
Space-efficient Uniform Deployment of Mobile Agents in
Asynchronous Unidirectional Rings⋆

Masahiro Shibata†, Hirotsugu Kakugawa♢, and Toshimitsu Masuzawa♢

†Department of Computer Science and Electronics, Kyushu Institute of Technology
680-4, Kawadu, Iizuka, Fukuoka, 820-8502, Japan

Email:shibata@cse.kyutech.ac.jp, Tel.:+81 9 4829 7656
♢Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
Email:{kakugawa, masuzawa}@ist.osaka-u.ac.jp, Tel.:+81 6 6879 4117

Abstract. In this paper, we consider the uniform deployment problem of mobile agents in
asynchronous unidirectional ring networks. This problem requires agents to spread uniformly
in the network. In this paper, we focus on the memory space per agent required to solve the
problem. We consider two problem settings. The first setting assumes that agents have no
multiplicity detection, that is, agents cannot detect whether another agent is staying at the
same node or not. In this case, we show that each agent requires Ω(logn) memory space to
solve the problem, where n is the number of nodes. In addition, we propose an algorithm
to solve the problem with O(k + logn) memory space per agent, where k is the number of
agents. The second setting assumes that each agent is equipped with the weak multiplicity
detection, that is, agents can detect another agent staying at the same node, but cannot
learn the exact number. Then, we show that the memory space per agent can be reduced to
O(log k + log logn). To the best of our knowledge, this is the first research considering the
effect of the multiplicity detection on memory space required to solve problems.

keyword: distributed system, mobile agent, uniform deployment, ring network, space-efficient

1 Introduction

1.1 Background and related works

A distributed system consists of a set of computers (nodes) connected by communication
links. As a promising design paradigm of distributed systems, (mobile) agents have at-
tracted much attention [1]. Agents traverse the system carrying information collected at
visited nodes and process tasks on each node using the information. In other words, agents
encapsulate the process code and data, which simplifies design of distributed systems [2].

In this paper, we consider the uniform deployment (or uniform scattering) problem as
a fundamental problem for coordination of agents. This problem requires agents to spread

⋆ A preliminary brief announcement of this work appeared in the proceedings of the 19th International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2017). This work was
partially supported by JSPS KAKENHI Grant Number 16K00018, 17K19977, and 18K18031, and Japan
Science and Technology Agency (JST) SICORP.

uniformly in the network. Uniform deployment is useful for network management. In a
distributed system, it is necessary that regularly each node gets software updates and is
checked whether some application installed on the node is running correctly or not [3].
Hence, considering agents with such services, uniform deployment guarantees that agents
visit each node at short intervals and provide services. Uniform deployment might be useful
also for a kind of load balancing. That is, considering agents with large-size database
replicas, uniform deployment guarantees that not all nodes need to store the database but
each node can quickly access the database [4]. Hence, we can see the uniform deployment
problem as a kind of the resource allocation problem (e.g., the k-server problem).

As related works, the uniform deployment problem is considered in ring networks [5, 6]
and grid networks [7]. All of them assumed that agents are oblivious (or memoryless) but
can observe multiple nodes within its visibility range. On the other hand, our previous work
[8] considered uniform deployment in asynchronous unidirectional ring networks for agents
that have memory but cannot observe nodes except for their currently visiting nodes.

1.2 Our contribution

In this paper, we consider the uniform deployment problem in asynchronous unidirectional
ring networks. Similarly to [8], we consider agents that have memory but cannot observe
nodes except for their currently visiting nodes. While the previous work [8] considered
uniform deployment with such agents for the first time and clarified the solvability, this
work focuses on the memory space per agent required to solve the problem and aims to
propose space-efficient algorithms in weaker models than that of [8]. That is, while agents
in [8] assumed that they can send a message to the agents staying at the same node,
agents in this paper do not have such ability. Instead, each agent initially has a token and
can release it on a visited node, and agents can communicate only by the tokens. After a
token is released, it cannot be removed. We also analyze the time complexity and the total
number of moves. We assume that agents have knowledge of the number k of agents.

In Table 1, we compare our contributions with the results for agents with knowledge
of k in [8]. We consider two problem settings. The first setting considers agents without
multiplicity detection, that is, agents cannot detect whether another agent staying at the
same node or not. In this model, we show that each agent requires Ω(log n) memory
space to solve the problem, where n is the number of nodes. In addition, we propose an
algorithm to solve the problem with O(k+log n) memory space per agent, O(n log k) time,
and O(kn log k) total number of moves. The second setting considers agents with the weak
multiplicity detection, that is, agents can detect another agent staying at the same node,
but cannot learn the exact number. In this setting, we also assume that agents know an
upper bound logN of log n such that logN = O(log n). Then, we propose an algorithm
to reduce the memory space per agent to O(log k + log log n), but it uses O(n2 log n) time
and O(kn2 log n) total number of moves. To the best of our knowledge, this is the first

2

Table 1. Results for agents with knowledge of k (n, #nodes, k, #agents)

Previous results [8] Results of this paper

Result 1 Result 2 Model 1 Model 2

Communication Messages Messages Unremovable tokens Unremovable tokens

Multiplicity detection Required Required Not Required Required

Agent memory O(k logn) O(logn) O(k + logn) O(log k + log logn)

Time complexity Θ(n) O(n log k) O(n log k) O(n2 logn)

Total number of moves Θ(kn) Θ(kn) O(kn log k) O(kn2 logn)

research considering the effect of the multiplicity detection on memory space required to
solve problems.

Due to limitation of space, we omit several pseudocodes and proofs of theorems.

2 Preliminaries

2.1 System model

We use almost the same model as that in [8]. A unidirectional ring network R is defined as
2-tuple R = (V,E), where V is a set of anonymous nodes and E is a set of unidirectional
links. We denote by n (= |V |) the number of nodes, and let V = {v0, v1, . . . , vn−1} and
E = {e0, e1, . . . , en−1} (ei = (vi, v(i+1) mod n)). We define the direction from vi to vi+1 as
the forward direction. In addition, we define the i-th (i ̸= 0) (forward) agent a′ of agent a as
the agent such that i− 1 agents exist between a and a′ in a’s forward direction. Moreover,
the distance from node vi to vj is defined to be (j − i) mod n.

An agent is a state machine having an initial state. Let A = {a0, a1, . . . , ak−1} be a
set of k (≤ n) anonymous agents. Since the ring is unidirectional, agents staying at vi can
move only to vi+1. We assume that agents have knowledge of k. Each agent initially has a
token and can release it on a visited node. After a token is released, it cannot be removed.
The token on an agent can be realized by one bit memory and cannot carry any additional
information. Hence, the tokens on a node represents just the number of the tokens and
agents cannot recognize the owners of the tokens1. Moreover, we assume that agents move
through a link in a FIFO manner, that is, when agent ap leaves vi after agent aq, ap
reaches vi+1 after aq. Note that such a FIFO assumption is natural because 1) agents are
implemented as messages in practice, and 2) the FIFO assumption of messages is natural
and can be easily realized using sequence numbers.

We consider two problem settings: agents without multiplicity detection and agents
with weak multiplicity detection. While agents without multiplicity detection cannot detect
whether another agent is staying at the same node or not, agents with weak multiplicity
detection can detect another agent staying at the same node, but cannot learn the exact

1 In practice, each node can store more information, but it is sufficient to store information about tokens
when considering anonymous agents.

3

Table 2. Meaning of each element in configuration C = (S, T, P,Q)

Element Meaning and example

S = (s0, s1, . . . , sk−1) Set of agent states (si: the state of agent ai)

T = (t0, t1, . . . , tn−1) Set of node states (ti: the number of tokens at node vi)

P = (p0, p1, . . . , pn−1) Sets of agents staying at nodes
(pi: a set of agents staying at node vi)

Q = (q0, q1, . . . , qn−1) Sets of agents residing on links
(qi: a sequence of agents in transit from vi−1 to vi)

number2. Each agent ai executes the following three operations in an atomic action: 1)
Agent ai reaches a node v (when ai is in transit to v), or starts operations at v (when ai
stays at v), 2) agent ai executes local computation, and 3) agent ai leaves v if it decides
to move. For the case with weak multiplicity detection, the local computation depends on
whether another agent is staying at v or not. Note that these assumptions of atomic actions
are also natural because they can be implemented by nodes with an incoming buffer that
stores agents about to visit the node and makes them execute actions in a FIFO order. We
consider an asynchronous system, that is, the time for each agent to transit to the next
node or to wait until the next activation (when staying at a node) is finite but unbounded.

A (global) configuration C is defined as a 4-tuple C = (S, T, P,Q) and the correspon-
dence table is given in Table 2. Element S is a k-tuple S = (s0, s1, . . . , sk−1), where si is the
state (including the state to denote whether it holds a token or not) of agent ai. Element
T is an n-tuple T = (t0, t1, . . . , tn−1), where ti is the state (i.e., the number of tokens) of
node vi. The remaining elements P and Q represent the positions of agents. Element P is
an n-tuple P = (p0, p1, . . . , pn−1), where pi is a set of agents staying at node vi. Element Q
is an n-tuple Q = (q0, q1, . . . , qn−1), where qi is a sequence of agents residing in the FIFO
queue corresponding to link (vi−1, vi). Hence, agents in qi are in transit from vi−1 to vi.

We denote by C the set of all possible configurations. In initial configuration C0 ∈ C,
all agents are in the initial state (where each has a token) and placed at distinct nodes3,
and no node has any token. The node where agent a is located in C0 is called the home
node of a and is denoted by vHOME(a). For convenience, we assume that in C0 agent a is
stored at the incoming buffer of its home node vHOME(a). This assures that agent a starts
the algorithm at vHOME(a) before any other agents make actions at vHOME(a).

A (sequential) schedule X = ρ0, ρ1, . . . is an infinite sequence of agents, intuitively
which activates agents to execute their actions one by one. Schedule X is fair if every
agent appears in X infinitely often. An infinite sequence of configurations E = C0, C1, . . .
is called an execution from C0 if there exists a fair schedule X = ρ0, ρ1, . . . that satisfies
the following conditions for each h (h > 0):

2 This is why such multiplicity detection is called weak.
3 We assume this for simplicity, but even if two or more agents exist at the same node in C0, agents can
solve the problem similarly by using the number of tokens at each node and atomicity of execution.

4

– If agent ρh−1 ∈ pi (i.e., ρh−1 is an agent staying at vi) for some i in Ch−1, the states of
ρh−1 and vi in Ch−1 are changed in Ch by local computation of ρh−1. If ρh−1 releases
its token at vi, the value of ti increases by one. After this, if ρh−1 decides to move to
vi+1, ρh−1 is removed from pi and is appended to the tail of qi+1. If ρh−1 decides to
stay, ρh−1 remains in pi. The other elements in Ch are the same as those in Ch−1.

– If agent ρh−1 is at the head of qi (i.e., ρh−1 is the next agent to reach vi) for some i
in Ch−1, ρh−1 is removed from qi and reaches vi. Then, the states of ρh−1 and vi in
Ch−1 are changed in Ch by local computation of ρh−1. If ρh−1 releases its token at vi,
the value of ti increases by one. After this, if ρh−1 decides to move to vi+1, ρh−1 is
appended to the tail of qi+1. If ρh−1 decides to stay, ρh−1 is inserted in pi. The other
elements in Ch are the same as those in Ch−1.

Note that if the activated agent ρh−1 has no action, then Ch−1 and Ch are identical.
Actually after uniform deployment is achieved, the same configuration is repeated forever.

2.2 The uniform deployment problem

The uniform deployment problem in a ring network requires k (≥ 2) agents to spread
uniformly in the ring, that is, all the agents are located at distinct nodes and the distance
between any two adjacent agents should be identical. Here, we say two agents are adjacent
when there exists no agent between them. However, we should consider the case that n is
not a multiple of k. In this case, we aim to distribute the agents so that the distance of
any two adjacent agents should be ⌊n/k⌋ or ⌈n/k⌉.

We consider the uniform deployment problem without termination detection. In this
case, suspended states are defined as follows. An agent stays at a node (not in a link) when it
is at a suspended state. When agent ai enters a suspended state, it neither changes its state
nor leaves the current node v unless the observable local configuration of v (i.e., existence
of another agent or the number of tokens for agents with weak multiplicity detection,
or the number of tokens for agents without multiplicity detection) changes. The uniform
deployment problem without termination detection allows agents to stop in suspended
states, which is also known as communication deadlock. We define the problem as follows.

Definition 1. An algorithm solves the uniform deployment problem without termination
detection if any execution satisfies the following conditions.

– All agents change their states to the suspended states in finite time.
– When all agents are in the suspended states, qi = ∅ holds for any qi ∈ Q and the

distance of each pair of adjacent agents is ⌊n/k⌋ or ⌈n/k⌉. ⊓⊔

Next, we define the time complexity as the time required to solve the problem. Since
there is no bound on time in asynchronous systems, it is impossible to measure the exact
time. Instead we consider the ideal time complexity, which is defined as the execution time

5

under the following assumptions: 1) The time for an agent to transit to the next node or
to wait until the next activation is at most one, and 2) the time for local computation is
ignored (i.e., zero)4. Note that these assumptions are introduced only to evaluate the com-
plexity, that is, algorithms are required to work correctly without such assumptions. In the
following, we use terms “time complexity” and “time” instead of “ideal time complexity”.

3 Agents without multiplicity detection

In this section, we consider uniform deployment for agents without multiplicity detection.

3.1 A lower bound of memory space per agent

First, we show the following lower bound of memory space per agent.

Theorem 1. For agents without multiplicity detection, the memory space per agent to
solve the uniform deployment problem is Ω(log n). ⊓⊔

Proof. We show the theorem by contradiction. We assume that there exists an algorithm to
solve the uniform deployment problem with at most log n−2 bit memory per agent. Then,
each agent has at most 2(logn−2) = n/4 states. Hence, when an agent enters a suspended
state, it moved at most n/4 times after it last observed a token.

We consider the initial configuration such that two agents a1 and a2 are placed at
neighboring nodes in a n-node ring. Then, the distance between the two agents in the final
configuration should be ⌊n/2⌋ or ⌈n/2⌉. We assume that a1 and a2 move in a synchronous
manner. Then, since they are placed at neighboring nodes and execute the same algorithm,
they release tokens (if do) also at neighboring nodes. In addition, since a1 and a2 move at
most n/4 times after they last observed a token and enter suspended states, the distance
between them is at most n/4+1(̸= ⌊n/2⌋ or ⌈n/2⌉). However, this contradicts the condition
of uniform deployment. ⊓⊔

3.2 An algorithm with O(k + logn) memory space per agent

Next, we propose an algorithm to solve the uniform deployment problem with O(k+log n)
memory space per agent, O(n log k) time, and O(kn log k) total number of moves. From
Theorem 1, the algorithm is optimal in memory space per agent when k = O(log n). The
algorithm consists of two phases as do the two algorithms in [8]: the selection phase and
the deployment phase. In the selection phase, agents select some base nodes, which are
the reference nodes for uniform deployment. In the deployment phase, based on the base
nodes, each agent determines a target node where it should enters a suspended state and
moves to the node. For simplicity, we assume n = ck for some positive integer c since we
can easily remove this assumption, but we omit the description.

4 This definition is based on the ideal time complexity for asynchronous message-passing systems [9].

6

��

��

��

�

�

�

�
�

�

Fig. 1. An example of the base node conditions (n = 18, k = 9).

3.2.1 Selection Phase In this phase, some home nodes are selected as base nodes. The
selected base nodes satisfy the following conditions called the base node conditions: 1)
At least one base node exists, 2) the distance between every pair of adjacent base nodes is
the same, and 3) the number of home nodes between every pair of adjacent base nodes is
the same. We say that two base nodes are adjacent when there exists no base node between
them. In Fig. 1, distances from vHOME(a1) to vHOME(a2), from vHOME(a2) to vHOME(a3),
and from vHOME(a3) to vHOME(a1) are all 6, and the number of home nodes between
vHOME(a1) and vHOME(a2), between vHOME(a2) and vHOME(a3), and between vHOME(a3)
and vHOME(a1) are all 2. Thus, vHOME(a1), vHOME(a2), and vHOME(a3) satisfy the base
node conditions. When the selection phase is completed, each agent stays at its home node
and knows whether its home node is selected as a base node or not. We call an agent a
leader (but probably not unique) when its home node is selected as a base node, and call
it a follower otherwise. The state of an agent is active, leader or follower. Active agents
are candidates for leaders, and initially all agents are active. We say that node v is active
(resp., follower) when v is the home node of an active (resp., a follower) agent.

At first, we explain the basic idea of the selection phase in [8], which assumes weak
multiplicity detection, and then we explain the way of applying the idea to the model in this
section. In the selection phase of [8], agents use IDs (but probably not unique) and decrease
the number of active agents. We explain the detail of the IDs later. At the beginning of
the algorithm, each agent ai releases its token at vHOME(ai). The selection phase consists
of several subphases. At the beginning of each subphase, each agent ai stays at vHOME(ai).
During the subphase, if ai is a follower, it keeps staying at vHOME(ai). On the other hand,
each active agent ai travels once around the ring and gets its ID by the method described
later5. Then, ai compares its ID with IDs of other agents one by one (ai gets them during
the traversal of the ring) and determines the next behavior. Briefly, (a) if all active agents
have the same ID, it means that home nodes of the active agents satisfy the base node
conditions. Hence, the active agents become leaders and enter to the deployment phase.
(b) If all agents do not have the same ID but ai’s ID is the maximum, it remains active

5 Each agent can detect when it completes one circuit of the ring using knowledge of k.

7

��

��
���� � �����

��
�

�� ���������� �� ��	
��

(a)

��

��
���� � �����

��
�

�� ���������� �� ��	
��

�� �′�

(b)
Fig. 2. (a): An ID of an active agent ai in [8]. (b): An ID of an active agent ai in this section (vj and v′j
are active and vℓ and v′ℓ are followers).

and executes the next subphase. (c) If ai does not satisfy (a) or (b), it becomes a follower.
Agents execute such subphases until base nodes are selected.

Now, we explain the detail of the ID. The ID (not necessarily unique) of an active
agent ai is given in the form of (fNumi, di), where fNumi is the number of follower nodes
between vHOME(ai) and the next active node in the subphase, say vnext, and di is the
distance from vHOME(ai) to vnext. In Fig. 2 (a), when agent ai moves from its home node
vj(= vHOME(ai)) to the next active node v′j(= vnext), it observes two follower nodes and
visits four nodes. Hence, ai gets its ID IDi = (2, 4). Note that since active agents traverse
the ring and follower agents stay at their home nodes, ai can detect its arrival at the
next active node when it visits a token node with no agent. This statement holds even in
asynchronous systems by the FIFO property of links and the atomicity of execution (these
facts are used in Section 4). Agents in [8] use O(log n) memory space to get such an ID
and decide whether they remain active (or they have the lexicographically maximum ID)
or not. Notice that an agent may get different IDs in different subphases.

In the following, we explain how to apply the previous idea to the model in this section
(i.e., without multiplicity detection). Agents in this section cannot detect existence of other
agents staying at the same node and cannot detect the arrival of the next active node using
existence of an agent. To deal with this, each agent memorizes the state of all agents by
using an array Activenow of k bits. The value of Activenow[i] is true iff its i-th agent is active
(otherwise it is a follower). Hence, agents can get an ID by going from node v to v′ each
of whose corresponding value of Activenow is true. In Fig. 2 (b), if vj and v′j are active and
vℓ and v′ℓ are followers, ai can gets its ID IDi = (2, 4). In addition, each follower agent also
moves in the ring instead of staying at its home node, and we explain this next.

Now, we explain implementation of the subphase. Each follower agent firstly moves to
the nearest active node to simulate the behavior of the active agent. To do this, each agent
has variable nearActivenow that indicates the number of tokens to the nearest active node
in the subphase (the values of nearActivenow for active agents are 0). Then, each active or
follower agent ai travels once around the ring. While traveling, ai executes the following
actions:

(1) Get its ID IDi = (fNumi, di): Agent ai gets its ID IDi by moving from the current node
(i.e., vHOME(ai) for active agent ai or the nearest active node for follower agent ai) to

8

vnext with counting the numbers of followers and visited nodes (Fig. 2 (b)).

(2) Compare IDi with IDs of all active agents: During the traversal, ai compares IDi with
IDs of all active agents one by one, and checks 1) whether IDi is the lexicographically
maximum and 2) whether the IDs of all active agents are the same. To check these,
ai keeps variables IDmax that is the largest ID among IDs ai ever found, and same
(same = true means that IDs ai ever found are the same), and it updates the variables
(if necessary) every time it finds an ID of another active agent. When IDmax is updated,
ai also updates the value of nearActivenext, indicating the number of tokens to the
nearest active node in the next subphase.

When completing one circuit of the ring, ai returns to vHOME(ai) and determines its
state for the next subphase. (a) If same = true, ai (and all the other active agents) become
leaders and completes the selection phase. (b) If same = false and IDi = IDmax, ai remains
its state (active or follower) and executes the next subphase. (c) If ai does not satisfy (a) or
(b), each active (resp., follower) agent becomes (resp., remains) a follower and executes the
next subphase. By repeating such subphase at most ⌈log k⌉ times, all the remaining active
agents become to have the same ID in some subphase and they are selected as leaders so that
their home nodes should satisfy the base node conditions. Notice that ⌈log k⌉ subphases are
sufficient, intuitively because 1) the largest ID increases every time a subphase completes,
and thus 2) no pair of adjacent active agents remain active in every subphase.

Pseudocode is described in Algorithm 1. Each agent uses variable preActive for storing
the position (i.e., the ordinary number) of the active node it visited for the last time before
coming to the current node, and boolean array Activenext of k bits for storing the states of
all agents for the next subphase. In addition, agents use procedure nextActive() to move
to the next active node. Note that, in each subphase each follower agent firstly moves to
the nearest active node, travels once around the ring from the active node, and returns to
its home node. Hence, each follower agent travels twice around the ring in each subphase
and each active agent does so for simplicity. In addition, in Algorithm 1 each agent can get
the number n of nodes when it finishes traveling once around the ring, but we omit the
description.

3.2.2 Deployment Phase In this phase, each agent determines its target node and
moves to the node. At first, the nearest base node is first selected as the base node. Hence,
if vHOME(ai) is a base node (i.e., ai is a leader), vHOME(ai) is ai’s target node and ai stays
there. Otherwise (i.e., if ai is a follower), ai firstly moves until it observes nearActivenow
tokens to reach the nearest base node. After this, ai moves nearActivenow × n/k times to
reach its target node. When all agents move to their target nodes, the final configuration
is a solution of the uniform deployment problem.

We have the following theorem for the proposed algorithm.

9

Algorithm 1 The behavior of active or follower agent ai in the selection phase
Behavior of Agent ai

1: /*selection phase*/
2: phase = 1, nearActivenow = 0, nearActivenext = 0, preActive = 0, same = true
3: for j = 0; j < k − 1; j ++ do Activenow[j] = true, Activenext[j] = true
4: release a token at its home node vHOME(ai)
5: while phase ̸= ⌈log k⌉ do
6: if ai is a follower then
7: move until it observes nearActivenow tokens // reach the nearest active node
8: t = nearActivenow
9: end if
10: execute NextActive() and get the first ID IDi = (fNumi, di), IDmax = IDi

11: while t ̸= nearActivenow do
12: execute NextActive() and get ID IDoth = (fNumoth, doth) of the next active agent
13: if IDoth ̸= IDi then same = false
14: if IDmax > IDoth then Activenext[preActive] = false
15: if IDmax < IDoth then
16: IDmax = IDoth, nearActivenext = preActive
17: for j = 0; j < t− 1; j ++ do Activenext[j]= false
18: end if
19: end while
20: return to its home node vHOME(ai)
21: if same = true then // active nodes satisfy the base node conditions
22: if ai is active then enter a leader state
23: terminate the selection phase and enter the deployment phase
24: end if
25: if (ai is active) ∧ (IDi ̸= IDmax) then enter a follower state
26: phase = phase+1, same = true, nearActivenow = nearActivenext
27: for j = 0; j < k − 1; j ++ do Activenow[j] = Activenext[j]
28: end while
29:
Procedure NextActive()
30: preActive = t
31: move to the next token node and set t = (t+ 1) mod k
32: while Activenow[t] ̸= true do
33: move to the next token node and set t = (t+ 1) mod k
34: end while

Theorem 2. For agents without multiplicity detection, the proposed algorithm solves the
uniform deployment problem with O(k + log n) memory space per agent, O(n log k) time,
and O(kn log k) total number of moves. ⊓⊔

4 Agents with weak multiplicity detection

In this section, we consider agents with weak multiplicity detection, and propose an algo-
rithm to solve the uniform deployment problem that reduces the memory space per agent
to O(log k+log log n), but it uses O(n2 log n) time and O(kn2 log n) total number of moves.
The algorithm consists of three phases: the selection phase, the collection phase, and the
deployment phase. In the selection phase, agents select base nodes similarly to Section 3.
In the collection phase, agents move in the ring so that they stay at consecutive nodes
starting from the base nodes. In the deployment phase, agents move to their target nodes.
In this section, we assume that agents know an upper bound logN of log n such that
logN = O(log n).

10

��

��
���� � �����

��
�

�� ���������� �� ��	
��

Fig. 3. An ID of an active agent ai (primel = 3).

4.1 Selection phase

Similarly to Section 3, in this phase some home nodes are selected as base nodes. The
basic idea is the same as that in Section 3, that is, agents use IDs and decrease the
number of active agents. However, compared with the algorithm in Section 3, memory
space is reduced to O(log k + log log n) from O(k + log n). We use two techniques for the
reduction: (i) As in [8], a follower remains at its home node and informs an active agent
of its state using the weak multiplicity detection: when an agent is detected at a node, it
is recognized as a follower. This improves memory space from O(k) to O(log k) since the
algorithm in Section 3 requires O(k) memory space to maintain the states of all agents.
(ii) Distances are computed using Residue Number System (RNS) [10] that represents a
large number as a set of small numbers. In particular, we use the technique called Chinese
Remainder Theorem (CRT) [11]. The CRT says that for two positive integers n1 and n2

(n1, n2 < n), if the remainders of the integers when divided by each of the first log n prime
numbers 2, 3, 5, . . . , U are the same, then n1 = n2 holds [11]. The prime number theorem
guarantees that the (log n)-th prime U satisfies U = O(log2 n). Thus, agents compare
distances between adjacent active nodes using the CRT and reduce memory space from
O(log n) to O(log log n).

We explain the outline of the selection phase. As in Section 3, the state of an agent
is active, leader, or follower, and initially all agents are active. At the beginning of the
algorithm, each agent ai releases its token at vHOME(ai). The selection phase consists of at
most ⌈log k⌉ subphases. As in Section 3, dropping out from active agents is realized by IDs
each of which consists of the number of followers and the distance between active nodes.
The only difference is that the distance part is compared using remainders by primes (Fig.
3). Each subphase consists of several iterations. At the beginning of each iteration, each
agent ai stays at vHOME(ai). For the l-th iteration in each subphase, if ai is a follower,
different from Section 3, it keeps staying vHOME(ai) to inform active agents visiting the
node of its state. On the other hand, each active agent ai travels once around the ring and
gets the distance part dprime

l of its ID as the remainder divided by the l-th prime primel.
In Fig. 3, when primel = 3, ai gets its ID IDi = (2, 1).

During the traversal, ai lexicographically compares its ID IDi with IDs of other active
agents one by one, and it determines its next behavior when it returns to vHOME(ai). As
in Section 3, ai uses variable same (same = true means that IDs ai ever found are the
same). Then, (a) if same = true and l = logN , it means that the distances between all
the pairs of adjacent active nodes are the same, and these home nodes satisfy the base

11

Algorithm 2 The behavior of active agent ai in the selection phase
Behavior of Agent ai

1: /*selection phase*/
2: phase = 1, prime = 2, same = true, max = true
3: release a token at its home node vHOME(ai)
4: while (phase ̸= ⌈log k⌉) ∨ (prime ̸= (logN)-th ptime) do

5: move to the next active node and get its own ID IDi = (fNumi, d
prime
i)

6: while ai is not at vHOME(ai) do

7: move to the next active node and get ID IDoth = (fNumoth, d
prime
oth) of the next active agent

8: if IDoth ̸= IDi then same = false
9: if IDoth > IDi then max = false // there exists an agent having a larger ID
10: end while
11: if (same = true) ∧ (prime = (logN)-th prime) then terminate the selection phase, start the collection

phase with a leader state, and leave the current node // all active agents have the same ID for all
target primes

12: if (same = true) ∧ (prime ̸= (logN)-th prime) then prime = (next prime)
13: if max = false then terminate the selection phase and start the collection phase with a follower state
14: else phase = phase+ 1, prime = 2, same = true, max = true
15: end while

node conditions. Hence, the active agents become leaders and enter the collection phase
without staying at its home node. (b) If same = true but l ̸= logN , ai executes the next
(l + 1)-th iteration using the next prime primel+1. (c) If same = false, they terminate
the current subphase. If ai has the maximum ID, ai remains active and starts the next
subphase. Otherwise, ai becomes a follower. Each active agent executes such subphases at
most ⌈log k⌉ times. Notice that the distances are compared using the CRT, which implies
that the agents with the maximum distance among the agents with the maximum fNum
(the number of followers between adjacent active agents) do not necessarily remain active
in the subphase. Hence, agents remaining active in the subphase may differ from those in
the algorithm of Section 3. However, ⌈log k⌉ subphases are still sufficient as in Section 3,
which is guaranteed by selecting active agents with the maximum fNum.

Pseudocode is described in Algorithm 2. Each agent ai uses boolean variable max
(max = true means IDi is the maximum among IDs ai has ever found).

4.2 Collection phase

In this phase, leader agents instruct follower agents so that they move to and stay at
consecutive nodes starting from the base nodes. Concretely, each leader agent ai firstly
moves to the follower node vj (i.e., the token node with another agent) so that ai makes
the follower agent to execute the collection phase. Then, ai waits at vj until the follower
leaves vj

6. After this, ai leaves vj and moves to the next follower node. This process is
repeated until ai reaches the next leader node (i.e., the token node with no agent)7. On

6 When an agent in the selection phase visits vj , it leaves vj without staying there by the atomicity of
an action. Hence, the behavior of leader agent ai can inform a follower agent of the beginning of the
collection phase.

7 By the atomicity of an action, when an agent moves to some leader node, the leader agent already starts
its collection phase and leaves the leader node.

12

�� ����

�

(a)

�� ����

�

(b)

��
����

�

(c)

�� ��
��

�

(d)

�� �� ��

�

(e)

�� �� ��

�

(f)

������������	
� �������
������	
�

Fig. 4. An example of the collection phase (fNum = 2).

the other hand, each follower agent ai waits at the current node until another agent (i.e., a
leader) comes. Then, ai firstly moves to the nearest leader node. After this, ai moves until it
reaches a node with no agent and stays there. When all agents finish their movements, the
agents are divided into groups (possibly only one group) each of which consists of fNum+1
agents, and the agents in a group are deployed at consecutive nodes starting from a base
node.

For example, in Fig. 4 there exists one leader agent a0 and two follower agents a1 and
a2 between a0 and its adjacent leader (i.e., fNum = 2). From (a) to (b), a0 firstly moves to
the nearest token node with an agent (i.e., follower node), and stays there until the follower
agent leaves the node. From (b) to (c), a1 detecting another agent a0 firstly moves to the
token node with no agent (i.e, leader node v), and then moves to the next node. From (c)
to (d), a0 similarly moves to the next follower node where agent a2 exists. From (d) to (e),
a2 firstly moves to leader node v and moves until it visits a node with no agent. From (e)
to (f), a0 moves to leader node v and finishes the collection phase.

4.3 Deployment phase

In this phase, leader agents control follower agents so that they should move to and stay
at their target nodes to achieve uniform deployment. The basic idea is as follows. The
deployment phase consists of several subphases, and the distance between every pair of
adjacent agents in the same group is increased by one in each subphase. To realize it, each
subphase consists of several iterations. For explanation of an iteration, consider a group
where a0 is a leader and followers a1, a2, . . . , afNum are following a0 in this order. At the
beginning of the first subphase, they stay at consecutive nodes. Each subphase consists of
fNum iterations. In the l-th iteration, each of the l agents afNum−l+1, afNum−l+2, . . . , afNum

13

�

�� �� ��

�

(a)

�� ��

(b)

� �

�� ����

(c)

�� ����

(d)

�� ��

(e)

�� ��

� �

��

(f)

������������	
� �������
������	
�

Fig. 5. An example of the deployment phase (fNum = 2).

moves to the next node. Consequently, in each subphase am moves m times and thus the
distance between every pair of adjacent agents increases by one.

The l-the iteration is realized as follows. Leader agent a0 firstly moves to the node
where afNum−l+1 is staying and stays there until afNum−l+1 moves to the next node. Then,
a0 moves to the node where afNum−l+2 is staying to make afNum−l+2 to move to the next
node. This process is repeated until afNum moves to the next node. After this, a0 makes a
remaining circuit of the ring, returns to the node where it started the deployment phase,
say vdep(a0), and terminates the l-th iteration. Then, a0 checks if the locations of agents
from vdep(a0) to the next leader node are uniform or not using the CRT. If the locations are
uniform, a0 returns to vdep(a0) and enters a suspended state. Otherwise, a0 executes the
next iteration. When a0 executes the fNum-th iteration and the locations are not uniform,
a0 executes the next subphase.

For example, in Fig. 5 there exist one leader agent a0 and two follower agents a1 and
a2 (i.e., fNum=2). Let d1 (resp., d2) be the distance from a0 to a1 (resp., a1 to a2). In
(a), d1 = d2 = 1 holds. From (a) to (b), as the first iteration in the first subphase a0
moves to the node where the fNum-th follower agent (i.e., a2) exists and stays there until
a2 moves to the next node. From (b) to (c), a0 returns to the node vdep(a0) where it started
the deployment phase. Then, d1 = 1 and d2 = 2 hold. If a0 recognizes that the locations
of agents are not uniform, it executes the next iteration. From (c) to (d), as the second
iteration in the first subphase a0 moves to the node where the (fNum − 1)-th agent (i.e.,
a1) exists and stays there until a1 moves to the next node. From (d) to (e), a0 moves to
the next follower’s (i.e., a2’s) node and stays there until a2 moves to the next node. From
(e) to (f), a0 returns to node vdep(a0). Then, d1 = d2 = 2 holds and ai determines its next
behavior depending on the location of agents. Each leader repeats such a behavior until it
recognizes that the locations of agents are uniformly deployed.

We have the following theorem for the proposed algorithm.

14

Theorem 3. For agents with weak multiplicity detection and knowledge of an upper bound
logN of log n satisfying logN = O(log n), the proposed algorithm solves the uniform de-
ployment problem with O(log k + log log n) memory space per agent, O(n2 log n) time, and
O(kn2 log n) total number of moves. ⊓⊔

5 Conclusion

In this paper, we proposed two space-efficient uniform deployment algorithms in asyn-
chronous unidirectional ring networks. For agents without multiplicity detection, we showed
that each agent requires Ω(log n) memory space, and proposed an algorithm to solve the
problem with O(k+ log n) memory space per agent, O(n log k) time, and O(kn log k) total
number of moves. This algorithm is optimal in memory space per agent when k = O(log n).
For agents with weak multiplicity detection, we proposed an algorithm to solve the problem
with O(log k+ log log n) memory space per agent, O(n2 log n) time, and O(kn2 log n) total
number of moves.

As a future work, for agents without multiplicity detection we want to propose a space-
optimal (i.e., O(log n) memory) algorithm to solve the problem. Also, for agents with
weak multiplicity detection we want to show a lower bound of memory space per agent.
We conjecture that it is Ω(log k + log log n), which implies that the second algorithm is
asymptotically optimal in memory space per agent.

References

1. R. S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’agents: Applications and performance of a mobile-
agent system. Softw., Pract. Exper., 32(6):543–573, 2002.

2. D.B. Lange and M. Oshima. Seven good reasons for mobile agents. CACM, 42(3):88–89, 1999.
3. E. Kranakis and D. Krizanc. An algorithmic theory of mobile agents. International Symposium on

Trustworthy Global Computing, Vol. 4661. pages 86-97, 2006.
4. J. Cao, Y. Sun, X. Wang, and S.K. Das. Scalable load balancing on distributed web servers using

mobile agents. JPDC, 63(10):996–1005, 2003.
5. P. Flocchini, G. Prencipe, and N. Santoro. Self-deployment of mobile sensors on a ring. Theoretical

Computer Science, 402(1):67–80, 2008.
6. E. Yotam and B. M. Alfred. Uniform multi-agent deployment on a ring. Theoretical Computer Science,

412(8):783–795, 2011.
7. L. Barriere, P. Flocchini, E. Mesa-Barrameda, and N. Santoro. Uniform scattering of autonomous

mobile robots in a grid. International Journal of Foundations of Computer Science, 22(03):679–697,
2011.

8. M. Shibata, T. Mega, F. Ooshita, H. Kakugawa, and T. Masuzawa. Uniform deployment of mobile
agents in asynchronous rings. PODC, pages 415–424, 2016.

9. G. Tel. Introduction to distributed algorithms. Cambridge university press, 2000.
10. OR. Amos and P. Benjamin. Residue number systems: theory and implementation, volume 2. World

Scientific, 2007.
11. D. Pei, A. Salomaa, and C. Ding. Chinese remainder theorem: applications in computing, coding,

cryptography. World Scientific, 1996.

15

