest.exact in the R package spdep, v. 0.6.13. As in

[27,28], the following parameters were log-transformed: S, Tvelocity and Pvelocity. beff was also log-

transformed for normality. As in [30], Pann was square-root transformed. The quantitative variables

were normalized to the same scale, with a mean of 0 and standard deviation of 1, using the scale
function in R before the analysis. When spatial correlation was concluded in the OLS model (the

associated p-value of Moran’s test was less than 0.05), a spatial eigenvector mapping (SEVM)

modelling approach [36,37] was also considered to remove spatial autocorrelation in the regression

residuals. Specifically, the Moran eigenvector approach was adopted using the function SpatialFiltering
in the R package spdep. As with OLS regression analysis, full models were constructed, and then the

best model was selected based on AICc values. The spatial filter was fixed in the model-selection

procedures [36]. The averaged models were also obtained. The contribution (i.e. non-zero estimate) of

each explanatory variable to network resilience was considered significant when the associated

p-value was less than 0.05. The best and averaged models were used to evaluate the contribution of

each variable to network resilience; however, the full model was also considered for comparison. The

residuals of the explanatory variables and network resilience were generally calculated according

to the SEVM modelling approach-based best models; however, they were obtained according to the

OLS regression-based best model when animal network resilience was investigated in seed-dispersal

networks.
3. Results
3.1. Pollination networks
Sixty-two pollination networks were investigated (electronic supplementary material, table S1). Spatial

autocorrelation was concluded in the OLS regression analysis; thus, the SEVM modelling approach

was adapted (tables 1 and 2).

The full, best and averaged models in spatial analysis indicated that both plant network resilience and

animal (pollinator) network resilience increased with network size (species richness). More importantly,

it was found that network resilience was associated with environmental factors. Specifically, the best and

averaged models in the OLS regression analysis and spatial analysis demonstrated a positive correlation

between plant network resilience and human impact (table 1 and figure 1a). In addition, plant network

resilience was positively associated with temperature seasonality.

The full, best and averaged models in the OLS regression analysis and spatial analysis indicated that

animal network resilience increased with mean annual temperature (table 2 and figure 1b). The best and

averaged models in the OLS regression analysis indicated that animal network resilience was negatively

associated with annual precipitation and human impact; however, spatial autocorrelation analysis

suggested that the observed associations were in fact merely an artefact; no association between

http://www.r-project.org
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animal network resilience and annual precipitation or human impact was detected when spatial

dependency was removed from the regression residuals (i.e. when an SEVM modelling approach

was applied).

3.2. Seed-dispersal networks
Thirty seed-dispersal networks were investigated (electronic supplementary material, table S2).

Spatial autocorrelation was concluded in the OLS regression analyses when the contribution of each

variable to plant network resilience was evaluated; thus, spatial analysis was also performed (table 3).

The full and best models in spatial analysis showed that a number of parameters were associated with

plant network resilience. However, the averaged model indicated that plant network resilience was

mainly affected by species richness, annual precipitation and warming velocity. The observed

associations with elevation, annual mean temperature and precipitation seasonality were not

statistically conserved in the top 95% confidence set of models. As in pollination networks, plant

network resilience increased with species richness. More interestingly, plant network resilience

increased in response to warming velocity (figure 2a); by contrast, it decreased with annual

precipitation. The best model in the OLS regression analysis showed that plant network resilience was

associated with temperature seasonality, precipitation seasonality and historical precipitation-change

velocity; however, the averaged model in the OLS regression analysis and spatial autocorrelation

analysis suggested that the observed associations were not statistically significant.

For animal (disperser) network resilience, only the OLS regression approach was considered because

spatial autocorrelation was not concluded (table 4). The full and best models indicated that animal

network resilience increased with precipitation seasonality (figure 2b) and decreased with historical

precipitation-change velocity. However, the averaged model suggested that the observed association

between animal network resilience and historical precipitation-change velocity was not statistically

significant; rather, it indicated that precipitation seasonality mainly affected animal network resilience.
4. Discussion
As suggested in [6], the network resilience of mutualistic ecosystems was empirically investigated. It was

confirmed that network resilience increased with network size (species richness). This is consistent with a

number of previous studies [38,39]. Moreover, it was hypothesized that the network resilience of

mutualistic ecosystems is associated with environmental changes such as climate change velocity and

human impact, and this hypothesis was tested. As expected, it was found that network resilience was

associated with warming velocity and human impact. In particular, the plant network resilience of

pollination networks and seed-dispersal networks increased with human impact and warming

velocity, respectively. However, animal network resilience was associated with current climate rather

than warming velocity and human impact. This may be due to the fact that mutualistic networks are

more sensitive to plant than to animal extinction under climate change. Schleuning et al. [18]

demonstrated that projected plant extinctions (under climate change) are more likely to trigger animal

coextinctions than vice versa. This result indicated that the impact of climate change on biodiversity
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Table 4. Influence of explanatory variables on animal network resilience in seed-dispersal networks. See table 1 for description
of table elements.

variables

OLS

estimate (full) estimate (best) estimate (average)

richness 0.384 (0.05) 0.294 (0.07) 0.267 (0.19)

elevation 20.605 (0.07) 20.329 (0.23)

Tmean 0.122 (0.83) 0.419 (0.32)

Tseasonality 0.703 (0.17) 0.266 (0.64)

Pann 0.297 (0.14) 0.296 (0.17)

Pseasonality 0.744 (,0.01) 0.617 (,0.01) 0.506 (,0.05)

human impact 20.207 (0.20) 20.189 (0.30)

Tvelocity 20.402 (0.12) 20.271 (0.28)

Pvelocity 20.713 (0.01) 20.534 (0.01) 20.485 (0.07)

Moran’s I 20.38 (0.97) 20.09 (0.57)

R2 0.61 (0.01) 0.38 (0.01)

(a) (b)
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Figure 2. Scatter plots of plant network resilience (residuals) versus environmental parameters (residuals) in seed-dispersal
networks. (a) Plant network resilience versus warming velocity. (b) Animal network resilience versus precipitation seasonality.
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was amplified via extinction cascades from plants to animals in mutualistic networks. The focus in [18]

was on current human-driven climate change; thus, this study may mainly support the finding that

human impact on network resilience was remarkable for plants. However, it may also be applicable to

historical climate change (i.e. warming velocity) because the impact amplified via extinction cascades

from plants to animals may be general. That is, plant network resilience, rather than animal network

resilience, should increase so that mutualistic networks may remain stable despite environmental

changes.

These results indicate that real-world mutualistic networks have a structure that increases ecosystem

resilience against environmental changes. This is related to the optimal principles of ecological networks,

as several theoretical studies reported. For example, real-world ecological network structure may

minimize competition and increase biodiversity [23], and emerge as a result of an optimization

principle aimed at maximizing species abundance [25], despite some criticism in [40–42].

Alternative hypotheses should also be considered, particularly in regard to the relationship between

current climate and mutualistic networks. Specifically, climate seasonality also affected mutualistic

network resilience, and network resilience increased with temperature seasonality in pollination

networks. Moreover, animal network resilience was positively associated with precipitation

seasonality in seed-dispersal networks. Given that climate seasonality can also be considered an

environmental perturbation [26], it is predicted that mutualistic networks are generally adapted to
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changing environmental conditions. The observed associations suggest that real-world mutualistic

networks also have a structure that increases ecosystem resilience against climate seasonality,

consistent with such a prediction.

Annual climatic parameters also affected network resilience in mutualistic ecosystems. Plant network

resilience decreased with annual precipitation in seed-dispersal networks. This may be due to the fact

that the interactions between plants were weakened owing to rainfall. According to the definition of

interaction strength (i.e. link weight) for mutualistic networks in [6] (see also §2.3), the interactions in

plant networks were stronger when the plants shared more mutual animals. Animals may find it

difficult to visit plants during rains. In this case, link weight decreases; as a result, the networks are

less resilient. In pollination networks, animal network resilience increased with mean annual

temperature. This may also be due to the change in the interaction strength owing to the difference in

climate conditions. By [6], the link weight (interaction strength) in animal networks is defined based

on the number of shared mutual plants. At warmer sites, plant abundance may be higher because

animals (pollinators) may more actively visit plants [43]; as a result, animals may share more mutual

plants. In such a case, link weight increases, and thus the networks are more resilient. Several studies

[28–30] reported that annual precipitation and annual mean temperatures also altered mutualistic

network structure.

However, more careful examinations may be required to understand the relationship between

mutualistic network resilience and environmental factors. For example, the definition of network

resilience (beff ) is still controversial. In particular, two main conditions are assumed, namely, the

network determined by the interaction between pairs of nodes (species) has negligible degree

correlations, where degree indicates the number of links per species, and the node activities are

uniform across nodes on both the drift and the pairwise interaction functions (i.e. the self-dynamics

and interaction dynamics should be considered linear in their variables). These conditions may pose

problems because the variability of the conditions has already been evaluated using real-world

mutualistic network data. Tu et al. [44] demonstrated the limited effects of the conditions on the errors

of the approximation framework; however, they also showed that the conditions are neither sufficient

nor necessary to ensure that their method is applicable in general, and the validity of their results is

not independent of the multi-dimensional system of equations that Gao et al. [6] considered. The

validity of network resilience (i.e. the approach for evaluating ecosystem reliance using ecological

networks) is still debatable in a theoretical context. Further development of the theory is awaited to

evaluate ecological network resilience under more realistic conditions.

The time-scale of the climate change velocities may be overly long in terms of ecological-network

assemblages because the velocities were estimated based on the difference between the current and

last glacial maximum climate conditions according to [27,28,45]. As mentioned previously [27,29], this

may be due to the fact that one of the strongest climatic shifts has occurred since the last glacial

maximum (21 000 BP). The climatic shift has influenced geographical patterns of species endemism

[35], suggesting that species composition (and hence ecological-network assemblages) are more

susceptible to environmental perturbations in areas that have experienced larger climatic shifts.

However, it is also important to consider short-range climate-change velocity. For example, the

velocity of temperature change [46], derived from spatial gradients and multi-model ensemble

forecasts of the rate of temperature increase over the twenty-first century, may be useful; however, the

short-range velocity was not examined owing to the data unavailability.

As mentioned in [26,29], the present analysis has several limitations, as many other analyses of

ecological networks. For example, the interaction strength or weights in mutualistic (bipartite)

networks were not considered, although it is also important to consider a weighted network analysis,

as a different conclusion may be derived from comparisons between weighted networks and binary

networks [41,45]. This is due to the fact that the datasets that were used included a large amount of

binary data, and the amount of data on weighted networks was insufficient for spatial analysis.

Moreover, the definition of interaction weight is not uniform throughout the ecological-network

datasets. Therefore, a binary network approach was adopted to represent all ecological networks, so

that issues resulting from these variations might be avoided. As in [6], the focus was only on

mutualistic ecosystems; thus, the mixture of interaction types (i.e. antagonistic interactions and

mutualistic interactions) was ignored, although it is more representative in real-world ecosystems

[2,47], and the multi-layer nature of ecological networks [48] has recently been intensively

investigated. Network resilience for multiple network types should be considered in the future to

evaluate ecological network resilience under more realistic conditions. The sampling effort may affect

network resilience owing to the species–area relationship [49], which states that the number of
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observed species increases with an increase in the observed area. When the dataset in [29] was

constructed, the relevant information on sampling effort could not be obtained because the data were

not always clearly delineated in the literature. However, this limitation poses little problem because

the effect of the number of species was removed from the statistical analysis, and [30] suggested that

network parameters are mostly independent of sampling effort (observation area and observation

time). In addition, the effects of phylogenetic signals were not considered because species descriptions

in the networks are partially unknown or ambiguous. However, the absence of phylogenetic signals is

unlikely to have a significant effect, as several studies have reported that phylogenetic signals are

weak in ecological networks [45,50]. Moreover, a restricted understanding of interspecific reactions is

a more serious limitation. To avoid these limitations, larger-scale and more highly normalized

databases should be constructed. In this context, data sharing [51] may be important.

Despite the limitations of the theory and data analysis, these findings enhance the understanding of

the structure and resilience of ecosystems. Furthermore, they indicate the possible application of the

theory for biodiversity maintenance and environmental assessment; in particular, the macroscopic

resilience parameter (i.e. network resilience) beff may be a useful index in evaluating ecosystem

resilience against environmental change.
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