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A new mathematical approach 
to finding global solutions of the 
magnetic structure determination 
problem
K. Tomiyasu  1, R. Oishi-Tomiyasu2,3, M. Matsuda4 & K. Matsuhira  5

Determination of magnetic structure is an important analytical procedure utilized in various fields 
ranging from fundamental condensed-matter physics and chemistry to advanced manufacturing. 
It is typically performed using a neutron diffraction technique; however, finding global solutions of 
the magnetic structure optimization problem represents a significant challenge. Generally, it is not 
possible to mathematically prove that the obtained magnetic structure is a truly global solution and 
that no solution exists when no acceptable structure is found. In this study, the global optimization 
technique called semidefinite relaxation of quadratic optimization, which has attracted much 
interest in the field of applied mathematics, is proposed to use as a new analytical method for the 
determination of magnetic structure, followed by the application of polarized neutron diffraction data. 
This mathematical approach allows avoiding spurious local solutions, decreasing the amount of time 
required to find a tentative solution and finding multiple solutions when they exist.

Development of method for determining crystal and magnetic structure is an important issue1–3. The magnetic 
structure of a compound is directly related to the microscopic origins of various intriguing magnetic phenom-
ena observed in physics, chemistry, biology and geology4–11. Accurate information on the experimentally deter-
mined magnetic structures can be potentially used to effectively design functional materials and opens multiple 
opportunities for utilizing advanced first-principle calculations and informatics approaches. Furthermore, the 
responses of the analysed magnetic structure to external factors such as temperature, pressure, electromagnetic 
field, light and environment are usually related to the corresponding changes in the macroscopic properties of 
minerals and biomolecules.

Since the pioneering work of Shull et al. published in 19511, many studies on the determination of the mag-
netic structures of various materials by neutron diffraction have been performed. Thus, Izymov, Kovalev and 
Bertaut developed the irreducible representation (IR) theory, which successfully classified magnetic structures 
by their magnetic point symmetries obtained through the analysis of neutron diffraction data12–14. Moreover, the 
modern neutron diffractometers exhibit relatively high statistical accuracy and resolution15,16. However, ana-
lysing neutron diffraction data to determine the correct magnetic structure represents a challenging task. The 
major issue here is the existence of so-called local solutions to the optimization problem (Fig. 1A). The analysis 
procedure is mathematically categorized as the nonlinear optimization, in which the obtained diffraction data 
points are fitted with the function of neutron scattering cross-section characterized by high-dimensional nonlin-
ear parameters such as magnetic moment vectors17. After performing nonlinear optimization, it is very difficult 
to prove that the best solution obtained via various numerical models is the global one. Furthermore, multiple 
or many solutions are hidden in some cases, and no solutions exist in other cases. To mitigate these issues, global 
optimization techniques including a simulated annealing method, the Monte Carlo method and genetic algo-
rithms can be used18–23. However, none of these approaches can determine the global solution(s) with 100% 
probability.
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In this study, a new analytical method for the determination of magnetic structure is proposed, which allows 
(i) judging whether the obtained solution is a truly global one; (ii) evaluating the uniqueness of the solution 
obtained for a given set of experimental data; and (iii) completing the global optimization procedure in a very 
short time (typically, less than several seconds). Furthermore, the applicability of the proposed method is demon-
strated using polarized-neutron powder diffraction data.

Mathematical Formulation for Applications of Semidefinite Relaxation Method
Relaxation techniques have been previously developed in the field of mathematical programming. In particular, 
semidefinite relaxation (SDR) combined with semidefinite programming (SDP) has found many applications in 
applied mathematics and engineering (for example, see Chapter 2.2 in ref.24). SDR is an efficient technique for 
solving nonlinear optimization problems, such as quadratic programs (QPs), namely the minimization of multi-
variate quadratic polynomials under constraints. It should be noted that SDR could provide both fast convergence 
and a numerical proof of the global optimality of the obtained solutions using the global convergence property 
and duality theorem of the convex programming methods, as schematically shown in Fig. 1(B,C).

In the field of optical imaging, Candès et al. published a pioneering work (called the PhaseLift method), in 
which a sparse modelling approach was adopted for general phase retrieval25. Furthermore, one of the authors 
(ROT) developed an SDR-based mathematical approach to investigate whether a crystal structure could be 
uniquely identified using only diffraction data and independent atomic model26.

In this study, this method was applied to magnetic structure analysis by replacing the optimized parameters 
with magnetic moments. The problem of magnetic structure determination can be mathematically described by 
the following set of N quadratic equations:

∑≈ = = ≤ ≤
≤ ≤

x xI Q I Q S S i j x x k N( ) ( ) ( , ) (1 ),
(1)

k k k
i j n

k i jmag,obs mag,cal
T
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where I Q( )kmag,obs and I Q( )kmag,cal  denote the observed and calculated integrated magnetic diffraction intensities 
at the magnetic reflection =Q h k lk mag mag mag, respectively; x = (x1, …, xn)T and Sk represents the coefficient 
matrix numerically obtained using the scattering cross-section formula for each Qk, which consists of the absolute 
intensity scale factor, magnetic form factor, Lorentz factor, multiplicity and structural weight factor (the details of 
this formula are summarized in Supplementary Information).

The symbol ≈ indicates that each I Q( )kmag,obs  value includes an experimental error. In order to incorporate all 
errors, the following optimization problem is solved:

Figure 1. Schematic diagrams illustrating the non-linear optimization process. (A) Before relaxation. (B) SDR 
technique. (C) Duality theorem combined with SDR. The objective function f is globally minimized to the 
global optimum value f (gl). When the duality gap ∆f  is close to zero (corresponding to the square root of the 
machine epsilon), the global optimization process is complete according to the duality theorem. In panels (B) 
and (C), the solid balls represent the paths toward feasible solutions chosen by the interior point method.
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The inequality ≤x Ri i can be also removed if the permitted range of xi  (Ri, for example, the upper limit of 
magnetic moment) is uncertain while maintaining the validity of the subsequent discussion of the SDR and SDP 
techniques.

Equation (2) is classified as a so-called l1-norm minimization problem, which is equivalent to the following 
form of the quadratic programming problem:
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The problems described by equations (2) and (3) are equivalent since they have the same set of solutions x and 
the minimized values of the objective functions (more details are provided in Supplementary Information). The 
basic strategy utilized in this work is to apply SDR to equation (3) in order to solve equation (2) and then provide 
a computational proof on the global convergence property of the solution. The least-squares minimization of the 
∑ − ⎡
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N
k

T
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2
 function is avoided because a small increase in the polynomial 

degree considerably magnifies the size of the SDR problem (it increases proportionally to the power of N). Thus, 
it is possible to locate the global optimum by performing l1-norm minimization, which can be subsequently used 
as the initial parameter of the normal least-squares method to calculate the refined parameters and then compare 
them with literature data.

Application to Experimental Data Analysis
Experimental results. The developed SDR method was verified by applying it to the experimental data 
obtained for pyrochlore Nd2Ir2O7, which served as a proximate material for a three-dimensional Weyl semimetal 
and a component of spintronic devices on the basis of its geometrically frustrated magnetism and 5d-electron 
configuration27–32. This state theoretically corresponds to the all-in all-out type of magnetic structure described by 
the magnetic propagation vector kmag = (0, 0, 0), in which all the magnetic moments are oriented either towards 
the centre of the participating tetrahedron or in the opposite direction30,32. This prediction was experimentally 
confirmed in previous unpolarized neutron diffraction studies33,34. However, the superposition of the nuclear and 
magnetic reflections observed for the magnetic structures with kmag = (0, 0, 0) produces ambiguous results during 
their separation. Furthermore, it is not possible to mathematically prove with 100% certainty the absence of other 
acceptable solutions to the problem of magnetic structure determination. Thus, in this work, polarized neutron dif-
fraction studies were performed for this material, and the obtained magnetic structure was verified mathematically.

Figure 2 shows the representative neutron diffraction data obtained for Nd2Ir2O7 at the minimum tempera-
ture T = 1.4 K. The non-spin-flip and spin-flip parameters IOFF and ION roughly correspond to the nuclear and 
magnetic reflection components Inuc and Imag, respectively. The magnitude of IOFF is systematically larger than ION 
at all temperatures, thus confirming the necessity of conducting polarized neutron diffraction experiments. For 
ION, the intensity of the 113 reflection increases with decreasing temperature, indicating the existence of strong 
temperature dependence for this reflection, which is not observed for the 222 reflection. Moreover, as the flipping 
ratio of the neutron beam in the actual experiments is finite, the magnitudes of ION and IOFF can be expressed by 
the following formulas:

⎧
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where rmix = N−/(N+ + N−) is the mixing rate, and N+ (N−) denotes the number of majority-spin (minority-spin) 
neutrons. The value of rmix is selected to satisfy the condition Imag = 0; hence, ION = rmix·Inuc at the paramagnetic 
T = 40 K. As a result, the pure magnetic intensity Imag can be determined by combining IOFF and ION. A more 
detailed explanation and data obtained for other reflections are presented in Supplementary Information, while 
the calculated Imag,obs values are listed in Table 1.

Magnetic structure analysis results. The arbitrary magnetic structure with kmag = (0, 0, 0) in the space 
group Fd m3  is described as the function of xarb = (m(Nd)

1, …, m(Nd)
12, m(Ir)

1, …, m(Ir)
12) containing narb = 24 varia-

bles generated by the eight magnetic atoms of the unit cell and three Cartesian coordinates. Here, the magnetic 
symmetry was classified by performing IR analysis (this procedure is generally not required for the proposed 
method; however, it may be potentially useful because of the reduction of the number of variables if the number 
of observed reflection points is limited). The possible magnetic structures are described by the representations 
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ΓNd = Γ3 + 2Γ5 + 3Γ7 + 6Γ9 and ΓIr = Γ3 + 2Γ5 + 3Γ7 + 6Γ9, where Γ3 corresponds to the all-in all-out type of the 
magnetic structure, and the coefficients denote the numbers of basis vectors summarized in Table 218,35. Hence, 
the total numbers of variables are reduced to nΓ3 = 2, nΓ5 = 4, nΓ7 = 6 and nΓ9 = 12. Furthermore, representation 
Γ9 includes six ferromagnetic basis vectors. However, the Nd2Ir2O7 structure exhibits only extremely weak spon-
taneous magnetization (around 10−4µB/formula unit)29, which is significantly below the detection limit of the 
neutron diffraction technique. Therefore, the ferromagnetic basis vectors are precluded and the value of nΓ9 is 
further reduced from 12 to 6 during the analysis of the neutron diffraction data.

Thus, the variables used for the magnetic structure analysis in this work are defined as follows: xΓ3 = (m(Γ3,Nd)
1, 

m(Γ3,Ir)
1), xΓ5 = (m(Γ5,Nd)

1, m(Γ5,Nd)
2, m(Γ5,Ir)

1, m(Γ5,Ir)
2), xΓ7 = (m(Γ7,Nd)

1, m(Γ7,Nd)
2, m(Γ7,Nd)

3, m(Γ7,Ir)
1, m(Γ7,Ir)

2, m(Γ7,Ir)
3) 

and xΓ9 = (m(Γ9,Nd)
1, m(Γ9,Nd)

2, m(Γ9,Nd)
3, m(Γ9,Ir)

1, m(Γ9,Ir)
2, m(Γ9,Ir)

3). The goal is to determine the globally optimal 
solutions x for representations Γ3, Γ5, Γ7 and Γ9 using the Imag,obs magnitudes listed in Table 1. After that, the solu-
tion characterized by the best fit can be selected.

The output values produced by the SDP solver are as follows.

 (1) The convergence procedure results in the following coefficients:
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Figure 2. Typical polarized neutron diffraction data obtained for pyrochlore Nd2Ir2O7. ON/OFF denotes the 
spin-flip/non-spin-flip scattering channel. The lower panel displays both the overall OFF and ON data, whereas 
the upper panel depicts the low-intensity ON data at a higher magnification. The solid and dotted curves show 
the results of Gaussian fitting.

hmag kmag lmag Imag,obs (1.4 K) Imag,cal,Γ3 Imag,cal,Γ5 Imag,cal,Γ7 Imag,cal,Γ9

111 0 ± 53 0 7 0 457
200 0 ± 36 0 0 0 1
220 932 ± 54 932 932 0 1
113 1796 ± 68 1795 4 0 860
222 0 ± 63 0 0 0 0
400 0 ± 37 0 0 0 0
331 349 ± 54 580 5 0 349
420 884 ± 62 588 541 0 2

Table 1. Experimentally observed and calculated integrated magnetic scattering intensities. The symbol ± 
denotes the experimental errors.
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where the values of x are expressed the µB units, and the negative sign indicates the nearest ferromagnetic 
Nd–Ir correlation. While a single optimum solution is determined for representation Γ3, multiple solutions 
are obtained for Γ5 and Γ9, respectively, in accordance with the rank values of XΓ5

(opt) and XΓ9
(opt), which 

indicate the existence of an infinite number of solutions with the same objective functions 
θ θ= +Γ Γ Γx x xcos sin5

(opt)
5

(opt1)
5

(opt2) and θ θ φ θ φ= + +Γ Γ Γ Γx x x xcos sin cos sin sin9
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9
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9
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9
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θ and φ are arbitrary. Without SDR, it is difficult to find the optimum solutions for this type of problems 
and prove that better solutions do not exist. Furthermore, the zero magnitude of xΓ7

(opt) is obtained for 
representation Γ7. Indeed, when xΓ7 values are finite (non-zero), the Imag,cal values for =I 0mag,obs  indices 
increase more rapidly than those for ≠I 0mag,obs  indices. Thus, the SDR method automatically overcomes 
these issues.

 (2) The obtained indicator values for representations Γ3, Γ5, Γ7 and Γ9 are as follows.

 a) The corresponding duality gaps determined by the SDP solver are equal to ∆ = . × −f 2 1 10 7, . × −1 4 10 6, 
. × −3 1 10 6 and . × −8 0 10 7, respectively. Their magnitudes are close to zero, indicating that the conver-

gence to the global optimums is achieved.
 b) The minimized objective function ∑ − ⎡

⎣⎢
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⎦⎥=f I Q I Q I Qdef ( ) ( ) /Err ( )k

N
k k k
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and 27, and the more familiar R-factor, 
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N
k k k

N
kBragg 1 mag,obs mag,cal 1 mag,obs  = 0.13, 0.63, 1.0 and 0.81, respectively. 

These results show that the smallest values are obtained for representation Γ3.
 c) The goodness of the fit χ ∑ − ⎡

⎣⎢
⎤
⎦⎥ −= Γ( )I Q I Q I Q N ndef ( ) ( ) /Err ( ) /( )k

N
k k k

2
1 mag,obs mag,cal

2
mag,obs

2  = 2.6, 14, 25 
and 20, and the related statistical parameter − = .Γf N n/( ) 0 75(gl) , 4.8, 16 and 14, respectively. The value 
closest to the expected value (1 for χ2; π ≈ .2/ 0 798 for the latter parameter) is obtained for Γ3.

All these facts suggest that Γ3 represents the best solution, whereas representations Γ5, Γ7 and Γ9 are excluded 
for the first time. For clarity, the values of Imag,cal are listed in Table 2 and also shown in Fig. 3. The magnitude of 
Imag,cal-Γ3 matches Imag,obs very well, whereas the globally optimal Imag,cal-Γ5, Imag,cal-Γ7 and Imag,cal-Γ9 parameters sub-
stantially differ from the corresponding Imag,obs values.

After proving mathematically the uniqueness of representation Γ3, the refined values mNd = −1.22(5)µB and 
mIr = 0.14(5)µB are obtained using the xΓ3

(opt) values as the initial parameters in the normal least-squares method. 
These results are comparable with the reported values of mNd = −1.27(1)µB and mIr = 0.34(1)µB

34.

IRs Variables x Nd1, Ir1 Nd2, Ir2 Nd3, Ir3 Nd4, Ir4
(0,0,0), (1/2,0,0) (1/4,1/4,0), (3/4,1/4,0) (0,1/4,1/4), (1/2,1/4,1/4) (1/4,0,1/4), (3/4,0,1/4)

Γ3 m(Γ3,Nd)
1, m(Γ3,Ir)

1 (1, 1, 1)/ 3 − −( 1, 1, 1)/ 3 − −(1, 1, 1)/ 3 − −( 1, 1, 1)/ 3
Γ5 m(Γ5,Nd)

1, m(Γ5,Ir)
1 −(1, 1, 0)/ 2 −( 1, 1, 0)/ 2 (1, 1, 0)/ 2 − −( 1, 1, 0)/ 2

m(Γ5,Nd)
2, m(Γ5,Ir)

2 −(1, 1, 2)/ 6 − − −( 1, 1, 2)/ 6 −(1, 1, 2)/ 6 −( 1, 1, 2)/ 6
Γ7 m(Γ7,Nd)

1, m(Γ7,Ir)
1 −(0, 1, 1)/ 2 − −(0, 1, 1)/ 2 −(0, 1, 1)/ 2 (0, 1, 1)/ 2

m(Γ7,Nd)
2, m(Γ7,Ir)

2 −(1, 0, 1)/ 2 (1, 0, 1)/ 2 − −( 1, 0, 1)/ 2 −( 1, 0, 1)/ 2
m(Γ7,Nd)

3, m(Γ7,Ir)
3 −( 1, 1, 0)/ 2 −(1, 1, 0)/ 2 (1, 1, 0)/ 2 − −( 1, 1, 0)/ 2

Γ9 m(Γ9,Nd)
1, m(Γ9,Ir)

1 (1, 1, 0)/ 2 − −( 1, 1, 0)/ 2 −( 1, 1, 0)/ 2 −(1, 1, 0)/ 2
m(Γ9,Nd)

2, m(Γ9,Ir)
2 (0, 1, 1)/ 2 −(0, 1, 1)/ 2 − −(0, 1, 1)/ 2 −(0, 1, 1)/ 2

m(Γ9,Nd)
3, m(Γ9,Ir)

3 (1, 0, 1)/ 2 −(1, 0, 1)/ 2 −( 1, 0, 1)/ 2 − −( 1, 0, 1)/ 2
— (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
— (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)
— (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)

Table 2. Basis vectors of the magnetic structures represented by the Γ3, Γ5, Γ7 and Γ9 IRs18,35. The symbol – in 
the Γ9 IR indicates that the ferromagnetic basis vectors are precluded.
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Discussion
Representation Γ9 (the only IR containing ferromagnetic basis vectors35) is rejected as the optimal solution 
despite the existence of weak ferromagnetism29. The observed inconsistency suggests that this ferromagnetism 
is symmetrically decoupled from the bulk magnetic structure (for example, as a surface or interface-protected 
property). In fact, by performing careful measurements of the macroscopic magnetization and electrical resis-
tivity of isomorphic Cd2Os2O7, it was found that the surface ferromagnetism coupled with novel spin-polarized 
conductivity emerged on the walls between the all-in all-out and all-out all-in antiferromagnetic domains36. The 
macroscopic observation is consistent with the findings of this study verified both microscopically and mathe-
matically, indicating their potential applicability in domain wall spin electronics.

We discuss the expected application scope of the SDR method. After determining the list of (hmag, kmag, lmag, 
Imag,obs) values, the described SDR method can be used to find the corresponding magnetic structures as the global 
solutions. First, the configurations with kmag = (0, 0, 0) are considered, indicating their high potential applicability 
in various fields (including magnet materials). Second, this method is not restricted to polarized neutron diffrac-
tion experiments, but can be also used in studies involving unpolarized neutrons when the magnetic structure is 
characterized by kmag ≠ (0, 0, 0) or kmag = (0, 0, 0) with detectable magnetic moment. Both the magnetic and crys-
tallographic structures can be simultaneously refined by the normal least-squares method, in which the obtained 
SDR solutions are utilized as the initial values of the magnetic structural parameters. Third, the SDR technique is 
able to easily process thousands of independent variables. Therefore, magnetic structures of arbitrary types can be 
theoretically determined using the advanced diffractometers that provide a relatively large number of reflection 
points (even for the target materials with complex compositions).

The diffraction intensities are not represented by quadratic functions of the atomic positions rj; hence, the SDR 
technique seems to be inapplicable for determining the values of rj (crystal structure). However, the neutron and 
X-ray diffraction intensities are represented by those of the nuclear and electron densities (generalized crystal 
structure), respectively. Likewise, a magnetic structure is also generalized to the magnetic moment density. Thus, 
the SDR technique is expected to enable analysing the global solutions of the generalized structures together with 
the aforementioned high-volume processing ability, such as protonic/ionic distributions in the conductors and 
electronic spin-orbital distributions.

Materials and Methods
Calculations. The system of quadratic equations was solved using the SDP solver SDPA37. To find the global 
optima of SDP problems, interior point methods were efficiently used38.

Experiments. The polarized neutron elastic scattering experiments were performed using the HB1 thermal 
neutron three-axis spectrometer located at the High Flux Isotope Reactor (HFIR) of the Oak Ridge National 
Laboratory (ORNL). Heusler alloy 111 reflection crystals were utilized as the monochromator and analyser. The 
flipping ratio R = 10 was obtained using the nuclear 222 reflection at a paramagnetic temperature of 40 K cor-
responding to the beam polarization P = 0.82. The polarization vector was set parallel to the scattering vector 
(P//Q). The incident energy of neutrons was Ei = 13.5 meV. The horizontal collimator sequence was 48′(open)–
80′–80′–240′. A pyrolytic graphite Bragg-reflection filter was used to efficiently eliminate the contamination 
caused by higher-order wavelengths.
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Figure 3. Comparison of the Imag,obs (1.4 K) and Imag,cal values. The diagonal straight line represents the 
condition Imag,obs = Imag,cal.
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A powder Nd2Ir2O7 sample was synthesized by a solid-state reaction method inside a quartz tube. About 4.8 
g of the sample was wrapped in thin aluminium foil and shaped to a hollow cylinder with a thickness of 0.8 mm 
and diameter of 20 mm to mitigate the effect of the strong neutron absorption of Ir nuclei. The cylinder was stored 
in an aluminium container filled with He gas and placed under the cold heads of a He-closed-cycle (Displex) or 
liquid-He-type (Orange) cryostat.
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