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Abstract In this paper, baseball is formulated as a finite non-zero-sum Markov game with approximately
6.45 million states. We give an effective dynamic programming algorithm which computes equilibrium
strategies and the equilibrium winning percentages for both teams in less than 2 second per game. Optimal
decision making can be found depending on the situation—for example, for the batting team, whether
batting for a hit, stealing a base or sacrifice bunting will maximize their win percentage, or for the fielding
team, whether to pitch to or intentionally walk a batter, yields optimal results. Based on this model, we
discuss whether the last-batting team has an advantage. In addition, we compute the optimal batting order,
in consideration of the decision making in a game.

Keywords: Dynamic programming, OR in sports, Markov perfect equilibrium, advan-
tage of the last-batting team, optimal lineup

1. Introduction

A dynamic programming (DP) approach to baseball is the main theme for this paper, and
we first see a prototype of this idea in Howard’s famous book [13]. He set maximization of
the expected number of runs scored for one inning as a criterion, formulating baseball as a
Markov decision process with 25 states. Orders from the manager, such as base stealing,
sacrifice bunting, and batting for a hit, were also taken into consideration. Howard’s work
is based on the assumption that all nine batters on the team have equal abilities. The
transition probabilities (the success rate of sacrificing, etc.) were artificially set and the
optimal strategies were determined using a computer of that time. Bellman [2] proposes a
more detailed formulation. He provided a subtle insight into strategies through a discus-
sion based on the two criteria of maximizing the expected number of runs scored and the
threshold probability of scoring at least k runs in one inning. However, due to the shortage
of computing capacity at the time, Bellman’s approach was not implemented.

On the other hand, D’Esopo and Lefkowitz [8] formulate baseball as a Markov chain
with 25 states and propose a scoring index (SI) as an evaluation index for the expected
number of runs scored in one inning, assuming that the same player steps up to the plate
repeatedly. Cover and Keilers [7] also propose a similar index, the OERA (Offensive Earned-
Run Average) value, as an index to evaluate the expected number of runs scored in a single
game. While Howard and Bellman focused on strategy optimization, the goal of these
evaluation indices is to express the contributions of each individual player in numerical
form. Because of the tractability, this approach became popular and attracted the interest
of many subsequent studies (e.g., Ano [1], Bukiet et al. [6]).

Now, the ability of computers has rapidly developed and approaches using DP have
become possible. Hirotsu and Wright [10–12] formulate baseball as a Markov chain with
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approximately 1.41 million states, and use DP to optimize player substitution strategies.
Turocy [28] formulates baseball as a zero-sum Markov game with approximately 2.13 million
states, and adopts the MLB rule to play extra innings until a winner is determined (i.e.,
the length of the game is finite with probability 1). Here, the manager of each opposing
team is the game-theoretic player who maximizes the probability of their team winning. As
an order from the manager, intentional walk is also taken into consideration, and a Markov
perfect equilibrium (MPE) exists. Turocy performed numerical experiments using backward
induction from the start of the game up to the completion of the eighth inning, and using
a fixed-point approximation by a value-function iteration for the ninth inning. The details
of the recursive formula and the algorithm are omitted in the paper, but he states that the
values of the game (the equilibrium winning percentages for both teams) could be solved
with high accuracy in less than a minute.

Kira and Inakawa [16], our previous paper, formulate baseball as a non-zero-sum finite
Markov game with approximately 3.5 million states. We adopts Japanese NPB rule restrict-
ing extra innings to a maximum of three (i.e., the length of the game is finite, but the game
may end in a draw.), and at least one pure-strategy MPE does exist. Our previous DP
approach successfully realizes to compute a pure-strategy MPE in approximately 1 second
per game. However, the values of the game depend on which MPE is obtained, because the
NPB rule makes the game non-zero-sum. This non-uniqueness makes it difficult to measure
the effects of strategies and players. In addition, another disadvantage is that the details of
algorithm is omitted in our previous paper.

In this paper, we improve the disadvantage of our previous results. We take the inten-
tional walk into consideration and formulate baseball as a finite non-zero-sum Markov game
with approximately 6.45 million states. Our first contribution of this paper is reformulation
to guarantee the uniqueness of the values of the game. When there are multiple choices
that maximize their winning percentage, managers will prefer the one with the lowest losing
percentage (i.e., the highest probability of ending in a draw) among them. By taking this
into consideration, we define the class of lexicographic MPEs to be obtained. We derive a
recursive formula that is satisfied by the lexicographic MPEs and the value functions of the
game. Our second contribution is a detailed description of a depth-first search DP algorithm
which realizes to calculate the value functions of the game and a lexicographic MPE in 2
second per game. Our algorithm can also calculate the values of the game under the MLB
rule with high accuracy by increasing the extra inning limit. Our third contribution is an
analysis of whether the last-batting team has an advantage. We discuss it based on the
value of information in game theory. Our final contribution is a computation of the optimal
lineup. So far as we know, there has been no study that has tried to optimize batting order,
in consideration of strategy optimization such as a sacrifice bunt or a stolen base. Our effort
reducing the computational time per game makes it possible.

In the theory of MDPs, the usual optimization criterion is to maximize the expected
value of the total (discounted) sum of stage-wise rewards. It is well known that finite MDPs
under this criterion can be solved in polynomial time. On the other hand, the threshold
probability problem, which attempts to maximize the probability that the total sum of stage-
wise rewards exceeds a specified value, has been extensively studied by many researchers
(Boda et al. [3], Boda and Filar [4], Bouakiz and Kebir [5], Iwamoto et al. [14], Kira et
al. [17], Ohtsubo [22], Ohtsubo and Toyonaga [23], Sakaguchi and Ohtsubo [24], Sobel [27],
White [29, 30], Wu and Lin [31], and others), and this problem has been proved to be NP-
hard (Xu and Mannor [32]). So, handling with probability criteria is more difficult than
that with the usual expectation criterion in general. The same applies to Markov games.
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However, in baseball, our algorithm works very well. It will be clearly understood, through
this paper, that baseball possesses some properties quite suitable for DP computation.

2. Formulation as A Markov Game

In this section, baseball is formulated as a finite non-zero-sumMarkov game, where a Markov
game is a multi-agent extension of MDPs (e.g., see Shapley [25] and Zachrisson [33]). The
difference from our previous model [16] is taking the intentional walk into consideration.
When a batter steps up to the plate, we always assume that the team in defense chooses
their action whether to pitch to or to intentionally walk the batter before the team in offense
chooses their action whether batting for a hit, stealing a base or sacrifice bunting. Hence
our model is still a sequential game.

For convenience, we call the first-batting team and the last-batting team “team 0” and
“team 1” respectively.

2.1. States

Let S be the state space. A state s = (ι, τ, ω, λ, r, b,m) ∈ S is made up of 7 components.
Each component is defined as follows:
1. ι ∈ {1, 2, . . . , 12} represents the current inning. ι = 9 is the final inning, and for a tie,

extra innings are played up to a maximum of ι = 12.
2. τ ∈ {0, 1} represents offense in the top half of the inning (τ = 0) or offense in the

bottom half of the inning (τ = 1).
3. ω ∈ {0, 1, 2, 3} represents the current number of outs.
4. λ is the current run difference and represents the value found by subtracting the runs

of team 1 from the runs of team 0. For the purpose of determining the final winner, we
store not the runs scored by each team but the current run difference. This is a state
aggregation technique (e.g., see Sniedovich [26, Chap. 11]).

5. r = (r3, r2, r1) represents the state of the runners.
• r3 ∈ {0, 1} takes a value 0 if there is no runner on third base, and a value 1 if a
runner is present.

• r2 ∈ {0, 1} takes a value 0 if there is no runner on second base, and a value 1 if a
runner is present.

• r1 ∈ {0, 1, . . . , 9} takes a value 0 if there is no runner on first base, and the same
value as the batting order of the runner if a runner is present.

Only r1 distinguishes between runners, to take into account the success rate which is
dependent on the runner when performing a stolen base from first to second base. In
this paper, neither a stolen base from second to third base, nor a stolen base from third
to home base, are considered.

6. b = (b0, b1) is made up of 2 components. bi ∈ {1, 2, . . . , 9} indicates to which batter
the batting order of team i rotates (i = 0, 1). It represents, when in offense (τ = i),
that the bi-th batter steps up to the plate. When in defense (τ ̸= i), it means that the
leadoff hitter in the next inning is the bi-th batter.

7. m ∈ {0, 1} is the index of the team which is on move. In this state, team m can choose
their actions.

By the above definition, the initial state s0 at the start time of the game is as follows:

s0 = (ι, τ, ω, λ, r, b,m)0 = (1, 0, 0, 0, (0, 0, 0), (1, 1), 1).

SQ denotes the total states (absorbing states) at the end of the game:

SQ := S0
Q ∪ S1

Q ∪ Stie
Q ∪ Sm

Q (0) ∪ Sm
Q (1) ⊂ S,
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where

S0
Q = {(ι, τ, ω, λ, r, b,m) ∈ S | ι ≥ 9, τ = 1, ω = 3, λ > 0},

S1
Q = {(ι, τ, ω, λ, r, b,m) ∈ S | ι = 9, τ = 0, ω = 3, λ < 0}
∪ {(ι, τ, ω, λ, r, b,m) ∈ S | ι ≥ 9, τ = 1, λ < 0},

Stie
Q = {(ι, τ, ω, λ, r, b,m) ∈ S | ι = 12, τ = 1, ω = 3, λ = 0},

Sm
Q (0) = {(ι, τ, ω, λ, r, b,m) ∈ S |λ ≥ 30}, (mercy-rule)

Sm
Q (1) = {(ι, τ, ω, λ, r, b,m) ∈ S |λ ≤ −30}. (mercy-rule)

S0
Q and S1

Q correspond to a victory for team 0 and a victory for team 1, respectively. Stie
Q

corresponds to a tie in the 12th inning after playing extra innings. We note that the mercy-
rule refers to the establishment of a called game during the inning. By adopting both the
NPB rules (i.e., the number of extra innings is finite) and the above mercy-rule, we get a
finite Markov game. In addition, we equate the state s, such that ω = 3 and s /∈ SQ, with
the corresponding state after the inning is over.

2.2. Actions

The manager of each team is the game-theoretic player maximizing the probability of their
team winning. Here we let Si be the set of states of moves for team i. Namely,

Si = {(ι, τ, ω, λ, r, b,m) ∈ S \ SQ |m = i}, i = 0, 1.

In S0 ∪ S1, there are a lot of states that are not reachable from the initial state s0. For
example, (τ, r1, b0) = (0, 1, 2) is feasible, but (0, 2, 1) is infeasible. We find out that the
number of reachable states in S0 ∪ S1 is 6, 454, 296 by coding a computer program for
counting them. In this paper, the action space is defined as

A = Adefense ∪ Aoffense,

where

Adefense = {pitching, intentional walk},
Aoffense = {batting, stolen base, sacrifice bunt}.

Let us consider a point-to-set valued mapping A : S \ SQ → 2A \ {ϕ}. A(s), called the
feasible action space, represents the set of all actions in state s. In this paper, we define
A(s), for any s = (ι, τ, ω, λ, r, b,m) ∈ S \ SQ in the following manner:

pitching ∈ A(s)⇐⇒ τ ̸= m,

intentional walk ∈ A(s)⇐⇒ τ ̸= m,

batting ∈ A(s)⇐⇒ τ = m,

stolen base ∈ A(s)⇐⇒ τ = m, r2 = 0, r1 ≥ 1,

sacrifice bunt ∈ A(s)⇐⇒ τ = m, ω ≤ 1, r3 + r2 + r1 ≥ 1.

Hence, stolen bases are feasible if and only if there is no second base runner and there is a
runner present on first base, and sacrifice bunts are feasible if and only if a runner is present
with 0 or 1 outs.
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2.3. State transitions

For any a ∈ A, let us define X (a), the set of all results that can occur stochastically when
the action a is chosen, as follows:

X (a) =


{game} if a = pitching,
{walk} if a = intentional walk,
{out, single, double, triple, home run, walk} if a = batting,
{success, fail} otherwise.

We denote the graph of A(·) by Gr(A). Namely,

Gr(A) = {(s, a) | a ∈ A(s), s ∈ S}.

For any (s, a) ∈ Gr(A) and any x ∈ X (a), p(x| s, a) represents the conditional probability
with which the result x occurs, given that action a is chosen in state s.

p(· | s, a) : X (a)→ [0, 1], ∀(s, a) ∈ Gr(A),∑
x∈X (a)

p(x | s, a) = 1, ∀(s, a) ∈ Gr(A).

With our definition, the state s = (ι, τ, ω, λ, r, b,m) includes information about the inning
number, whether it is the top or bottom half, the out count, the run difference, the batting
order of the batters, whether there are runners present or not, and also, the batting order
of the runner if one is present on first base. Therefore, the transition probability generally
depends on all of these states. However, in the numerical experiments carried out in Section
5 and Section 6, we assume that the transition probability depends only on the players
that make a hit, or perform sacrifice bunts or stolen bases, and does not depend on those
other components which comprise the state. Table 1 shows the probability parameters for
the starting order of the Fukuoka Softbank Hawks, and was compiled based on the values
achieved in Japan’s professional baseball 2014 season [34, 35].

Table 1: Probability parameters

Name AVG
Hitting Stolen Base Sacrifice Bunt

Out Single Double Triple HR Walk Success Success
1 Y. Honda .291 .648 .217 .032 .016 .000 .087 .793 .941
2 A. Nakamura .308 .627 .231 .035 .006 .006 .095 .833 .800*
3 Y. Yanagita .317 .593 .211 .029 .007 .025 .136 .846 .000
4 S. Uchikawa .307 .653 .199 .049 .002 .034 .063 .000 .000
5 Lee Dae-Ho .300 .637 .195 .048 .000 .031 .090 .000 .000
6 Y. Hasegawa .300 .624 .193 .056 .006 .011 .110 .500 .000
7 N. Matsuda .301 .655 .185 .048 .007 .043 .062 .667 .500
8 S. Tsuruoka .216 .750 .167 .024 .018 .000 .042 .000 .944
9 K. Imamiya .240 .698 .174 .044 .002 .005 .077 .667 .873

* The minimum of 0.8 and the actual value was adopted for the sacrifice bunt success rate for players with
extremely small numbers of attempted sacrifice bunts (less than 4) over the year.

This paper simplifies baseball in a similar manner to previous research. The simplifying
rules used in this paper are as below.

“Simplifying rules”
1. With a mishit (an out), neither a batter nor a runner can advance bases.
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2. A single advances a runner on first base to third base, and runners on second and third
base reach the home plate.

3. A double and a triple allows all runners to reach the home plate.
4. It is assumed that there are no double plays.
5. For a successful stolen base, the runner on first base advances to second base.
6. For an unsuccessful stolen base, the runner on first base is out.
7. For a successful sacrifice bunt, the runners advance one base forward, and the batter

performing the sacrifice bunt is out.
8. For an unsuccessful sacrifice bunt, the runner closest to the home plate is out, the other

runners advance one base forward, and the batter is then the runner on first base.
If these simplifying rules are followed, then the next state s′ is determined uniquely when
in state s, action a is chosen, and result x occurs. We denote this next state by

s′ = t(s, a, x).

Figure 1 illustrates the two-step transitions from a state with a runner on first with one out.

Figure 1: A part of the game tree

2.4. Markov policies

As a class of allowable policies, we consider the following class of Markov policies. The
reason why we restrict our attention to this class will be stated in Section 3.
Definition 2.1 (Markov policy). A mapping πi : Si → A is called a (deterministic) Markov
policy for team i if πi(s) ∈ A(s) for all s ∈ Si (i = 0, 1). We denote the set of all
deterministic Markov policies for team i by Πi (i = 0, 1).

Suppose that Markov policy πi is employed by team i. In this case, the Markov game
commencing from each state s can be regarded as a Markov chain. In other words, if we let
Xn be the state after n step transition from the initial state s0, then {Xn} is the Markov
chain satisfying

Pπ0,π1(Xn+1 = s′ |Xn = s) =


p(x | s, πi(s)) if s ∈ Si, s′ = t(s, πi(s), x),

1 if s ∈ SQ, s′ = s,
0 otherwise,

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.
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where Pπ0,π1 represents the conditional probability given that the policy πi is employed by
team i with i = 0, 1. Let T be the arrival time of {Xn} to SQ. Namely,

T := min{n |Xn ∈ SQ} <∞.

We denote the probabilities of team i winning by vi(s; π0, π1).

vi(s;π0, π1) := Pπ0,π1
(
XT ∈ S i

Q ∪ Sm
Q (i) |X0 = s

)
, s ∈ S, (π0, π1) ∈ Π0×Π1, i = 0, 1.

2.5. Payoff functions

For any Borel set B and any random variable X, we know the relation

Pr(X is in B ) = E[1B(X) ], (2.1)

where

1B(X) =

{
1 if X is in B,
0 otherwise .

Thus, let us define team i’s terminal payoff function ψi : SQ → {0, 1} as follows:

ψi(s) =

{
1 (−1)iλ > 0,
0 otherwise,

s = (ι, τ, ω, λ, r, b,m) ∈ SQ, i = 0, 1.

If the game is won, a payoff of 1 is acquired, whereas a loss or a tie is a payoff of 0. This
value depends only on the current run difference λ. We note that

ψ0(s) + ψ1(s) =

{
1 λ ̸= 0,
0 λ = 0,

s = (ι, τ, ω, λ, r, b,m) ∈ SQ.

Hence, our game is non-zero-sum game. Now, we can rewrite vi(s;π0, π1) as follows:

vi(s;π0, π1) = Eπ0,π1 [ψi(XT ) |X0 = s] , s ∈ S, (π0, π1) ∈ Π0×Π1, i = 0, 1,

where Eπ0,π1 represents the conditional expectation given that the policy πi is employed
by team i with i = 0, 1. The approach of using the relation (2.1) to reduce a probability
criterion to the usual expectation criterion is often used in the field of MDPs (see Kira et
al. [17]).

3. Lexicographic Markov Perfect Equilibria and Recursive Formula

In this section, we define lexicographic MPEs and the value functions of the game, and
derive the recursive formula for effectively computing them.

An MPE is a profile of Markov policies that yields a Nash equilibrium in every proper
subgame.

Definition 3.1 (Markov perfect equilibrium, MPE). A profile of (deterministic) Markov
policies (π∗

0, π
∗
1) is called a (pure-strategy) MPE if it is a subgame perfect equilibrium.

Namely, it satisfies

v0(s;π0, π
∗
1) ≤ v0(s;π

∗
0, π

∗
1), ∀s ∈ S, ∀π0 ∈ Π0,

v1(s;π
∗
0, π1) ≤ v1(s;π

∗
0, π

∗
1), ∀s ∈ S, ∀π1 ∈ Π1.
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Remark 3.1 (existence of the equilibria). In the most general context, the action chosen by
a policy in each state may be randomized. However, it is well-known that at least one pure-
strategy MPE exists for a finite Markov game with perfect information (e.g., see Fundenberg
and Tirole [9], Chap.13, p.516)∗. We thus restrict our attention to the class of pure-strategy
MPEs.

To guarantee the uniqueness of the equilibrium winning percentages for both teams, we
introduce the following definition:

Definition 3.2 (lexicographic MPEs). An MPE (π∗
0, π

∗
1) is called a lexicographic MPE if

it satisfies the following two conditions:

(i) For any s ∈ S and any π0 ∈ Π0 such that v0(s;π0, π
∗
1) = v0(s;π

∗
0, π

∗
1),

v1(s;π
∗
0, π

∗
1) ≤ v1(s;π0, π

∗
1).

(ii) For any s ∈ S and any π1 ∈ Π1 such that v1(s;π
∗
0, π1) = v1(s;π

∗
0, π

∗
1),

v0(s;π
∗
0, π

∗
1) ≤ v0(s;π

∗
0, π1).

Definition 3.3 (the value function of the game). Let (π∗
0, π

∗
1) be a lexicographic MPE, and

for any state s ∈ S, let Vi(s) be the probability of team i winning when in state s. That is,

Vi(s) = vi(s;π
∗
0, π

∗
1), s ∈ S.

Then the function Vi is called the value function of the game for team i.

Theorem 3.1 (Bellman equation). The value functions and any lexicographic MPE (π∗
0, π

∗
1)

satisfy the following recursive formula:

Vi(s) =



ψi(s) s ∈ SQ,

Max
a∈A(s)

∑
x∈X (a)

Vi(t(s, a, x))p(x|s, a) s ∈ Si,∑
x∈X (π∗

j (s))

Vi(t(s, π
∗
j (s), x))p(x|s, π∗

j (s)) s ∈ Sj.

π∗
i (s) ∈ argmin

a∈A∗(s)

∑
x∈X (a)

Vj(t(s, a, x))p(x|s, a), s ∈ Si,

A∗(s) = argmax
a∈A(s)

∑
x∈X (a)

Vi(t(s, a, x))p(x|s, a), s ∈ Si,

where (i, j) = (0, 1), (1, 0).

Proof. As the initial condition for backward induction, we have

Vi(s) = ψi(s), s ∈ SQ, i = 0, 1.

Suppose that we are now in position to evaluate V0(s) and V1(s) for some state s ∈ S0 ∪S1,
and suppose that we have evaluated V0(·) and V1(·) for all accessible states in one-step
transition from s. If the team on move in the state s choses an action a ∈ A(s), and if

∗This fact is an immediate consequence of the well-known Kuhn’s theorem [18]. Kawasaki et al. [15] give
another proof using a discrete fixed point theorem.
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each team does their best in the subsequent subgame, then the winning percentages of both
teams are ∑

x∈X (a)

Vi(t(s, a, x))p(x|s, a), i = 0, 1.

Therefore, any MPE (π∗
0, π

∗
1) must satisfy

π∗
i (s) ∈ A∗(s) = argmax

a∈A(s)

∑
x∈X (a)

Vi(t(s, a, x))p(x|s, a),

where i is such that s ∈ Si. Furthermore, any lexicographic MPE (π∗
0, π

∗
1) must satisfy

π∗
i (s) ∈ argmin

a∈A∗(s)

∑
x∈X (a)

Vj(t(s, a, x))p(x|s, a), (3.1)

where j = 1− i. We thus obtain the result by backward induction.

Remark 3.2 (existence of the lexicographic MPEs.). The backword induction used in the
proof of Theorem 3.1 guarantees the existence of at least one lexicographic MPE.

Remark 3.3 (uniqueness of the value functions). The backword induction used in the proof
of Theorem 3.1 also guarantees the uniqueness of the value functions. Namely, there exist
multiple lexicographic MPEs if and only if the argument of the minimum in (3.1) is not a
singleton for some state s, but all minimizers must result in the same probability of each
team winning.

4. Dynamic Programming Algorithm

In the previous section, we have obtained the recursive formula satisfied by the optimal value
functions and any lexicographic MPEs. By solving this, the optimal equilibrium strategies
for each state, such as a sacrifice bunt or a stolen base, are obtained.

From the viewpoint of the theoretical framework of Markov games, the runs of team i
may be treated as a reward system. In our model, to express the problem in the form of the
usual expectation criterion, we store information about the runs scored as a component of
the states. In the field of DP, such the state space S is called the enlarged (or augmented)
state space. In the most general context of Markov games, the sum of rewards, for any
state, earned up to that point depends on the history of the process. This indicates that
the cardinality of the augmented state space increases exponentially with the length of the
game. However, in our baseball model, it is sufficient and efficient to store the run difference
λ and it only takes small integer values. This property is quite suitable for DP computation.

In the theory of finite Markov games (including finite MDPs), any general-purpose al-
gorithm takes quadratic time with respect to the size of the state space in worst case. This
time complexity is required because all the states must be evaluated and all the states may
be accessible from all the states in one-step transition. However, in our baseball model, the
number of all accessible states in one-step transition from any state s can be counted on
both hands (See Figure 1). This indicates that we can construct a specialized algorithm
which takes linear time with the size of the state space. We realize it by the use of memoized
recursion. The algorithm can be implemented as described in Algorithm 1.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Dynamic Programming Approach to Baseball 73

Data: an instance of the transition probabilities
p(· | s, a) : X (a)→ [0, 1], (s, a) ∈ Gr(A).

Result: the optimal value functions V0 and V1 and a pure-strategy lexicographic
MPE π∗ = (π∗

0, π
∗
1)

Initialize V0(s) and V1(s) to −1 for all s ∈ S;
s0 = (ι, τ, ω, λ, r, b,m)0 ← (1, 0, 0, 0, (0, 0, 0), (1, 1), 1);
Call Evaluate(arguments: s0);

Algorithm 1: A dynamic programming algorithm for solving the baseball game

The memoized recursive function Evaluate(parameters: s = (ι, τ, ω, λ, r, b,m) ∈ S),
which evaluates Vi(s) with i = 0, 1, can be implemented as follows:

if s ∈ SQ then
Vi(s)← ψi(s) for i = 0, 1;

else
Declare local variables: an integer j, a floating-point variable temp, a state s′, and
a set of actions A∗;
j ← 1−m;
forall the a ∈ A(s) do

temp← 0;
forall the x ∈ X (a) such that p(x|s, a) > 0 do

s′ ← Call Transition(arguments: s, a, x);
if Vm(s

′) = −1 then
Call Evaluate(arguments: s′);

temp← temp+ Vm(s
′)p(x|s, a);

if Vm(s) < temp then
Vm(s)← temp, A∗ ← {a};

else if Vm(s) = temp then
A∗ ← A∗ ∪ {a};

forall the a ∈ A∗ do
temp← 0;
forall the x ∈ X (a) such that p(x|s, a) > 0 do

s′ ← Call Transition(arguments: s, a, x);
temp← temp+ Vj(s

′)p(x|s, a);
if Vj(s) = −1 or temp < Vj(s) then

Vj(s)← temp, π∗
m(s)← a;

Function Evaluate(parameters: s = (ι, τ, ω, λ, r, b,m) ∈ S)

This memoized recursion solves the recursive formula just for reachable states from
the initial state by implementing the depth-first search of the game tree. The function
Transition(parameters: s, a, x) returns the next state s′ = t(s, a, x), and can be implemented
as follows:
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switch the value of a do
case pitching

(Do nothing)
case intentional walk or batting

s← Call TransBatting(arguments: s, x);
case stolen base

s← Call TransStolenBase(arguments: s, x);
case sacrifice bunt

s← Call TransSacrificeBunt(arguments: s, x);

if ω = 3, s /∈ SQ then
s← Call InningIsOver(arguments: s);

else if a ̸= intentional walk then
m← 1−m;

return s;

Function Transition(parameters: s = (ι, τ, ω, λ, r, b,m) ∈ S, a ∈ A(s), x ∈ X (a))

switch the value of x do
case out

ω ← ω + 1;
case single

λ← λ+ (−1)τ (r3 + r2), r3 ← 1>0(r1), r2 ← 0, r1 ← bτ ;
case double

λ← λ+ (−1)τ (r3 + r2 + 1>0(r1)), r3 ← 0, r2 ← 1, r1 ← 0;
case triple

λ← λ+ (−1)τ (r3 + r2 + 1>0(r1)), r3 ← 1, r2 ← 0, r1 ← 0;
case home run

λ← λ+ (−1)τ (r3 + r2 + 1>0(r1) + 1), r3 ← 0, r2 ← 0, r1 ← 0;
case walk

if r3 = r2 = 1>0(r1) = 1 then
λ← λ+ (−1)τ ;

else
Declare a local integer variable n;
n← min{j ∈ {1, 2, 3} | rj = 0};
if n ≥ 2 then

rn ← 1;

r1 ← bτ ;

bτ ← bτ mod 9 + 1;
return s;

Function TransBatting(parameters: s = (ι, τ, ω, λ, r, b,m) ∈ S, x ∈ X (batting))
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switch the value of x do
case success

r2 ← 1;
case fail

ω ← ω + 1;

r1 ← 0;
return s;

Function TransStolenBase(parameters: s ∈ S, x ∈ X (stolen base))

switch the value of x do
case success

λ← λ+ (−1)τr3, r3 ← r2, r2 ← 1>0(r1), r1 ← 0;
case fail

Declare a local integer n and set n← max{i | ri > 0};
if n = 3 then

r3 ← r2, r2 ← 1>0(r1);
else if n = 2 then

r2 ← 1>0(r1);

r1 ← bτ ;

ω ← ω + 1, bτ ← bτ mod 9 + 1;
return s;

Function TransSacrificeBunt(parameters: s ∈ S, x ∈ X (sacrifice bunt))

if τ = 0 then
τ ← 1;

else
ι← ι+ 1, τ ← 0;

ω ← 0, r3 ← 0, r2 ← 0, r1 ← 0;
return s;

Function InningIsOver(parameters: s = (ι, τ, ω, λ, r, b,m) ∈ S)

5. Advantage of The Last-Batting Team

In baseball, there is often talk of whether the last-batting team has an advantage. In
Japanese professional baseball games, the visiting team bats first and the home team bats
second. The wins and losses for home and visiting teams in the 2014 season are shown in
Table 2.
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Table 2: Win-loss records by home/road (2014 season)

TEAM G
HOME ROAD

W L D PCT W L D PCT
Giants 144 44 27 1 .611 38 34 0 .528
Tigars 144 41 30 1 .569 34 38 0 .472
Carp 144 42 29 1 .583 32 39 1 .444
Dragons 144 35 35 2 .486 32 38 2 .444
Baystars 144 34 37 1 .472 33 38 1 .458
Swallows 144 32 39 1 .444 28 42 2 .389
Hawks 144 45 24 3 .625 33 36 3 .458
Buffaloes 144 46 26 0 .639 34 36 2 .472
Fighters 144 43 29 0 .597 30 39 3 .417
Marines 144 37 33 2 .514 29 43 0 .403
Lions 144 31 38 3 .431 32 39 1 .444
Eagles 144 30 42 0 .417 34 38 0 .472
Total 460 389 15 .532 389 460 15 .450

PCT := W/(W+ L +D)

Source: Nippon Professional Baseball Official Website [34]

In total, 864 games were played in the Central and Pacific leagues combined. The
winning percentage for teams batting first was .450 and the winning percentage for teams
batting last was .532, approximately 8 % higher. There are various advantages to being
able to play a game at home, such as support from the home crowd. However, is there an
advantage caused strictly by baseball rules?

Turocy [28] argued for the advantage of batting last by calculating the value of the
game for the hypothetical situation where the same team plays itself. When doing this,
the strategies that can be chosen by the manager are base stealing, sacrifice bunting, and
intentionally walking a batter. These strategies can be turned “ON” or “OFF,” and the
value of the game is compared over a total of 8 different situations. In our paper, we have the
Fukuoka Softbank Hawks (shown as in Table 1) play against themselves. We also switched
each manager plan ON and OFF, both for the team batting first and the team batting
last, and evaluated the value of the game at the point of the game starting in a total of 64
situations. We show the results in Table 3.

Table 3: Values of the games and the effects of the strategies
Batting-last

–, –, – –, –, W –, B, – –, B, W S, –, – S, –, W S, B, – S, B, W
Batting-first

–, –, – .4932 .4932 .4930 .4933 .4699 .5180 .4698 .5181 .4690 .5190 .4689 .5191 .4458 .5437 .4456 .5438
–, –, W .4935 .4929 .4933 .4930 .4713 .5167 .4712 .5168 .4694 .5186 .4692 .5187 .4475 .5417 .4473 .5419
–, B, – .5167 .4710 .5160 .4715 .4933 .4957 .4926 .4962 .4925 .4966 .4918 .4971 .4689 .5213 .4682 .5219
–, B, W .5170 .4706 .5163 .4711 .4947 .4944 .4940 .4949 .4929 .4961 .4922 .4967 .4707 .5195 .4700 .5199
S, –, – .5177 .4700 .5176 .4701 .4942 .4949 .4941 .4950 .4934 .4957 .4933 .4958 .4698 .5206 .4697 .5207
S, –, W .5180 .4696 .5179 .4697 .4956 .4935 .4955 .4936 .4938 .4953 .4937 .4954 .4715 .5187 .4714 .5188
S, B, – .5409 .4480 .5402 .4485 .5174 .4727 .5167 .4732 .5167 .4734 .5160 .4739 .4929 .4983 .4922 .4988
S, B, W .5412 .4477 .5405 .4481 .5188 .4714 .5181 .4718 .5171 .4730 .5164 .4735 .4947 .4964 .4940 .4968

• The left column displays the value of the game for the first-batting team, the right column for the
last-batting team

• S = Base stealing is “ON”, B = Sacrifice bunting is “ON”, W = Intentional Walk is “ON”

We implemented our DP algorithm using C++ Language and executed it on a desktop
PC with Intel R⃝ CoreTM i7-3770K processor and 16GB memory installed. Computational
time is longest when all strategies for both teams are ON. In this case, the calculation
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for a lexicographic MPE and the values of the game was completed in 1.41 second per
game. Figure 2 illustrates the computational result of Vi(s) for s = (ι, τ, ω, λ, r, b,m) =
(7, 0, 1, 0, (0, 0, 1), (2, 1), 1).

s = (ι, τ, ω, λ, r, b,m) = (7, 0, 1, 0, (0, 0, 1), (2, 1), 1)

• all strategies for both teams are ON.

Figure 2: Computational result: Vi(s) for some state s

For the condition of only intentional walks being ON for both teams, the team batting
first had a higher winning percentage. On the other hand, for the condition of only base
stealing being ON for both teams and for the condition of only sacrifices being ON for both
teams, the winning percentage of the team batting last was higher. Thus, intentional walks
are most advantageous to the team batting first, while stolen bases and sacrifice bunting
are most advantageous to the team batting last. Therefore, when the strategies of both
teams are all switched ON, whether the winning percentage of the team batting first or
of the team batting last is higher depends on the transition probabilities of chance moves.
However, as Table 3 shows, the influence of walks is less than that of base stealing and
sacrifice bunting. Thus, it seems safe to say that, normally, the winning percentage of
the team batting last would be higher. These results correspond to the facts outlined by
Turocy [28]. However, Turocy does state in his paper that “the disparity is slight, and does
not make a big difference.” Although this is true, when considering the fact that a .007

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



78 A. Kira, K. Inakawa & T. Fujita

increase in winning percentage would amount to 1 additional win in a 144 game season, this
difference should not be ignored.

We note that optimal decision also depends on the current run difference. Take a state
with runner on first base with no outs in the bottom half of the final inning, for instance.
Sacrifice bunt will probably maximize team 1’s win percentage when the score is tied.
However, in the case of 3 runs behind, sacrifice bunt should not be executed. Hence,
the run difference between the opposing teams must be considered to win a game. In other
words, the number of runs scored by the opposing team is an important piece of information.
When the first-batting team makes decisions on batting for a hit, stealing a base, or sacrifice
bunting (i.e., when in the top half of some inning), the manager can not know the runs scored
in the bottom half of the inning by the last-batting team. However, when the last-batting
team makes such decisions (i.e., when in the bottom half of some inning), the manager can
know the runs scored in the top half of the inning by the first-batting team. Therefore, the
last-batting team has an advantage of a half inning more observation. On the other hand,
when making decisions on intentional walks, the stands of the first-batting team and the
last-batting team is reversed. We believe this asymmetry due to the rules of baseball is the
reason for the slight difference in winning percentage between the team batting first and
that batting last.

6. Optimal Lineup

Since the paper by Bukiet et al. [6] was published, the hottest topic within research on
Markov chain approaches with matrix analysis has been the calculation of optimal batting
order. This topic has been addressed in many previous studies. In a DP approach, con-
siderable computational time is required for the optimization of strategy itself; thus, the
computational cost of completing an exhaustive search of batting lineup to find the optimal
one is very high. However, in actuality, it is enough to search 8! permutations. A memoized
value of a subgame can be reused for another, so the time taken to evaluate a single lineup
σ = (1, 2, 3, 4, 5, 6, 7, 8, 9) is nearly the same as the time taken to evaluate all 9 lineups that
can be obtained by rotations (e.g., σ′ = (2, 3, 4, 5, 6, 7, 8, 9, 1), σ′′ = (3, 4, 5, 6, 7, 8, 9, 1, 2)).

Tables 4 and 5 show our results for computing the optimal lineup for the Fukuoka
Softbank Hawks. In this case, we also created a hypothetical game where the first-batting
team and the last-batting team are the exact same team. The batting lineup for the first
team was fixed as the default batting order, shown in Table 1. An exhaustive search was
then conducted for the batting order of the last-batting team, and we found the optimal
lineup and the worst lineup which maximizes and minimize the winning percentage of the
last-batting team, respectively. Moreover, we changed the run difference established in a
called game from 30 runs to 20 runs, because it was sufficient to be able to precisely calculate
the values of the games at the start of the game. Since we conducted a simple exhaustive
search on a single thread, the computation took approximately 10 hours.
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Table 4: Optimal lineup
Default Lineup Worst Lineup Optimal Lineup
1 Y. Honda 1 S. Tsuruoka 1 A. Nakamura
2 A. Nakamura 2 Y. Hasegawa 2 Y. Yanagita
3 Y. Yanagita 3 K. Imamiya 3 S. Uchikawa
4 S. Uchikawa 4 Y. Honda 4 Lee Dae-Ho
5 Lee Dae-Ho 5 N. Matsuda 5 Y. Hasegawa
6 Y. Hasegawa 6 S. Uchikawa 6 N. Matsuda
7 N. Matsuda 7 Lee Dae-Ho 7 Y. Honda
8 S. Tsuruoka 8 A. Nakamura 8 S. Tsuruoka
9 K. Imamiya 9 Y. Yanagita 9 K. Imamiya

Table 5: Probability of the last-batting team winning
Batting-last

Default Lineup Worst Lineup Optimal Lineup
Batting-first

Default Lineup .4940 .4968 .5140 .4765 .4909 .5000

• The left column displays the value of the game for the first-batting team, the right column for the
last-batting team

With the assumption that both teams make the best choices in terms of their game
decision making on batting for a hit, stealing a base, or sacrifice bunting, the winning per-
centage difference between the optimal and worst batting order was only 2.35 %. However,
in the context of a 144 game regular season, this would amount to a difference of 3.39 wins.
Considering that more wins equate to more losses for other teams, the game difference with
the other teams would be even greater.

7. Related Work

A generalization adding double play and sacrifice fly to our model is studied by Nakamura
[20]. He analyzed detailed data of NPB provided by Data Stadium Inc., and won the
excellence award in the 4th Sports Data Analysis Competition. Nishizawa [21] analyzes
pinch hitting strategies under certain assumptions. In addition, he suggests using 2-opt to
obtain a suboptimal batting order.

Maki et al. [19] propose an interesting approach to evaluate batting orders by simulations
on video baseball games. They compare batting orders obtained by typical optimization
approaches, and show the efficiency of the lineups provided by our model.

8. Summary

In this paper, baseball has been formulated as a finite non-zero-sum Markov game with
approximately 6.45 million states. We demonstrated that the value functions of the games
and lexicographic MPEs, where both teams’ managers maximize the probabilities of their
respective team winning, can be computed in less than 2 second per game. Based on our
model and the perspective of the value of information in game theory, we have explained
that intentional walks are most advantageous to the team batting first, while stolen bases
and sacrifice bunting are most advantageous to the team batting last. Furthermore, we have
successfully computed the optimal batting order, in consideration of strategy optimization
such as a sacrifice bunt or a stolen base.
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