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Partial Gathering of Mobile Agents in Arbitrary Networks∗

Masahiro SHIBATA†a), Daisuke NAKAMURA††, Nonmembers, Fukuhito OOSHITA†††b), Member,
Hirotsugu KAKUGAWA††c), Nonmember, and Toshimitsu MASUZAWA††d), Member

SUMMARY In this paper, we consider the partial gathering problem
of mobile agents in arbitrary networks. The partial gathering problem is
a generalization of the (well-investigated) total gathering problem, which
requires that all the agents meet at the same node. The partial gathering
problem requires, for a given positive integer g, that each agent should
move to a node and terminate so that at least g agents should meet at each
of the nodes they terminate at. The requirement for the partial gathering
problem is no stronger than that for the total gathering problem, and thus,
we clarify the difference on the move complexity between them. First,
we show that agents require Ω(gn + m) total moves to solve the partial
gathering problem, where n is the number of nodes and m is the number
of communication links. Next, we propose a deterministic algorithm to
solve the partial gathering problem in O(gn + m) total moves, which is
asymptotically optimal in terms of total moves. Note that, it is known that
agents requireΩ(kn+m) total moves to solve the total gathering problem in
arbitrary networks, where k is the number of agents. Thus, our result shows
that the partial gathering problem is solvable with strictly fewer total moves
compared to the total gathering problem in arbitrary networks.
key words: distributed system, mobile agent, gathering problem, partial
gathering problem

1. Introduction

1.1 Background

A distributed system consists of a set of computers (nodes)
connected by communication links. Recently, distributed
systems have become large and design of distributed sys-
tems has become complicated. As a promising design
paradigm of distributed systems, (mobile) agent systems
have attracted a lot of attention [1], [2]. Agents can traverse
the system carrying information collected at nodes that they

Manuscript received March 22, 2018.
Manuscript revised July 27, 2018.
Manuscript publicized November 1, 2018.
†The author is with the Department of Computer Science and

Electronics, Kyushu Institute of Technology, Iizuka-shi, 820–8502
Japan.
††The authors are with the Graduate School of Information Sci-

ence, NAIST, Ikoma-shi, 630–0192 Japan.
†††The author is with the Graduate School of Information Sci-

ence and Technology, Osaka University, Suita-shi, 565–0871
Japan.

∗This work was partially supported by JSPS KAKENHI Grant
Number 16K00018, 17K19977, 18K11167, and 18K18031, and
Japan Science and Technology Agency (JST) SICORP.

a) E-mail: shibata@cse.kyutech.ac.jp (Corresponding author)
b) E-mail: f-oosita@is.naist.jp
c) E-mail: kakugawa@ist.osaka-u.ac.jp
d) E-mail: masuzawa@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.2018FCP0008

are visiting, and process tasks on each node using the infor-
mation. In other words, agents can encapsulate the process
code and data, which simplifies design of distributed sys-
tems [3], [4].

The total gathering problem (or the rendezvous prob-
lem) is a fundamental problem for agents’ coordination.
This problem requires all agents to meet at a single node
in finite time. By meeting at a single node, all agents can
share information or synchronize behaviors among them.
The total gathering problem has been considered in vari-
ous kinds of networks such as rings [5], [6], trees [7], [8],
tori [9], and arbitrary networks [10]–[15]. The total gather-
ing problem for synchronous agents in arbitrary networks is
considered in [10], [11]. While Czyzowicz et al. [10] con-
sidered it for two agents with distinct IDs, Dieudonné and
Pelc [11] considered it for multiple agents with no distinct
IDs (or anonymous agents) but with ability to communicate
with the agents staying at the same node. The total gather-
ing problem for asynchronous agents in arbitrary networks
is considered in [12]–[15]. These works assume that agents
cannot mark nodes in any way. De Marco et al. [12] consid-
ered it for the first time. Czyzowicz et al. [13] considered
it for two distinct agents, and Guilbault and Pelc [14] con-
sidered it for two anonymous agents. While in [13], [14]
agents require exponential total moves to solve the problem,
Dieudonné and Pelc [15] improved the result so that agents
could solve the problem in polynomial total moves.

Recently, a variant of the total gathering problem,
called the partial gathering problem [16], has been consid-
ered. This problem does not require all agents to meet at
a single node, but allows agents to meet partially at several
nodes. More precisely, we consider the problem which re-
quires, for a given positive integer g, that each agent should
move to a node and terminate so that at least g agents should
meet at each of the nodes they terminate at. We define this
problem as the g-partial gathering problem. From a practi-
cal point of view, the g-partial gathering problem is still use-
ful especially in large-scale networks. In a large scale net-
work where a large number of mobile agents are deployed,
it is impractical or unnecessary to gather all the agents at a
single node. Instead, gathering some agents (say g agents)
at a node is sufficient for many applications; the agents gath-
ered at a node can share information and tasks among them.
Moreover, g-partial gathering allows agents to partition the
network into several subnetworks so that each subnetwork
contains at least g agents. This leads to distributed manage-
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ment of the network; each group of at least g agents collabo-
ratively manages their own subnetwork. The network parti-
tion is useful especially when the meeting nodes are widely
separate from each other. While g-partial gathering has no
request on locations of the meeting nodes, it is expected that
the meeting nodes are moderately distributed in the network
when starting from the initial configuration such that agents
are moderately distributed.

The g-partial gathering problem is interesting to inves-
tigate also from theoretical point of view. Let k be the num-
ber of agents. Clearly, if k/2 < g ≤ k holds, the g-partial
gathering problem is equivalent to the total gathering prob-
lem. On the other hand, if 2 ≤ g ≤ k/2 holds, the require-
ment for the g-partial gathering problem is no stronger than
that for the total gathering problem. Thus, there exists pos-
sibility that the g-partial gathering problem can be solved
with strictly fewer total moves (i.e., lower costs) compared
to the total gathering problem.

1.2 Previous Works on Partial Gathering

As previous works, the g-partial gathering problem is con-
sidered in ring networks [16] and tree networks [17]. In [16],
we considered the g-partial gathering problem in unidirec-
tional ring networks with whiteboards (or memory spaces)
at nodes. We considered three model variants. The first
model assumes the deterministic algorithm for agents with
distinct IDs. Then, our algorithm solves the g-partial gath-
ering problem in O(gn) total moves, where n is the number
of nodes. The second model assumes the randomized al-
gorithm for anonymous agents with knowledge of k. Then,
our algorithm also solves the g-partial gathering problem in
O(gn) expected total moves. The third model assumes the
deterministic algorithm for anonymous agents with knowl-
edge of k. Then, we showed that there exist unsolvable ini-
tial configurations. In addition, we proposed an algorithm
to solve the g-partial gathering problem from any solvable
configurations in O(kn) total moves. Note that, since the
total gathering problem in ring networks requires Ω(kn) to-
tal moves [16], the first and the second results show that the
g-partial gathering problem can be solved with strictly fewer
total moves compared to the total gathering problem.

In [17], we considered the g-partial gathering problem
in tree networks. Since trees have lower symmetry than
rings and no harder to solve problems, we considered the
problem in weaker models than that for rings and clarified
what condition is needed to achieve g-partial gathering with
the same performance as that for rings. To do this, we con-
sidered agents that are anonymous and have no knowledge
of k or n, and we considered three model variants. The first
and the second models assume that nodes have no mem-
ory space (or whiteboards) but are different in the multi-
plicity detection ability. The first model assumes the weak
multiplicity detection where each agent can detect whether
another agent exists staying at the current node or not but
cannot count the exact number of the agents. Then, we
showed that, for asymmetric trees agents can solve the g-

Fig. 1 An example of the g-partial gathering problem (k = 8, g = 3)

partial gathering problem in O(kn) total moves, and for sym-
metric trees agents cannot solve the g-partial gathering prob-
lem for the case of g ≥ 5. The second model assumes the
strong multiplicity detection where each agent can count the
number of agents staying at the current node. In this case,
we proposed a deterministic algorithm to solve the g-partial
gathering problem in O(kn) total moves regardless of the ini-
tial configuration. The third model assumes the weak multi-
plicity detection and assumes that agents can use removable
identical tokens, which implies that each node has a white-
board of only one bit. In this case, we proposed a deter-
ministic algorithm to solve the g-partial gathering problem
in O(gn) total moves. This result shows that it is sufficient
to use weak multiplicity detection and removable tokens to
achieve g-partial gathering in O(gn) total moves, which is
the strictly weaker assumption than the whiteboard model
for rings.

1.3 Our Contributions

As a natural extension, in this paper we consider the g-
partial gathering problem in arbitrary networks (e.g., Fig. 1),
and similarly to the previous works we aim to propose an al-
gorithm to solve the g-partial gathering problem with strictly
fewer total moves compared to the total gathering problem.
Similarly to the first model of [16], we assume that agents
have distinct IDs and each node has a whiteboard. First,
we show that agents require Ω(gn + m) total moves to solve
the g-partial gathering problem, where m is the number of
communication links. Next, we propose a deterministic al-
gorithm to solve the g-partial gathering problem in O(gn+m)
total moves, which is asymptotically optimal in terms of to-
tal moves. Note that, even when agents have distinct IDs
and each node has a whiteboard, agents require Ω(kn + m)
total moves to solve the total gathering problem in arbitrary
networks. Thus, our result shows that the g-partial gather-
ing problem is solvable with strictly fewer total moves com-
pared to the total gathering problem also in arbitrary net-
works.

The paper is organized as follows. Section 2 presents
the system model and the problem to be solved. In Sect. 3,
we show the lower bound of the total moves, and present our
algorithm to solve the g-partial gathering problem. Section 4
concludes the paper.



446
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

2. Preliminaries

2.1 Network Model

A network is represented by a general graph G = (V, L),
where V is a set of nodes and L is a set of communica-
tion links. We denote by n (= |V |) the number of nodes
and by m (= |L|) the number of communication links. We
denote by dv the degree of node v and by Δ the maximum
degree of the graph. Nodes have no distinct IDs (i.e., are
anonymous), but each link l incidents to v is uniquely la-
beled at v with a label chosen from the set {1, 2, . . . , dv}. We
call this label port number. Since each communication link
connects two nodes, it has two port numbers, one at each
end nodes. However, port numbering is local, that is, there
is no coherence between the two port numbers. The path
P(v0, vp) = (v0, v1, . . . , vp) with length p is a sequence of
nodes from v0 to vp such that {vi, vi+1} ∈ L (0 ≤ i < p) and
vi � v j if i � j. Every node vi ∈ V has a whiteboard that
agents on node vi can read from and write into. We define
W as a set of all possible states (contents) of a whiteboard.

2.2 Agent Model

Let A = {a1, a2, . . . , ak} be a set of k (≤ n) agents. Agents
do not have knowledge of k or n, but have distinct IDs, and
execute a deterministic algorithm. Each agent cannot de-
tect whether there exists another agent staying at the cur-
rent node or not. We model an agent as a state machine
(S , δ, sinitial, sfinal). The first element S is the set of all agent
states, which includes initial state sinitial and final state sfinal.
When ai changes its state to sfinal, it terminates execution
of the algorithm. The second element δ is the state transi-
tion function and represented by S ×W × P → S ×W × P.
Set P = {⊥, 1, 2 . . . ,Δ} represents the agent’s movement. In
the left side of δ, the value of P represents the port num-
ber assigned at the current node to the link through which
the agent entered the current node. The value is ⊥ in the
first activation at the initial location. In the right side of δ,
the value of P represents the port number through which the
agent leaves the current node to visit the next node. If the
value is ⊥, the agent does not move and stays at the current
node. The staying agent may execute an action following
δ and leave the current node when the value of W changes.
Notice that S , δ, sinitial, and sfinal can be dependent on the
agent’s ID.

We assume that agents move instantaneously, that is,
agents always exist at nodes (do not exist on links). This as-
sumption is introduced for simplicity and does not cause any
loss of generality even in the asynchronous model†. During

†This is because agents are asynchronously activated at nodes
and are unaware of other agents at the same node. For example,
consider the case where agents a1 and a2 are at node v. At that time,
if a1 is activated before a2, a1 is unaware of a2 and consequently the
state transition of a1 is not affected by a2. This can be considered
as the situation where a2 is in transit to v.

execution of an algorithm, each agent executes the following
four operations in an atomic step: 1) Agent ai reads the con-
tents of its current node’s whiteboard, 2) agent ai executes
local computation (or changes its state), 3) agent ai updates
the contents of the current node’s whiteboard, and 4) agent
ai leaves the current node and arrives at the next node, or
stays at the current node. In the last action, if ai decides to
leave the current node, it decides the port number through
which it leaves.

2.3 System Configuration

In an agent system, (global) configuration c is defined as
a product of states of agents, states of nodes (whiteboards’
contents), and locations of agents. We define C as a set of all
configurations. In initial configuration c0 ∈ C, we assume
that no pair of agents stay at the same node. The node where
agent a is located in c0 is called the home node of a and is
denoted by vHOME(a). Moreover, each node v j has boolean
variable v j.initial at the whiteboard that indicates existence
of an agent in initial configuration c0. If there exists an agent
on node v j in c0, the value of v j.initial is true. Otherwise, the
value of v j.initial is false.

Let Ai be an arbitrary non-empty set of agents. When
configuration ci changes to ci+1 by making every agent in
Ai take a step as mentioned before, we denote the transi-

tion by ci
Ai−→ ci+1. If multiple agents at the same node are

included in Ai, the agents take steps in an arbitrary order.
When Ai = A holds for every i, all agents take steps every
time. This model is called the synchronous model. Other-
wise, the model is called the asynchronous model. In this
paper, we consider the asynchronous model.

If a sequence of configurations E = c0, c1, . . . satis-

fies ci
Ai−→ ci+1 (i ≥ 0), E is called an execution starting

from c0 by schedule A0, A1, . . .. We consider only fair sched-
ules, where each agent is activated after a finite (unknown)
amount of time when E is finite or infinite, and infinitely
many times when E is infinite. Any execution E is maximal
in the sense that E is infinite, or ends in final configuration
cfinal where every agent’s state is sfinal.

2.4 Partial Gathering Problem

The requirement of the partial gathering problem is that, for
a given positive integer g, each agent should move to a node
and terminate so that at least g agents should meet at the
nodes (e.g., Fig. 1). Formally, we define the g-partial gath-
ering problem as follows.

Definition 1: Execution E solves the g-partial gathering
problem when the following conditions hold:

• Execution E is finite.
• In the final configuration, for each node v j where there

exists an agent, at least g agents exist on v j. �
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Fig. 2 Network G′′

3. Partial Gathering Algorithm in Arbitrary Networks

In this section, we consider the g-partial gathering problem
in arbitrary networks. First, we show a lower bound of the
total number of moves, and then we present the algorithm
to solve the g-partial gathering problem with the asymptoti-
cally optimal number of total moves.

3.1 Lower Bound of the Total Moves

Theorem 1: The total number of moves required to solve
the g-partial gathering problem in arbitrary networks is
Ω(gn + m).

proof . At first, we show that there exists a configuration
such that agents require Ω(m) total moves to solve the prob-
lem. To show this, we have the following lemma.

Lemma 1: Let G′ be an arbitrary network consisting of n′
nodes and m′ links, v be any node of G′ andA be any algo-
rithm to solve the g-partial gathering problem on arbitrary
networks. Consider the following k executions Ei (1 ≤ i ≤
k): in Ei, only agent ai exists in G′ and starts execution of
A at v. Then, there exists an execution E j (1 ≤ j ≤ k) such
that a j passes all the links of G′.

proof . We show the lemma by contradiction, that is, we as-
sume that for each agent ai (1 ≤ i ≤ k) there exists some link
ei = (vi, vi′ ) (1 ≤ i ≤ k) in G′ that ai does not pass during ex-
ecution ofA. We assume that ai stays at node vis (1 ≤ i ≤ k)
in the initial configuration. We consider the following net-
work G′′ as follows: Let G′1, . . . ,G

′
k be k networks with the

same topology as G′, and ei
i = (vii, v

i
i′ ) (1 ≤ i ≤ k) be the

link in G′i corresponding to ei in G′. Then, network G′′ is
constructed by deleting each ei

i and connecting v11′ to v22, v22′
to v33, . . ., v

k
k′ to v11 (Fig. 2). Let vi (1 ≤ i ≤ k) be the node

in G′i corresponding to vis in G′. We consider the following
initial configuration c′0 such that each agent ai (1 ≤ i ≤ k)
is located at vi. Then, since each agent ai that does not pass
ei

i cannot distinguish G′ from G′′, agent ai staying in the G′i
part of G′′ never leaves G′i . However, this contradicts the
assumption that A solves the g-partial gathering problem.
Thus, we have the lemma. �

Then, we have the following lemma.

Lemma 2: Let A be any algorithm to solve the g-partial
gathering problem on arbitrary networks. Then, for any n

Fig. 3 Network Gn,m

and m ≥ 2(k − 1) there exists an n-node and m-link network
Gn,msuch that the total moves for executing A to solve the
g-partial gathering problem on Gn,m is Ω(m).

proof . Let G′ be an arbitrary network consisting of n′ nodes
and m′ links (m′ ≥ k − 1). By Lemma 1, there exists some
agent that passes all the link of G′ when it starts execution of
A at node v′. Without loss of generality, let a1 be the agent.
We assume that a1 is located at v′ in the initial configura-
tion. Let e1 = (v1, v1′ ) be the link that a1 passes for the first
time after a1 passes every other link at least once during
execution of A. Now, we consider the following network
Gn,m by 1) deleting e1, 2) adding k − 1 nodes v2, v3, . . . vk,
3) connecting v2 to v3, v3 to v4, . . . , vk−1 to vk, and 4) con-
necting v1 to v2 and vk to v1′ (Fig. 3). Let e2 = (v1, v2) and
e3 = (v1′ , vk), and let v be the node in Gn,m corresponding
to v′ in G′. We consider the following initial configuration
such that a1 is located at v and the other agents are located at
v2, v3, . . . , vk, respectively. Then, since we consider the asyn-
chronous model, there exists execution of A such that a1

firstly passes all the link in the G′ part of Gn,m except for the
link corresponding e1 in G′ (i.e., e2 or e3 in Gn,m), and then
passes e2 or e3. This requires m′ moves. Since m = m′+k−1
and m′ ≥ k − 1 hold, this requires m′ ≥ m/2 = Ω(m) total
moves. �

Next, we show that agents require Ω(gn) total moves
for the case of gn = ω(m). Let N1 be a n/2-node ring and N2

be some network consisting of n/2 nodes and m − (n/2 + 1)
links. We consider the network N3 connecting some node
in N1 and some node in N2 (N3 consists of n nodes and m
links), and consider the initial configuration c0 such that all
agents (n/2 agents when k > n/2) are deployed evenly in
the n/2-node ring part of N3. Then, by argument similar to
that in [16] showing that agents in the n/2-ring part require
Ω(gn) total moves to solve the g-partial gathering problem,
we can show that agents require Ω(gn) total moves to solve
the g-partial gathering from c0. By this fact and Lemma 2,
agents require Ω(m + gn) total moves to solve the problem.
Thus, we have the theorem. �

3.2 The Algorithm

In this section, we present our proposed algorithm for the
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g-partial gathering problem. The basic idea is as follows.
First, agents make a spanning tree [18] and then they exe-
cute the g-partial gathering algorithm for trees [17]. Note
that since the algorithm for making a spanning tree [18] is
executed by nodes, we modify the algorithm to be executed
by agents. However, the simply modified algorithm requires
Ω(n log k + m) total moves to make a spanning tree, and it
cannot achieve g-partial gathering in asymptotically optimal
total moves (i.e. O(gn+m)). To solve the g-partial gathering
problem in O(gn + m) total moves, agents stop execution of
the spanning tree construction algorithm [18] in the middle
so that the total moves could be bounded by O(n log g + m).
Then, a spanning forest of the network is constructed so that
each fragment (or each tree in the forest) contains at least
g agents. Thus, agents can solve the problem by executing
the g-partial gathering algorithm for trees [17] in each frag-
ment independently. By [17], the total moves of the g-partial
gathering in fragments is O(gn). In addition, since the to-
tal moves to construct the spanning forest is O(n log g + m),
agents can solve the g-partial gathering problem in O(gn+m)
total moves.

The algorithm consists of three parts. In the first part,
each agent creates its own fragment. In the second part,
agents merge fragments so that at least g agents should exist
in each of the resulting fragments. In the third part, agents
execute the g-partial gathering algorithm for trees in each
fragment independently.

3.3 The First Part: Fragment Creation

In this part, agents move in the network and expand their
own fragments. A fragment is a region managed by an
agent, and when this part completes, each node belongs to
exactly one fragment in the form of a tree. Let Fi be the
fragment managed by agent ai. Each fragment Fi consists
of a set Vi of nodes and a set Li of links. At the begin-
ning of this part, Fi consists of only vHOME(ai). We use
a common depth-firth graph exploration method to create
fragments [19], [20]. While agents in [19], [20] are anony-
mous and use whiteboards to mark which port was used,
agents in this paper have distinct IDs and additionally write
the IDs on whiteboards to determine which fragment they
should merge with in the next part. Concretely, during exe-
cution of this part, each agent ai explores the network in the
depth-first manner. When ai visits some node v j such that no
agent ID is written on the whiteboard, it adds v j and the link
in visiting v j to Vi and Li, respectively. In addition, ai writes
its ID ai.id and the sequence number ai.seq on variables
(v j.agent, v j.seq) of v j’s whiteboard, respectively. We call
this tuple a node ID, and denote by v j.id = (v j.agent, v j.seq).
During execution of our algorithm, the value of each node
ID does not change and hence we use node IDs as unique
IDs (constants) in the next part. When ai visits some node
such that a node ID including ai’s ID is already written on
the whiteboard, ai returns to the previous node and resumes
its exploration. When ai visits some node with a node ID
including the ID of another agent, ai returns to the previous

Fig. 4 An example of the fragment creation. Agent ai manages its own
fragment Fi (i = 1, 2, 3), respectively. Numbers in circles represent se-
quence numbers, and bold lines represent links belonging to fragments.

node and resumes its exploration. Then, it memorizes v j.id
as information of neighboring fragments. This information
is not used in this part but used in the next part. When ai

stays at vHOME(ai) and there exists no port p of vHOME(ai)
such that ai does not leave vHOME(ai) through p, ai com-
pletes its exploration. Then, in Fi, Vi and Li form a tree. An
example is given in Fig. 4.

The pseudocode is described in Algorithm 1. In
Algorithm 1, we compare two node IDs by the lexico-
graphical order: for v j.id = (v j.agent, v j.seq) and v�.id =
(v�.agent, v�.seq), v j.id < v�.id holds if (v j.agent <
v�.agent) ∨ ((v j.agent = v�.agent) ∧ (v j.seq < v�.seq)) holds.
Node v j and agent ai have the following variables:

• v j.unsearched is a variable representing the set of un-
searched port numbers.
• v j.parent is a variable representing the port number

connecting to its parent in the tree rooted at vHOME(ai),
which is one through which ai visits v j for the first time
(the value of v j.parent at vHOME(ai) is 0).
• ai.tmpNodeID is a variable for storing the node ID (i.e.,

a pair of an agent ID and a sequence number) recorded
at a node belonging to a neighboring fragment.
• ai.NF is an array for storing the information of neigh-

boring fragments. We assume that agent ai visits node
v′j in a neighboring fragment from node v j in ai’s frag-
ment. Then, one component of ai.NF is represented by
min{(v j.id, v′j.id), (v′j.id, v j.id)}.

Notice that information about ai.tmpNodeID and ai.NF are
not necessary in this part but used in the next part. When
ai visits some node v j such that v j.initial = true and
v j.agent =⊥, this means that some agent stays at v j but does
not start execution of the algorithm yet. In this case, ai waits
at v j until an ID is written on v j’s whiteboard (line 10). Note
that, when ai finishes its exploration, it writes the topology
information of Fi (e.g., nodes and links with their port num-
bers in Fi) on the whiteboard of vHOME(ai) (line 30), but we
omit the detail in the algorithm.



SHIBATA et al.: PARTIAL GATHERING OF MOBILE AGENTS IN ARBITRARY NETWORKS
449

Algorithm 1 Fragment creation (v j is the current node of ai)
Behavior of Agent ai

1: Vi = {vHOME(ai)}, Li = ∅, ai.NF = ∅
2: v j.agent = ai.id, v j.seq = ai.seq = 1, ai.seq = ai.seq + 1
3: v j.unsearched = {1, 2, · · · , dv}, v j.parent = 0
4: while (v j.unsarched �⊥) ∨ (v j.parent � 0) do
5: if v j.unsearched �⊥ then
6: choose a port p from v j.unsearched
7: v j.unsearched = v j.unsearched\{p}
8: leave v j through the port p

// arrive at the next node and v j is updated
9: let q be the port through which ai visits v j

10: if (v j.initial = true) ∧ (v j.agent =⊥) then wait until v j.agent �⊥
11: if (v j.agent � ai.id) then // another agent already visited v j

12: ai.tmpNodeID = (v j.agent, v j.seq)
13: return to the previous node through the port q
14: ai.NF = ai.NF

⋃

{min{(v j.id, ai.tmpNodeID), (ai.tmpNodeID, v j.id)}}
15: else if v j.agent = ai.id then // ai already visited v j

16: v j.unsearched = v j.unsearched\{q}
17: return to the previous node through the port q
18: else // ai visits v j for the first time
19: v j.parent = q, v j.unsearched = {1, 2, . . . dv}\{q}
20: v j.id = (v j.agent, v j.seq) = (ai.id, ai.seq)
21: ai.seq = ai.seq + 1
22: let � be the link used in visiting v j

23: Vi = Vi
⋃{v j}, Li = Li

⋃{�}
24: end if
25: else
26: // there is no unsearched port at v j

27: if v j.parent � 0 then
28: return to the previous node through the port v j.parent
29: else // ai is at vHOME(ai)
30: write Vi, Li, ai.NF and topology information about Fi on the

current whiteboard
31: terminate the fragment creation part and start the fragment

merge part
32: end if
33: end if
34: end while

We have the following lemmas for Algorithm 1.

Lemma 3: Algorithm 1 eventually terminates. When Al-
gorithm 1 terminates, each node belongs to exactly one frag-
ment and each fragment forms a tree.

proof . In Algorithm 1, each agent ai explores the network
by the depth-first search but it returns to the previous node
when it visits a node already visited by some agent (includ-
ing ai). Thus, each agent ai eventually completes its ex-
ploration. In addition, from lines 15 to 24 of Algorithm 1,
only when agent ai visits some node v j for the first time (in-
cluding other agents), v j and the link used in visiting v j are
added to its fragment. This means that v j belongs to exactly
one fragment and there exists exactly one link added to its
fragment when ai visits v j. Thus, we have the lemma. �

Lemma 4: The total number of agent moves to execute Al-
gorithm 1 is O(m).

proof . In Algorithm 1, each link connecting two fragments
is passed by four time, and the other links (e.g., links be-
tween nodes in the same fragment) are passed by twice.

Hence, we have the lemma. �

3.4 The Second Part: Fragment Merge

In this part, agents merge their fragments so that each frag-
ment should contain at least g agents. We denote by ai.level
the number of merges ai has executed. We borrow the basic
idea of the merge from [18], which is as follows. At first,
each agent ai with fragment Fi selects the fragment with
the smallest node ID among its neighboring fragments, say
F j (managed by agent a j), and requests to merge with F j.
If ai.level < a j.level holds, Fi is absorbed and becomes a
part of F j. If ai.level = a j.level holds and a j also requests
to merge with Fi, Fi and F j are merged and the new frag-
ment is created. Then, the agent with a smaller ID manages
the new fragment and increases its level by one. Otherwise,
(i.e., ai.level > a j.level holds), ai waits until either of the
above two cases occurs. Agent ai repeats such merge pro-
cesses at most 
log g� times.

Before explaining the detail of the merge process, we
introduce a weight of links. We assume that u.id < v.id
holds for link l = (u, v). Then, we define the link weight of
link l as (u.id, v.id). Since each node ID is unique, each link
weight is also unique†.

Now, we describe the detail of the merge process. We
define the minimum outgoing edge (MOE) of agent ai (or
fragment Fi) as the link having the lexicographically mini-
mum link weight among links connecting a node in Fi and
a node in Fi’s neighboring fragment, say F j. We assume
that link (vim, v

j
m) is the MOE of agent ai, and vim (resp., v j

m)
is in fragment Fi (resp., F j). Notice that the MOE of ai is
selected using ai.NF in the previous section. Agent ai goes
to v j

m and requests to merge with F j by writing its ID and
level on v j

m’s whiteboard. For example, in Fig. 4 we assume
that a1.id < a2.id < a3.id holds and there are three nodes in
F2 connecting to nodes in F1. Then, since link (v, v′) is the
MOE of a1, it goes to v′ and requests the merge by writing
its ID and level on the whiteboard of the node.

After this, ai returns to vim and determines its next be-
havior from the following three cases. The first case is that
ai.level < a j.level holds. In this case, Fi is absorbed and
becomes a part of F j. Then, the level of F j that absorbed Fi

does not change to guarantee a lower bound of the number
of agents in a fragment with some level (Lemma 5). The de-
tail treatment of an absorption is explained in the next case.
Agent ai goes to vHOME(ai) and waits for the next instruction
(Sect. 3.5).

The second case is that ai.level = a j.level holds and
a j writes its ID on vim’s whiteboard. This case means that a j

also requests to merge with Fi. Then, the new fragment con-
sisting of Fi, F j, and link (vim, v

j
m) is created. If ai.id < a j.id

holds, ai manages the new fragment. Agent ai firstly incre-
ments ai.level by one, moves to vHOME(a j), and obtains in-
formations about F j. Then, ai traverses in the new fragment

†In [18], each link is assumed to have a unique weight, but we
realize it by node IDs.
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Fig. 5 An example of the fragment merge. Arrows represent merge re-
quests.

and writes the updated level on every node. While travers-
ing, when ai observes a merge request by agent a� having a
lower level than ai, it absorbs fragment F� without changing
its level. Concretely, it moves to vHOME(a�), obtains informa-
tion about F�, and makes F� as a part of the new fragment.
If ai.id > a j.id holds, ai goes to vHOME(ai) and waits for the
next instruction (Sect. 3.5).

The last case is that ai.level > a j.level holds, or
ai.level = a j.level holds but a j does not request to merge
with Fi. In this case, ai stays at vim until either of the above
two cases occurs. While waiting, when agent aj having a
lower level than ai requests to merge with Fi, ai absorbs F j

and looks for the new fragment to merge.
By these behaviors, we can show that there exists at

least 2i agents in a fragment of level i (Lemma 5). Thus,
by executing such merge processes at most 
log g� times or
until there exist no neighboring fragment, that is, all agents
belong to the same fragment, at least g agents exist in each
merged fragment. We call such fragments final fragments.

An example of merge processes is given in Fig. 5. For
simplicity, in Fig. 5 (a) each fragment is represented as a
circle. Each number near circles represents the number of
agents in the fragment. In Fig. 5 (a), since Fb (resp., Fd) re-
quests to merge with Fa (resp., Fb) but Fa (resp., Fb) tries
to merge with another fragment, they wait until the configu-
ration of Fa (resp., Fb) changes. On the other hand, Fa and
Fc try to merge with each other but Fc’s level is lower than
Fa’s level. In this case, Fc is absorbed and becomes part of
Fa (Fig. 5 (a) to (b)). Then, Fa does not change its level and
the number of agents in Fa that absorbed Fc is 3. Note that
if Fa increases its level by one, it does not satisfy the con-
dition that at least 2i agents exist in a fragment with level
i. After this, Fa tries to merge with another fragment Fb.
Since they have the same level, they are merged to form the
new fragment, say Fab (Fig. 5 (b) to (c)). Then, the level of
Fab is incremented by one and the number of agents in Fab

is 5. After this, Fab updates the contents in Fab and then it

finds that Fd requests to merge. Then, Fab absorbs Fd and
Fd becomes a part of Fab (Fig. 5 (c) to (d)).

The pseudocode is described in Algorithm 2. Agent ai

and node v j use the following variables:

• ai.candID and ai.candLevel are variables for storing the
ID and the level of the agent managing the fragment
that ai tries to merge with.
• ai.isManager is a boolean variable to represent whether

ai is a manager of a fragment or not. That is, when ai

is a manager of some fragment, ai.isManager = true
holds. When ai’s fragment is absorbed and ai becomes
a non-manager, ai.isManager is set to false.
• ai.lastAbsorb is a boolean variable to represent whether

ai absorbed some fragment in the last movement. The
initial value of ai.lastAbsorb is false.
• v j.level is a variable for storing the level of the agent

that manages a fragment including v j. The initial value
of v j.level is 0.
• v j.fUpdate is a boolean variable to represent whether

the content of the fragment that some agent tries to
merge is updated or not. The initial value of v j.fUpdate
is false.
• v j.requestmerge[ ] is an array for storing IDs and levels

of agents that try to merge with the fragment containing
v j.

In Algorithm 2, ai uses procedures merge() and ab-
sorb() to merge or absorb a fragment, whose pseudocodes
are given in Procedures 1 and 2, respectively. Note that,
in Algorithm 2 and Procedures 1, each agent basically tra-
verses its fragment in the depth-first manner, but we omit the
detail of the description (the movement is executed similarly
to that of Algorithm 1). Particularly, after ai with fragment
Fi absorbs some fragment, it tries to merge with another
neighboring fragment such that it finds for the first time in
the depth-first search, instead of the fragment F′j such that
the MOE of ai connects Fi and F′j (lines 7-12). This is
because, ai requires O(n) moves to find the MOE (or F′j).
Hence, if ai absorbs fragments many times and requests to
merge with such fragments, it may require O(kn + m) to-
tal moves. On the other hand, if ai executes the depth-first
search and requests to merge with the fragment found for
the first time, the total moves can be bounded by O(n log g)
(Lemma 6). In addition, when ai.level = 0 holds and it tries
to merge with some fragment F j, the manager agent a j of
fragment F j may be still executing the first part. Then, since
v

j
m.level = 0 holds, ai waits at vim until the a j’s ID is written

on vim’s whiteboard or vim.fUpdate = true holds (lines 20 and
21). We have the following lemmas for Algorithm 2.

Lemma 5: When Algorithm 2 finishes, there exist at least
g agents in each final fragment.

proof . At first, we show that there exist at least 2l agents
in the fragment managed by some agent ai with ai.level = l.
We prove it by induction on the levels of agents. For the case
of ai.level = 0, clearly there exists only one (= 20) agent ai

in Fi. For the case of ai.level = l, we assume that there exist
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Algorithm 2 Fragment merge
Behavior of Agent ai

1: ai.level = 0, ai.isManager = true, lastAbsorb = false
2: while (ai.level � 
log g�) ∨ (ai.NF � ∅) do
3: if (lastAbsorb = false) then
4: let nfmin be the lexicographically minimum element in ai.NF
5: let vim (resp., v j

m) be the node in Fi (resp., F j) included in nfmin

6: go to v j
m through the path along Fi

7: else
8: lastAbsorb = false
9: let vim be the node that is visited first by ai in the depth-first traver-

sal of Fi among the nodes adjacent to neighboring fragments. Let
v

j
m be the adjacent node in the neighboring fragment, say F j.

10: if link (vim, v
j
m) has the minimum weight

among edges connecting Fi and F j then move to v j
m

11: else go to line 9
12: end if
13: ai.candID = v j

m.agent, ai.candLevel = v j
m.level

14: add (ai.id, ai.level) to v j
m.requestmerge[ ] and return to vim

15: if ai.level < ai.candLevel then // ai is absorbed by F j

16: return to vHOME(ai) and set ai.isManager = false
17: terminate the fragment merge part and start the partial

gathering part
18: else if (ai.level = ai.candLevel) ∧

(there exists ai.candID in vim.requestmerge[ ]) then
19: // two fragments are merged and the new fragment is created
20: merge()
21: else if (ai.level = ai.candLevel)

∧ (there does not exist ai.candID in vim.requestmerge[ ]) then
22: wait until ai.candID is added to vim.requestmerge[ ] or

vim.fUpdate = true holds
23: if there exists ai.candID in vim.requestmerge[ ] then
24: merge()
25: else // level of F j increases and Fi is absorbed
26: return to vHOME(ai) and set ai.isManager = false
27: terminate the fragment merge part and start the partial

gathering part
28: end if
29: else if (ai.level ¿ ai.candLevel) then
30: if there exists ai.candID in vim.requestmerge[ ] then
31: absorb()
32: else
33: wait until ai.candID is added to vim.requestmerge[ ] or

vim.fUpdate = true holds
34: if there exists ai.candID in vim.requestmerge[ ] then
35: absorb()
36: else
37: v

j
m.fUpdate = false

38: go to v j
m and update values of ai.candID and ai.candLevel

39: go to line 14
40: end if
41: end if
42: end if
43: end while
44: terminate the fragment merge part and start the partial gathering part

at least 2l agents in Fi. From lines 17 to 19 of Algorithm 2
and Procedure 1, ai merges only with the fragment of level
l. Then, ai increases the value of ai.level by one and after
the merge there exist at least 2l + 2l = 2l+1 agents in the
merged fragment of level l + 1. Thus, after executing merge
processes 
log g� times, there exist at least g agents in each
final fragment. �

Procedure 1 merge()
Behavior of Agent ai

1: if (ai.id > ai.candID) then
2: // another agent becomes a manager of the new fragment
3: return to vHOME(ai) and set ai.isManager = false
4: terminate the fragment merge part and start the partial gathering part
5: else
6: // ai becomes a manager of the new fragment
7: ai.level = ai.level + 1
8: go to vHOME(a j) through the path along F j

9: obtain V j, L j, a j.NF, and topology information about F j

10: Vi = Vi
⋃

V j, Li = Li
⋃

L j
⋃

(vim, v
j
m), ai.NF = ai.NF

⋃
a j.NF

11: delete elements including a j.id from ai.NF
12: while ai does not visit all nodes in Fi from the begining of this

procedure do
13: leave the current and move to the next node v j in depth-first man-

ner so that ai does not visit a node not in Fi

14: if v j.level � ai.level then v j.level = ai.level
15: if there exists an element in v j.requestmerge[ ] then
16: for each element (a�.id, a�.level) do
17: let v�m be the node in F� connecting to v j

18: go to v�m and set v�m.fUpdate = true
19: if ai.level > a�.level then
20: go to vHOME(a�) through the path along F�
21: obtain V�, L�, a�.NF, and topology information about F�
22: Vi = Vi

⋃
V�, Li = Li

⋃
L�
⋃

(v j, v
�
m), ai.NF =

ai.NF
⋃

a�.NF
23: delete elements including a�.id from ai.NF
24: else
25: return to v j

26: end if
27: end for
28: end if
29: end while
30: end if

Procedure 2 absorb()
Behavior of Agent ai

1: lastAbsorb = true
2: go to vHOME(a j) through the path along F j

3: obtain V j, L j, a j.NF, and topology information about F j

4: Vi = Vi
⋃

V j, Li = Li
⋃

L j
⋃

(vim, v
j
m), ai.NF = ai.NF

⋃
a j.NF

5: delete elements including a j.id from ai.NF

Lemma 6: The total number of agent moves to execute Al-
gorithm 2 is O(n log g).

proof . In the proof, we use the fact that each node is man-
aged by exactly one manager agent at each level and each
manager executes the merge process by traversing in its own
fragment. Hence, the following analysis holds for the total
moves of all the agents.

At the beginning of the merge process of each level,
each manager agent ai with fragment Fi firstly tries to find
some fragment F j and merge it. This requires O(n) total
moves for all the agents since each link between nodes in
the same fragment is passed by at most once and each link
connecting two fragments is passed by at most four times.
After this, if Fi is absorbed, ai goes to vHOME(ai) and waits
for the next instruction, which requires O(n) total moves for
all the agents since each link of Fi is passed by at most once.
If ai absorbs F j, from Procedure absorb() ai traverses Fi un-
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til Fi is absorbed or merged. This requires O(n) total moves
for all the agents because 1) Fi forms a tree topology, and 2)
ai traverses Fi in the depth-first manner and each link of Fi

is passed by at most twice. If the two fragments are merged
and ai becomes a manager of the new fragment, it traverses
the new fragment and updates the contents of the white-
board of every node. This requires O(n) total moves for all
the agents since ai traverses the new fragment in depth-first
manner and each link is passed by at most twice. Hence,
agents require O(n) total moves to execute the merge pro-
cess of any level. Since the level grows up to at most 
log g�,
the total moves is at most O(n log g). Hence, we have the
lemma. �

3.5 The Third Part: Partial Gathering in Each Merged
Fragment

By Lemma 5, after finishing the merge agents can see each
final fragment as a tree topology containing at least g agents.
Hence, they execute the g-partial gathering algorithm for
trees [17] in each final fragment independently to solve the
problem. In [17], several leader agents instruct non-leader
agents which node they should meet at. Thus, if each man-
ager and each non-manager behave as a leader and a non-
leader, respectively, they can solve the problem. By [17],
this part can be achieved in O(gn) total moves. By this fact
and Lemmas 4 and 6, we have the following theorem.

Theorem 2: In arbitrary networks, the proposed algorithm
solves the g-partial gathering problem in O(gn + m) total
moves. �

4. Conclusion

We considered the g-partial gathering problem in arbitrary
networks. We proposed an algorithm to solve the g-partial
gathering problem in O(gn+m) total moves, which is asymp-
totically optimal in terms of total moves. As a future work,
we want to clarify the influence of the memory requirement
per agent and per node to the total number of moves.
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