_論 文—

超小型衛星「鳳龍弐号」の熱設計・検証手法と軌道データ解析*1 Thermal Design and Verification Method and Orbit Data Analysis of Horyu-2

增井博一^{*2,*3}·世利祐樹^{*3,*4}·濱田朗充^{*3,*5}·趙孟佑^{*3} Hirokazu MASUI, Yuki SERI, Akimitsu HAMADA and Mengu CHO

Key Words: Small Satellite, Thermal Design and Analysis, On-orbit Data

Abstract : This paper describes the thermal design method of Horyu-2. Horyu-2 was developed by Kyushu Institute of Technology. The project started in 2010 and Horyu-2 was launched by H-2A of JAXA on May 18 2012. At present, Horyu-2 is carrying out many missions and transferring on-orbit data. Horyu-2 orbits 680 km with sun-synchronous polar orbit. Feature of Horyu-2 are lightweight (7.1 kg) and large surface (30 cm cube) compared with a conventional cube-sat. Thermal design is needed to keep the temperature within the safe range. We conducted thermal analysis in a step-by-step in each phase. This paper reviews the thermal design processes and discusses on-orbit data acquired after launch.

1. はじめに

大学,中小企業を中心として超小型人工衛星の開発が盛 んに行われている^{1,2)}. JAXAのH-2Aによる積極的な相 乗り衛星の打ち上げサポートもあり,近年では特に盛んに 開発が行われている.九州工業大学でも,学生を中心とし 2010年から「鳳龍弐号」が開発され,2012年5月18日に 打ち上げられた.鳳龍弐号は高度680kmの準太陽同期軌 道を周回し,サイズは31.5 cm×31 cm×35 cm,重量は 7.1 kgである.この重量面積比はH-2A相乗り超小型衛星と してJAXAにより提示された制限に基づいており,サイズ は前述の重量の条件で25年以内に大気抵抗によるde-orbit を可能にするように決定されている.姿勢制御については 沿磁力線制御を利用している.従って,これまでに開発さ れた超小型衛星^{3,4)}に比べ面積,熱容量,姿勢制御法が大 きく異なる.

大学で行う超小型衛星の開発では、電気回路、基盤設計 は実験室の装置を使用すれば十分可能であり、開発は比較 的容易である.しかし、構体設計、熱設計については事前 の解析が必要であり、専用ソフトウェア(例えば、構体設 計では Nastran,熱設計では Thermal Desktop[®])を使用 することが多い.ソフトウェアの導入に掛る時間、費用が プロジェクトに与える影響は大きい.従って、できるだけ

*3 九州工業大学

自作プログラムで対応することが望ましい.しかし,特に 熱解析については,太陽光強度などの宇宙環境条件,軌道, 姿勢,真空中での輻射計算,異種材質間の熱伝導係数を取 り扱う必要があり,初経験の学生にとって熱設計は容易で はない.

鳳龍弐号では前述の特異な重量面積比もあって,熱解析 を実施する必要があり,学生が Matlab[®] によるプログラ ムを作成して熱解析を行った.軌道上結果を見る限り,節 点数の限られた自作プログラムを用いた場合でも,熱平衡 試験による検証と組み合わせることで,充分な精度をもた せることができる.

ー連の開発の履歴,手法は今後も開発される大学衛星で は共有されるべき情報と考える.本論文の目的は,プロジェ クト開始当初からの熱設計・検証の履歴を振り返り,大学 生の技術レベルでも実施可能で,超小型衛星の価値に見合 うコストと早さをもった熱設計・検証手法を提唱すること にある. 鳳龍弐号から得られた軌道データと打ち上げ前の 予測との比較を行う.

2. 衛星概要

第1図に鳳龍弐号の FM 外観図を, 第2図に座標軸の 定義と内部構造図を示す.第1表は衛星の諸元を示してい る. 鳳龍弐号のメインミッションは太陽電池による 300 V 発電である. ±Y 面にスフェラソーラアレイ[®]太陽電池を 搭載し,これにより放電試験用太陽電池が 300 V にバイア スされ,軌道上でのプラズマ環境での放電試験が可能とな る.その他にもデブリセンサ,帯電モニタ,表面電位計等 が搭載されている.第3図に沿磁力線制御のイメージ図を 示す.衛星内部には磁石が設置されており,地磁気との干 渉によって衛星の姿勢が制御される⁵⁾.

^{*1 © 2016} 日本航空宇宙学会

平成 24 年 11 月 22 日,第 56 回宇宙科学技術連合講演会にて発 表

平成 28 年 2 月 4 日原稿受付

^{*2} 連絡先著者 (Corresponding author): masui@ele.kyutech.ac.jp

^{*4} 現 株式会社日立製作所

^{*5} 現 三菱電機株式会社

第1図 鳳龍弐号外観図

第2図 鳳龍弐号の座標軸の定義(上段)と内部構造(下段)

第1表	鳳龍弐号諸元

Weight	$7.1\mathrm{kg}$
Size	$350 \times 310 \times 315 \mathrm{mm} (X \times Y \times Z)$
Orbit	SSO, 680 km, 98.5 deg
Solar cell	Double junction
Battery (1 cell)	Ni-Mh, 1.2V, 5700mAh
Frequency	Uplink : $145 \mathrm{MHz}$
	Downlink: 437 MHz
Attitude control	Magnetic field-aligned control

分離機構としては PAF239M を使用し, ロケットからの 分離後も衛星下部の – X 面にフレームが残る. 通信として はアマチュア無線バンドを使用し, +X 面に送受信用のモ ノポールアンテナとダイポールアンテナを搭載している.

19

第4図 開発(解析,実験)の流れ

3. 鳳龍弐号熱設計・検証手法

第4図は熱設計と検証の流れを示している.2010年より 開発を開始した鳳龍弐号では各設計フェーズにおいて熱解 析手法を変更し,解析の精度の向上を行ってきた.特に鳳 龍弐号は従来の1U(10 cm 角)の衛星と比べ,表面積が大 きく,熱容量が小さいために温度の変化が大きい.従って, 温度変化が大きい条件でも,搭載機器に要求される動作温 度範囲を維持するような熱設計が必要となる.構造として は中央にある4本の支柱の内部に各基板,バッテリー,無 線機が搭載される.設計では,基盤と支柱の結合方法,外 部パネルと中央支柱の結合方法,外部パネルの熱光学特性, バッテリーヒーターの必要性等を検討した.

STM 製作以前の段階では1節点での熱解析を主に行い 軌道上での衛星の平均温度を算出し,熱光学特性の決定と 各コンポーネントの要求温度の指針とした.1節点の熱解 析で使用した基礎式は^{6,7)},

$$C_{i} \frac{\mathrm{d}T_{i}}{\mathrm{d}t} = Q_{i} - \sum_{j=1}^{n} D_{ij}(T_{i} - T_{j}) - \sum_{j=1}^{n} R_{ij}\sigma(T_{i}^{4} - T_{j}^{4})$$

である.ここで、 C_i :節点iの熱容量 (J/K)、 T_i, T_j :節 点i, jの温度 (K)、 Q_i :節点iの熱入力 (W)、 D_{ij} :節点 i, j間の伝導コンダクタンス (W/K)、 σ :ステファン・ボ ルツマン定数、 R_{ij} :節点i, jの放射係数 (m²) である.式

А	bsorptance	Emittance	
Bare aluminum	0.33	0.01	
Alodine	0.10	0.03	
Black coating	0.92	0.87	
第3表	熱環境条件		
	Cold worst	Hot worst	
Sun light flux, W/m^2	1322	1400	
Albedo, -	0.2	0.4	
Earth IR, W/m^2	189	261	
第 4 表	要求温度範囲		
》 	文水血/文和四	4	
Required temperature range			
Circuit board	10.60	2	
-10-60			
Dattery	0-48)	
第5表	1 節点解析結果	:	
Surface property	Cold worst	Hot worst	
	Minimum	Maximum	

第2表 熱光学特性値

Surface p	roperty	Cold worst	Hot worst
+Y $+Z$	$\pm V$	Minimum	Maximum
$\perp \Lambda, \perp Z$	± 1	temp. $^{\circ}\mathrm{C}$	temp. $^{\circ}\mathrm{C}$
Alodine	Black	_9	16
Aloume	coating	-9	10
Baro Al	Black	4	21
Dare Al	coating	4	51
Black	Black	6	19
coating	coating	-0	16

(1) で節点数 n を増加させることで多節点解析の基礎式としても利用可能である.

外面塗装はアルミ未処理,アロジン処理,Z306を選択した.実際には18パターンの計算を行っているが,ここでは 最終的に残った3パターンの計算結果を示す.それぞれの 熱光学特性値(実測値)を第2表に示す.実際には各パネ ルには太陽電池,ミッション機器などが取り付けされてい るため,計算ではそれらの面積比で特性値を平均化して使 用した.外部に取り付けられている太陽電池は±100°Cで も問題がないことが熱サイクル試験で確認されたので,平 均値を使用しても問題がないと判断した.環境条件として は第3表に示すような高温最悪,低温最悪を想定し解析を 行った(最悪値解析).第4表に基盤とバッテリーの要求温 度範囲を示す.この許容温度範囲と解析結果を比較検討す ることとした.

第5表に解析結果を示す.バッテリーの条件を基準に考 えるとアルミ未処理-黒化処理の組み合わせを選択するこ とになるが,未処理の場合は実軌道上での主に原子状酸素 による劣化での特性値の変化が懸念されるために,未処理 (Bare Al)の条件は使用しない方針とした.以後は第5表 の3パターンの組み合わせで多節点解析を行うこととした.

次に多節点での解析結果について述べる.実際に衛星の 最終的な設計の決定には多節点解析の結果を用いた.この 解析での節点数は12点(外面パネル6,中央支柱4,内部 機器2)である.ここでは表面材料の選定,基盤とバッテ リーの温度の予測を行った.

(272)

第6表 多節点解析結果

Surface p	roperty		Cold worst	Hot worst
$\pm X, \ \pm Z \qquad \pm Y$	$\pm V$	Nodo	Minimum	Maximum
	Node	temp. $^{\circ}\mathrm{C}$	temp. $^{\circ}\mathrm{C}$	
Alodino	Black	Circuit board	-4.5	56.0
Alodine	coating	Battery	-1.3	48.4
Dave Al	Black	Circuit board	4.8	67.1
coa	coating	Battery	7.9	59.6
Black	Black	Circuit board	4.9	60.3
coating	coating	Battery	8.0	52.7

第5図 低温最悪条件解析結果

解析条件は第3表と同様で.熱の入力面については低温 最悪では6面に平均的に熱が入力されている状況,高温最 悪では3面に熱が常に入力されている状況を考える.この 条件設定は沿磁力線制御によって衛星の姿勢が十分に制御 されていない場合を想定しており,衛星の回転が計算より も遅い条件であり,ほぼ回転していない状況を想定してい る.事前の解析で,衛星への熱入力が最大もしくは最小に なる条件を計算し,この状況を選択した.沿磁力線制御を 想定した場合の衛星の回転は軌道1周回中に,X軸周りに は回転せず,Y,Z軸周りに2回転する.従って,Y,Z軸 周りの回転速度は最大で7.3°/min と予測していた.

表面材料は第2図に示す XYZ 各面の塗装を第5表に従い変更し解析を行った. Y, Z 面には高電圧発電用太陽電池, ミッション用太陽電池, 等が設置されており, 各面の 実効的な吸収率, 放射率は面積比に従って平均化されている. 構造については4本の支柱で±X 面を支持し, 同時に 各基盤を支柱にボルト固定する設計である. 接触熱抵抗については予め別の実験で算出した値を使用している.

第6表に表面材料を変更した場合の計算結果を示す.こ れから第4表に示した条件に一番近い組み合わせは $\pm X$ 面, $\pm Z$ 面にアロジン処理, $\pm Y$ 面は黒化処理となった.しか し,この条件でもバッテリーの高温側は条件を満たさない ため改善が必要であった.

表面の処理として,アロジン+黒化処理の組み合わせを 採用した.EMを使用して熱平衡試験を行い,その結果を 用いて熱解析モデルの最終的な調整を行った後に,フライ ト時の温度予測を行った.第5図にバッテリーと基盤の低温 最悪時の解析結果を示す.定常に達した後のバッテリーの 温度範囲は -3~2°C,基盤の温度範囲は -4~4°C であっ

第7図 ジャイロセンサデータ

た. 基盤は許容温度範囲内に収まったが,バッテリーは許容範囲を下回った. 第6図に高温最悪時の解析結果を示す. 高温側は基盤,バッテリー共に許容範囲内に解析温度が収まっていた. 多節点解析の結果として,低温条件時の対策 が必要となった.対策としてバッテリーにガラスエポキシ による断熱,ヒーターの追加を行うこととした. その後,実 際にバッテリボックス単体での熱真空試験を実施し,断熱 性能を確認した.

システムとしては EM, FM モデルにおいて熱真空試験 を実施し⁸⁾,第4表に示す許容温度範囲内で回路基盤が作 動することを確認している.

4. 鳳龍弐号軌道データ

ここからは鳳龍弐号の実際の運用から得られた温度デー タについて議論する.初めに初期運用について述べる.第 7図に初期運用で得られたジャイロセンサのプロファイル を示す.

サンプリングレートは 0.1 sampling/min (10 分に1 回), 精度は ±1 degree/sec である.衛星は 5 月 18 日に打ち上げ られ,初日から電波は受信可能であったが,打ち上げ直後 は回転速度が予測より大きく,衛星の姿勢が安定しなかっ たため通信状況は不安定であった.また,6月5日からデー タが欠損しているが,これは衛星からのデータが更新され ない状態になり,センサデータが得られなかったことによ

21

第8図 外面パネルの温度(軌道データ)

る. 衛星との通信は7月3日に回復したが,12月2日に 同様の故障状態に陥った. この状態異常については,調査 した結果ではOBC で発生したシングルイベント効果に起 因するものと考えられる⁹⁾. データが再取得できるように なった7月3日以降は衛星の回転速度は遅くなり,安定し ていることが確認された.

第8図に外面の温度プロファイルを示す. これらのプロ ファイルは衛星との通信が回復し、衛星の姿勢が安定した と考えられる7月3日以降に取得されたデータである. 軌 道一周周期での温度変動に関して,毎周期の温度データを 重ねた. 衛星復帰後の 2012 年7月2日から軌道 33 周期分 (672~704 周)の外面パネルの温度データである. 側面で ある ±Y, Z 面に関しては、日照時に温度のばらつきが大 きく見られる. Y.Z 面の温度変化幅の違いは、表面処理に よる違いである. Y 面が黒色面, Z 面がアロジン面なので, 黒色面である Y 面の温度変化幅が大きくなっている. それ に対して、上下面である ±X 面に関しては、温度のばらつ きが小さい.これは、主に衛星の姿勢による影響であると 考えられる. 鳳龍弐号は沿磁力線による1軸姿勢制御のた め、機軸方向である ±X 面は軌道周回ごとに一定の姿勢を 保つことができる. 従って, ±X 面に関しては温度のばら つきが小さく,周回ごとに同様の温度変化をしていること がわかる. それに対して、Y, Z 軸方向の回転は制御する ことができないため、日照に入ったと予測される 2940 秒 以降では温度のばらつきが大きい. 衛星は, 一定の周期で 回転はしているが、その回転周期が衛星の軌道周期と一致 していないため、 $\pm Y, Z$ 面の温度にばらつきが出ているも のと思われる.

第9図は各基板の温度を示している.基盤温度は、基盤に

第10図 バッテリー温度データ (軌道データ)

搭載されたジャイロセンサに内蔵されている温度センサに よって取得された値である.温度の範囲は –5°C から 27°C である.第10 図にバッテリーの温度プロファイルを示す. バッテリー温度はサーミスタを使用して 2 カ所計測してい る.バッテリーの温度変化は 7~24°C でバッテリーとして は最適な温度が維持されている.試験の結果を受けて追加 したガラスエポキシの断熱が非常に有効であることを示し ている.運用中,バッテリーの温度が急激に低下するよう な状態には陥っておらず、ヒーターは使用されていない.

5. 考 察

第7表は打ち上げ前の予測温度と打ち上げ後に得られた 軌道上での外面パネル,内部基盤,バッテリーの温度の比 較を示している.この表から,内部基盤について軌道上の データはフライト予測の範囲内に入っており,設計は妥当 だったと言える.バッテリーに関しては,解析はガラスエ ポキシによる断熱の影響を考慮していない.軌道上のバッ テリーの温度の変化の幅が非常に少ないことから,ガラス エポキシによる断熱が非常に有効である.しかし,外面パ ネルについては軌道上の温度は低温,高温側ともに予測温 度外に存在している.これらのデータから解析の時点で想 定した姿勢と実際の姿勢に違いがあることが主な原因と考 えられる.ジャイロセンサデータはサンプリングレートが 低く,高精度ではないため,現在の所,実際の衛星の姿勢 は確定されておらず,当初の想定していた沿磁力線制御が 行われていない可能性もある.

第7表 外面パネルについての解析結果と軌道上データの 温度範囲の比較

Surfac	ce property	Minimum temp. °C	Maximum temp. °C
External	Prediction	-24	50
panel	On-orbit data	-35	66
Satellite	Prediction	-7	44
inside	On-orbit data	-6	27
Battery	Prediction	-3	39
	On-orbit data	7	24

第7表に外面パネル温度範囲の比較の結果を示す. 解析 結果よりも軌道上での温度範囲が広いことがわかり, 解析 で仮定したワーストケースが十分でないことを示している. 特に回転速度についてはジャイロセンサのデータから回転 速度が想定よりも十分に遅いことが考えられる.

従来の積極的に姿勢制御を行わない Cube-sat の回転速度 は回転軸による差はないと考えられるが, 鳳龍弐号の場合 は衛星フレームが下部に設置されており重心が中心から離 れていることや受信用モノポールアンテナが長く回転への 影響が大きいことなどが原因で,これまでの Cube-sat とは 違う回転を行っている可能性が高い. 145 MHz や 435 MHz 帯での通信を行う衛星ではアンテナの長さが姿勢に大きく 影響すると言える.また,沿磁力線制御については想定し ていた回転速度とは大きく違うと考えられるが,磁石の効 果を地上で試験,検証することは難しく,軌道上のデータ から評価することが重要と考えられる.

設計の履歴から考えると、1節点解析の解析結果は軌道 データとの差は少ないとは言えないが、設計の指針、スター ト地点を与えるという意味では有効と言える.また、外面 の熱光学特性を決定する方法としても有効であると言える. 多節点解析の結果から、内部機器特にバッテリーについて は大幅に余裕をもった熱設計であることを示している. 贏 龍弐号の設計指針は、解析ではできる限り厳しい最悪条件 を設定することで、実際のフライトでは各機器の温度は許 容範囲内に収まることを想定している.この設計が可能な 理由は各機器の許容温度が広く、シビアな温度コントロー ルを必要としないことと大電力を消費するような機器が搭 載されていないためである.問題点として、特に高温側で は許容温度からのずれが大きい.過度の最悪条件の設定は 素子選定などについては選択肢を狭めることになる.

設計,フライト予測は12節点での解析によるが,一般的 な充填率の高い衛星(=一体と見なすことが可能)では節 点数はより減らすことが可能と考えられる. 鳳龍弐号は体 積が大きく,内部空間が大きいため,内部を1点と見なす ことは不自然であり,外面パネル6節点と中央支柱4節点 という節点分割を採用している.解析の方法を見直すこと で節点数を減らすことは可能と考えられる.また,充填率 の高い衛星(例えば1U)のケースではより少ない節点でも 予測は可能と考える.これは参考文献4)でも指摘されてお り,節点数をむやみに増加させることは熱設計を困難にす る要因となる.

Design and Test flow

第11図 Cube-sat の熱系の設計,試験の流れ

今回の開発を経て学んだ教訓としては,重要なのは最悪 条件の設定であり,これが温度の上限下限を決める.この 時の条件設定が厳しすぎると利用可能な素子の選択肢や設 計の自由度は少なくなるが,安全側に設計することができ る.機器の許容温度と解析結果に大きな余裕があれば節点 数が少ない場合でも設計に有効な温度予測は可能である.

上記を考慮して,提案する 1U Cube-sat の熱系の設計, 試験の流れを第 11 図に示す.ここで重要な点は熱真空試験 での衛星の動作に重きを置いていることである.通常の設 計のフローに従えば,熱モデルを作成し,試験を実施し後に 熱モデルの精度を向上させ軌道上の温度予測を行う.ここ で姿勢や環境条件などの入力パラメータが必要となる.し かし,鳳龍弐号のように姿勢,回転速度などに不確定な要 素が含まれると,入力パラメータは大きく異なり,予測され る温度が外れる結果となる.しかし,重要となるのは,ワー ストケースを想定した場合の温度環境下での衛星の動作で ある.従って,マージンを大きく取った場合でも,衛星の 動作が実験で十分検証され,動作が保証されていれば信頼 度は向上すると言える.また,現在は多くの 1U Cube-sat がすでに打ち上げられており,十分な温度データが存在し ており、これを活用することでおおよその温度範囲を知る ことが可能である.

6. 結 論

鳳龍弐号の熱設計方法を解説し、実際の軌道データとの 比較を行った.解析方法は節点分割法であり、設計の段階 で1節点から12節点へと解析の方法を改善してきた.軌 道データは12節点の解析結果と比較して、十分に安全な 領域にあることが確認された.衛星の回転速度は予測より 遅く、1°/min以下であり、ほぼ回転していないと言える. 沿磁力線制御を使用する場合の実際の衛星の回転について 理解することは、アンテナ長が影響するような超小型衛星 については特に重要な点であることがわかった.

鳳龍弐号の開発,打ち上げについては JAXA および JAXA 産業連携センターの多大なる御支援と御指導を頂 きました.誠にありがとうございました.

参考文献

- 1) 白坂成功,中須賀真一:ほとよし信頼性工学,第 55 回宇宙科学 技術連合講演会予稿集,3S01,2011.
- Janson, S. W.: 25 Years of Satellites, Paper presented at the 25th Annual AIAA/USU Conference on Small Satelites, SSC11-III-1, 2011.
- 3) Onishi, S., Aso, S., Ohta, H., Murozono, M. and Yasaka, T.: Thermal and Structural Design of QSAT-EOS, Proceedings of 28th International Symposium on Space Technology and Science, ISTS-2011-f-29, 2011.
- 4) Totani, T., Inoue, R., Ogawa, H., Kumar Das, T., Wakita, M. and Nagata, H.: Proposal of Guideline of Thermal Design for Micro and Nano Satellite Pointing to Earth, Proceedings of 29th International Symposium on Space Technology and Science, ISTS-2013-f-17, 2013.
- 5) 姿勢制御研究委員会:人工衛星の力学と制御ハンドブック―基礎 理論から応用技術まで,培風館,東京,2007.
- Gilmore, D. G.: Spacecraft Thermal Control Handbook, The Aerospace Corporation, California, 2002.
- 7) 大島耕一,松下 正,小林康徳,根岸完二,小木曽建:熱設計ハ ンドブック,朝倉書店,東京,1992.
- 8) 濱田朗充, 増井博一, 趙 孟佑:高電圧技術実証衛星「鳳龍弐号」 の熱設計, 日本航空宇宙学会西部支部, 長崎, 2011.
- 9) 趙 孟佑, 増井博一,九州工業大学 衛星開発プロジェクト:超 小型衛星「鳳龍弐号」の試験・検証と軌道上不具合原因究明,航 空宇宙技術, 12 (2013), pp. 17–24.