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Factors determining habitat variability are poorly understood
despite possible explanations based on genome and
physiology. This is because previous studies only focused
on primary measures such as genome size and body size.
In this study, we hypothesize that specific gene functions
determine habitat variability in order to explore new factors
beyond primary measures. We comprehensively evaluate the
relationship between gene functions and the climate envelope
while statistically controlling for potentially confounding
effects by using data on the habitat range, genome, body size
and metabolism of various mammals. Our analyses show that
the number of proteins and RNAs contained in exosomes
is predominantly associated with the climate envelope. This
finding indicates the importance of exosomes to habitat range
expansion of mammals and provides a new hypothesis for the
relationship between the genome and habitat variability.

1. Introduction
The evolution of species habitat variability is an important topic
for a wide range of research fields, particularly in the context of
predictions related to biodiversity and climate change [1–3]. Thus,
understanding factors that determine habitat use is relevant for
advancing these fields. In particular, it is important to identify the
molecular mechanisms that contribute to determining a species
habitat range, because the behaviour of a species may result from
complex biological systems.

Genetic studies are useful in this context. Specifically,
previous studies have shown the importance of genomic
properties. For example, genome size and the number of
total genes increase with environmental variability because
organisms need more functional (e.g. metabolic) genes in order
to adapt to changing environments (e.g. nutrient variability) [4,5].
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Genetic variation indicates a species ability to adapt to and exploit new environments [6]. Moreover,
recent studies have reported that gene duplication (the number of duplicated genes) positively
contributes to habitat variability in flies [7] and in mammals [8]. This has derived from the proposed
importance of gene duplication to increasing biological robustness and evolvability [9], which are,
themselves, related to habitat variability.

However, these previous studies have limitations. In particular, they focused only on primary
measures of genomic information, such as genome size and the number of genes. The association
between gene duplication and habitat variability was concluded in Euarchontoglires, but not in
all mammals whose genomes were available [8]. In order to explore new factors beyond these
primary measures, a more careful investigation is required. In this study, we hypothesized that
specific functional categories determine habitat variability rather than primary genomic measures. As
previous studies [10–14] have mentioned, the genome encodes several types of biological functions.
The relationship between the number of functional genes and primary genomic measures (e.g. genome
size and the number of total genes) differ according to functional category (e.g. as defined by Gene
Ontology [15]). This suggests that genes in a specific functional category increase or decrease to acquire
biological functions.

Within this context, we also need to consider the effect of metabolic rate and body size as it remains
possible that the relationships between genomic measures and species habitat variability are spurious
correlations, which result from the difference between metabolic rate and body size. Mass-specific
metabolic rate, Bc, is the oxygen consumption rate per unit body mass and is roughly equal to the
rate at the cellular level. It correlates to the number of total genes, the number of genes in a specific
functional category [12,16] and also to genetic variation [17]. This rate differs substantially among
animal species and is specifically, negatively associated with body size, M. This is known as Kleiber’s
Law or the allometric scaling of metabolic rate [18–20]: Bc ∝ M−1/4. The mutation rate and generation
time affect genetic events (e.g. gene duplication and genetic variation). The mutation rate decreases
with body size [21,22] because of a decrease in mass-specific metabolic rate (or avoidance of oxidative
DNA damage [23]) and an increase in the generation time [24]. These facts indicate the importance of
taking into account (i.e. correcting for) the metabolic rate when evaluating relationships with genomic
measures [16]. More importantly, metabolic rate and body size determine animal space use because they
are related to the energy required for moving [25]. Space use indicates the potential of habitat range
expansion. This fact suggests that metabolic rate and body size also influence species habitat variability.

We aimed to comprehensively explore the functional categories of genes beyond earlier (possible)
factors for explaining habitat variability in mammals. We collected the genomic data, spatial data,
metabolic rates and body sizes of mammals from databases and the literature. We then evaluated the
relationships between gene functions and habitat variability by considering the effects of other factors,
such as primary genomic measures and metabolic rate, by using phylogenetic comparative methods.

2. Material and methods
2.1. Habitat variability
Our method was similar to that reported in a previous study [8] which considered the climate envelope
as a score of habitat variability. The climate envelope indicates the temperature range, precipitation and
other climatic parameters in the habitat area of mammals and is calculated based on 19 bioclimatic
variables (www.worldclim.org/bioclim) using principal component analysis (PCA). The spatial data on
the habitat areas of terrestrial mammals were downloaded from the International Union for Conservation
of Natural Resources Red List website (www.iucnredlist.org/technical-documents/spatial-data) on 26
August 2016. Climate data within habitat areas at a spatial resolution of 10 min of a degree were
downloaded from the WorldClim database (v. 1.4, release 3) [26] (www.worldclim.org) using R software
(v. 3.3.1) (www.R-project.org) and R-package raster (v. 2.5–8). The PCA showed that the first two principal
components (PCs) explained 99.6% of the total variance; the contributions of PC1 and PC2 were 98.1%
and 1.5%, respectively. We considered 14 715 (=981 × 15) cells to weigh the relative contributions of PC1
and PC2 when estimating the climate envelope. The climate envelope was defined as the number of
overlapping points in the 14 715 cell grids.

We also considered a different definition of habitat variability: habitat diversity. According to a
previous study [8], habitat diversity is defined by the Köppen–Geiger climate classification in species

www.worldclim.org/bioclim
www.iucnredlist.org/technical-documents/spatial-data
www.worldclim.org
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habitat areas using the Brillouin Index, a diversity measure which is robust to sample size. The Köppen–
Geiger climatic classification map (data observed between 1976 and 2000) required to calculate the habitat
diversity was downloaded online (koeppen-geiger.vu-wien.ac.at/shifts.htm) on 3 January 2016.

2.2. Genome, metabolic rate and body mass
We selected mammalian species whose genomes were available in the Kyoto Encyclopaedia of Genes and
Genomes (KEGG) database [27] for use in the KEGG BRITE Functional Hierarchy (see §2.3). The genome
statistics (i.e. genome size, G (bp) and the number of total genes, Ng) and protein sequence data of the
species were obtained from the KEGG database on 25 August 2016. The number of duplicated genes, Nd,
was estimated according to a previous study [8]. We performed an all-against-all Basic Local Alignment
Search Tool search for all protein sequences. Homologous genes in the same species whose E < 10–5 and
query coverage > 30% were defined as duplicated genes. We collected data on mass-specific metabolic
rates Bc (W g−1) and body mass M (g) from our previous studies [12,16]. The data for 32 mammalian
species are available in the electronic supplementary material, table S1.

2.3. Functional categories of genes
In our previous studies [12,16], we used the KEGG BRITE Functional Hierarchy [27] (www.kegg.jp/
kegg/brite.html) for calculating the number of genes in functional categories (NOGFs). In this study, we
did not consider Gene Ontology (GO) [15] as a definition of functional category because there were fewer
organisms whose GO annotations were completed, compared to the KEGG BRITE Functional Hierarchy.
We obtained data on the relationships between functional category and gene identifiers of species, S, from
the KEGG FTP website (ftp.bioinformatics.jp/kegg/brite/organisms/S/) on 25 August 2016, where S
corresponds to the KEGG organism identifier (www.genome.jp/kegg/catalog/org_list.html). In total,
we considered 384 functional categories (electronic supplementary material, table S1).

2.4. Statistical analysis
To evaluate the contribution of each factor to the climate envelope, we performed a phylogenetic
multivariate analyses using R (v. 3.3.2). Ideally, we would have used a direct phylogenetic regression
model (e.g. phylogenetic generalized least squares) for all 389 explanatory variables. However, we
could not perform such an analysis in this study because of the combinatorial explosion in model
selection and the multicollinearity that mainly arises from gene overlap among functional categories
or the hierarchical organization of functional categories [12,16]. In fact, we were unable to perform the
phylogenetic generalized least squares using the gls function in the R-package nlme (v. 3.1–128) because
of singularities in the regression model. As mentioned in our previous study [12], this is a particular
problem with GO analyses. To avoid this problem as much as possible, we considered parameter
selection using a phylogenetic version of the least absolute shrinkage and selection operator (LASSO)
method and completed the statistical analysis using phylogenetic generalized least squares.

To identify candidates of functional categories associated with the climate envelope, we first
considered the LASSO method that would be useful both for parameter selection and for regularization
in order to increase the interpretability of the regression model for finding significant variables [28].
To remove any phylogenetic effects from the association between biological variables, phylogenetically
independent contrasts (PICs) of the variables were computed from phylogenetic trees using the pic
function in the R-package ape (v. 3.5). According to previous studies [8,16,29] (and also for comparison
with the previous study [8]), the mammalian phylogenetic tree (electronic supplementary material,
figure S1) used in the analyses was constructed using the matrix extracellular phosphoglycoprotein
precursor gene, downloaded from the KEGG database on 29 August 2016. We performed the parameter
selection using the LASSO method using the cv.glmnet and glmnet functions in the R-package glmnet
(v. 2.0.5).

To control for confounding effects, we directly performed a phylogenetic regression analysis using
the gls function of the R-package nlme and the phylogenetic tree. Specifically, we constructed full models
encompassing number of genes in exosomes (NOGFs) of the identified candidates, Ng, Nd, G, M and Bc,
and selected the best model using the sample-size-corrected version of the Akaike information criterion
(AICc). To avoid model selection bias, we also adopted a model-averaging approach [30,31]. We obtained
averaged models in the top 95% confidence set using the model.avg function in the R-package MuMIn
(v. 1.15.6). Climate envelope was square-root transformed for all analyses. The contribution (i.e. non-zero
estimate) of NOGF to the climate envelope was completed only when the associated p < 0.01.

www.kegg.jp/kegg/brite.html
www.kegg.jp/kegg/brite.html
www.genome.jp/kegg/catalog/org_list.html
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Figure 1. A scatter plot of PICs in the number of genes in the functional category Exosome (NOGFExosome) versus PICs in the climate
envelope. The solid line is the regression line (R2 = 0.54, p= 2.4× 10–6).
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Figure 2. Scatter plots of PICs in genomic measures versus PICs in the climate envelope. (a) Genome size (R2 = 0.27, p= 0.0030),
(b) number of total genes (R2 = 0.034, p= 0.32), (c) number of duplicated genes (R2 = 0.015, p= 0.51), (d) body mass (R2 = 0.017,
p= 0.48), and (e) mass-specific metabolic rate (R2 = 0.038, p= 0.30).

3. Results
After performing the LASSO method, only the functional category of Exosome was selected (electronic
supplementary material, table S2). In particular, we found that the number of genes in exosomes
(NOGFExosome) was positively associated with the climate envelope (figure 1; the coefficient of
determinant in the linear regression R2 = 0.54, the associated p-value = 2.4 × 10–6). As shown in figure 2,
however, the climate envelope was still positively correlated with the number of total genes (figure 2a;
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Table 1. The influences of explanatory variables on the climate envelope. The results of the full model, best model and averaged model
are shown. (NOGFExosome denotes the number of genes in the functional category of Exosome. Ng and Nd represent the number of total
genes and duplicated genes, respectively. Bc indicates mass-specific metabolic rate. s.e. is the standard error.)

full model best model averaged model

variable estimate s.e. p-value estimate s.e. p-value estimate s.e. p-value

NOGFExosome 0.70 0.18 6.3× 10–4 0.70 0.14 5.3× 10–5 0.74 0.17 7.8× 10–6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G –0.081 0.331 0.81 0.032 0.33 0.92
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ng 0.27 0.19 0.16 0.23 0.12 0.054 0.24 0.14 0.080
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nd –3.7× 10–6 9.9× 10–5 0.97 4.1× 10–5 9.7× 10–5 0.67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

body mass –4.8× 10–3 0.59 0.99 0.047 0.30 0.88
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bc –0.085 0.54 0.88 –0.055 0.27 0.84
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AICc 97.5 84.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R2 = 0.27, p = 0.0030); whereas the correlation between the climate envelope and the following other
measures were hardly conclusive: genome size (figure 2b; R2 = 0.034, p = 0.32), number of duplicated
genes (figure 2c; R2 = 0.015, p = 0.51), body mass (figure 2d; R2 = 0.017, p = 0.48) and mass-specific
metabolic rate (figure 2e; R2 = 0.038, p = 0.30).

These results indicate that the spurious contribution of exosomal genes to the climate envelope
remains possible. To control for potentially confounding effects, we performed a phylogenetic multiple
regression analysis. The full model, best model and averaged model indicated that the number of genes
in the functional category of Exosome (i.e. exosomal genes) were the main contributor to the climate
envelope (table 1).

4. Discussion
The main result of this study is the association between the number of genes that code for proteins
and RNAs in exosomes and habitat variability in mammals. The effect of the exosome is independent
of the other genomic factors, physiological parameters and phylogenetic relationships. It is the number
of exosomal genes rather than the other genomic and physiological factors that affects species habitat
variability. A previous study [8] emphasized the importance of gene duplication to habitat variability,
but limited to Euarchontoglires. However, the contribution of exosomes to habitat variability was
concluded for all mammals. This fact also indicates a greater importance of exosomes to habitat
range expansion.

We also confirmed that habitat variability is positively associated with the number of total genes
although the number of total genes was a confounding variable. These results are near-consistent with
the findings of previous studies [4,5]: that the redundancy of genes enhance biological robustness and
that it increases species habitat variability. However, we could not conclude any relationship between
genome size and habitat variability. This may be because the previous studies focused on prokaryotes
whereas this study focused on mammals. On the other hand, we concluded that metabolic rate and body
size hardly influence species habitat variability. This result suggests that the hypothesis that metabolic
rate and body size determine habitat variability because of the wider (relative) space use of animals with
smaller body sizes and faster mass-specific metabolic rates is barely accepted.

Although the role that exosomes play in biology is not yet well understood [32], the observed
association may be because exosomes act as carriers for intercellular communication [33]. Exosomes
are small endocytic vesicles that can enhance communication by transporting bioactive molecules (e.g.
proteins and RNAs, including non-coding RNAs) between different cells. Cell-to-cell communication
allows for the coordination of cell functions, thus plays an important role in the development and
environmental adaptation of multicellular organisms [34]. The number of proteins and RNAs involved
in exosomes is linked to the strength and promptness of cell-to-cell communication. That is, more
regulatory genes involved in exosome circulation help to fine-tune communication between cells in a
wider spectrum of environmental conditions. From these facts, we can hypothesize that the number of
exosomal genes influences habitat variability in mammals.
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The contribution of exosomal genes can also be discussed in a different context. Exosomes play an

important role in diseases (cancer, in particular) by transporting bioactive molecules such as non-coding
RNAs [35,36]. Specifically, microRNAs, which are a type of non-coding RNA, help to confer robustness
to biological processes by maintaining transcriptional processes [37]. Such biological robustness may be
linked to habitat variability. This also indicates the importance of exosomes to habitat variability because
exosomes also transport microRNAs between cells.

Our study has some general limitations. For example, we only considered organisms for which
genome sequences were completed. Moreover, our findings depended significantly on the quality
of genome annotation. In particular, there are limitations to our phylogenetic comparative analysis.
A phylogenetic comparative analysis assumes a Brownian motion-like evolution of biological traits
on a phylogenetic tree with accurate branch lengths, which may result in a misleading conclusion.
For example, statistical power decreases when a dataset is reduced in size following phylogenetic
corrections [38]. In particular, our dataset contained only a few samples for mammals, so it may fall
into that situation. Thus, the continued sequencing of genomes from a wide range of organisms will be
important. In addition to this, the effects of genetic variation were not considered in this study because of
the limited amount of available data. The development of high-throughput sequencing techniques may
resolve these problems.

The definition of habitat variability is also controversial. In accordance with previous studies [7,8],
we also considered climate envelope as a definition of habitat variability. However, it was limited to the
context of climatic niche width. We may need to consider alternative definitions. We obtained similar
conclusions when using habitat diversity [8] as defined by the Köppen–Geiger climate classification,
which is based not only on temperature and precipitation but also on vegetation, instead of the climatic
envelope. This was particularly true for the positive relationship between habitat diversity and the
number of exosomal genes (R2 = 0.42, p = 8.7 × 10–5; electronic supplementary material, figure S2). This
result reinforces the importance of exosomes to habitat variability.

To avoid inevitable technical problems [12,16] (e.g. combinatorial explosion and singularities in the
regression model), we used the LASSO regression. However, our analysis might not be complete. We
might have overlooked important gene functions because LASSO may pick only one or a few of the
variables that are related to some extent to the response variable and then shrinks the rest to 0 when
the explanatory variables are highly correlated [28]. To avoid this limitation, for example, we may have
considered the elastic-net and relaxed LASSO. We did not use these methods because they required
higher computational costs (i.e. more parameters needing to be tuned) and because the interpretation
of the model can become difficult. Alternative statistical methods may be required for further
investigation.

Despite these limitations, we believe in the importance of our finding (i.e. exosome hypothesis).
This finding enhances our understanding of the evolution of habitat ranges in mammals. Moreover,
it indicates the possibility of estimation and evaluation of not only disease but also species habitat
variability by using exosome sequencing. Exosome sequencing is well used in medical sciences [39] (e.g.
medical diagnosis). Similarly, we may be able to perform a diagnostic on ecosystems (e.g. biodiversity
and extinction risk) through this sequencing. Sequencing analyses are now beginning to be applied in
ecology (e.g. in population ecology [40] and identifying species–species interactions [41]). We suggest
that the finding of this study be applied to these research fields.

Data accessibility. The datasets supporting this article have been uploaded as the electronic supplementary material. The
datasets are also deposited at Dryad (http://dx.doi.org/10.5061/dryad.15500) [42].
Authors’ contributions. K.T. conceived and designed the study. K.T. and M.I. prepared the data and performed data
analysis. K.T. and M.I. interpreted the results. K.T. drafted the manuscript. K.T. and M.I. gave the final approval
for publication.
Competing interests. We have no competing interests.
Funding. This study was supported by a Grant-in-Aid for Young Scientists (A) from the Japan Society for the Promotion
of Science (no. 25700030).

References
1. Bridle JR, Vines TH. 2007 Limits to evolution at

range margins: when and why does adaptation fail?
Trends Ecol. Evol. 22, 140–147. (doi:10.1016/j.tree.
2006.11.002)

2. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig
C, Pounds JA. 2003 Fingerprints of global warming
on wild animals and plants. Nature 421, 57–60.
(doi:10.1038/nature01333)

3. Roy K, Hunt G, Jablonski D, Krug AZ, Valentine JW.
2009 A macroevolutionary perspective on species
range limits. Proc. R. Soc. B 276, 1485–1493.
(doi:10.1098/rspb.2008.1232)

http://dx.doi.org/10.5061/dryad.15500
http://dx.doi.org/10.1016/j.tree.2006.11.002
http://dx.doi.org/10.1016/j.tree.2006.11.002
http://dx.doi.org/10.1038/nature01333
http://dx.doi.org/10.1098/rspb.2008.1232


7

rsos.royalsocietypublishing.org
R.Soc.opensci.4:170162

................................................
4. Sabath N, Ferrada E, Barve A, Wagner A. 2013

Growth temperature and genome size in bacteria
are negatively correlated, suggesting genomic
streamlining during thermal adaptation. Genome
Biol. Evol. 5, 966–977. (doi:10.1093/gbe/
evt050)

5. Bentkowski P, Van Oosterhout C, Mock T. 2015 A
model of genome size evolution for prokaryotes in
stable and fluctuating environments. Genome
Biol. Evol. 7, 2344–2351. (doi:10.1093/gbe/
evv148)

6. Barrett R, Schluter D. 2008 Adaptation from
standing genetic variation. Trends Ecol. Evol.
23, 38–44. (doi:10.1016/j.tree.2007.09.
008)

7. Makino T, Kawata M. 2012 Habitat variability
correlates with duplicate content of Drosophila
genomes.Mol. Biol. Evol. 29, 3169–3179.
(doi:10.1093/molbev/mss133)

8. Tamate SC, Kawata M, Makino T. 2014 Contribution
of nonohnologous duplicated genes to high
habitat variability in mammals.Mol. Biol.
Evol. 31, 1779–1786. (doi:10.1093/molbev/
msu128)

9. Wagner A. 2008 Gene duplications, robustness and
evolutionary innovations. BioEssays 30, 367–373.
(doi:10.1002/bies.20728)

10. Parter M, Kashtan N, Alon U. 2007 Environmental
variability and modularity of bacterial metabolic
networks. BMC Evol. Biol. 7, 169. (doi:10.1186/1471-
2148-7-169)

11. Hosseini S-R, Martin OC, Wagner A. 2016 Phenotypic
innovation through recombination in genome-scale
metabolic networks. Proc. R. Soc. B 283, 20161536.
(doi:10.1098/rspb.2016.1536)

12. Takemoto K, Kawakami Y. 2015 The proportion of
genes in a functional category is linked to
mass-specific metabolic rate and lifespan. Sci. Rep.
5, 10008. (doi:10.1038/srep10008)

13. Koonin EV. 2011 Are there laws of genome
evolution? PLoS Comput. Biol. 7, e1002173.
(doi:10.1371/journal.pcbi.1002173)

14. Molina N, van Nimwegen E. 2009 Scaling laws in
functional genome content across prokaryotic
clades and lifestyles. Trends Genet. 25, 243–247.
(doi:10.1016/j.tig.2009.04.004)

15. Ashburner M et al. 2000 Gene ontology: tool for the
unification of biology. Nat. Genet. 25, 25–29.
(doi:10.1038/75556)

16. Takemoto K, Ii M, Nishizuka SS. 2016 Importance of
metabolic rate to the relationship between the
number of genes in a functional category and body

size in Peto’s paradox for cancer. R. Soc. open sci. 3,
160267. (doi:10.1098/rsos.160267)

17. Wone B, Sears MW, Labocha MK, Donovan ER,
Hayes JP. 2009 Genetic variances and covariances of
aerobic metabolic rates in laboratory mice. Proc. R.
Soc. B 276, 3695–3704. (doi:10.1098/rspb.2009.
0980)

18. Savage VM, Gillooly JF, WoodruffWH, West GB,
Allen AP, Enquist BJ, Brown JH. 2004 The
predominance of quarter-power scaling in biology.
Funct. Ecol. 18, 257–282. (doi:10.1111/j.0269-8463.
2004.00856.x)

19. West GB, WoodruffWH, Brown JH. 2002 Allometric
scaling of metabolic rate frommolecules and
mitochondria to cells and mammals. Proc. Natl
Acad. Sci. USA 99, 2473–2478. (doi:10.1073/pnas.
012579799)

20. Speakman JR. 2005 Body size, energy metabolism
and lifespan. J. Exp. Biol. 208, 1717–1730.
(doi:10.1242/jeb.01556)

21. Gillooly JF, McCoy MW, Allen AP. 2007 Effects of
metabolic rate on protein evolution. Biol. Lett. 3,
655–659. (doi:10.1098/rsbl.2007.0403)

22. Gillooly JF, Allen AP, West GB, Brown JH. 2005 The
rate of DNA evolution: effects of body size and
temperature on the molecular clock. Proc. Natl Acad.
Sci. USA 102, 140–145. (doi:10.1073/pnas.
0407735101)

23. Adelman R, Saul RL, Ames BN. 1988 Oxidative
damage to DNA: relation to species metabolic rate
and life span. Proc. Natl Acad. Sci. USA 85,
2706–2708. (doi:10.1073/pnas.85.8.2706)

24. Martin AP, Palumbi SR. 1993 Body size, metabolic
rate, generation time, and the molecular clock.
Proc. Natl Acad. Sci. USA 90, 4087–4091.
(doi:10.1073/pnas.90.9.4087)

25. Jetz W, Carbone C, Fulford J, Brown JH. 2004 The
scaling of animal space use. Science 306, 266–268.
(doi:10.1126/science.1102138)

26. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis
A. 2005 Very high resolution interpolated climate
surfaces for global land areas. Int. J. Climatol. 25,
1965–1978. (doi:10.1002/joc.1276)

27. Kanehisa M, Sato Y, Kawashima M, Furumichi M,
Tanabe M. 2015 KEGG as a reference resource for
gene and protein annotation. Nucleic Acids Res. 44,
D457–D462. (doi:10.1093/nar/gkv1070)

28. Wang S, Nan B, Rosset S, Zhu J. 2011 Random
LASSO. Ann. Appl. Stat. 5, 468–485. (doi:10.1214/10-
AOAS377)

29. Takemoto K. 2016 Habitat variability does not
generally promote metabolic network modularity

in flies and mammals. Biosystems 139, 46–54.
(doi:10.1016/j.biosystems.2015.12.004)

30. Posada D, Buckley T. 2004 Model selection and
model averaging in phylogenetics: advantages of
Akaike information criterion and Bayesian
approaches over likelihood ratio tests. Syst. Biol. 53,
793–808. (doi:10.1080/10635150490522304)

31. Takemoto K, Kajihara K. 2016 Human impacts and
climate change influence nestedness and
modularity in food-web and mutualistic networks.
PLoS ONE 11, e0157929. (doi:10.1371/journal.pone.
0157929)

32. Edgar JR. 2016 Q&A: what are exosomes, exactly?
BMC Biol. 14, 46. (doi:10.1186/s12915-016-0268-z)

33. Simons M, Raposo G. 2009 Exosomes–vesicular
carriers for intercellular communication. Curr. Opin.
Cell Biol. 21, 575–581. (doi:10.1016/j.ceb.2009.
03.007)

34. Mittelbrunn M, Sánchez-Madrid F. 2012 Intercellular
communication: diverse structures for exchange of
genetic information. Nat. Rev. Mol. Cell Biol. 13,
328–335. (doi:10.1038/nrm3335)

35. Azmi AS, Bao B, Sarkar FH. 2013 Exosomes in cancer
development, metastasis, and drug resistance: a
comprehensive review. Cancer Metastasis Rev. 32,
623–642. (doi:10.1007/s10555-013-9441-9)

36. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. 2015
Exosomes in cancer: small particle, big player.
J. Hematol. Oncol. 8, 83. (doi:10.1186/s13045-015-
0181-x)

37. Ebert MS, Sharp PA. 2012 Roles for MicroRNAs in
conferring robustness to biological processes. Cell
149, 505–524. (doi:10.1016/j.cell.2012.04.005)

38. Griffith OL, Moodie GEE, Civetta A. 2003 Genome
size and longevity in fish. Exp. Gerontol. 38,
333–337. (doi:10.1016/S0531-5565(02)00204-8)

39. Rabbani B, Tekin M, Mahdieh N. 2014 The promise of
whole-exome sequencing in medical genetics.
J. Hum. Genet. 59, 5–15. (doi:10.1038/jhg.2013.114)

40. Takahara T, Minamoto T, Yamanaka H, Doi H,
Kawabata Z. 2012 Estimation of fish biomass using
environmental DNA. PLoS ONE 7, e35868.
(doi:10.1371/journal.pone.0035868)

41. Toju H, Guimarães PR, Olesen JM, Thompson JN.
2014 Assembly of complex plant–fungus networks.
Nat. Commun. 5, 5273. (doi:10.1038/ncomms6273)

42. Takemoto K, Imoto M. 2017 Data from: Exosomes in
mammals with greater habitat variability contain
more proteins and RNAs. Dryad Digital Repository.
(http://dx.doi.org/10.5061/dryad.15500)

http://dx.doi.org/10.1093/gbe/evt050
http://dx.doi.org/10.1093/gbe/evt050
http://dx.doi.org/10.1093/gbe/evv148
http://dx.doi.org/10.1093/gbe/evv148
http://dx.doi.org/10.1016/j.tree.2007.09.008
http://dx.doi.org/10.1016/j.tree.2007.09.008
http://dx.doi.org/10.1093/molbev/mss133
http://dx.doi.org/10.1093/molbev/msu128
http://dx.doi.org/10.1093/molbev/msu128
http://dx.doi.org/10.1002/bies.20728
http://dx.doi.org/10.1186/1471-2148-7-169
http://dx.doi.org/10.1186/1471-2148-7-169
http://dx.doi.org/10.1098/rspb.2016.1536
http://dx.doi.org/10.1038/srep10008
http://dx.doi.org/10.1371/journal.pcbi.1002173
http://dx.doi.org/10.1016/j.tig.2009.04.004
http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1098/rsos.160267
http://dx.doi.org/10.1098/rspb.2009.0980
http://dx.doi.org/10.1098/rspb.2009.0980
http://dx.doi.org/10.1111/j.0269-8463.2004.00856.x
http://dx.doi.org/10.1111/j.0269-8463.2004.00856.x
http://dx.doi.org/10.1073/pnas.012579799
http://dx.doi.org/10.1073/pnas.012579799
http://dx.doi.org/10.1242/jeb.01556
http://dx.doi.org/10.1098/rsbl.2007.0403
http://dx.doi.org/10.1073/pnas.0407735101
http://dx.doi.org/10.1073/pnas.0407735101
http://dx.doi.org/10.1073/pnas.85.8.2706
http://dx.doi.org/10.1073/pnas.90.9.4087
http://dx.doi.org/10.1126/science.1102138
http://dx.doi.org/10.1002/joc.1276
http://dx.doi.org/10.1093/nar/gkv1070
http://dx.doi.org/10.1214/10-AOAS377
http://dx.doi.org/10.1214/10-AOAS377
http://dx.doi.org/10.1016/j.biosystems.2015.12.004
http://dx.doi.org/10.1080/10635150490522304
http://dx.doi.org/10.1371/journal.pone.0157929
http://dx.doi.org/10.1371/journal.pone.0157929
http://dx.doi.org/10.1186/s12915-016-0268-z
http://dx.doi.org/10.1016/j.ceb.2009.03.007
http://dx.doi.org/10.1016/j.ceb.2009.03.007
http://dx.doi.org/10.1038/nrm3335
http://dx.doi.org/10.1007/s10555-013-9441-9
http://dx.doi.org/10.1186/s13045-015-0181-x
http://dx.doi.org/10.1186/s13045-015-0181-x
http://dx.doi.org/10.1016/j.cell.2012.04.005
http://dx.doi.org/10.1016/S0531-5565(02)00204-8
http://dx.doi.org/10.1038/jhg.2013.114
http://dx.doi.org/10.1371/journal.pone.0035868
http://dx.doi.org/10.1038/ncomms6273
http://dx.doi.org/10.5061/dryad.15500

	Introduction
	Material and methods
	Habitat variability
	Genome, metabolic rate and body mass
	Functional categories of genes
	Statistical analysis

	Results
	Discussion
	References

