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The lossless transmission of direct electrical currents in superconductors is very often

regarded as an “energy superhighway” with greatly enhanced efficiency. With the

discovery of high temperature superconductors (HTS) in the late eighties, the prospect

of using these materials in efficient and advanced technological applications became

very prominent. The elevated operating temperatures as compared to low temperature

superconductors (LTS), relaxing cooling requirements, and the gradual development of

facile synthesis processes raised hopes for a broad breakthrough of superconductor

technology. The impact of superconductor technology on the economy and energy

sectors is predicted to be huge if these are utilized on a large scale. The development

of superconducting tapes with high critical current density (Jc) is crucial for their use in

transmission cables. Many countries these days are running projects to develop wires

from these HTS materials and simultaneously field trials are being conducted to assess

the feasibility of this technology. These HTS wires can carry electrical currents more than

100 times larger than their conventional counterparts with minimal loss of energy. The

increased efficiency of HTS electric power products may result in greatly reduced carbon

emissions compared to those resulting from using the conventional alternatives. In order

to use the thin films of YBa2Cu3O7−δ (YBCO) and REBCO [RE (rare-earth)= Sm, Gd, Eu

etc.], members of the HTS family, for future technological applications, the enhancement

of Jc over wide range of temperatures and applied magnetic fields is highly desired. The

enhancement of Jc of YBCO and REBCO films has been successfully demonstrated by

employing different techniques which include doping by rare-earth atoms, incorporating

nanoscale secondary phase inclusions into the REBCO film matrix, decoration of the

substrate surface etc. which generate artificial pinning centers (APCs). In this review, the

development of the materials engineering aspect that has been conducted over the last

two decades to improve the current carrying capability of HTS thin films is presented.

The effect of controlled incorporation of APCs through various methods and techniques

on the superconducting properties of YBCO and REBCO thin films is presented, heading

toward superior performance of such superconducting thin films.

Keywords: sustainable energies, REBCO (RE: rare-earth) cuprate, thin films, coated conductors, artificial pinning

centers, vortex pinning
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INTRODUCTION

Superconductivity is a phenomenon in which the material in
consideration has virtually no resistance to direct electric
current. This phenomenon takes place below a certain
characteristic temperature, known as critical temperature,
or transition temperature (Tc), which is different for different
superconductors. Ever since its discovery by Onnes [1], it has

been a subject of great interest because of the unique properties
it exhibits. In addition to transport of electrical current without
any resistance, the superconducting state is also characterized
by perfect diamagnetism (χm = −1). The magnetic flux is
expelled from the interior of the superconductor at T < Tc.
The screening currents are induced in the surface layer of the

superconductor which generates a flux density opposite to that
of the applied magnetic field. This phenomenon is known as
Meissner effect [2].

Types of Superconductors
On the basis of their magnetic properties, superconductors have

been broadly classified into two classes:

(a) Type I Superconductor: Type I superconductors expel the
magnetic field completely for applied magnetic field (H)
smaller than the critical magnetic field (Hc). Above Hc,
the material abruptly goes back into the normal state. The
variation of magnetization (M) with respect to H for type
I and type II superconductors is presented in Figure 1A.
Most of the elemental superconductors (e.g., Pb, Hg, Sn, etc.)
exhibit type I superconductivity except Nb, V, and Tc [3].
In addition, type I superconductivity is also exhibited by an
alloy, TaSi2 [4] and a compound, SiC (with heavy doping
of B) [5]. The Tcs for type I superconductors are normally
lower (< 10K). The values of Hc for type I superconductors
are in the range of 5–200 mT [3]. Because of their low Tc and
Hc values, type I superconductors are of limited use.

(b) Type II Superconductor: Type II superconductors have
two critical magnetic fields: Hc1 and Hc2 as depicted in

Figure 1A. Below Hc1, the superconductor remains in the

Meissner state, completely expelling the magnetic flux from
its interior. For H > Hc1 but smaller than Hc2, the
magnetic flux starts penetrating the sample in the form of
discrete bundles termed “flux lines” and the sample goes
into the mixed state (or vortex state). When H becomes
> Hc2, the superconductor comes into the normal state.
In the vortex state, the specimen comprises of alternating
normal and superconducting regions. The normal cores
are surrounded by superconducting regions allowing some
magnetic field penetration. Type II superconductivity is
exhibited by metallic compounds, alloys, and complex oxide
ceramics. Type II superconductors have much higher critical
magnetic fields as compared to type I superconductors. Also,
Type II superconductors can carry much larger current
densities while remaining in the superconducting state. Due
to the above advantages, type II superconductors have greater
potential for practical applications.

Flux Pinning in a Superconductor
Apart from the critical temperature (Tc), the critical current
density (Jc) is the most relevant parameter of a superconductor
which is directly related to its possible use in practical
applications [6–8]. Jc in a superconductor is determined by
the critical temperature, electronic structure, and the flux
pinning mechanism governed by the microscopic defects that
are generated naturally or artificially during the growth of the
superconducting films. The upper limit of the Jc is determined by
splitting of the paired electrons that carry the supercurrent (the
so-called Cooper pairs), and Ginzburg-Landau gave an equation
to estimate the depairing current density (current density at
which splitting of Cooper pairs takes place) Jd [9]:

Jd =
Φ0

3
√
3πµ0λ2ξ

(1)

where Φ0, µ0, λ, and ξ are the flux quantum, permeability
in vacuum, the London penetration depth and the Pippard
coherence length, respectively. Jc cannot exceed this value even
by the optimum vortex pinning [10]. For YBa2Cu3O7−δ (YBCO)
and REBCO [RE (rare-earth) = Sm, Gd, Eu etc.] films, Jd at
77K and zero applied field is estimated to be 40–50 MAcm−2

[11]. This value is quite large but the observed values of Jc are
limited to about 10% of Jd. Thus, there is large room for sufficient
enhancement of Jc by employing different methodologies.

Figure 1B shows the H-T phase diagrams for type I and
type II superconductors. In the mixed state (Hc1≤H≤Hc2) of
a type II superconductor, the magnetic flux penetrates into the
superconducting specimen in the form of small “tubes” called
vortices. These vortices have a normal-conducting core and are
surrounded by circulating supercurrents generating a magnetic
flux quantum Φ0 = h/2e (h being Planck’s constant and e
being electronic charge). The circular currents make any two
vortices repel each other forming an ordered hexagonal lattice
called the Abrikosov vortex lattice. If an electrical current is
passed through a superconductor in its mixed state, the vortices
would experience a Lorentz force, whose density is given by
FL = J × µ0H. Due to the influence of this Lorentz force,
the vortices start to move in a direction perpendicular to the
directions of both the transport current and the applied magnetic
field. A schematic representation of this situation is presented in
Figure 2. There are, however, some kinds of defects or impurities
in superconducting samples, such as dislocations, voids, grain
boundaries, etc. which act as pinning centers for vortices and the
magnetic flux gets trapped. The force which resists the motion of
the vortices under the influence of the Lorentz force is called the
pinning force, whose density is termed as pinning forced density
(Fp). The flux lines remain stationary, as long as Fp is> FL. When
FL exceeds Fp, vortices start moving across the superconductor. If
the vortices move with a velocity v, an electric field E = µ0H × v
would be generated. Since, both the current and the generated
electric field would be parallel, a finite power would be dissipated
in the system and the superconductor would lose its ability to
sustain dissipation-free current flow.

The penetration of magnetic flux in a type II superconductor
is gradual over a wide range of applied magnetic field. However,
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FIGURE 1 | (A) Variation of magnetization as a function of applied magnetic field for type I and type II superconductors. (B) The corresponding H-T phase diagram for

type I and type II superconductors.

FIGURE 2 | Mixed state in a type II superconductor. Magnetic flux starts penetrating the sample in the form of small “tubes” (vortices), each with quantized flux

Φ0 = h/(2e).

the presence of lattice defects prevents the easy entry or exit of
the flux lines and the magnetization is irreversible. The presence
of lattice defects modifies the vortex structure; vortices may
be “pinned” down at the defect sites and no longer free to
move. From the energetics point of view, the defect sites are

surrounded by an energy barrier which the pinned vortex must
climb before it can move. The Lorentz force effectively lowers
this barrier and the critical current density of a specimen would
reach when the pinning force is balanced by the Lorentz force. At
finite temperatures, however, thermal activation also lowers the
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effective barrier height and gives rise to a strongly temperature
dependent critical current.

YBa2Cu3O7−δ: A HIGH
TEMPERATURE SUPERCONDUCTOR

YBCO belongs to the class of type II superconductors, which
are known for their ability to maintain the superconducting
properties even at higher applied magnetic fields. YBCO was
the first superconductor which was shown to have Tc above
the liquid nitrogen temperature (77K) [12]. The discovery
of YBCO fuelled lot of research activities in the field of
superconductivity and most of the earlier works were focused
on discovering the superconductor which could have an
even higher Tc. Subsequently several other superconductors
such as Bi2Sr2Ca2Cu3O10+δ [13], Tl2Ba2Ca2Cu3O10 [14], and
HgBa2Ca2Cu3O8+δ [15] have been discovered which were
found to have Tcs above 77K. However, among all other
cuprate superconductors, YBCO has several advantages over
others which include many facile synthesis routes for thin film
fabrication and much larger irreversibility field (Hirr).

Hirr of a superconductor is another very important parameter
which is defined as the magnetic field at which the resistivity
value due to flux motion is significant and the pinning strength
goes to zero [16, 17]. The irreversibility line divides the
H-T phase diagram of a superconductor into two portions:
reversible and irreversible (or hysteretic). The reversible portion
of this phase diagram refers to the vortex-liquid state in which
vortex movements due to thermal fluctuation are so high
that the ordered vortex lattice state (referred by irreversible
portion of the phase diagram) is destroyed [18, 19]. Thus, the
irreversibility line or the melting line demarcates the solid-
liquid phases of the vortex matter and it is highly desired
to shift this line toward higher H-T regime by artificial
pinning center (APC) technology [6, 8, 20, 21]. Figure 3

shows the comparison of the irreversibility lines of various
superconductors which include superconducting alloys, metallic
compounds, MgB2, and high temperature superconductors
(HTS). The coated conductor technology employing APC
incorporation in superconducting REBCO matrix is set to usher
new frontiers of superconductivity applications between a wide
temperature range of 5–77K. Following subsections present
different properties of YBCO superconductor.

Crystal Structure of YBCO
The crystal structure of YBCO is a complex variation of the
perovskite structure [22], which is shown in Figure 4. As shown
in the figure, the YBCO unit cell consists of an YCuO3 cube
with adjacent BaCuO3 cubes above and below, but with some
oxygen sites not occupied. The oxygen sites on the same
horizontal plane as the Y atom are never occupied, which causes
the oxygen atoms to move slightly toward the Y atom. The
orthorhombic phase of YBa2Cu3O7−δ has lattice parameters,
a = 0.382 nm, b = 0.388 nm, and c = 1.168 nm when δ

is very small. The oxygen content in YBCO determines its
crystal structure and the hole concentration in CuO2 planes.

FIGURE 3 | Variation of irreversibility field with temperature for different

superconductors including HTS, MgB2, metallic compounds, and alloys. The

coated conductor technology including APC methodology has opened new

frontiers of superconductivity applications in the temperature range of 5–77K.

Reproduced from Matsumoto and Mele [20], with the permission from IoP

Publishing.

For δ = 1, the compound (YBa2Cu3O6) has the tetragonal
structure and it is an insulator. Increasing the oxygen content
up to δ = 0.4, the compound undergoes a phase transition from
tetragonal to orthorhombic and the Y-Ba-Cu-O system becomes
superconducting. Tc approaches its maximum value of 92K for
δ ≈ 0.06 [23] which is ascribed to the optimum hole doping.
For δ < 0.06, Tc is found to decrease which is attributed to
the overdoped state of the phase in which the concentration
of the holes in CuO2 planes exceed the optimum limit. The
formation of tetragonal phase is observed in the temperature
range of 700–900◦C and the orthorhombic phase is formed when
the tetragonal phase is slowly cooled in an oxygen atmosphere
at ≈ 550◦C. The transition from tetragonal to orthorhombic
phase creates a large number of different twin domains because
of the release of stress in the material. In the tetragonal phase, the
oxygen atoms randomly occupy about half of their respective sites
in the basal planes whereas they are ordered along the b-direction
into Cu-O chains in the orthorhombic phase. This creates oxygen
vacancies along the a-direction in the orthorhombic phase which
subsequently leads to slight compression of the unit cell so that a
< b. The contribution to superconductivity comes both from the
CuO2 planes and CuO chains in the orthorhombic phase.

As shown in Figure 4, the crystal structure of YBCO
is highly anisotropic. This anisotropy is observed in other
superconducting properties also, such as energy gap (1),
coherence length (ξ ), and penetration depth (λ). The electrical
conduction in YBCO, like other HTS cuprate superconductors,
is also highly anisotropic with conductivity along the ab-
plane being much higher than along the c-axis [24, 25]. The
transport of electrical currents is conducted by holes induced
in the oxygen sites of the CuO2 planes. The oxygen occupancy
at the chain site influences the carrier density in the CuO2

planes and subsequently the macroscopic electronic properties of
YBCO superconductor.
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FIGURE 4 | The crystal structure of YBa2Cu3O7−δ for (A) δ = 0 (YBa2Cu3O7)

when all of the oxygen sites in the basal planes along the b-direction are

occupied and for (B) δ = 1 (YBa2Cu3O6) when all these sites are unoccupied.

The intermediate oxygen contents are achieved as these sites are partially

occupied when the sample is annealed in oxygen atmosphere. The crystal

structure is tetragonal for δ ≥ 0.6 and orthorhombic for δ < 0.6.

The anisotropic character of YBCO is observed in its
characteristics both in normal and superconductive states. The
properties along the ab-plane, parallel to the layers, are very
different compared to along the c-axis, which is normal to
the layers. Apart from other superconducting properties, Jc
also exhibits strong anisotropy being higher when the applied
magnetic field is oriented along the ab-plane andminimumwhen
the applied magnetic field is oriented along the c-axis of the
superconducting sample.

The Evolution of Critical Current Density of
YBCO and REBCO Superconductors Over
Time
Superconductivity in YBCO was discovered in its polycrystalline
bulk sample. Although it has Tc ∼ 92K and relatively large Hirr

(∼ 7 T at 77K) in its bulk polycrystalline form, the values of
Jc were observed to be ∼ 102 A/cm2 (77K, self-field) [26, 27],
which is not high enough as compared to metallic copper. Such a
low value of Jc was attributed to low coherence length of YBCO,
which results in limited percolation of electrical current across
grain boundaries [28]. The alignment of the grains in bulk YBCO
and REBCO materials was improved by melt-texturing-growth
(MTG) technique [29]. This new approach resulted in much
higher Jc ∼ 104 A/cm2 (77K, self-field), two orders of magnitude
larger than for polycrystalline bulk samples of YBCO. The recent
development of infiltration growth technique has resulted in
superior Jc performance (∼ 105 A/cm2; 77 K, self-field) of YBCO
and REBCOmelt-textured bulk samples [30–33]. In addition, the
MTG REBCO superconductors exhibited superior capacities to
trap very high magnetic fields (∼16–17 T at 25–30K) [34, 35]
which could be very useful for permanent magnet applications.

Within a couple of years of its discovery in the polycrystalline
bulk sample, it became possible to make thin films of YBCO
on single crystal substrates such as SrTiO3, Al2O3, MgO, etc.
[36]. Highly c-axis oriented YBCO films on single crystals
exhibited Jc > 106 A/cm2 (77K, self-field) which was again two
orders of magnitude larger than the MTG YBCO samples. In
a recent work, highly oriented YBCO thin films on different
single crystal substrates were deposited and the role of the
substrate material and thermal contact during the deposition are
carefully investigated [37]. Thus, with the combined progress in
the material and its processing, the current carrying capability
of REBCO superconductors improved significantly. Highly c-axis
oriented YBCO films deposited on single-crystal substrates by
different techniques such as pulsed laser deposition (PLD) [38],
chemical solution deposition (CSD) [39] and metal organic
chemical vapor deposition (MOCVD) [40] exhibited high Jc of
1–5 MA/cm2 at 77K, self-field [41, 42]. The high value of Jc was
attributed to various crystal defects which will be discussed in the
next section. The distribution and density of such crystal defects,
however, is very difficult to control, which is very much needed
for in-field enhancement of Jc. The challenge of improving Jc
of YBCO thin films under applied magnetic field remained
unresolved for almost a decade.

After successful demonstration of high critical current in
epitaxial YBCO films on single crystal substrates, it was desired to
develop the technique of making these epitaxial films on flexible
metal tapes for technological applications. Subsequently, the
development of second-generation wires and tapes or so called
coated conductors was carried out by ensuring both in-plane
and out-of-plane texturing of REBCO superconducting layers on
buffered metal substrates in a biaxial alignment [43]. In order
to address this issue, two approaches were employed: ion beam-
assisted deposition (IBAD) [44] and rolling-assisted biaxially
textured substrates (RABiTS) [45]. In IBAD technique, biaxially
oriented buffer layer on polycrystalline metallic substrate
is deposited before the deposition of superconducting film.
Although IBAD process provides excellent in-plane texture;
it involves high equipment costs and is a time-consuming
process. Another approach which has been used for the
texturing of metal tapes is inclined substrate deposition (ISD)
in which textured film of MgO is deposited by electron
beam evaporation [46, 47]. The ISD method provides higher
deposition rates as compared to IBAD and is independent
of recrystallization properties of the metallic substrates. In
RABiTS, biaxial texturing is carried out through cold rolling
and recrystallization of metallic substrate (Ni). By continuous
development of the fabrication methods involving IBAD, ISD,
and RABiTS, it was possible to get high self-field Jc in the coated
conductors as well.

VORTEX PINNING IN YBCO AND REBCO
THIN FILMS: NATURAL PINNING CENTERS

The defects which are naturally generated during the growth of a
superconducting YBCO and REBCO thin films can act as pinning
centers are as follows [8]:
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(a) Point defects: Point defects are a kind of imperfection which
occur when the crystal structure is disrupted on atomic
scale. It can be due to impurities, vacancies or interstitials
(missing or extra atoms). When YBCO is doped with rare-
earth elements like Nd, Sm, and Eu [48, 49], yttrium and
barium atoms sometimes exchange their places which also
results in point defects.

(b) Voids: During the deposition of the thin film, the vapors
of the material are unable to fill the valleys because of
the shadowing effect or its reduced mobility. This causes
surface roughness in the thin film. When deposition
and crystallization of the film is done in separate steps
(ex-situ process), pores and voids may result during the
crystallization step due to volumetric changes.

(c) Misfit dislocations: Due to the lattice mismatch between
REBCO and the substrate on which it is deposited, strain
is developed. But when the strain is more than a limit,
dislocations are generated in the form of missing (or extra)
half-plane of atoms to relieve the stress.

(d) Precipitates: The growth of secondary phases such as Y2O3

or Ba-Cu-O, due to the deviation of stoichiometry from
1:2:3 cationic ratio, causes the formation of precipitates. Such
precipitates also contribute to vortex pinning in REBCO
thin films.

(e) Planar defects: The formation of a precipitate of a non-123
phase of YBCO such as the copper rich 124 phase leads to
the generation of planar defects. The layered structure of
YBCO is sometimes disrupted by an extra or missing layer
of, for example, CuO2 planes, which results in another kind
of planar defect called the stacking fault [50].

(f) Grain boundaries: Grain boundary is one of the most
common crystal defects in thin films which separates regions
of different orientation of the crystals. The non-uniform
growth of the solids during crystallization process results
in the formation of grain boundaries. If the angle between
the adjacent grain boundaries is small, it is effective for
pinning the vortices [51, 52]. However, if the angle between
grain boundaries is larger, it results in weak coupling
between the adjacent grains and Jc decreases rapidly. In
all REBCO films, particularly those which are deposited on
coated-conductor substrates that inherently have imperfect
crystalline structures, the alignment of a- and b-axes deviates.
At the boundaries, where misaligned grains meet, atomic
order is disrupted resulting in strain and dislocations which
provide pinning to the vortices.

(g) Twin boundaries: The crystal structure of REBCOmaterials,
in their superconducting state, is orthorhombic. During the
deposition of REBCO films on crystalline substrates, when
c-axis of the material grows perpendicular to the substrate,
domains with perpendicular a- and b-axes orientations form.
The boundaries where these domains meet are called twin
boundaries, which are also a kind of planar defect [53, 54].

(h) Antiphase boundaries: YBCO has a layered structure
in which appropriately oxygenated yttrium, barium
and copper layers are arranged in a particular order.
During the process of growth of the film, domains
coalesce with the layers matching yttrium-to-yttrium,
barium-to-barium, and copper-to-copper. Sometimes,

however, this sequence is disrupted and a boundary between
imperfectly matched domains is generated which is called an
antiphase boundary [55].

(i) Threading dislocations: During the growth of the film,
the dislocations between misoriented grains may also grow
simultaneously and run entirely through the film thickness.
Sometimes, dislocations form between the growth islands
due to lattice mismatch between the substrate and REBCO
phase [56, 57].

VORTEX PINNING IN YBCO AND REBCO
THIN FILMS: ARTIFICIAL PINNING
CENTERS (APCs)

It has been discussed earlier that the immobilization of vortices
is required to achieve high Jc in the presence of large magnetic
field. Due to the presence of naturally occurring defects which
are described in the previous section, the vortices are pinned in
REBCO films. However, the pinning efficiency of these naturally
occurring defects against thermal fluctuations is not sufficient to
sustain necessary level of Jc at high applied magnetic fields [58,
59]. It has been, therefore, a subject of great interest to improve
the Jc values of YBCO and REBCO thin films by introducing
additional defects into the superconducting matrix.

There are many methods which have been applied to
introduce APCs into YBCO and REBCO superconductors. These
can be classified into three main categories:

Doping of Rare-Earth Elements (Addition
and/or Substitution)
Different rare-earths in REBCO have different ionic-radii and
the effect of ionic-radii on the Tc of REBCO superconductors
has been reported in an earlier study [60]. It has been observed
that the Tc varies linearly with the ionic-radius of RE ions
which was attributed to the strain-induced charge redistribution
between the charge reservoir (CuO-chains) and the CuO2

planes. The doping of Ho in YBCO melt-textured samples was
conducted and significant enhancement in the in-field Jc was
observed in the Ho-doped samples [61]. In order to improve
the vortex pinning properties of YBCO superconducting thin
films, several rare-earth elements such as Sm, Eu, Nd have
been doped in place of Y with different molar cationic ratio
[62]. Figure 5 shows the enhanced in-field Jc by up to a factor
of 3 as observed in Y2/3Sm1/3Ba2Cu3O7−δ films deposited by
PLD technique on single crystal substrates. The enhanced in-
field Jc in the doped films has been attributed to the additional
random defects and tilted linear defects present in the doped
sample. However, the enhanced field-dependent Jc behavior of
YxRE1−xBCO compounds as compared to that of YBCO is not
very clearly understood.

According to some reports [63–66], in Y-Ba-Cu-O compound,
the Y atom is completely replaced by another rare-earth
atom or combination of 2 or more rare-earth atoms, which
resulted in improved vortex pinning. In order to see if there
is additional enhancement resulting from the strain induced by
lattice mismatch when mixtures of rare-earth elements were used
instead of a single rare-earth element, various combinations were
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FIGURE 5 | Variation of Jc with applied magnetic field at 75.5K for REBCO

thin films of various rare-earth combinations in (RE1:RE2:RE3)1Ba2Cu3O7−x.

(A) Normalized Jc vs. applied field when applied field is along the c-axis. While

sample number 26 refers to pristine YBCO, sample numbers 34, 40, 41, 42,

47, and 64 have RE1:RE2:RE3 ratios as (Y:Sm = 1:0.5), (Y:Sm:Nd =
1:0.11:0.05), (Er:Eu = 1:0.24), (Y:Eu:Sm = 1:0.2:0.2), (Dy:Eu:Nd = 1:0.2:0.1),

and (Dy:Gd:Sm = 1:0.25:1), respectively. (B) Actual Jc vs. applied field when

applied field is along the c-axis for YSmBCO (Y:Sm = 1:0.5) on IBAD-MgO

(sample 90I) and YBCO on IBAD-MgO (sample 87I). In the inset of (B),

variation of Jc vs. applied field parallel to ab-plane is shown. Reprinted from

MacManus-Driscoll et al. [62], with the permission of AIP Publishing.

reported which include (Gd0.8Er0.2) [65] and (Nd1/3Gd1/3Eu1/3)
[66]. However, in all cases, the enhancement was not remarkable
except for the case when the defects were present randomly and
not correlated.

Several other elements (Tb, Ce, Pr, Nd, La, Co, Dy, and Eu)
have been attempted for substitution at the Y site of YBCO and
RE site of REBCO [49, 67–70] films. These substitutions resulted
in enhanced Jc and Fp values over a broad range of applied
magnetic fields, which was attributed to increased density of
nanoprecipitates of these substituents in doped REBCO films as
compared to pristine REBCO film which subsequently resulted
in stress field due to lattice mismatch between the phases in the
resulting REBCO films.

Nanoscale Secondary Phase
Inclusions/REBCO Based Nanocomposites
Another way of introducing APCs into REBCO superconductors
is the incorporation of nanoscale non-superconducting

secondary phase materials into the superconducting matrix.
There are several reports in the recent past in which the
vortex pinning properties of REBCO superconductors has
been improved by intentionally adding non-superconducting
secondary phase nanoparticles. Incorporation of different
secondary phases such as Al2O3 [71], TiO2 [72], WO3 [73],
BaTiO3 [74], BaZrO3 [75, 76] etc. into YBCO polycrystalline
bulk samples have been reported in the past which resulted in
the enhancement of in-field Jc of YBCO bulk samples. The melt-
textured bulk samples of REBCO superconductors consisting of
precipitates of secondary phases such as (RE)2BaCuO5 (RE-211)
[77, 78], NbO3, MoO3 [79] etc. have also exhibited superior
vortex pinning properties resulting in enhanced in-field Jc and
Hirr values.

The incorporation of BaZrO3 (BZO) nanostructures into
YBCO thin films was reported in an earlier study [80] in which a
composite (premixed YBCO:BZO) ablation target was used in the
PLD technique. It was found that although BZO nanoinclusions
were distributed randomly throughout the YBCO matrix, it
produced a significant c-axis correlated enhancement of Jc. In
another report [81], yttria-stabilized zirconia (YSZ) was added
to the YBCO target, which led to the formation of BZO
nanostructures in the as deposited YBCO thin film, presumably
leaving a Ba-deficient YBCO film matrix. In this composite film,
a self-assembly of vertical arrays of BZO phase was observed.
These vertical arrays of self-assembled BZO phase were supposed
to arise from the preferential nucleation of the impurity islands
in the strain field above the impurity particles [82]. These self-
assembled vertical arrays of BZO phase resulted in strong pinning
of vortices especially when the applied magnetic field is along
the c-axis. Goyal et al. [83] have also reported a strong c-axis
correlated pinning enhancement in YBCO:BZO nanocomposite
thin films on RABiTS.

The incorporation of BZO nanoinclusions into YBCO
thin films has been conducted in many other studies which
include study of temperature dependence of Jc for YBCO and
YBCO:BZO thin films [84] and field dependence of the optimum
concentration of BZO nanoinclusions for effective pinning of
vortices [85]. Figures 6A–C shows the cross-sectional and planar
views of the microstructure of YBCO:BZO thin films, deposited
on IBAD-MgO templates, with varying concentrations of BZO.
The variation of the average spacing between the BZO nanorods
and the corresponding matching field (Bϕ) with respect to
BZO concentration is also shown in Figure 6D. As shown in
Figure 7, lower concentrations of BZO nanoinclusions are more
effective at 77K, exhibiting higher Fpmax values. However, at 65K
and higher magnetic field, the performance of the YBCO:BZO
films with higher concentration of BZO nanoinclusions
is enhanced as compared to YBCO:BZO films with
low BZO content.

The CSD method has also been employed to prepare
YBCO:BZO nanocomposite thin films which exhibited strongly
enhanced vortex pinning [86]. Unlike the previous results in
which films were deposited using PLD technique, the solution
process was found to produce non-epitaxial secondary phase
particles in the film matrix surrounded by many crystalline
defects. Figure 8 shows the microstructure of the YBCO:BZO
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FIGURE 6 | Cross-sectional TEM images of (A) YBCO:BZO 1 vol% and (C) YBCO:BZO 4 vol% thin films. (B) Plan-view TEM image YBCO:BZO 2 vol% thin film.

(D) The variation of average BZO nanocolumn spacing, d, and corresponding matching field, Bϕ , with BZO concentration. Reproduced from Wee et al. [85].

nanocomposite thin film using transmission electronmicroscopy
(TEM) in which the separate phase of BZO nanoparticles and
crystalline defects surrounding them can be clearly observed. The
formation of BZO nanoparticles inside YBCO matrix resulted
in isotropic pinning characteristics of these films [87, 88].
The significant improvement in the value of Jc and Fp of the
YBCO:BZO nanocomposite thin films can be seen in Figure 9.

By adopting a different approach in PLD technique,
Haugan et al. [89] have successfully incorporated a non-
superconducting phase, Y2BaCuO5 (Y211), into YBCO thin
film in a controlled manner. Two different targets, one of
YBCO and another of Y211, were used and by depositing
thin YBCO layers and discontinuous Y211 layers alternately,
a pancake-like array of precipitates were formed in the
resulting film matrix. In this case, enhanced vortex pinning
properties was found for both the field orientations: when
H was parallel to the c-axis and also for H parallel to
the ab-plane [90]. Very recently it was demonstrated that
these Y211 nanoparticles are effective not only in increasing

the in-field Jc but also in reducing the critical current
anisotropy [91].

Apart from BZO and Y211, the nanostructures of other
materials such as Y2O3 (YO) [92], BaSnO3 (BSO) [93–95], and
BaTiO3 (BTO) [96] have also been successfully incorporated
into YBCO thin films using the PLD technique. In all these
cases, the enhancement in the value of Jc was more prominent
at higher applied magnetic field. In one of the reports [95],
the Fpmax value for YBCO:BSO nanocomposite film turned
out to be 28.3 GNm−3, a record of that time, which reflects
the excellent in-field performance of Jc. The incorporation of
a double-perovskite material, YBa2NbO6 (YBNO), was also
reported and it was found that YBNO phase grows in the
form of columnar nanostructures [97]. In another report, the
YBNO nanocolumns were introduced into YBCO thin films by
surface modified target method in which YBNO concentration
inside YBCO thin film was controlled by controlling the target
rotation speed [98]. YBNO nanocolumns were observed to be
very effective in enhancing the in-field Jc of YBCO thin films.
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FIGURE 7 | Variation of Jc and Fp for pristine YBCO and YBCO:BZO thin films with varying concentration of BZO (1–10 vol%) at 77K (A,C) and 65K (B,D). The inset

of (A) shows normalized Jc, Jc (H)/Jc(sf), for all the studied thin film samples. Reproduced from Wee et al. [85].

FIGURE 8 | (A) Cross-sectional TEM image of a YBCO:BZO nanocomposite film in which BZO nanoparticles can be clearly observed. (B) High-resolution TEM image

of a BZO nanoparticle grown near the interface with the single-crystal substrate. Inset shows the fast Fourier transform of the image in which the epitaxial relationship

between BZO and YBCO can be seen in the diffraction peaks. Reprinted from Gutierrez et al. [86], with the permission from Springer Nature© (2007).

Rare-earth tantalates (RE3TaO7, REBa2TaO6) also turned out to
be excellent secondary phase materials which were incorporated
inside REBCO superconducting matrix for enhancing in-field Jc

of REBCO thin films [99, 100]. It has been suggested that the
lattice mismatch is appropriate for superior vortex pining if it is
in the range of 5–12% [100].
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FIGURE 9 | (A) Variation of Jc with applied magnetic field for YBCO:BZO(10%) nanocomposite film (red symbols) and a pristine YBCO sample (black symbols) grown

by CSD technique. The solid and hollow symbols correspond to the data measured at 77 and 65K, respectively. In the inset, variation of the normalized Jc with

applied magnetic field at 77K for pristine and nanocomposite films is shown. (B) Variation of Fp with applied magnetic field for the nanocomposite film at 65 and 77K

in comparison with that of pristine YBCO at 65K and NbTi wires at 4.2K. Reprinted from Gutierrez et al. [86], with the permission from Springer Nature© (2007).

The nanoinclusions of the rare-earth tantalate and niobate
have simultaneously been incorporated into YBCO thin films
which significantly enhanced the Jc of YBCO films and
improved the angular anisotropy of Jc [101]. Extremely
high Fpmax values have been observed in YBCO films with
YBa2(Nb/Ta)O6 (YBNTO) nanoinclusions [102]. Figure 10

shows the microstructure of the YBCO film with YBNTO
nanoinclusions. Apart from YBNTO nanocolumns, other
pinning centers such as Y2O3 nanoparticles and planar defects
can also be observed in this figure. Figure 11 shows the variation
of Jc and Fp, at 77K and 30K, for YBCO films with YBNTO
nanoinclusions deposited at different frequencies in the PLD
system. At 77K, Fpmax exceeded 25 GNm−3 and at 30K, it
exceeded 300 GNm−3 which can be seen as excellent in-field Jc
performance of these YBCO nanocomposite thin films.

More recently BaHfO3 (BHO) has emerged out as a very
promising secondary phase material whose nanoinclusions in
the form of columnar or spherical structures inside REBCO
matrix resulted in significantly enhanced in-field Jc of REBCO
thin films deposited on both single crystals and metallic tapes
[103–110]. By adopting low-temperature growth technique in
PLD, SmBCO:BHO films have been demonstrated to exhibit
very high pinning force density (Fpmax = 28 GN/m3) at 77K
for H parallel to the c-axis [107]. Even on metallic tapes,
GdBCO:BHO nanocomposite films exhibited large values of
pinning force density (Fpmax = 23.5 GN/m3) and irreversibility
field (µ0Hirr = 15.8 T) at 77K for H parallel to the c-axis
[108]. The CSD approach has also been employed to incorporate
BHO nanoparticles into YBCO [109] and GdBCO [110] thin
films, which resulted in the enhanced in-field Jc values of the
nanocomposite thin films.

By adopting a different synthesis route called MOCVD,
researchers at University of Houston in USA have demonstrated
that the incorporation of BZO in high volume fractions results

in outstanding in-field Jc performance of REBCO films which
are relatively thicker (∼ 1–2µm) [111–116]. The Fpmax value
of one of these composite films reached a record value of
1.7 TN/m3 at 4.2 K together with extremely high µ0Hirr ∼
14.8 T (at 77K), a value that is much higher than the µ0Hirr

∼ 11 T of NbTi superconductor at 4.2 K [111]. Figure 12

shows the cross-sectional TEM image of a heavily doped
(Gd,Y)BCO superconducting film on IBAD substrate prepared
by MOCVD technique in which c-axis oriented self-assembled
BZO nanocolumns can be clearly observed. Figure 13 shows the
variation of Jc and Fp with respect to applied magnetic field
for the films with different concentration of Zr inclusions (in
mol %). It can be observed that in heavily doped film, Fpmax

exceed the value of 1 TNm−3 which is excellent in terms of critical
current performance.

The so-called quasi-multilayer (multilayers in which layer/s
of one phase is incomplete) approach has also been employed
for improving vortex pinning in YBCO thin films. The quasi-
multilayers of YBCO with different materials such as Y2O3 [117,
118], BZO [119], and transitionmetals such as Ir [120] and Ti, Zr,
Hf [121] and prepared by PLD technique have been investigated.
The transition metals when incorporated into YBCO thin films,
through this approach, have been observed to form BaMO3

(M = Ti, Zr, Hf, Ir) phase. Not only enhancement in the in-
field Jc of YBCO based quasi-multilayers was observed, but the
irreversibility line was also observed to shift toward higher H-T
regime [119].

The materials, whose precipitates or nanoparticles have been
mentioned so far, for their use as secondary phase inclusions in
the YBCO/REBCO thin films, are mostly insulating and non-
magnetic in nature. However, there have been successful attempts
of using ferromagnetic secondary phase inclusions as a source of
APCs in YBCO thin films. A thin layer of Fe2O3 has been used
either as a cap layer on YBCO thin film or as a buffer layer on
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FIGURE 10 | High-resolution TEM images of YBCO:YBNTO (YBCO + 2.5 mol% BYNO + 2.5 mol% BYTO) thin films, deposited at 1Hz, near substrate-film interface

(a) and near the film surface (b). Different pinning centers such as YBNTO nanocolumns, Y2O3 nanoparticles and planar defects are marked. (c) Bright-field TEM

cross-sectional image of the 1Hz sample over larger width (3,200 nm). YBNTO nanocolumns are marked with arrows. The nanocolumns which are tilted are marked

by red dots. Reproduced from Opherden et al. [102].

STO substrate before YBCO film deposition [122, 123]. It has
been observed that the samples consisting of Fe2O3 cap layer have
exhibited significant enhancement in the Jc (both self-field and
in-field) of YBCO thin films. In addition, other ferromagnetic
nanoinclusions such as of YFe3O4 [124] and CoFe2O4 [125]
have also been successfully used to enhance the vortex pinning
properties of YBCO thin films. The incorporation of Fe into
the YBCO matrix at sufficiently low concentrations was effective
for vortex pinning and the so-called “poisoning effect” was
observed as its concentration is increased [126]. The enhanced
vortex pinning properties of the YBCO films with ferromagnetic
nanoinclusions have been discussed in terms of Lorentz force
reduction pinning mechanism which is effective for low field
regime (up to ∼ 1 T) [127]. It has been suggested that in the
low field regime, the magnetic flux is effectively reduced from
the vortices which subsequently reduces the Lorentz force on the
vortex lattice.

Incorporation of Hybrid APCs Into REBCO
Thin Films
On the basis of numerous experimental results, it became
apparent that some of the secondary phase nanoinclusions tend
to self-assemble in the form of nanocolumns along the c-axis

direction, while others become nanoparticles with different sizes.
The self-assembled columnar nanostructures of perovskite and
double-perovskite materials such as BSO, BZO, BSO, YBNO
etc. are very effective in enhancing Jc particularly when the
applied magnetic field is normal to the film surface. However,
at higher temperatures, the vortices tend to form double kink
structures under the influence of thermal excitations. Even if
the matrix contains c-axis correlated defects (nanocolumns), the
unpinned vortex segments can move due to the acting Lorentz
force. Moreover, as applied magnetic field direction changes
from normal to the film surface toward ab-plane, the columnar
nanostructures start losing the vortex segments gradually and at
enough inclination these vortices become free from the columnar
pinning sites. Such a situation is represented in Figure 14. It was,
therefore, considered to incorporate mixed pinning landscapes in
the REBCO films so that vortices may remain pinned even if the
applied magnetic field is tilted from the c-axis of the films. This
would result in increased Jc in the intermediate angular regime
(between ab-plane and c-axis), and the angular anisotropy of the
critical current density would thus be reduced.

The use of two different kinds of pinning landscapes was
reported by Mele et al. [128] in which BZO nanocolumns
and YO nanoparticles were simultaneously incorporated into
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FIGURE 11 | Variation of Jc and Fp with applied magnetic field for YBCO:YBNTO (YBCO + 2.5 mol% YBNO + 2.5 mol% YBTO) thin films, deposited at different

frequencies, at 77K (A,C) and 30K (B,D). Reproduced from Opherden et al. [102].

YBCO film deposited by PLD technique. Although, Jc was
increased slightly in the intermediate angular regime, but it was
found to decrease along the c-axis of the film as compared
to BZO added YBCO film (columnar pins only). Later, the
combinations of nanocolumns and nanoparticles of different
materials have also been reported where the in-field Jc was
enhanced and anisotropy of Jc of YBCO thin films was sufficiently
reduced [129–132]. The use of BSO nanocolumns together
with YO nanoparticles was attempted on metallic tape as well
and significant enhancement of in-field Jc and reduction in
Jc anisotropy was reported [133]. The combination of BSO
nanocolumns and Y2O3 (YO) nanoparticles as hybrid APCs was
very effective in controlling the angular anisotropy of the Jc
of YBCO thin films [130]. The cross-sectional TEM images of
YBCO+BSO3% and YBCO+BSO3%+YO nanocomposite films
are shown in Figure 15 in which formation of only columnar
nanostructures in YBCO+BSO thin film and that of both
columnar and spherical nanostructures in YBCO+BSO+YO
thin film can be clearly observed. Figure 16 shows the angular
variation of Jc measured at 77K, 1 T and 65K, 3 T for pristine
YBCO, YBCO+BSO, and YBCO+BSO+YO thin films. The
superior in-field Jc performance with reduced anisotropy for
YBCO thin films consisting of hybrid APCs can be clearly
observed in Figure 16.

Successful incorporations of different combinations of
nanocolumns and nanoparticles into YBCO thin films were later
reported in which BSO nanocolumns and Y211 nanoparticles
[132], BZO nanocolumns and BaCeO3 nanoparticles [134],
and BHO nanocolumns and YO nanoparticles [135] were

simultaneously incorporated into YBCO thin films, which
resulted in superior in-field Jc performance with reduced
anisotropy. Hybrid APCs were also incorporated in the
form of segmented BSO nanocolumns [136] and segmented
nanocolumns with YO nanoparticles [137].

From an energetics point of view, a pinned vortex line is
more stable than a free vortex in a superconductor. For a non-
superconducting particle, the energy gain by a vortex line per
unit of interaction volume equals to the condensation energy in
the core region. The total pinning energy for a vortex line is,
therefore, given by [138]:

U(T, θ) =
B2c (T)

2µ0
πξ 2abε(θ)d (2)

where, Bc(T) = Φ0
2
√
2πξab(T)λab(T)

is the thermodynamic critical

field, Φ0 is the flux quantum, ξab and λab are the coherence
length and the penetration depth along the ab-plane and
d the size of the non-superconducting inclusion. ε (θ) =
√

(cos2θ + γ−2 sin2 θ) where, γ (= 5–7) is the electronic mass
anisotropy parameter. When the vortex line is pinned at the
normal core, energy has to be spent to move it away from the
core. The force needed to eject a vortex line segment is called
the elementary pinning force and is related to the condensation
energy as follows:

fp ≈
U

ξab
(3)
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FIGURE 12 | Cross-sectional TEM image of a (Gd, Y)BCO film with 25 mol% Zr on IBAD grown by MOCVD technique. (a,b) Show that BZO nanocolumns are formed

which are about 5 nm in diameter and aligned along the crystallographic c-direction. Planar view of the microstructure is shown in (c), whereas (d–f) show the

bright-field image, high angle annular dark field image and high-resolution cross-sectional image. The compositional map of a nanoparticle is conducted by electron

energy loss spectrometer and is shown in (g). Reprinted from Selvamanickam et al. [113], with the permission of AIP Publishing.

Considering each vortex is individually pinned by a non-
superconducting core region, and the elastic energies are
considerably smaller than the pinning energies, the global
pinning force per unit volume may be given by directly summing
the elementary pinning forces over all the pinning sites [138].

Fp = Σ fp = N
dp

a0
fp (4)

where N is the density of non-superconducting precipitates,
and dp and a0 are the average separation among the pinning

centers and flux lines, respectively. According to this equation,
the global pinning force is directly proportional to the

concentration of pinning centers. It is, however, to be noted
that the nature of Equation (4) is simplistic in the sense

that it assumes that all the pinning centers are of equal
strength. The density of APCs, however, has an upper limit

also for being efficient enough for vortex pinning before the
superconductive matrix is severely degraded. Gurevich [139]
and other researchers [140, 141] considered nanoparticles of
materials such as YO or Y211 as strong pinning centers where
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FIGURE 13 | Variation of critical current density with applied magnetic field for

7.5, 15, and 25mol.% Zr-added (Gd,Y)BCO superconductor tapes at 30K for

H perpendicular to the tape. Variation of pinning force density of 25mol.%

Zr-added (Gd,Y)BCO superconductor tape at 30 and 20K is shown in the

inset. Reprinted from Selvamanickam et al. [113], with the permission of AIP

Publishing.

FIGURE 14 | Schematic illustration of (A) possible vortex configurations for

varying inclinations of applied magnetic field (θ) with respect to the columnar

disorders aligned along the c-axis of the YBCO films and (B) pinning of

vortices provided by spherical nanoparticles located randomly between the

columnar disorders in the YBCO matrix. Reproduced from Jha et al. [131],

with the permission from IoP Publishing.

parts of the vortex segments can be pinned strongly. If a vortex
segment is pinned by two non-superconducting nanoparticles
separated by a distance d, then the expression for the upper
limit of critical current density, according to their model, is

FIGURE 15 | Cross-sectional TEM images of YBCO films with (A) BSO

nanocolumns and (B) BSO nanocolumns and Y2O3 nanoparticles deposited

by surface modified target method. Reproduced from Jha et al. [130], with the

permission from IEEE Publishing.

given by:

Jmax
c =

Φ0

4πµ0λabλcd
ln

d

ξc
(5)

where the terms have their usual meanings. As per this

equation, the Jc value is proportional to the term 1
d
l n

(

d
ξc

)

and for smaller separation among the nanoparticles (higher
the concentration), higher Jc is anticipated. However, too
much incorporation of such non-superconducting nanoparticles
may result in the degradation of the superconducting matrix
and hinder the transport of electrical current leading to
low Jc [142].

Factors Determining the Geometry/Morphology of

Nanoscale Inclusions
In order to improve vortex pinning in REBCO superconductive
films, the inclusion of nanoscale secondary phases remains
the most extensively studied among all the techniques. These
nanoscale inclusions are considered as strong pinning centers
and are very effective depending upon their density and
geometry/morphology within the superconducting matrix [8].
It is, however, very interesting to observe that these secondary
phase nanoinclusions have different morphologies within the
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FIGURE 16 | Angular variation of Jc for pristine YBCO, YBCO+BSO, and

YBCO+BSO+Y2O3 nanocomposite films measured at (A) 77K, 1 T, and (B)

65K, 3 T. Two different Y2O3 pieces, 2.2 area and 3 area%, are referred as

YOA and YOB, respectively. Reproduced from Jha et al. [130], with the

permission from IEEE Publishing.

REBCO matrix and accordingly they are efficient for different
range of H orientations. While columnar nanostructures are
effective for H oriented along the c-axis (exhibiting a strong
Jc peak for H//c-axis), spherical nanoparticles are observed
to be effective for larger angular range of H. It, therefore,
becomes imperative to understand the physical origin of
varying morphology of these nanoscale inclusions. One of the
fundamental parameters which decides the geometry of these
nanoscale structures within REBCO thin films, is the lattice
mismatch between the two phases. Apart from the lattice
mismatch, the surface diffusion of adatoms also play a crucial
role in determining the interface between the two phases, which
may be coherent, semi-coherent or non-coherent [86]. While
the surface energies of coherent and semi-coherent interfaces are
much lower, that of the non-coherent interfaces are much higher
which results in the observation of many phenomena such as
coarsening of the grains in polycrystalline films [143] and faceting
of precipitates and grain boundaries [144].

In recent years, Wu et al. in a series of reports [11, 145–149],
have attempted to explain the morphology of the nanoinclusions
on the basis of elastic strain model. They have found that the
APC morphology is determined by the combined effect of the
lattice mismatch and elastic properties of REBCO and secondary
phase materials. Based on their calculations, they defined a
phase boundary separating two regions: c-axis aligned columnar
nanostructures are preferred energetically on one side of the
boundary and not preferred on the other side of the boundary.
Their calculations were in good agreement with experimentally
obtained results on well-aligned nanocolumns of materials such
as BZO [83, 150], BSO [94], BHO [103, 151, 152], and YBNO [97]
and spherical nanoparticles of other materials such as Y211 [153]
and YO [154, 155] which are on the other side of the calculated
phase boundary.

Substrate Surface Modifications
Substrate surface modification is one of the earliest methods used
to introduce APCs into superconducting thin film to improve its
vortex pinning characteristics. This method provides a means for
generating nanostructured APCs by decoration of the substrate
surface by non-superconducting secondary phase nanoparticles
which generates interfacial defects between the phases. Before
the deposition of superconducting thin film, the decoration of
the substrate surface is accomplished by growing nanoparticles
of various species such as metals [156, 157] or oxides [158–
164] on the substrate. The substrate surface is modified by
processing an oxide layer in such a way that nanoscale outgrowth
develops naturally on the deposition surface. Due to the presence
of these nanoparticles at the substrate/film interface, the lattice
planes of YBCO are distorted or buckled above the nanoparticles,
resulting in low-angle grain boundaries or dislocations that
may extend through the entire thickness of the thin film.
Matsumoto et al. [159] have reported that the presence of YO
nanoparticles at the substrate/film interface produced c-axis-
correlated pinning which was reflected in the enhancement of
Jc when H was parallel to the c-axis. In another report by
Aytug et al. [157], where STO is treated with Ir nanoparticles,
the enhancement in Jc was observed. The authors have shown
that the YBCO planes above the grown Ir nanoparticles are
buckled and give rise to random pinning. Random pinning,
generally, is caused by the homogeneous distribution of the point
defects throughout the film volume. Since in this case the film
thickness is 100–200 nm, the presence of strain fields through
the entire thickness is supposed to create the appearance of a
volumetric particle distribution. The difference in the pinning
mechanism due to YO and Ir nanoparticles can be understood
in terms of their chemical reaction with the YBCO phase.
In the case when Ir is present at STO/YBCO interface, these
Ir nanoparticles might have reacted partially with YBCO and
the volumetric change that could have taken place might have
provided an alternate way to relieve the strain thereby reducing
the driving force for dislocation formation and eliminating
correlated pinning enhancement. But, YO nanoparticles are
chemically inert with YBCO, and therefore, these are intact at
the substrate/film interface. Later, ferromagnetic La0.7Sr0.3MnO3

(LSMO) nanoparticles were also successfully grown on the
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FIGURE 17 | Atomic force micrograph of STO substrates (A) without decoration and (B) decorated with LSMO nanoparticles. The random distribution of LSMO

nanoparticles on the STO substrate surface can be clearly observed in Figure (B). Reproduced from Jha et al. [165], with the permission from AIP Publishing.

FIGURE 18 | Variation of critical current density with applied magnetic field as measured at (A) 60K and (B) 77K for YBCO films on the undecorated and LSMO

decorated STO substrates. Variation of the corresponding pinning force density with applied magnetic field is shown in the insets of (A,B). Reproduced from Jha et al.

[165], with the permission from AIP Publishing.

STO surface by PLD technique before the growth of YBCO
thin film [165]. Figure 17 shows the atomic force microscope
(AFM) images of undecorated and LSMO nanoparticle decorated
STO substrates onto which YBCO thin films were deposited.
The decorated sample exhibited enhanced in-field Jc than the
undecorated sample which can be observed in Figure 18. It was
suggested in this report that the presence of LSMO nanoparticles
at the YBCO/STO interface could generate structural defects
such as threading dislocations which would result in c-axis
vortex pinning in the resulting YBCO film. The enhanced Jc
values for the YBCO film on decorated substrate can also
be understood in terms of Lorentz force reduction pinning
mechanism [127]. In such a scenario, the Lorentz force splits
between the vortices and the magnetic pinning sites which results
in higher current density before the vortices start depinning
from the defects. The metal organic decomposition method
has also been employed for decoration of the substrate surface

for improving the vortex pinning properties of YBCO thin
films [166–168].

CONCLUSIONS

REBCO superconductors are the most promising HTS for
their high Tc and Jc values. However, for their use in several
applications in the practical range of temperature and applied
magnetic field, pinning of vortices is an essential requirement.
It has been shown that the defects that are generated naturally
during the growth of the sample (bulk or thin film) are not
sufficient to pin the vortices at elevated temperatures and applied
magnetic fields. That is how the need of introducing artificial
pinning centers arose and extensive work has been carried out
to address this issue.

In recent years, a variety of methods have been reported to
intentionally introduce nanostructured defects into the REBCO
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superconducting samples which include doping of rare-earth
elements, addition of secondary phase nanostructures and
modification of the substrate surface. The different methods
for introducing artificial pinning centers lead to different
and interesting underlying physics. The dominant pinning
mechanism needs to be investigated which governs the role of
artificial pinning centers in these superconducting samples.

The various interesting issues and future potential
applications based on REBCO superconducting films have
provoked researchers to continue activities in this field of
research. The generation of nanoscale APCs with desired
density, geometry and orientation is very much needed for
vortex pinning in REBCO nanocomposite films deposited
on single crystals and metallic tapes. Precise control of these
parameters is very promising for optimal pinning of the vortices
as required to push the limits of critical current performance.

AUTHOR CONTRIBUTIONS

AJ conceived the idea of highlighting the role of rare-earth oxides
in promoting sustainable energies. AJ and KM discussed the
development in this area over the years and contributed to
the manuscript.

ACKNOWLEDGMENTS

We would like to thank N. Khare, T. Horide, P. Mele, S. Saini,
A. Ichinose, R. Pinto, Y. Yoshida, and S. Awaji for cooperative
research on vortex pinning studies in YBCO nanocomposite
films. This work is supported by the research startup grant
provided by Kyushu Institute of Technology. Partial financial
support from ALCA project of the Japan Science and Technology
Agency is also thankfully acknowledged.

REFERENCES

1. Onnes HK. Further experiments with liquid helium. On the change

of electric resistance of pure metals at very low temperatures

etc. The resistance of pure mercury at helium temperatures.

(i)Leiden Comm. 120b, reprinted in Proceedings of the Koninklijke

Nederlandse Akademie van Wetenschappen. (1911). p. 1479–81.

(ii)Leiden Comm. 122b, reprinted in Proceedings of the Koninklijke

Nederlandse Akademie van Wetenschappen. (1911). p. 81–3.

(iii)Leiden Comm.124c, reprinted in Proceedings of the Koninklijke

Nederlandse Akademie van Wetenschappen. (1911). p. 799–802.

2. Meissner W, Ochsenfeld R. Ein neuer Effekt bei

Eintritt der Supraleitfähigkeit. Naturwissenschaften. (1933)

21:787–8. doi: 10.1007/BF01504252

3. Poole CPJr, Farach HA, Creswick RJ, Prozorov R. Superconductivity.

Amsterdam: Academic Press (2007). p. 61–82.

4. Gottlieb U, Lasjaunias JC, Tholence JL, Laborde O, Thomas O, Madar R.

Superconductivity in TaSi2 single crystals. Phys Rev B. (1992) 45:4803–

6. doi: 10.1103/PhysRevB.45.4803

5. Ren Z-A, Kato J, Muranaka T, Akimitsu J, Kriener M, Maeno

Y. Superconductivity in Boron-doped SiC. J Phys Soc Jpn. (2007)

76:103710. doi: 10.1143/JPSJ.76.103710

6. Larbalestier D, Gurevich A, Feldmann DM, Polyanskii A. High-Tc

superconducting materials for electric power applications. Nature. (2001)

414:368–77. doi: 10.1038/35104654

7. Malozemoff AP. High Tc for the power grid. Nat Mater. (2007) 6:617–

9. doi: 10.1038/nmat1990

8. Foltyn SR, Civale L, Macmanus-Driscoll JL, Jia QX, Maiorov B, Wang H,

et al. Materials science challenges for high-temperature superconducting

wire. Nat Mater. (2007) 6:631–42. doi: 10.1038/nmat1989

9. Kunchur MN. Current-induced pair breaking in magnesium

diboride. J Phys Condens Matter. (2004) 16:R1183–

R1204. doi: 10.1088/0953-8984/16/39/R01

10. TinkhamM. Introduction to Superconductivity.NewYork, NY:McGraw-Hill

(1996). p. 316–82.

11. Wu J, Shi J. Interactive modeling-synthesis-characterization

approach towards controllable in situ self-assembly of artificial

pinning centers in RE-123 films. Supercond Sci Technol. (2017)

30:103002. doi: 10.1088/1361-6668/aa8288

12. Wu MK, Ashburn JR, Torng CT, Hor PH, Meng RL, Gao L,

et al. Superconductivity at 93K in a new mixed-phase Y-Ba-Cu-

O compound system at ambient pressure. Phys Rev Lett. (1987)

58:908–10. doi: 10.1103/PhysRevLett.58.908

13. Maeda H, Tanaka Y, Fukutomi M, Asano T. A new high-Tc oxide

superconductor without a rare earth element. Jpn J Appl Phys. (1988)

27:L209–L210. doi: 10.1143/JJAP.27.L209

14. Parkin SSP, Lee VY, Engler EM, Nazzal AI, Huang TC, Gorman G, et al.

Bulk superconductivity at 125K in Tl2Ca2Ba2Cu3Ox. Phys Rev Lett. (1988)

60:2539–42. doi: 10.1103/PhysRevLett.60.2539

15. Schilling A, Cantoni M, Guo JD, Ott HR. Superconductivity

above 130K in the Hg–Ba–Ca–Cu–O system. Nature. (1993)

363:56–8. doi: 10.1038/363056a0

16. Gurevich A. To use or not to use cool superconductors? Nat Mater. (2011)

10:255–9. doi: 10.1038/nmat2991

17. Malozemoff AP, Worthington TK, Yeshurun Y, Holtzberg F,

Kes PH. Frequency dependence of the ac susceptibility in a Y-

Ba-Cu-O crystal: a reinterpretation of Hc2. Phys Rev B. (1988)

38:7203–6. doi: 10.1103/PhysRevB.38.7203

18. Schilling A, Jin R, Guo JD, Ott HR. Irreversibility line of

monocrystalline Bi2Sr2CaCu2O8: experimental evidence for a

dimensional crossover of the vortex ensemble. Phys Rev Lett. (1993)

71:1899–902. doi: 10.1103/PhysRevLett.71.1899

19. Pastoriza H, Goffman MF, Arribere A, de la Cruz F. First order phase

transition at the irreversibility line of Bi2Sr2CaCu2O8+δ. Phys Rev Lett.

(1994) 72:2951–4. doi: 10.1103/PhysRevLett.72.2951

20. Matsumoto K, Mele P. Artificial pinning center technology to

enhance vortex pinning in YBCO coated conductors. Supercond

Sci Technol. (2010) 23:014001. doi: 10.1088/0953-2048/23/1/

014001

21. Obradors X, Puig T. Coated conductors for power

applications: materials challenges. Supercond Sci Technol. (2014)

27:044003. doi: 10.1088/0953-2048/27/4/044003

22. Cava RJ, Batlogg B, van Dover RB, Murphy DW, Sunshine S,

Siegrist T, et al. Bulk superconductivity at 91K in single-phase

oxygen-deficient perovskite Ba2YCu3O9−δ. Phys Rev Lett. (1987)

58:1676–9. doi: 10.1103/PhysRevLett.58.1676

23. Ossandon JG, Thompson JR, Christen DK, Sales BC, Kerchner HR,

Thomson JO, et al. Influence of oxygen deficiency on the superconductive

properties of grain-aligned YBa2Cu3O7−δ. Phys Rev B. (1992) 45:12534–

47. doi: 10.1103/PhysRevB.45.12534

24. Zaanen J, Paxton AT, Japsen O, Anderson OK. Chain-fragment doping,

and the phase diagram of YBa2Cu3O7−x. Phys Rev Lett. (1988) 60:2685–

8. doi: 10.1103/PhysRevLett.60.2685

25. Matsushita T. Flux Pinning in Superconductors. Berlin: Springer (2007).

p. 341–412.

26. Babic E, Drobac D, Horvat J, Marohnic Z, Prester M. Inter-, and intragrain

critical currents in a dense YBa2Cu3O7 ceramic. Supercond Sci Technol.

(1989) 2:164–8. doi: 10.1088/0953-2048/2/3/002

27. Male SE, Chilton J, Caplin AD, Guy CN, Newcomb SB. Critical currents,

magnetisation, and network models of polycrystalline YBa2Cu3O7.

Supercond Sci Technol. (1989) 2:9–16. doi: 10.1088/0953-2048/

2/1/003

Frontiers in Physics | www.frontiersin.org 17 June 2019 | Volume 7 | Article 82

https://doi.org/10.1007/BF01504252
https://doi.org/10.1103/PhysRevB.45.4803
https://doi.org/10.1143/JPSJ.76.103710
https://doi.org/10.1038/35104654
https://doi.org/10.1038/nmat1990
https://doi.org/10.1038/nmat1989
https://doi.org/10.1088/0953-8984/16/39/R01
https://doi.org/10.1088/1361-6668/aa8288
https://doi.org/10.1103/PhysRevLett.58.908
https://doi.org/10.1143/JJAP.27.L209
https://doi.org/10.1103/PhysRevLett.60.2539
https://doi.org/10.1038/363056a0
https://doi.org/10.1038/nmat2991
https://doi.org/10.1103/PhysRevB.38.7203
https://doi.org/10.1103/PhysRevLett.71.1899
https://doi.org/10.1103/PhysRevLett.72.2951
https://doi.org/10.1088/0953-2048/23/1/014001
https://doi.org/10.1088/0953-2048/27/4/044003
https://doi.org/10.1103/PhysRevLett.58.1676
https://doi.org/10.1103/PhysRevB.45.12534
https://doi.org/10.1103/PhysRevLett.60.2685
https://doi.org/10.1088/0953-2048/2/3/002
https://doi.org/10.1088/0953-2048/2/1/003
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Jha and Matsumoto Superconductive REBCO Thin Films

28. Dimos D, Chaudhari P, Mannhart J. Superconducting transport properties

of grain boundaries in YBa2Cu3O7 bicrystals. Phys Rev B. (1990) 41:4038–

49. doi: 10.1103/PhysRevB.41.4038

29. Murakami M. (Ed.) Melt-Processed High-Temperature Superconductors.

Singapore: World Scientific (1992).p. 68–100.

30. Muralidhar M, Ide N, Koblischka MR, Diko P, Inoue K, Murakami

M. Microstructure, critical current density, and trapped field

experiments in IG processed Y-123. Supercond Sci Technol. (2016)

29:054003. doi: 10.1088/0953-2048/29/5/054003

31. Muralidhar M, Kenta N, Zeng XL, Koblischka MR, Diko P, Murakami M.

Record critical current densities in IG processed bulk YBa2Cu3Oy fabricated

using ball-milled Y2Ba1Cu1O5 phase. Phys Status Solidi A. (2016) 213:443–

9. doi: 10.1002/pssa.201532632

32. Das D, Muralidhar M, Ramchandra Rao MS, Murakami M. Top-

seeded infiltration growth of (Y, Gd)Ba2Cu3Oy bulk superconductors

with high critical current densities. Supercond Sci Technol. (2017)

30:105015. doi: 10.1088/1361-6668/aa83da

33. Naik SPK, Muralidhar M, Jirsa M, Murakami M. Growth, and

physical properties of top-seeded infiltration growth processed large

grain (Gd, Dy)BCO bulk superconductors. J Appl Phys. (2017)

122:193902. doi: 10.1063/1.4999164

34. Tomita M, Murakami M. High-temperature superconductor bulk magnets

that can trap magnetic fields of over 17 tesla at 29K.Nature. (2003) 421:517–

20. doi: 10.1038/nature01350

35. Durrell JH, Dennis AR, Jaroszynski JE, Ainslie MD, Plamer KGB, Shi

YH, et al. A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-

Cu-O reinforced with shrink-fit steel. Supercond Sci Technol. (2014)

27:082001. doi: 10.1088/0953-2048/27/8/082001

36. Dijkkamp D, Venkatesan T, Wu XD, Shaheen SA, Jisrawi N, Min-Lee

YH, et al. Preparation of Y-Ba-Cu oxide superconductor thin films using

pulsed laser evaporation from high Tc bulk material. Appl Phys Lett. (1987)

51:619–21. doi: 10.1063/1.98366

37. Huhtinen H, Ulriksson J, Malmivirta M, Jarvinen J, Jha R, Awana VPS, et al.

Deposition of YBCO thin films in view of microwave applications. IEEE

Trans Appl Supercond. (2017) 27:7501205. doi: 10.1109/TASC.2017.2669484

38. Schey B. Chapter 14: Pulsed Laser Deposition of High-Temperature

Superconducting Thin Films and Their Applications. In: Eason R, editor.

Pulsed Laser Deposition of Thin Films.Hoboken, NJ: Wiley (2007). p. 313–32.

39. M. Miura Chapter 1: Nanostructured Oxide Superconducting Films

Prepared by Metal Organic Deposition. In: Mele P, Endo T, Arisawa S, Li

C, Tsuchiya T, editors. Oxide Thin Films, Multilayers and Nanocomposites.

Cham: Springer (2015). p. 3–26.

40. Ignatiev A. Chapter 15: MOCVD Growth of YBCO Films for Coated

Conductor Applications. In: Goyal A, editor. Second-Generation HTS

Conductors. Dordrecht: Kluwer Academic Publishers (2005). p. 245–59.

41. Horwitz JS, Sprague JA. Chapter 8: Film nucleation and Film Growth in

Pulsed Laser Deposition of Ceramics. In: Chrisey DB, Hubler GK, editors.

Pulsed Laser Deposition of Thin Films. New York, NY: Wiley (1994). p. 229–

54.

42. Singh RK, Kumar D. Pulsed laser deposition, and characterization of high-Tc

YBa2Cu3O7−x superconducting thin films. Mat Sci Eng R. (1998) 22:113–

85. doi: 10.1016/S0927-796X(97)00019-3

43. Paranthaman MP, Izumi T. High-performance YBCO-coated

superconductor wires. MRS Bull. (2004) 29:533–41. doi: 10.1557/

Mrs2004.159

44. Ijima Y, Onabe K, Futaki N, Tanabe N, Sadakata N, Kohno O, et al.

Structural and transport properties of biaxially aligned YBa2Cu3O7−x films

on polycrystalline Ni-based alloy with ion-beam-modified buffer layers. J

Appl Phys. (1993) 74:1905–11. doi: 10.1063/1.354801

45. Goyal A, Norton DP, Budai JD, Paranthaman M, Specht ED, Kroeger

DM, et al. High critical current density superconducting tapes by epitaxial

deposition of YBa2Cu3Ox thick films on biaxially textured metals. Appl Phys

Lett. (1996) 69:1795–7. doi: 10.1063/1.117489

46. Ma B, Li M, Jee YA, Koritala RE, Fisher BL, Balachandran U.

Inclined-substrate deposition of biaxially textured magnesium oxide

thin films for YBCO coated conductors Physica C. (2002) 366:270–

6. doi: 10.1016/S0921-4534(01)00905-4

47. Chudzik MP, Koritala RE, Luo LP, Miller DJ, Balachandran U, Kannewurf

CR. Mechanism, and processing dependence of biaxial texture development

in magnesium oxide thin films grown by inclined-substrate deposition. IEEE

Trans Appl Supercond. (2001) 11:3469–72. doi: 10.1109/77.919810

48. Maroni VA, Li Y, Feldmann DM, Jia QX. Correlation between cation

disorder, and flux pinning in the YBa2Cu3O7 coated conductor. J Appl Phys.

(2007) 102:113909. doi: 10.1063/1.2818048

49. Haugan TJ, Campbell TA, Pierce NA, Locke MF, Maartense I,

Barnes PN. Microstructural, and superconducting properties of

(Y1−xEux)Ba2Cu3O7−δ thin films: x = 0-1. Supercond Sci Technol.

(2008) 21:025014. doi: 10.1088/0953-2048/21/2/025014

50. Gutierrez J, Maiorov B, Puig T, Gazquez J, Roma N, Wang H, et al.

The role of stacking faults in the critical current density of MOD films

through a thickness dependence study. Supercond Sci Technol. (2009)

22:015022. doi: 10.1088/0953-2048/22/1/015022

51. Agassi D, Christen DK, Pennycook SJ. Flux pinning, and critical currents at

low-angle grain boundaries in high-temperature superconductors. Appl Phys

Lett. (2002) 81:2803–5. doi: 10.1063/1.1502907

52. Pan V, Cherpak Y, Komashko V, Pozigun S, Tretiachenko C, Semenov A, et al.

Supercurrent transport in YBa2Cu3O7−δ epitaxial thin films in a dc magnetic

field. Phys Rev B. (2006) 73:054508. doi: 10.1103/PhysRevB.73.054508

53. Miura M, Baily SA, Maiorov B, Civale L, Willis JO, Marken K, et al.

Vortex liquid-glass transition up to 60 T in nanoengineered coated

conductors grown by metal organic deposition. Appl Phys Lett. (2010)

96:072506. doi: 10.1063/1.3310014

54. Guzman R, Gazquez J, Rouco V, Palau A, Magen C, Varela M, et al. Strain-

driven broken twin boundary coherence in YBa2Cu3O7−δ nanocomposite

thin films. Appl Phys Lett. (2013) 102:081906. doi: 10.1063/1.4793749

55. Jooss C, Warthmann R, Kronmuller H. Pinning mechanism of vortices

at antiphase boundaries in YBa2Cu3O7−δ. Phys Rev B. (2000) 61:12433–

46. doi: 10.1103/PhysRevB.61.12433

56. Holesinger TG, Maiorov B, Ugurlu O, Civale L, Chen Y,

Xiong X, et al. Microstructural, and superconducting properties

of high current metal-organic chemical vapor deposition

YBa2Cu3O7−δ coated conductor wires. Supercond Sci Technol. (2009)

22:045025. doi: 10.1088/0953-2048/22/4/045025

57. Lao M, Eisterer M, Stadel O, Meledin A, van Tendeloo G. The

effect of Y2O3, and YFeO3 additions on the critical current

density of YBCO coated conductors. J Phys Conf Series. (2014)

507:022012. doi: 10.1088/1742-6596/507/2/022012

58. Dam B, Huijbregtse JM, Klaassen FC, Van der Geest RCF, Doornbos G,

Rector JH, Testa AM, et al. Origin of high critical currents in YBa2Cu3O7−δ

superconducting thin films. Nature. (1999) 399:439–42. doi: 10.1038/20880

59. Huijbregtse JM, Klaassen FC, Szepielow A, Rector JH, Dam B, Griessen

R, et al. Vortex pinning by natural defects in thin films of YBa2Cu3O7−δ.

Supercond Sci Technol. (2002) 15:395–404. doi: 10.1088/0953-2048/15/3/322

60. Lin JG, Huang CY, Xue YY, Chu CW, Cao XW, Ho JC. Origin of

the R-ion effect on Tc in RBa2Cu3O7. Phys Rev B. (1995) 51:12900–

3. doi: 10.1103/PhysRevB.51.12900

61. Feng Y, Pradhan AK, Zhao Y, Wu Y, Koshizuka N, Zhou L. Improved

flux pinning in YxHo1−xBa2Cu3Oy fabricated by powder melting process.

Supercond Sci Technol. (2001) 14:224–8. doi: 10.1088/0953-2048/14/4/308

62. MacManus-Driscoll JL, Foltyn SR, Maiorov B, Jia QX, Wang H, Serquis

A, et al. Rare earth ion size effects, and enhanced critical current

densities in Y2/3Sm1/3Ba2Cu3O7−x coated conductors. Appl Phys Lett.

(2005) 86:032505. doi: 10.1063/1.1851006

63. Jia QX, Maiorov B, Wang H, Lin Y, Foltyn SR, Civale L, et al. Comparative

study of REBa2Cu3O7 films for coated conductors. IEEE Trans Appl

Supercond. (2005) 15:2723–6. doi: 10.1109/TASC.2005.847797

64. Wee SH, Goyal A, Martin PM, Heatherly L. High in-field

critical current densities in epitaxial NdBa2Cu3O7−δ films on

RABiTS by pulsed laser deposition. Supercond Sci Technol. (2006)

19:865–8. doi: 10.1088/0953-2048/19/8/031

65. Konishi M, Takahashi K, Ibi A, Muroga T, Miyata S, Kobayashi H, et al.

Jc-B characteristics of RE–Ba–Cu–O (RE = Sm, Er, and [Gd, Er]) films on

PLD-CeO2/IBAD-GZO/metal substrates. Physica C. (2006) 445–448:633–

6. doi: 10.1016/j.physc.2006.04.058

Frontiers in Physics | www.frontiersin.org 18 June 2019 | Volume 7 | Article 82

https://doi.org/10.1103/PhysRevB.41.4038
https://doi.org/10.1088/0953-2048/29/5/054003
https://doi.org/10.1002/pssa.201532632
https://doi.org/10.1088/1361-6668/aa83da
https://doi.org/10.1063/1.4999164
https://doi.org/10.1038/nature01350
https://doi.org/10.1088/0953-2048/27/8/082001
https://doi.org/10.1063/1.98366
https://doi.org/10.1109/TASC.2017.2669484
https://doi.org/10.1016/S0927-796X(97)00019-3
https://doi.org/10.1557/Mrs2004.159
https://doi.org/10.1063/1.354801
https://doi.org/10.1063/1.117489
https://doi.org/10.1016/S0921-4534(01)00905-4
https://doi.org/10.1109/77.919810
https://doi.org/10.1063/1.2818048
https://doi.org/10.1088/0953-2048/21/2/025014
https://doi.org/10.1088/0953-2048/22/1/015022
https://doi.org/10.1063/1.1502907
https://doi.org/10.1103/PhysRevB.73.054508
https://doi.org/10.1063/1.3310014
https://doi.org/10.1063/1.4793749
https://doi.org/10.1103/PhysRevB.61.12433
https://doi.org/10.1088/0953-2048/22/4/045025
https://doi.org/10.1088/1742-6596/507/2/022012
https://doi.org/10.1038/20880
https://doi.org/10.1088/0953-2048/15/3/322
https://doi.org/10.1103/PhysRevB.51.12900
https://doi.org/10.1088/0953-2048/14/4/308
https://doi.org/10.1063/1.1851006
https://doi.org/10.1109/TASC.2005.847797
https://doi.org/10.1088/0953-2048/19/8/031
https://doi.org/10.1016/j.physc.2006.04.058
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Jha and Matsumoto Superconductive REBCO Thin Films

66. Cai C, Holzapfel B, Hänisch J, Fernandez L, Schultz L.

Magnetotransport, and flux pinning characteristics in RBa2Cu3O7−δ

(R = Gd, Eu, Nd), and (Gd1/3Eu1/3Nd1/3)Ba2Cu3O7−δ high-Tc

superconducting thin films on SrTiO3 (100). Phys Rev B. (2004)

69:104531. doi: 10.1103/PhysRevB.69.104531

67. Devi AR, Bai VS, Patanjali PV, Pinto R, Kumar NH, Malik SK. Enhanced

critical current density due to flux pinning from lattice defects in pulsed

laser ablated Y1−xDyxBa2Cu3O7−δ thin films. Supercond Sci Technol. (2000)

13:935–9. doi: 10.1088/0953-2048/13/7/305

68. Barnes PN, Kell JW, Harrison BC, Haugan TJ, Varanasi CV, Rane M,

et al. Minute doping with deleterious rare earths in YBa2Cu3O7−δ

films for flux pinning enhancements. Appl Phys Lett. (2006)

89:012503. doi: 10.1063/1.2219391

69. Horii S, Ichinose A, Ichino Y, Ozaki T, Yoshida Y,Matsumoto K, et al. Critical

current properties, and microstructures in impurity-doped ErBa2Cu3Oy

films. Physica C. (2007) 463–465:922–6. doi: 10.1016/j.physc.2007.

03.473

70. Zhou H, Maiorov B, Wang H, MacManus-Driscoll JL, Holesinger

TG, Civale L, et al. Improved microstructure, and enhanced low-

field Jc in (Y0.67Eu0.33)Ba2Cu3O7−δ films. Supercond Sci Technol. (2008)

21:025001. doi: 10.1088/0953-2048/21/02/025001

71. Mellekh A, Zouaoui M, Azzouz FB, Annabi M, Salem MB. Nano-Al2O3

particle addition effects on YBa2Cu3Oy superconducting properties. Sol St

Comm. (2006) 140:318–23. doi: 10.1016/j.ssc.2006.08.008

72. Hannachi E, Slimani Y, Azzouz FB, Ekicibil A. Higher intra-

granular, and inter-granular performances of YBCO superconductor

with TiO2 nano-sized particles addition. Ceram Int. (2018)

44:18836–43. doi: 10.1016/j.ceramint.2018.07.118

73. Slimani Y, Almessiere MA, Hannachi E, Mumtaz M, Manikandan A,

Baykal A, et al. Improvement of flux pinning ability by tungsten oxide

nanoparticles added in YBa2Cu3Oy superconductor. Ceram Int. (2019)

45:6828–35. doi: 10.1016/j.ceramint.2018.12.176

74. Jha AK, Khare N. Strongly enhanced pinning force density in YBCO-

BaTiO3 nanocomposite superconductor. Physica C. (2009) 469:810–

3. doi: 10.1016/j.physc.2009.05.008

75. Jha AK, Khare N. Investigation of flux pinning properties of

YBCO:BaZrO3 composite superconductor from temperature

dependent magnetization studies. J Magn Mag Mater. (2010)

322:2653–7. doi: 10.1016/j.jmmm.2010.04.002

76. Malik BA, Malik MA, Asokan K. Optimization of BaZrO3 concentration

as secondary phase in superconducting YBa2Cu3O7 for high current

applications. AIP Adv. (2016) 6:045317. doi: 10.1063/1.4948512

77. Okram GS, Muralidhar M, Murakami M. The effect of Gd2BaCuO5

nanoparticles on irreversibility fields of (Nd-Sm-Gd)Ba2Cu3O7−δ.

Supercond Sci Technol. (2005) 18:1060–4. doi: 10.1088/0953-2048/18/8/006

78. Hasan MN, Kiuchi M, Otabe ES, Matsushita T, Muralidhar M.

Flux pinning properties of (Nd,Eu,Gd)Ba2Cu3Oy (NEG-123)

superconductor with 211 phase particles. Supercond Sci Technol. (2007)

20:345–50. doi: 10.1088/0953-2048/20/4/008

79. Muralidhar M, Sakai N, Jirsa M, Murakami M, Hirabayashi I. Record flux

pinning in melt-textured NEG-123 doped byMo and Nb nanoparticles. Appl

Phys Lett. (2008) 92:162512. doi: 10.1063/1.2908929

80. MacManus-Driscoll JL, Foltyn SR, Jia QX, Wang H, Serquis A, Civale

L, et al. Strongly enhanced current densities in superconducting

coated conductors of YBa2Cu3O7−x+BaZrO3 Nat. Mater. (2004)

3:439–43. doi: 10.1038/nmat1156

81. Yamada Y, Takahashi K, Kobayashi H, Konishi M, Watanabe T, Ibi

A, et al. Epitaxial nanostructure, and defects effective for pinning

in Y(RE)Ba2Cu3O7−x coated conductors. Appl Phys Lett. (2005)

87:132502. doi: 10.1063/1.2061874

82. Shchukin VA, Bimberg D. Spontaneous ordering of

nanostructures on crystal surfaces. Rev Mod Phys. (1999)

71:1125–71. doi: 10.1103/RevModPhys.71.1125

83. Goyal A, Kang S, Leonard KJ, Martin PM, Gapud AA, Varela

M, et al. Irradiation-free, columnar defects comprised of self-

assembled nanodots and nanorods resulting in strongly enhanced

flux-pinning in YBa2Cu3O7−δ films. Supercond Sci Technol. (2005)

18:1533–8. doi: 10.1088/0953-2048/18/11/021

84. Jha AK, Khare N. Comparison of flux pinning mechanism in laser ablated

YBCO, and YBCO:BaZrO3 nanocomposite thin films. J Supercond Nov

Magn. (2012) 25:377–80. doi: 10.1007/s10948-011-1321-3

85. Wee SH, Zuev YL, Cantoni C, Goyal A. Engineering nanocolumnar

defect configurations for optimized vortex pinning in high temperature

superconducting nanocomposite wires. Sci Rep. (2011) 21:2749.

doi: 10.1038/srep02310

86. Gutierrez J, Llordes A, Gazquez J, Gibert M, Roma N, Ricart S, et al. Strong

isotropic flux pinning in solution-derived YBa2Cu3O7−x nanocomposite

superconductor films. Nat Mater. (2007) 6:367–73. doi: 10.1038/nmat1893

87. Puig T, Gutierrez J, Pomar A, Llordes A, Gazquez J, Ricart S, et al. Vortex

pinning in chemical solution nanostructured YBCO films. Supercond Sci

Technol. (2008) 21:034008. doi: 10.1088/0953-2048/21/3/034008

88. Palau A, Bartolome E, Llordes A, Puig T, Obradors X. Isotropic,

and anisotropic pinning in TFA-grown YBa2Cu3O7−x films

with BaZrO3 nanoparticles. Supercond Sci Technol. (2011)

24:125010. doi: 10.1088/0953-2048/24/12/125010

89. Haugan TJ, Barnes PN, Wheeler R, Meisenkothen E, Sumption M. Addition

of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7−x

superconductor. Nature. (2004) 430:867–70. doi: 10.1038/nature02792

90. Barnes PN, Haugan TJ, Sumption MD, Harrison BC. Pinning enhancement

of YBa2Cu3O7−d thin films with Y2BaCuO5 nanoparticulates. IEEE Trans

Appl Supercond. (2005) 15:3766–9. doi: 10.1109/TASC.2005.849426

91. Jha AK, Matsumoto K, Horide T, Saini S, Mele P, Ichinose A, et al.

Isotropic enhancement in the critical current density of YBCO thin

films incorporating nanoscale Y2BaCuO5 inclusions. J Appl Phys. (2017)

122:093905. doi: 10.1063/1.5001273

92. Wang H, Serquis A, Maiorov B, Civale L, Jia QX, Arendt PN, et al.

Microstructure, and transport properties of Y-rich YBa2Cu3O7−δ thin films.

J Appl Phys. (2006) 100:053904. doi: 10.1063/1.2337262

93. Varanasi CV, Burke J, Brunke L, Wang H, Sumption M, Barnes PN.

Enhancement, and angular dependence of transport critical current density

in pulsed laser deposited YBa2Cu3O7−x+BaSnO3 films in applied magnetic

fields. J Appl Phys. (2007) 102:063909. doi: 10.1063/1.2783783

94. Varanasi CV, Burke J, Wang H, Lee JH, Barnes PN. Thick

YBa2Cu3O7−x+BaSnO3 films with enhanced critical current density at high

magnetic fields. Appl Phys Lett. (2008) 93:092501. doi: 10.1063/1.2976683

95. Mele P, Matsumoto K, Horide T, Ichinose A, Mukaida M, Yoshida Y,

et al. Systematic study of the BaSnO3 insertion effect on the properties

of YBa2Cu3O7−x films prepared by pulsed laser ablation. Supercond Sci

Technol. (2008) 21:125017. doi: 10.1088/0953-2048/21/12/125017

96. Jha AK, Khare N, Pinto R. Enhanced flux pinning in pulsed laser deposited

YBa2Cu3O7−δ:BaTiO3 nanocomposite thin films. Sol St Comm. (2011)

151:1447–51. doi: 10.1016/j.ssc.2011.07.004

97. Ercolano G, Harrington SA, Wang H, Tsai CF, MacManus-Driscoll

JL. Enhanced flux pinning in YBa2Cu3O7−δ thin films using Nb-

based double perovskite additions. Supercond Sci Technol. (2010)

23:022003. doi: 10.1088/0953-2048/23/2/022003

98. Jha AK, Matsumoto K, Horide T, Saini S, Mele P, Yoshida Y,

et al. Tuning the microstructure, and vortex pinning properties of

YBCO-based superconducting nanocomposite films by controlling

the target rotation speed. Supercond Sci Technol. (2014)

27:025009. doi: 10.1088/0953-2048/27/2/025009

99. Harrington SA, Durrell JH, Maiorov B, Wang H, Wimbush SC, Kursumovic

A, et al. Self-assembled, rare earth tantalate pyrochlore nanoparticles for

superior flux pinning in YBa2Cu3O7−δ films. Supercond Sci Technol. (2009)

22:022001. doi: 10.1088/0953-2048/22/2/022001

100. Wee SH, Goyal A, Specht ED, Cantoni C, Zuev YL, Selvamanickam V, et al.

Enhanced flux pinning, and critical current density via incorporation of self-

assembled rare-earth barium tantalate nanocolumns within YBa2Cu3O7−δ

films. Phys Rev B. (2010) 81:140503. doi: 10.1103/PhysRevB.81.140503

101. Ercolano G, Bianchetti M, Wimbush SC, Harrington SA, Wang H, Lee

JH, et al. State-of-the-art flux pinning in YBa2Cu3O7−δ by the creation of

highly linear, segmented nanorods of Ba2(Y/Gd)(Nb/Ta)O6 together with

nanoparticles of (Y/Gd)2O3, and (Y/Gd)Ba2Cu4O8. Supercond Sci Technol.

(2011) 24:095012. doi: 10.1088/0953-2048/24/9/095012

102. Opherden L, Sieger M, Pahlke P, Hühne R, Schultz L, Meledin A,

et al. Large pinning forces, and matching effects in YBa2Cu3O7−δ

Frontiers in Physics | www.frontiersin.org 19 June 2019 | Volume 7 | Article 82

https://doi.org/10.1103/PhysRevB.69.104531
https://doi.org/10.1088/0953-2048/13/7/305
https://doi.org/10.1063/1.2219391
https://doi.org/10.1016/j.physc.2007.03.473
https://doi.org/10.1088/0953-2048/21/02/025001
https://doi.org/10.1016/j.ssc.2006.08.008
https://doi.org/10.1016/j.ceramint.2018.07.118
https://doi.org/10.1016/j.ceramint.2018.12.176
https://doi.org/10.1016/j.physc.2009.05.008
https://doi.org/10.1016/j.jmmm.2010.04.002
https://doi.org/10.1063/1.4948512
https://doi.org/10.1088/0953-2048/18/8/006
https://doi.org/10.1088/0953-2048/20/4/008
https://doi.org/10.1063/1.2908929
https://doi.org/10.1038/nmat1156
https://doi.org/10.1063/1.2061874
https://doi.org/10.1103/RevModPhys.71.1125
https://doi.org/10.1088/0953-2048/18/11/021
https://doi.org/10.1007/s10948-011-1321-3
https://doi.org/10.1038/srep02310
https://doi.org/10.1038/nmat1893
https://doi.org/10.1088/0953-2048/21/3/034008
https://doi.org/10.1088/0953-2048/24/12/125010
https://doi.org/10.1038/nature02792
https://doi.org/10.1109/TASC.2005.849426
https://doi.org/10.1063/1.5001273
https://doi.org/10.1063/1.2337262
https://doi.org/10.1063/1.2783783
https://doi.org/10.1063/1.2976683
https://doi.org/10.1088/0953-2048/21/12/125017
https://doi.org/10.1016/j.ssc.2011.07.004
https://doi.org/10.1088/0953-2048/23/2/022003
https://doi.org/10.1088/0953-2048/27/2/025009
https://doi.org/10.1088/0953-2048/22/2/022001
https://doi.org/10.1103/PhysRevB.81.140503
https://doi.org/10.1088/0953-2048/24/9/095012
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Jha and Matsumoto Superconductive REBCO Thin Films

thin films with Ba2Y(Nb/Ta)O6 nanoprecipitates. Sci Rep. (2016)

6:21188. doi: 10.1038/srep21188

103. Tobita H, Notoh K, Higashikawa K, InoueM, Kiss T, Kato T, et al. Fabrication

of BaHfO3 doped Gd1Ba2Cu3O7−δ coated conductors with the high Ic of

85 A/cm-w under 3 T at liquid nitrogen temperature (77K). Supercond Sci

Technol. (2012) 25:062002. doi: 10.1088/0953-2048/25/6/062002

104. Tsuruta A,Watanabe S, Ichino Y, Yoshida Y. Enhancement of critical current

density in the force-free sate of BaHfO3-doped multilayered SmBa2Cu3Oy

film. Jpn J Appl Phys. (2014) 53:078003. doi: 10.7567/JJAP.53.078003

105. Tsuruta A, Yoshida Y, Ichino Y, Ichinose A, Matsumoto K,

Awaji S. The influence of the geometric characteristics of

nanorods on the flux pinning in high-performance BaMO3-doped

SmBa2Cu3Oy films (M = Hf, Sn). Supercond Sci Technol. (2014)

27:065001. doi: 10.1088/0953-2048/27/6/065001

106. Miura S, Yoshida Y, Ichino Y, Matsumoto K, Ichinose A,

Awaji S. Characteristics of high-performance BaHfO3-doped

SmBa2Cu3Oy superconducting films fabricated with a seed layer,

and low-temperature growth. Supercond Sci Technol. (2015)

28:065013. doi: 10.1088/0953-2048/28/6/065013

107. Miura S, Yoshida Y, Ichino Y, Tsuruta A, Matsumoto K, Ichinose A,

et al. Flux pinning properties, and microstructures of a SmBa2Cu3Oy

film with high number density of BaHfO3 nanorods deposited by

using low-temperature growth technique. Jpn J Appl Phys. (2014)

53:090304. doi: 10.7567/JJAP.53.090304

108. Awaji S, Yoshida Y, Suzuki T, Watanabe K, Hikawa K, Ichino Y, et al. High-

performance irreversibility field, and flux pinning force density in BaHfO3-

dopedGdBa2Cu3Oy tape prepared by pulsed laser deposition.Appl Phys Exp.

(2015) 8:023101. doi: 10.7567/APEX.8.023101

109. Engel S, Thersleff T, Hühne R, Schultz L, Holzapfel B. Enhanced flux

pinning in YBa2Cu3O7 layers by the formation of nanosized BaHfO3

precipitates using the chemical deposition method. Appl Phys Lett. (2007)

90:102505. doi: 10.1063/1.2711761

110. Cayado P, Erbe M, Kauffmann-Weiss S, Bühler C, Jung A, Hänisch J,

et al. Large critical current densities, and pinning forces in CSD-grown

superconducting GdBa2Cu3O7−x-BaHfO3 nanocomposite films. Supercond

Sci Technol. (2017) 30:094007. doi: 10.1088/1361-6668/aa7e47

111. Xu A, Delgado L, Khatri N, Liu Y, Selvamanickam V, Abraimov D, et al.

Strongly enhanced vortex pinning from 4 to 77K in magnetic fields up to

31 T in 15mol.% Zr-added (Gd,Y)-Ba-Cu-O superconducting tapes. APL

Mater. (2014) 2:046111. doi: 10.1063/1.4872060

112. Selvamanickam V, Gharahcheshmeh MH, Xu A, Zhang Y, Galstyan E.

Critical current density above 15 MAcm−2 at 30K, 3 T in 2.2µm

thick heavily-doped (Gd,Y)Ba2Cu3Ox superconductor tapes. Supercond Sci

Technol. (2015) 28:072002. doi: 10.1088/0953-2048/28/7/072002

113. Selvamanickam V, Gharahcheshmeh MH, Xu A, Galstyan E,

Delgado L, Cantoni C. High critical currents in heavily doped

(Gd,Y)Ba2Cu3Ox superconductor tapes. Appl Phys Lett. (2015)

106:032601. doi: 10.1063/1.4906205

114. Xu A, Delgado L, Gharahcheshmeh MH, Kahtri N, Liu Y, Selvamanickam

V. Strong correlation between Jc (T, H || c), and Jc (77K, 3 T || c)

in Zr-added (Gd,Y)BaCuO coated conductors at temperatures from 77

down to 20K, and fields up to 9 T. Supercond Sci Technol. (2015)

28:082001. doi: 10.1088/0953-2048/28/8/082001

115. Selvamanickam V, Gharahcheshmeh MH, Xu A, Zhang Y, Galstyan E.

Requirements to achieve high in-field critical current density at 30K

in heavily-doped (Gd,Y)Ba2Cu3Ox superconductor tapes. Supercond Sci

Technol. (2015) 28:104003. doi: 10.1088/0953-2048/28/10/104003

116. Xu A, Zhang Y, Gharahcheshmeh MH, Yao Y, Galstyan E, Abraimov

D, et al. Je (4.2 K, 31.2 T) beyond 1 kA/mm2 of a ∼ 3.2µm thick,

20 mol% Zr-added MOCVD REBCO coated conductor. Sci Rep. (2017)

7:6853. doi: 10.1038/s41598-017-06881-x

117. Gapud AA, Kumar D, Viswanathan SK, Cantoni C, Varela M, Abiade J,

et al. Enhancement of flux pinning in YBa2Cu3O7−δ thin films embedded

with epitaxially grown Y2O3 nanostructures using a multi-layering process.

Supercond Sci Technol. (2005) 18:1502–5. doi: 10.1088/0953-2048/18/11/016

118. Cai C, Hänisch J, Hühne R, Stehr V, Mickel C, Gemming T, et al. Structural,

and magnetotransport properties of YBa2Cu3O7−δ/Y2O3 quasimultilayers. J

Appl Phys. (2005) 98:123906. doi: 10.1063/1.2148626

119. Kiessling A, Hänisch J, Thersleff T, Reich E, Weigand M, Hühne R, et al.

Nanocolumns in YBa2Cu3O7−x/BaZrO3 quasi-multilayers: formation, and

influence on superconducting properties. Supercond Sci Technol. (2011)

24:055018. doi: 10.1088/0953-2048/24/5/055018

120. Hänisch J, Cai C, Hühne R, Schultz L, Holzapfel B. Formation of

nanosized BaIrO3 precipitates, and their contribution to flux pinning

in Ir-doped YBa2Cu3O7−δ quasi-multilayers. Appl Phys Lett. (2005)

86:122508. doi: 10.1063/1.1894599

121. Hänisch J, Cai C, Stehr V, Hühne R, Lyubina J, Nenkov K, et al. Formation

and pinning properties of growth-controlled nanoscale precipitates in

YBa2Cu3O7−δ/transition metal quasi-multilayers. Supercond Sci Technol.

(2006) 19:534–40. doi: 10.1088/0953-2048/19/6/021

122. Wang J, Tsai CF, Bi Z, Naugle DG, Wang H. Microstructural

and pinning properties of YBa2Cu3O7−δ thin films doped with

magnetic nanoparticles. IEEE Trans Appl Supercond. (2009)

19:3503–6. doi: 10.1109/TASC.2009.2017846

123. Tsai CF, Zhu Y, Chen L,Wang H. Flux pinning properties in YBCO thin films

with self-aligned magnetic nanoparticles. IEEE Trans Appl Supercond. (2011)

21:2749–52. doi: 10.1109/TASC.2010.2090633

124. Wimbush SC, Durrell JH, Tsai CF, Wang H, Jia QX, Blamire MG, et al.

Enhanced critical current in YBa2Cu3O7−δ thin films through pinning

by ferromagnetic YFeO3 nanoparticles. Supercond Sci Technol. (2010)

23:045019. doi: 10.1088/0953-2048/23/4/045019

125. Tsai CF, Chen L, Chen A, Khatkhatay F, Zhang W, Wang H. Enhanced

flux pinning properties in self-assembled magnetic CoFe2O4 nanoparticles

doped YBa2Cu3O7−δ thin films. IEEE Trans Appl Supercond. (2013)

23:8001204. doi: 10.1109/TASC.2013.2238277

126. Wimbush SC, Durrell JH, Bali R, Yu R, Wang H, Harrington SA, et al.

Practical magnetic pinning in YBCO. IEEE Trans Appl Supercond. (2009)

19:3148–51. doi: 10.1109/TASC.2009.2017861

127. Blamire MG, Dinner RB, Wimbush SC, MacManus-Driscoll JL. Critical

current enhancement by Lorentz force reduction in superconductor-

ferromagnet nanocomposites. Supercond Sci Technol. (2009)

22:025017. doi: 10.1088/0953-2048/22/2/025017

128. Mele P, Matsumoto K, Horide T, Ichinose A, Mukaida M,

Yoshida Y, et al. Incorporation of double artificial pinning

centers in YBa2Cu3O7−δ films. Supercond Sci Technol. (2008)

21:015019. doi: 10.1088/0953-2048/21/01/015019

129. Feldmann DM, Holesinger TG, Maiorov B, Foltyn SR, Coulter JY,

Apodaca I. Improved flux pinning in YBa2Cu3O7 with nanorods

of the double perovskite Ba2YNbO6. Supercond Sci Technol. (2010)

23:095004. doi: 10.1088/0953-2048/23/9/095004

130. Jha AK, Matsumoto K, Horide T, Saini S, Mele P, Yoshida Y, et al.

Systematic variation of hybrid APCs into YBCO thin films for improving

the vortex pinning properties. IEEE Trans Appl Supercond. (2015)

25:8000505. doi: 10.1109/TASC.2014.2380817

131. Jha AK, Matsumoto K, Horide T, Saini S, Mele P, Ichinose A, et al.

Tailoring the vortex pinning strength of YBCO thin films by systematic

incorporation of hybrid artificial pinning centers. Supercond Sci Technol.

(2015) 28:114004. doi: 10.1088/0953-2048/28/11/114004

132. Jha AK, Matsumoto K, Horide T, Saini S, Mele P, Ichinose A, et al.

Controlling the critical current anisotropy of YBCO superconducting

films by incorporating hybrid artificial pinning centers. IEEE

Trans Appl Supercond. (2016) 26:8000404. doi: 10.1109/TASC.2016.

2525989

133. Horide T, Kawamura T, Matsumoto K, Ichinose A, Yoshizumi

M, Izumi T, et al. Jc improvement by double artificial pinning

centers of BaSnO3 nanorods, and Y2O3 nanoparticles in

YBa2Cu3O7 coated conductors. Supercond Sci Technol. (2013)

26:075019. doi: 10.1088/0953-2048/26/7/075019

134. Malmivirta M, Rijckaert H, Paasonen V, Huhtinen H, Hynninen

T, Jha R, et al. Enhanced flux pinning in YBCO multilayer films

with BCO nanodots, and segmented BZO nanorods. Sci Rep. (2017)

7:14682. doi: 10.1038/s41598-017-13758-6

135. Gautam B, Sebastian MA, Chen S, Haugan T, Zhang W, Huang J, et al.

Microscopic adaptation of BaHfO3, and Y2O3 artificial pinning centers

for strong and isotropic pinning landscape in YBa2Cu3O7−x thin films.

Supercond Sci Technol. (2018) 31:025008. doi: 10.1088/1361-6668/aaa105

Frontiers in Physics | www.frontiersin.org 20 June 2019 | Volume 7 | Article 82

https://doi.org/10.1038/srep21188
https://doi.org/10.1088/0953-2048/25/6/062002
https://doi.org/10.7567/JJAP.53.078003
https://doi.org/10.1088/0953-2048/27/6/065001
https://doi.org/10.1088/0953-2048/28/6/065013
https://doi.org/10.7567/JJAP.53.090304
https://doi.org/10.7567/APEX.8.023101
https://doi.org/10.1063/1.2711761
https://doi.org/10.1088/1361-6668/aa7e47
https://doi.org/10.1063/1.4872060
https://doi.org/10.1088/0953-2048/28/7/072002
https://doi.org/10.1063/1.4906205
https://doi.org/10.1088/0953-2048/28/8/082001
https://doi.org/10.1088/0953-2048/28/10/104003
https://doi.org/10.1038/s41598-017-06881-x
https://doi.org/10.1088/0953-2048/18/11/016
https://doi.org/10.1063/1.2148626
https://doi.org/10.1088/0953-2048/24/5/055018
https://doi.org/10.1063/1.1894599
https://doi.org/10.1088/0953-2048/19/6/021
https://doi.org/10.1109/TASC.2009.2017846
https://doi.org/10.1109/TASC.2010.2090633
https://doi.org/10.1088/0953-2048/23/4/045019
https://doi.org/10.1109/TASC.2013.2238277
https://doi.org/10.1109/TASC.2009.2017861
https://doi.org/10.1088/0953-2048/22/2/025017
https://doi.org/10.1088/0953-2048/21/01/015019
https://doi.org/10.1088/0953-2048/23/9/095004
https://doi.org/10.1109/TASC.2014.2380817
https://doi.org/10.1088/0953-2048/28/11/114004
https://doi.org/10.1109/TASC.2016.2525989
https://doi.org/10.1088/0953-2048/26/7/075019
https://doi.org/10.1038/s41598-017-13758-6
https://doi.org/10.1088/1361-6668/aaa105
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Jha and Matsumoto Superconductive REBCO Thin Films

136. Matsumoto K, Horide T, Jha AK, Mele P, Yoshida Y, Awaji S.

Irreversibility fields, and critical current densities in strongly pinned

YBa2Cu3O7−x films with artificial pinning centers. IEEE Trans Appl

Supercond. 25:8001106. doi: 10.1109/TASC.2015.2396358

137. Mele P, Adam MI, Suzuki T, Yoshida Y, Awaji S, Ichinose A, et al.

Effect of simultaneous addition of 1D, and 3D artificial pinning centers

in hybrid YBa2Cu3O7−x multilayers. Sci Adv Mater. (2017) 9:1042–

50. doi: 10.1166/sam.2017.2848

138. Blatter G, Feigel’man MV, Geshkenbein VB, Larkin AI, Vinokur VM.

Vortices in high-temperature superconductors. Rev Mod Phys. (1994)

66:1125–388. doi: 10.1103/RevModPhys.66.1125

139. Gurevich A. Pinning size effects in critical currents of

superconducting films. Supercond Sci Technol. (2007) 20:S128–

S135. doi: 10.1088/0953-2048/20/9/S03

140. Brandt EH. Large range of validity of linear elasticity of the vortex

lattice in high-Tc superconductors. Phys Rev Lett. (1992) 69:1105–

8. doi: 10.1103/PhysRevLett.69.1105

141. Koshelev AE, Kolton AB. Theory, and simulations on strong

pinning of vortex lines by nanoparticles. Phys Rev B. (2011)

84:104528. doi: 10.1103/PhysRevB.84.104528

142. Mele P, Guzman R, Gazquez J, Puig T, Obradors X, Saini S,

et al. High pinning performance of YBa2Cu3O7−x films added

with Y2O3 nanoparticulate defects. Supercond Sci Technol. (2015)

28:024002. doi: 10.1088/0953-2048/28/2/024002

143. Thompson CV. Structure evolution during processing of

polycrystalline films. Annu Rev Mater Sci. (2000) 30:159–

90. doi: 10.1146/annurev.matsci.30.1.159

144. Sutton AP, Balluffi RW. Interfaces in Crystalline Materials. Oxford: Oxford

University Press (1996). p. 349–95.

145. Shi JJ, Wu JZ. Micromechanical model for self-organized secondary phase

oxide nanorod arrays in epitaxial YBa2Cu3O7−δ films. Phil Mag. (2012)

92:2911–22. doi: 10.1080/14786435.2012.682173

146. Shi JJ, Wu JZ. Structural transition of secondary phase oxide nanorods

in epitaxial YBa2Cu3O7−δ films on vicinal substrates. Phil Mag. (2012)

92:4205–14. doi: 10.1080/14786435.2012.705035

147. Wu JZ, Shi JJ, Baca JF, Emergo R, Haugan TJ, Maiorov B, et al.

The effect of lattice strain on the diameter of BaZrO3 nanorods

in epitaxial YBa2Cu3O7−δ films. Supercond Sci Technol. (2014)

27:044010. doi: 10.1088/0953-2048/27/4/044010

148. Shi JJ, Wu JZ. Influence of the lattice strain decay on the diameter of self

assembled secondary phase nanorod array in epitaxial films. J Appl Phys.

(2015) 118:164301. doi: 10.1063/1.4934640

149. Wu J, Shi J, Baca F, Emergo R, Wilt J, Haugan T. Controlling

BaZrO3 nanostructure orientation in YBa2Cu3O7−δ films for a

three-dimensional pinning landscape. Supercond Sci Technol. (2015)

28:125009. doi: 10.1088/0953-2048/28/12/125009

150. Kang S, Goyal A, Li J, Gapud AA, Martin PM, Heatherly L, et al. High-

performance high-Tc superconducting wires. Science. (2006) 311:1911–

4. doi: 10.1126/science.1124872

151. Matsushita T, Nagamizu H, Tanabe K, Kiuchi M, Otabe ES,

Tobita H, et al. Improvement of flux pinning performance at high

magnetic fields in GdBa2Cu3Oy coated conductors with BHO nano-

rods through enhancement of Bc2. Supercond Sci Technol. (2012)

25:125003. doi: 10.1088/0953-2048/25/12/125003

152. Pahlke P, Lao M, Eisterer M, Meledin A, Van Tendeloo G, Hänisch J,

et al. Reduced Jc anisotropy and enhanced in-field performance of thick

BaHfO3-doped YBa2Cu3O7−δ films on ABAD-YSZ templates. IEEE Trans

Appl Supercond. (2016) 26:6603104. doi: 10.1109/TASC.2016.2541998

153. Emergo RLS, Wu JZ, Haugan TJ, Barnes PN. Tuning porosity of

YBa2Cu3O7−δ vicinal films by insertion of Y2BaCuO5 nanoparticles. Appl

Phys Lett. (2005) 87:232503. doi: 10.1063/1.2140467

154. Viswanathan SK, Gapud AA, Varela M, Abiade JT, Christen DK, Pennycook

SJ, et al. Enhancement of critical current density of YBa2Cu3O7−δ thin

films by self-assembly of Y2O3 nanoparticulates. Thin Solid Films. (2007)

515:6452–5. doi: 10.1016/j.tsf.2006.11.120

155. Baca FJ, Fisher D, Emergo RLS, Wu JZ. Pore formation, and increased

critical current density in YBa2Cu3Ox films deposited on a substrate surface

modulated by Y2O3 nanoparticles. Supercond Sci Technol. (2007) 20:554–

8. doi: 10.1088/0953-2048/20/6/011

156. Crisan A, Fujiwara S, Nie JC, Sundaresan A, Ihara H. Sputtered nanodots:

a costless method for inducing effective pinning centers in superconducting

thin films. Appl Phys Lett. (2001) 79:4547–9. doi: 10.1063/1.1428632

157. Aytug T, Paranthaman M, Gapud AA, Kang S, Christen HM, Leonard KJ,

et al. Enhancement of flux pinning, and critical currents in YBa2Cu3O7−δ

films by nanoscale iridium pretreatment of substrate surfaces. J Appl Phys.

(2005) 98:114309. doi: 10.1063/1.2138370

158. Matsumoto K, Horide T, Osamura K, Mukaida M, Yoshida Y, Ichinose

A, et al. Enhancement of critical current density of YBCO films by

introduction of artificial pinning centers due to the distributed nano-

scaled Y2O3 islands on substrates. Physica C. (2004) 412–414:1267–

71. doi: 10.1016/j.physc.2004.01.157

159. Matsumoto K, Horide T, Ichinose A, Horii S, Yoshida Y, MukaidaM. Critical

current control in YBa2Cu3O7−δ films using artificial pinning centers. Jpn J

Appl Phys. (2005) 44:L246–L248. doi: 10.1143/JJAP.44.L246

160. Mele P, Matsumoto K, Horide T, Miura O, Ichinose A, Mukaida

M, et al. Critical current enhancement in PLD YBa2Cu3O7−x films

using artificial pinning centers. Physica C. (2006) 445–448:648–

51. doi: 10.1016/j.physc.2006.04.064

161. Nie JC, Yamasaki H, Yamada H, Nakagawa Y, Develos-Bagarinao K,

Mawatari Y. Evidence for c-axis correlated vortex pinning in YBa2Cu3O7−δ

films on sapphire buffered with an atomically flat CeO2 layer having

a high density of nanodots. Supercond Sci Technol. (2004) 17:845–

52. doi: 10.1088/0953-2048/17/7/005

162. Maiorov B, Wang H, Foltyn SR, Li Y, DePaula R, Stan L, et al. Influence

of naturally grown nanoparticles at the buffer layer in the flux pinning

in YBa2Cu3O7 coated conductors. Supercond Sci Technol. (2006) 19:891–

5. doi: 10.1088/0953-2048/19/9/001

163. Aytug T, Paranthaman M, Leonard KJ, Kang S, Martin PM,

Heatherly L, et al. Analysis of flux pinning in YBa2Cu3O7−δ films

by nanoparticle-modified substrate surfaces. Phys Rev B. (2006)

74:184505. doi: 10.1103/PhysRevB.74.184505

164. Aytug T, Paranthaman M, Leonard KJ, Kim K, Ijaduola AO, Zhang Y,

et al. Enhanced flux pinning, and critical currents in YBa2Cu3O7−δ films by

nanoparticle surface decoration: extension to coated conductor templates. J

Appl Phys. (2008) 104:043906. doi: 10.1063/1.2969771

165. Jha AK, Khare N, Pinto R. Interface engineering using ferromagnetic

nanoparticles for enhancing pinning in YBa2Cu3O7−δ thin film. J Appl Phys.

(2011) 110:113920. doi: 10.1063/1.3665874

166. Gutierrez J, Puig T, Gibert M, Moreno C, Roma N, Pomar A,

et al. Anisotropic c-axis pinning in interfacial self-assembled

nanostructured trifluoracetate-YBa2Cu3O7−x films. Appl Phys Lett. (2009)

94:172513. doi: 10.1063/1.3130085

167. Xu Y, Liu M, Suo H-L, Ye S, Wu Z-P, Mao L. An effective substrate surface

decoration to YBCO films by multiphase nanoparticles. Physica C. (2013)

495:187–91. doi: 10.1016/j.physc.2013.09.014

168. Piperno L, Armenio AA, Vannozzi A, Mancini A, Rizzo F,

Augieri A, et al. Polymer-assisted surface decoration for critical

current enhancement in YBa2Cu3O7−x films. Appl Surf Sci. (2019)

484:237–44. doi: 10.1016/j.apsusc.2019.04.027

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Jha and Matsumoto. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 21 June 2019 | Volume 7 | Article 82

https://doi.org/10.1109/TASC.2015.2396358
https://doi.org/10.1166/sam.2017.2848
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1088/0953-2048/20/9/S03
https://doi.org/10.1103/PhysRevLett.69.1105
https://doi.org/10.1103/PhysRevB.84.104528
https://doi.org/10.1088/0953-2048/28/2/024002
https://doi.org/10.1146/annurev.matsci.30.1.159
https://doi.org/10.1080/14786435.2012.682173
https://doi.org/10.1080/14786435.2012.705035
https://doi.org/10.1088/0953-2048/27/4/044010
https://doi.org/10.1063/1.4934640
https://doi.org/10.1088/0953-2048/28/12/125009
https://doi.org/10.1126/science.1124872
https://doi.org/10.1088/0953-2048/25/12/125003
https://doi.org/10.1109/TASC.2016.2541998
https://doi.org/10.1063/1.2140467
https://doi.org/10.1016/j.tsf.2006.11.120
https://doi.org/10.1088/0953-2048/20/6/011
https://doi.org/10.1063/1.1428632
https://doi.org/10.1063/1.2138370
https://doi.org/10.1016/j.physc.2004.01.157
https://doi.org/10.1143/JJAP.44.L246
https://doi.org/10.1016/j.physc.2006.04.064
https://doi.org/10.1088/0953-2048/17/7/005
https://doi.org/10.1088/0953-2048/19/9/001
https://doi.org/10.1103/PhysRevB.74.184505
https://doi.org/10.1063/1.2969771
https://doi.org/10.1063/1.3665874
https://doi.org/10.1063/1.3130085
https://doi.org/10.1016/j.physc.2013.09.014
https://doi.org/10.1016/j.apsusc.2019.04.027~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Superconductive REBCO Thin Films and Their Nanocomposites: The Role of Rare-Earth Oxides in Promoting Sustainable Energy
	Introduction
	Types of Superconductors
	Flux Pinning in a Superconductor

	YBa2Cu3O7-δ: A High Temperature Superconductor
	Crystal Structure of YBCO
	The Evolution of Critical Current Density of YBCO and REBCO Superconductors Over Time

	Vortex Pinning in YBCO and REBCO Thin Films: Natural Pinning Centers
	Vortex Pinning in YBCO and REBCO Thin Films: Artificial Pinning Centers (APCs)
	Doping of Rare-Earth Elements (Addition and/or Substitution)
	Nanoscale Secondary Phase Inclusions/REBCO Based Nanocomposites
	Incorporation of Hybrid APCs Into REBCO Thin Films
	Factors Determining the Geometry/Morphology of Nanoscale Inclusions

	Substrate Surface Modifications

	Conclusions
	Author Contributions
	Acknowledgments
	References


