
sensors

Review

Ultra-Wideband (UWB) Antenna Sensor Based
Microwave Breast Imaging: A Review

Md. Zulfiker Mahmud 1,2, Mohammad Tariqul Islam 2,3,*, Norbahiah Misran 2, Ali F. Almutairi 4

and Mengu Cho 3

1 Department of AIS, Jagannath University, Dhaka 1100, Bangladesh; zulfikerm@siswa.ukm.edu.my
2 Centre of Advanced Electronic and Communication Engineering, Universiti Kebangsaan Malaysia,

43600 Bangi, Malaysia; bahiah@ukm.edu.my
3 Laboratory of Spacecraft Environment Interaction Engineering (LaSEINE), Kyushu Institute of Technology,

Kitakyushu 804-8550, Japan; cho@ele.kyutech.ac.jp
4 Electrical Engineering Department, Kuwait University, Kuwait City 13060, Kuwait; ali.almut@ku.edu.kw
* Correspondence: tariqul@ukm.edu.my; Tel.: +60-19-366-6192

Received: 13 June 2018; Accepted: 29 June 2018; Published: 5 September 2018
����������
�������

Abstract: Globally, breast cancer is reported as a primary cause of death in women. More than
1.8 million new breast cancer cases are diagnosed every year. Because of the current limitations
on clinical imaging, researchers are motivated to investigate complementary tools and alternatives
to available techniques for detecting breast cancer in earlier stages. This article presents a review
of concepts and electromagnetic techniques for microwave breast imaging. More specifically, this
work reviews ultra-wideband (UWB) antenna sensors and their current applications in medical
imaging, leading to breast imaging. We review the use of UWB sensor based microwave energy in
various imaging applications for breast tumor related diseases, tumor detection, and breast tumor
detection. In microwave imaging, the back-scattered signals radiating by sensors from a human body
are analyzed for changes in the electrical properties of tissues. Tumorous cells exhibit higher dielectric
constants because of their high water content. The goal of this article is to provide microwave
researchers with in-depth information on electromagnetic techniques for microwave imaging sensors
and describe recent developments in these techniques.

Keywords: antenna sensor; microwave imaging; breast tumor; ultra-wideband (UWB); dielectric
properties; breast phantom; high gain

1. Introduction

Breast cancer has become the most threatening disease to women. According to projections, more
than 24 million new breast cancer cases will be diagnosed by 2035. According to the National Cancer
Registry of Malaysia (NCR), one in 19 Malaysian women will be diagnosed with breast cancer by the
age of 85. Approximately 4000 cases occur each year, mostly in women between 35 and 60 years, with
40% of cases occurring in women younger than 50 [1,2]. An increasing population and longer life
spans have contributed to the rise of cancer. Breast cancer occurs because of the presence of malignant
cells inside breast tissue [3]. At present, the most common killer of urban women is breast cancer,
which has become a significant global health problem. Breast cancer is not incurable. From previous
research, we know that a key factor in curing breast cancer is reliably diagnosing it at an early stage.
With early breast cancer detection and treatment, the survival rate can reach 97%. This underscores the
urgent need for reliable and highly efficient early breast cancer detection methods [4].

The basic principle of microwave imaging is to send microwave signals into human tissue [5] and
analyze changes in the back-scattered signal, which reflect differences in the electrical properties of
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tissues. The remarkable variations in the back-scattered signal can be used to identify unwanted tumor
cells inside the breast, which exhibit higher dielectric constants than normal breast tissues.

Antenna sensors play a key role in microwave imaging systems (MISs). In an MIS, the antenna
acts as a transmitting and receiving sensor. The transmitting antenna sends microwave signals through
the breast, whereas scattered signals from the breast tissue are collected by the receiving antenna.
Recent studies that use the antenna as a sensor in an MIS have indicated that the antenna should have
the following properties [6–8]: high gain and small size; directive radiation of power; the ability to
transmit a wide range of frequencies with higher efficiency; model simplicity; compatible penetration
of human tissue; and the ability to operate at both low and high frequencies.

Emerging ultra-wideband (UWB) antenna technology has some unique features, like high-speed
data rates, very small interference, simple low-cost designs, low power spectrum density, robust
multipath applications, and higher precision ranges. Since 2002, the Federal Communications
Commissions (FCC) has allowed UWB bands of 7.5 GHz (from 3.1 to 10.6 GHz) for commercial usage [9].
UWB has a wide range of applications in high speed communications, like radars, short-distance
applications like PC peripherals, wireless local area networks (WLANs), and microwave imaging used
to scan the human body.

In this paper, we discuss the limitations of current detection techniques, and describe proposed
microwave sensor imaging techniques, imaging algorithms, numerical analysis methods, and physical
quantifications. Additionally, we describe a few relevant clinical trials.

2. Limitations of Current Detection Techniques

Over the past few decades, several clinical imaging technologies have been developed that can
produce valuable interior pictures of the human body. X-ray mammography, computed tomography
(CT), ultrasounds (US), and magnetic resonance imaging (MRI) are frequently used diagnostic tools
for detecting breast cancer [10,11]. However, X-ray mammography produces a relatively high number
of both false negative diagnoses (between 10% and 30%) and false positive diagnoses (more than
5%). Additionally, mammography uses radiation that requires uncomfortable compression of the
breast during the examination and is of limited value for younger women. Moreover, it is evident
that the ionization caused by X-ray mammography [10] represents a severe health threat and there is
even a chance of ionization causing the canceration of healthy tissue. US is an alternative detection
method with a 17% false-negative rate. Additionally, deep-lying or solid cancerous tissues are difficult
to detect.

MRIs can produce high-resolution images but is costly and time consuming. To improve the
detection system, combinations of different models have also been investigated. To achieve this,
a new, efficient, nonionizing, low cost, portable, and comfortable approach is in high demand as
a complementary tool to current technology [12].

In [13], a total of 258 patients were studied, where 177 had malignant tumors and 177 had benign
tumors. The sensitivity (ratio of detected malignant tumors to the total number of patients with
malignant tumors), specificity (ratio of detected benign tumors to the total number of patients with
benign tumors), positive predictive value (ratio of correctly detected positive malignant tumors to total
positive diagnoses), and accuracy (ratio of total patients with diagnosed benign or malignant tumors
to total patients) were studied to test the present detection techniques. A performance comparison of
the different detection techniques investigated in [13,14] is presented in Table 1.

Table 1 shows that the percentage of correct diagnoses is limited. The highest sensitivity (94.4%)
was obtained by combining mammography, MRI, and some clinical approaches. The maximum
accuracy obtained was 75.6%, which indicates that approximately one out of every four diagnoses
is false.

Microwave imaging system (MIS) methods have become hot topics of investigation both as
complementary tools and alternatives to available techniques. MIS can overcome the disadvantages of
other methods such as false indications, low-resolution scans, higher cost, and patient discomfort. MIS
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is advantageous because of its high positive rate, low cost, comfort, high data rate, low complexity,
portability, and low spectral power density.

Table 1. Comparison of Diagnostic Performance of different breast tumour detection techniques [14].

Modality Sensitivity Specificity
Positive

Predictive
Value

Accuracy Advantages Limitations

Mammography 67.8%
(120/177)

75%
(61/81)

85.7%
(120/140)

70.2%
(181/258) Low cost False positive and

negative diagnoses

Mammography and
clinical examination

77.4%
(137/177)

72%
(58/81)

58.6%
(137/160)

75.6%
(195/258) Low cost Lower accuracy

Clinical examination 50.3%
(89/177)

92%
(75/81) 94% (89/95) 63.6%

(164/258)
Simple and easy

process
Small tumor cannot

detect

Ultrasound 83%
(147/177)

34%
(28/81)

73.5%
(147/200)

67.8%
(175/258) Better than X-ray Difficult to detect

deep-lying or solid tumor

Mammography and
ultra sound

91.5%
(162/177)

23%
(19/81)

72.3%
(162/224)

70.2%
(181/258) Cost effective Exists unwanted

compression

Mammography
ultrasound and

clinical examination

93.2%
(165/177)

22%
(18/81)

72.4%
(165/228)

70.9%
(183/258)

Good candidate
for detection

Complex signal
processing

MRI 94.4%
(167/177)

26%
(21/81)

73.6%
(167/227)

72.9%
(188/258)

Provide high
resolution images

Higher cost and
time-consuming process

Mammography,
clinical examination,

and MRI

99.4%
(176/177) 7% (6/81) 70.1%

(176/251)
70.5%

(182/258)
Best solution ever

found

Complex procedure,
higher cost and

time-consuming process

3. UWB Sensor Based Microwave Imaging

Microwave imaging is defined by Fear et al. in [15] as “seeing the internal structure of an object
by means of electromagnetic fields at microwave frequencies of 300 MHz to 30 GHz”. The basic
principle of the technology is that microwaves travel from the transmitter through the breast and are
detected by a receiver located on the opposite side. A change occurs in the waves traveling through
the breast if they pass through a tumor; in such cases, the incident wave is scattered. This strongly
affects the amount of incident wave energy at the receiver, as shown in Figure 1. In microwave
imaging, antennas are used as transceivers. Typically, two different types of antennas are used in MISs:
(1) resonance type antennas; and (2) antennas designed based on high-profile traveling wave principle,
like Vivaldi antennas. A UWB antenna can operate in both low- and high-frequency ranges, with
unique features like non-contact remote operations, intrinsic electrical transducers, environmental
friendliness, biocompatibility, and biological friendliness [16]. These features have been of interest to
researchers because of their advantages for medical applications. Researchers have proposed using
several types of UWB antennas for microwave imaging applications: omnidirectional vs. directional
radiation patterns; wide ranges vs. narrow bands; high vs. low frequency, etc. However, in all
cases, such systems require higher efficiency and higher gains, with compatible penetration of human
tissue. Jianli et al. [17] surveyed UWB antennas for medical applications and identified the following
required features for medical imaging applications: ability to penetrate obstacles; higher precision
range or multipath resolving capacity; low electromagnetic radiation (−41.3 dB); and lower energy
consumption. A wireless interrogation system to acquire sensing data in the far field region of wireless
communication was developed in [18] using reactive impedance surface ground based patch antennas.
To provide the required features, a number of UWB antennas have been proposed: planar UWB
antennas [19], square monopole antennas [20], square patch antennas [21], hook-shaped monopole
antennas [22], tapered slot antennas [23], metamaterial-based UWB antennas [16,24], flexible coplanar
waveguide fed (CPW-fed) fishtail antennas [25], semi-circular antennas [26], different types of Vivaldi
antennas [27,28], and many more. A novel antenna miniaturization technique was introduced in [29],
using reactive impedance surface as a substrate, which can be used as a perfect electric conductor as
well as perfect magnetic conductor surface to enhance the bandwidth and radiation performance.
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breast tumors by Susan et al.[35]. The system used a single resistively loaded bowtie antenna as a 
sensor array. The researchers concluded that by combining existing equipment, the system could 
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limited to simulation. An radio frequency identification (RFID) n sensor system was developed [36] 
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A clinical prototype of near-field microwave imaging developed at Dartmouth college was 
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MHz. A tank was used as the coupling medium between the breast and the antenna. The antenna 
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The development of a complete microwave imaging system was studied extensively by researchers 
with the advancement of antennas. The modalities of transceivers or sensors for microwave imaging are 
recorded in [38–41]. In [40], the transverse electromagnetic (TEM) Horn antenna was used to reduce 
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antenna with a higher-dielectric material and director. This was done to focus the antenna’s power 

Figure 1. Basic microwave imaging problem (a) Reflected waves from breast without a tumor (b)
Reflected waves from breast with a tumor. Changes indicate differences from tumor-free breast [15].

3.1. Operational Microwave Imaging System

The use of UWB antennas for microwave imaging began in the last decade. Researchers
hypothesized that microwave imaging could be used to differentiate normal and tumorous tissues in
terms of their electrical properties, permittivity, and conductivity. The dielectric properties of tumorous
tissues are estimated to be six to ten times higher than those of normal tissues [30]. This occurs because
tumorous tissues have a higher water content [31,32] than normal tissues or fat. UWB antennas are
used as sensors for different sensing applications like temperature, moisture, crack, strain, microwave
imaging etc. [33]. These antenna sensors are attractive because of their low cost, simple configuration,
conformability, and capability of wirelessly transmit the acquired data to smart device [34].

To the best of our knowledge, UWB microwave technology was first used to detect early-stage
breast tumors by Susan et al. [35]. The system used a single resistively loaded bowtie antenna as
a sensor array. The researchers concluded that by combining existing equipment, the system could
detect small cancerous tumors that were normally missed by X-ray mammography. The work was
limited to simulation. An radio frequency identification (RFID) n sensor system was developed [36]
using an ultra-wideband (UWB) antenna which modulated the amplitude of backscattering signal as
a function of temperature. This made the UWB RFID reader low cost and portable.

A clinical prototype of near-field microwave imaging developed at Dartmouth college was presented
by Meaney et al. [37]. The imaging setup is shown in Figure 2. Sixteen elements of a transceiving
monopole antenna were used in the system within a frequency range of 300 to 1000 MHz. A tank was
used as the coupling medium between the breast and the antenna. The antenna array was moved
vertically and adjusted to chest level through a mechanical switch. Transmitter-receiver selection was
performed by a microwave switch.

The development of a complete microwave imaging system was studied extensively by researchers
with the advancement of antennas. The modalities of transceivers or sensors for microwave imaging
are recorded in [38–41]. In [40], the transverse electromagnetic (TEM) Horn antenna was used to
reduce complexity and did not require a matching liquid. However, in [39], Bourqui et al. augmented
a Vivaldi antenna with a higher-dielectric material and director. This was done to focus the antenna’s
power more effectively on the region of interest. The directive feature effectively increased scattered
energy bounced from the tumorous region of the breast tissue.
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A comparison between a fork-fed wide slot antenna and cavity-backed stack patch antenna was
performed at Bristol University [41] to identify the optimal antenna for microwave breast imaging.
The wide slot antenna showed excellent performance over the frequency range. For the same frequency
range, the wide slot antenna was three times smaller than the cavity-backed stack patch antenna,
allowing for a more densely populated array. The comparison showed that the stacked patch antenna
performance was satisfactory at angles close to bore-sight but that at wider angles, the performance
degraded (timing was late and transmitted signals were distorted).
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Figure 2. Microwave Imaging system at Dartmouth College [37].

Most of the antenna and imaging systems mentioned previously used matching liquid and plastic
materials with properties close to those of real breast tissue. In [38], a UWB based microwave imaging
system with experimental results was presented. A hemispherical array of stack patch antenna was
used to detect breast cancer with a realistic breast phantom. Although mechanical scanning was not
required, this was reported as the first use of real measured radar for breast cancer detection. However,
there were some limitations related to resolution and cluster rejection.

Initial MIS measurements on animals were performed at the Carolinas Medical Center [42]. A 3D
microwave imaging chamber was proposed, 120 cm in diameter and 135 cm in height. The system
operated at 0.9 GHz. The time the complexity and mechanical scanning system were upgraded in [43]
using a single transmitter and sixteen receiving antennas. The experiment was done to non-invasively
assess myocardial tissues and detect infected tissues. A 2D configuration was developed to detect
the functional and pathological activity of soft tissues [44]. The system was tested to detect the
physiological activity and interventions of soft tissues. The system was built with a 2D imaging
chamber comprising a metallic cylinder and 24 antennas, which were located equidistantly at the
perimeter of the horizontal cross-section. The chamber was filled with mixtures of intralipid emulsion
salt and alcohol with salt. The control unit transmits electromagnetic radiation to a single antenna and
measures the electromagnetic field from all other 23 antennas. The system, which is shown in Figure 3,
operated at a frequency range of 1 to 2.3 GHz.

An iterative approach was proposed, in which the 2D Newton algorithm and 2D born method
were used to present time differential images, as reported in [45].

Pilot clinical trials were carried out using suitable mechanical and electrical combinations [46].
Antipodal Vivaldi antennas were used to develop the monostatic system with mechanical scanning.
A cylindrical tank was combined with a laser, with canola oil used as the coupling liquid. Consistent
imaging results were obtained using delay and sum algorithms for image processing within a range of
50 MHz to 15 GHz.
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Figure 3. 2D microwave tomography (MWT) system for soft tissue imaging and physiological activity
detection [44].

A hemispherical radome was used as a phantom and an antenna array of 16 elements was
designed for a time domain radar system over a range of 2 to 4 GHz [47]. Porter et al. presented
a clinical testing system capable of repetitive measurements and image reconstruction. The time
domain radar system was designed using a pulse shaping circuit, reflector, directional coupler, and
amplifier. The researchers used a time-equivalent oscilloscope and switching matrix to retrieve data
from the receiver for image reconstruction. A total of 240 scanning signals from each antenna pair
were obtained. The data were filtered and windowed. Finally, delay-multiply and sum algorithms
were applied to obtain the 3D images. The proposed system reduced measurement uncertainty, noise,
and general noise. The imaging algorithm was robust, and errors due to sensor and cable movements
decreased [48–51]. However, the switching of several antennas is difficult. Additionally, in contrast
with 3D scanning, part of the breast may not be scanned because of a lack of 360◦ coverage.

The advancement of porter work at McGill University is presented in [52]. A 2D monopole system
for breast tumor modeling is presented in [53,54]. A wideband antenna was used as a transceiver and
low-cost off-the-shelf components replaced the costly vector network analyzer (VNA). The I-MUSIC
algorithm was used for inversion in the bandwidth 0.5 to 3.0 GHz.

3.2. Tomographic Microwave Imaging System

In 2011, Amineh et al. proposed a design and characterization of a UWB antenna based
on a near-field imaging system, using raster scan [55] methods. The researchers presented both
simulated and measured results using a homogeneous 3D phantom and heterogeneous model in
which the antenna directly contacted the imaged body. The directive nature of the proposed UWB
TEM horn antenna aided the scanning setup to obtain strong scattered signals inside the dielectric
body. The simulation and measured antenna setup with an artificial phantom are shown in Figure 4.
Two antennas were used, one as a transmitter and the other as a receiver. 2D scanning was performed
by moving along the compressed breast in the opposite direction. To improve image quality, the images
were de-blurred using a blind deconvolution algorithm [56]. Although the work was performed by
scanning the phantom, the phantom that was used is not the same as a real breast and does not cover
a 360◦ rotation angle.
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Figure 5. Schematic block diagram of microwave imaging [59]. 

Figure 4. (a) Simulation setup of the antenna in a dielectric medium with microwave absorbing sheet
on top surface (b) Imaging setup with compressed phantom and two antennas [55].

In [57], a mechanical scanner based 3D microwave imaging prototype was proposed using
a rectangular tub filled with fluid as an imaging domain. To avoid mutual coupling problems,
the system used two antennas: one as a transmitter and one as a receiver. By using a mechanical
scanner, 3D experimental data were collected and an inversion algorithm was applied to reconstruct
the nonlinear image. The inversion technique used two-step processing: the first step involved
diagonal tensor approximation and used the born iterative method (BIM), while in the second step the
biconjugate gradient first fourier transformation (FFT) was stabilized and a distorted BIM was applied
to refine the images. The same experiment for both dielectric and metal spheres was also performed
for layered media in [58]. Challenges associated with this system include the detection of tumors close
to the skin and heterogeneous structures.

A multichannel 3D architecture of microwave imaging was developed by Zhurbenko et al. [59]
for non-invasive breast cancer detection. Sixteen pairs of identical transceiver channels were used to
measure the vector electric field of the scattered signals in the 3D imaging domain. A diagram of the
proposed system is shown in Figure 5 and a photograph of the system prototype is shown in Figure 6.
The system was designed in a range of 0.3 GHz to 3 GHz and water-filled spheres of 20 mm and
40 mm in size were used as a target. From this lightweight measurement system, data were collected
using a filter and analog-to-digital converter. These data were stored in the computer for use in the
reconstruction algorithm. The nonlinear inverse scattering-based image reconstruction algorithm
combined the moment forward solver method and Newton minimization algorithm. 3D images were
obtained by consuming more than 100 min, with a reasonable size and shape of objects.
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3.3. Radar-Based UWB Microwave Imaging System

A UWB based near-field imaging system was developed by Yarovoy et al. [60]. An array-based
sensor was designed for humanitarian demining, with a single transmitter and multiple receivers.
A block diagram of the proposed array radar is shown in Figure 7. By using the mechanical scanner and
electrical steering, the system produced 3D images of the subsurface. The bandwidth of the proposed
system was 3.56 GHz which starts at 240 MHz. The diffraction stacking algorithm was combined
with a synthetic aperture radar (SAR) algorithm to deliver 3D images of the target. Furthermore,
Yarovoy et al. employed a 3D UWB based imaging system, versus the 2D systems of first generation.

A step frequency synthesis pulse technique based microwave imaging system for breast cancer
detection was presented in [61]. The system used a Φ-Y circular scanning platform with a turntable
resolution of 22.5◦. A cylindrical container with low-dielectric vegetable oil and a small target with
a high dielectric constant was scanned with a tapered slot UWB antenna having a range of 3.1 to
10.6 GHz. The reflection coefficients of the frequency domain were measured and converted to the time
domain using inverse first fourier transformation (IFFT). The data were processed in a PC and an image
was created of the breast phantom with the distinct target color. The configuration of the radar system
is shown in Figure 8. This system overcame several problems associated with first generation MISs.

A pre-clinical prototype was investigated by Flores et al. in [62]. A single-element Vivaldi
antenna based system was designed to study the cylindrical dielectric targets. The plexiglass tank
used as a phantom was filled with canola oil to measure reflection coefficient (S11) and to improve the
quantitative dielectric images using datasets of rotating phantom circular scan geometry.

The feasibility of detecting tumors using UWB signals with a finite-difference time-domain (FDTD)
method is presented in [63]. In the experimental setup, a UWB antenna ranging from 0.5 to 3 GHz was
connected to a vector network analyzer, as shown in Figure 9. The water filling the cylindrical glass
tank was used as a phantom, while an immersed low-permittivity rod was used to model a tumor.
The losses and permittivity of water are much higher than those of both air and real breast tissue. This
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creates higher attenuation and reflection at the air-skin interface, a characteristic that was employed in
the experimental method. The researchers investigated changes in the sensitivity of breast and skin
surface contours. Mohammed et al. at the University of Queensland presented a UWB planner of
12 tapered slot antennas (TSAs) for microwave imaging applications [64]. A suitable platform was
designed combining a vector network analyzer (VNA), single-pole through (SP6T) switch, breast
phantom, and coupling liquid. The water cylinder, conductor, and dielectric were flooded in a plastic
container filled with canola oil. A trust region framework was used to observe the mutual coupling
and the system was tested for breast imaging applications. The system presented a preparation test
platform but did not provide any real image and scattering signal processing, because it was limited to
the mutual coupling between each antenna pair.Sensors 2018, 18, x  9 of 15 
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Zhang et al. [65] presented a simulation experiment system for breast tumor detection using
compact UWB Vivaldi antennas. A commercially available breast phantom and cooking oil were used
as the matching liquid in the system. A sampling oscilloscope was used to receive the transmitted
pulse. The reflection data were collected using a background subtraction method from the hardened
liquid embedded within the metallic ball. The breast cancer tumor was detected using a confocal
microwave imaging (CMI) algorithm.
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Globally, a number of MISs have been developed for breast tumor detection. Some of them have
used 2D arrangements, while a few of have used 3D arrangements with distinct types of antennas. Most
of the systems use UWB antennas, based on several different prototypes. The MISs are summarized in
Table 2. Most of the systems measured non-biological phantoms, not maintaining the original tissues’
and tumors’ electrical properties.

Table 2. Summarized Table of UWB imaging.

Origin Imaging Domain Antenna Configuration Targets Results

Dartmouth College
[37,66]

Cylindrical tank (agar
gel, corn syrup, water

mixer)

16 antennas Mechanical
scanning

Detecting malignant
tumors 2D and 3D images

University of
Bristol [38,67]

Acrylonitrile butadiene
styrene plastic half

sphere
UWB radar Measure the

symptomatic patients

First real breast phantom but
limitations in terms of

resolution and clutter rejection

Carolinas medical
center [44,45]

Metallic tank 21.5 cm in
diameter 24 waveguide antennas

Detection of
physiological activity of

soft tissues

2D and 3D tomographic
images of swine torso

obtained

University of
Calgary [46] Tank with canola oil

Single balanced
antipodal antenna with

mechanical scanning
Pilot clinical experiment Consistent imaging results

University of
Manitoba [62]

Plexiglass tank with
canola oil Single Vivaldi antenna Pre-clinical UWB

prototype
Improvements to quantitative

dielectric image

University Rovira
[63]

Water filled Cylindrical
glass tank

UWB disc monopole
antenna

Working prototype for
microwave imaging Tumor position was detected

University of
Queensland [64]

Plastic container filled
with canola oil 12 UWB antennas UWB biomedical

imaging Mutual coupling and fidelity

McGill University
[47]

Hemispherical ceramic
(Al2O3) radome

16 elements antenna
array Clinical testing First study of microwave time

domain with actual volunteers

Politecnico di
Torino [53] Metallic Cylinder Monopole 8 element

antenna array
Design and construction

of imaging prototype
2D imaging at MiMed cost

meeting

Duke University
[57,58]

Rectangular tub filled
with fluid Two dipole antennas 3D imaging system

prototype
5 mm diameter dielectric

objects detected

Toyohashi
University of

Technology [65]

Rectangular tub with
cooking oil UWB Vivaldi antennas Breast cancer tumor

detection 9 mm metallic ball detected

Technical
University of
Denmark [59]

Water filled spheres 32 monopole antennas 20 to 40 mm target
objects detection

3D images are obtained with
consuming more than 100 min

McMaster
University [55]

Glycerin based flat
artificial phantom 2 TEM horn antenna

3D model and phantom
analysis where antenna

directly contacted
imaged body

Image de-blurred using blind
deconvolution algorithm
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4. Challenges of Microwave Imaging (MWI) and Future Development

Over the last three decades, researchers have investigated microwave imaging, with the goal of
developing high performance, low-cost tools as alternatives to existing medical imaging systems for
breast tumor detection. By using transmitting and receiving antennas, penetrating electromagnetic
waves are used to reconstruct the dielectric properties and shapes of simple breast models. There
are some major challenges associated with applying microwave imaging to practical real time breast
imaging. The development of a program for inverse scattering [68,69] and image reconstruction
with a small sensor is the first challenge facing MWI. Secondly, in most of the experimental
systems, the breast phantoms used were simple and homogeneous, unlike real human breast tissue.
Thirdly, the perfect operating frequency range for microwave imaging is still under investigation.
The differences between healthy and tumorous cells much smaller than appreciated, making image
construction difficult. One potential solution to these challenges may be combining hybrid imaging
and scattering programs with commercial electromagnetic (EM) simulators. A number of previous
investigations have increased the number of antennas in order to solve the spatial resolution
problem [70]. This approach made the MWI system more complex, and decreased the detection
accuracy because of mutual coupling between antennas (at a higher cost). In one very recent
investigation, a multiple input and multiple output (MIMO) technique was used to reduce system
complexity [71].

5. Conclusions

In this paper, we presented up-to-date reviews of UWB antenna sensor features and current UWB
applications in the field of breast imaging. A number of MWI approaches were reviewed. We broadly
discussed the limitations of existing detection techniques, including the open challenges of MWI
and probable solutions. From this discussion, we can conclude that UWB-based MWI has improved
dramatically. Within the time being and have a major motivation in earlier breast tumor detection
by relating the dielectric properties of human tissues with biological circumstances. Despite certain
limitations, MWI techniques have several promising characteristics and because of these, MWI is likely
to become a successful clinical complement to conventional medical imaging tools. MWI techniques
must be developed further; commercial companies may help develop a well-established MWI system
for application in clinical environments.
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