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When flux lines are displaced in a superconductor by increasing the external magnetic field, 

the energy penetrating the superconductor is larger than the increase in the magnetic energy. 

In some case the energy coming out of the superconductor is larger than the decrease in the 

magnetic energy when the magnetic field is decreased, indicating an appearance of energy. 

These differences between the penetrating energy and change in the magnetic energy can 

be explained as a work done by the driving force against the pinning force that determines 

the magnetic flux distribution in the superconductor. The disappeared energy is dissipated 

or absorbed as an increase in the pinning energy. This indicates that the Maxwell theory is 

comprehensive also for electromagnetic phenomena in superconductors. The displacement 

of flux lines is also examined for the force-free state that is established in a 

current-carrying superconductor in a parallel magnetic field. Similar difference in the 

energy suggests existence of generalized driving force, i.e., a driving torque, since the 

Lorentz force is zero in this state. This clearly shows that the flux cutting event cannot be 

realized, since it is based on the magnetic interaction and the penetrated energy cannot be 

absorbed. 
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1. Introduction 

Electromagnetic phenomena in superconductors such as non-dissipative current or 

energy loss are deeply associated with the energetic pinning interaction between quantized 

flux lines and defects called pinning centers. The center of each flux line is a singular point 

on which the gradient of the phase of the order parameter diverges, and the order parameter 

must be zero to avoid the divergence of the superconducting current density.1) As a result 

the central area of the flux line of a radius about the coherence length, 𝜉, is in the normal 

state. This area is called normal core. According to the Ginzburg-Landau theory, the energy 

density in the normal core is higher by the condensation energy density, 𝐵c
2/2𝜇0, than in 

the surrounding superconducting region, where 𝐵c is the thermodynamic critical field. 

When the normal core meets a normal precipitate, the length of the normal core that 

destroys the superconductivity becomes shorter, resulting in a state with a lower energy. 

Thus, normal precipitates work as attractive pinning centers.2) 

When an electric current of density 𝑱 is applied to a superconductor in a magnetic flux 

density 𝑩, the Lorentz force 𝑱 × 𝑩 works on pinned flux lines in a unit volume. If the 

Lorentz force is stronger than the pinning force, the flux lines are driven into a flow state 

and an electromotive force is generated. The induced electric field is given by3) 

          𝑬 =  𝑩 × 𝒗,                                (1)  

where 𝒗 is the velocity of flux lines. Normal electrons inside the normal core are driven 

by the induced electric field, resulting in energy dissipation. Various irreversible 

phenomena in the superconductor caused by movement of flux lines are well described by 

the critical state model.4) The nature of these irreversible phenomena is non-ohmic, and the 

dissipated power is proportional to the electric field 𝐸 and is called iron loss, while the 

dissipated power in common metals is proportional to 𝐸2 and is called copper loss. The 

loss energies associated with magnetic hysteresis in ferromagnetic materials and friction 

belong to the former type.  

This seems to be contradictory, since the original local phenomena associated with the 

energetic interaction with pinning centers are reversible. The irreversibility comes from 

unstable motion of flux lines driven from one pinning center to another by a Lorentz 

force5). If we confine to the case of small displacement of flux lines inside a pinning 

potential, however, reversible flux motion can be observed.6) 

  When the magnetic field applied to the superconductor is changed, the internal magnetic 

flux distribution changes. The energy that comes in or goes out of the superconductor can be 

calculated using Poynting’s vector. We treat various cases in this paper. For simplicity, it is 
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assumed that the critical current density, 𝐽c, is constant within the superconductor during 

changing the external magnetic field based on Bean’s model.4) 

 

 

2. Transverse Field Geometry 

The magnetic field produced by a current is perpendicular to the current. This field 

geometry is called transverse field. We assume for simplicity a wide superconducting slab 

that occupies 0 ≤ 𝑥 ≤ 2𝑑 and apply an external magnetic field along the 𝑧-axis. From 

symmetry we have to consider only the half, 0 ≤ 𝑥 ≤ 𝑑. In the following we assume two 

cases; one is the case where the irreversible critical state model holds and the other is the 

case where the reversible phenomenon occurs. 

 

2.1 Irreversible case 

When the external field is increased from 0 to 𝐻0, the critical state model describes that 

the internal magnetic flux distribution is given by 

𝐵𝑧(𝑥) = 𝜇0(𝐻0 − 𝐽c𝑥);          0 ≤ 𝑥 ≤ 𝐻0 𝐽c⁄ ,  

          = 0,                              𝐻0 𝐽c⁄ < 𝑥 ≤ 𝑑, 

where the above equation holds for 𝐻0 < 𝐽c𝑑 (see Fig. 1). The current flows with the 

density 𝐽c along the positive 𝑦-axis direction. When 𝐻0 exceeds 𝐽c𝑑, the upper equation 

of Eq. (2) holds in the entire region (0 ≤ 𝑥 ≤ 𝑑). 

     In this process the induced electric field is given by 

                   𝐸𝑦(𝑥) = − ∫
𝜕𝐵𝑧(𝑥)

𝜕𝑡
d𝑥

𝑥

𝐻0 𝐽c⁄

= 𝜇0

𝜕𝐻0

𝜕𝑡
(

𝐻0

𝐽c
− 𝑥)           (3) 

for 0 ≤ 𝑥 < 𝐻0/𝐽c and 𝐸𝑦(𝑥) = 0 for 𝐻0/𝐽c < 𝑥 ≤ 𝑑. Hence, Poynting’s vector (𝑺P =

𝑬 × 𝑯) on the surface (𝑥 = 0) is 

                      𝑆p =
𝜇0

𝐽c
𝐻0

2 𝜕𝐻0

𝜕𝑡
                       (4) 

and directed along the interior of the superconductor (the positive 𝑥-axis). Thus, the 

energy penetrating a unit surface area of the superconductor during increasing the external 

magnetic field from 0 to 𝐻e is calculated as 

                  𝑈 =
𝜇0

𝐽c
∫ 𝐻0

2d𝐻0 =
𝐻e

0

𝜇0

3𝐽c
𝐻e

3.                    (5) 

On the other hand, the total magnetic energy at the final state is 

(2)  
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                  𝑈m = ∫
𝜇0

2

𝐻e/𝐽c

0

(𝐻e − 𝐽c𝑥)2d𝑥 =
𝜇0

6𝐽c
𝐻e

3,                       (6) 

which is smaller than the input energy. Thus, some energy disappeared in the above 

process. 

  If we remember that Poynting’s energy contains the term ∫ 𝑬 ∙ 𝑱d𝑡 in addition to the 

magnetic energy, it is easy to find the reason for the above apparent discrepancy. In the 

present irreversible case the disappeared energy is speculated to be dissipated: 

       𝑊 = ∫ d𝑡 ∫ 𝐸𝑦(𝑥)𝐽c

𝐻0/𝐽c

0

d𝑥 =
𝜇0

2𝐽c
∫ 𝐻0

2d𝐻0

𝐻e

0

=
𝜇0

6𝐽c
𝐻e

3.             (7) 

In fact, the following condition holds: 

                          𝑈 = 𝑈m + 𝑊.                      (8) 

In this case the disappearance of energy is reasonable. 

 

2.2 Reversible case 

  The electromagnetic phenomena are different from the above in reversible cases. The 

reversible state appears for example when the external magnetic field is slightly reduced 

after increasing to a sufficiently high value, 𝐻m, as shown in Fig. 2. The initial magnetic 

flux distribution is given by 

                      𝐵𝑧(𝑥) = 𝜇0(𝐻m − 𝐽c𝑥).                  (9) 

When the external magnetic field is decreased by ∆𝐻e, the magnetic field distribution 

changes as 

𝐵𝑧(𝑥) = 𝜇0(𝐻m − 𝐽c𝑥) − ∆𝐵(𝑥); 

∆𝐵(𝑥) = 𝜇0∆𝐻eexp (−
𝑥

𝜆0′
), 

where 𝜆0′ is a characteristic length called Campbell’s AC penetration depth. This is the 

pinning correlation length and is given by 

                          𝜆0
′ = (

𝜇0𝐻m
2

𝛼L
)

1/2

,               (11) 

where 𝛼L is the Labusch parameter.7) The change in the current density on the surface is 

given by Δ𝐽 = |𝜇0
−1(𝜕∆𝐵(𝑥)/𝜕𝑥)𝑥=0| = ∆𝐻e/𝜆0′  and the reversible phenomenon 

continues in the whole superconductor until Δ𝐽 increases to 2𝐽c. A further decrease in the 

external field leads to the penetration of the opposite critical state from the surface. In the 

AC measurement method the amplitude of AC magnetic flux 𝛷  penetrating the 

superconducting slab is measured as a function of AC field amplitude ℎ0.7) Then, the 

(10) 
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penetration depth of the AC magnetic flux is determined with 

                          𝜆′ =
1

2𝜇0𝑤
∙

𝜕𝛷

𝜕ℎ0
,                     (12) 

where 𝑤 is the width of the superconducting slab. In the case of irreversible penetration 

as described by the critical state model, simply we have 

                      𝛷 =
𝜇0𝑤

2𝐽c
ℎ0

2                           (13) 

and Eq. (12) leads to 𝜆′ = ℎ0/𝐽c, as the critical state model predicts. On the other hand, in 

the reversible case where Eq. (10) holds we have 

                 𝛷 = 𝑤 ∫ 2𝜇0

𝑑

0

ℎ0exp (−
𝑥

𝜆0′
) ≅ 2𝜇0𝑤ℎ0𝜆0

′ ,           (14) 

where we assumed that 𝑑 is much larger than 𝜆0
′  and ∆𝐻e corresponds to the peak to 

peak value, 2ℎ0. Then, Eq. (12) leads to 

                         𝜆′ = 𝜆0
′ .                         (15) 

Figure 3 shows the experimental result of the field profile obtained with the AC 

measurement method:8) When ℎ0 is sufficiently large, the field profile obeys the critical 

state model, while 𝜆′ approaches to a constant value 𝜆0
′  in the limit of small ℎ0. 

   When the external magnetic field is slightly decreased by ∆ℎe after increasing to 𝐻m, 

the internal magnetic field distribution changes as 

           𝐵𝑧(𝑥) = 𝜇0 [𝐻m − 𝐽c𝑥 − ∆ℎeexp (−
𝑥

𝜆0′
)] .                       (16) 

The electric field induced by decreasing the external field is 

      𝐸𝑦(𝑥) = ∫ 𝜇0

𝜕∆ℎe

𝜕𝑡

𝑥

𝑑

exp (−
𝑥

𝜆0′
) d𝑥 ≅ −𝜇0𝜆0

′
𝜕∆ℎe

𝜕𝑡
exp (−

𝑥

𝜆0′
),          (17) 

where we assumed again that 𝑑 is sufficiently longer than 𝜆0′. Hence, the energy that 

penetrates the superconductor during decreasing the external magnetic field by ∆𝐻e is 

∆𝑈 = ∫ 𝐸𝑦(0)(𝐻m − ∆ℎe)d𝑡 = −𝜇0𝜆0′ ∫ (𝐻m − ∆ℎe)dℎe

Δ𝐻e

0

 

                              = −𝜇0𝜆0
′ Δ𝐻e (𝐻m −

Δ𝐻e

2
).          (18) 

On the other hand, the increase in the inner magnetic energy is 

∆𝑈m = −
𝜇0

2
∫ {(𝐻m − 𝐽c𝑥)2 − [𝐻m − 𝐽c𝑥 − ∆𝐻eexp (−

𝑥

𝜆0′
)]

2

}
𝑑

0

d𝑥 

        ≅ −𝜇0𝜆0
′ Δ𝐻e (𝐻m − 𝐽c𝜆0

′ −
Δ𝐻e

4
) .                          (19) 

Then, we have 
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          ∆𝑈 − ∆𝑈m = −𝜇0𝜆0
′ Δ𝐻e (𝐽c𝜆0

′ −
Δ𝐻e

4
).                         (20) 

Hence, the energy that goes out of the superconductor during the process is larger than the 

decrease in the magnetic energy. Where does the energy of difference come from? Now we 

calculate the electric power. From Eq. (16) the current density is 

              𝐽𝑦 = −
1

𝜇0
∙

𝜕𝐵𝑧

𝜕𝑥
= 𝐽c −

Δℎe

𝜆0
′ exp (−

𝑥

𝜆0
′ ),                     (21) 

and the electric field is given by Eq. (17). Thus, the energy associated with the 

corresponding electric power is 

𝑊 = ∫ d𝑡 ∫ 𝐸𝑦𝐽𝑦

𝑑

0

d𝑥 = − ∫ dΔℎe

Δ𝐻e

0

∫ 𝜇0

𝑑

0

[𝐽c𝜆0
′ exp (−

𝑥

𝜆0
′ ) − Δℎeexp (−

2𝑥

𝜆0
′ )] d𝑥 

                     = −𝜇0𝜆0
′ Δ𝐻e (𝐽c𝜆0

′ −
Δ𝐻e

4
).                        (22) 

This is equal to ∆𝑈 − ∆𝑈m in Eq. (20). However, this energy is not dissipated, since it is 

negative. When the external magnetic field is increased from 𝐻m − Δ𝐻e to 𝐻m, the 

magnetic flux distribution is reversible following Eq. (16) and the energy of the same 

amount disappears. 

     The energy 𝑊 in the above two cases is generally rewritten as 

                    𝑊 = 𝑬 ∙ 𝑱 = (𝑱 × 𝑩) ∙ 𝒗,                          (23) 

where Josephson’s relationship (1) is used for the electric field. Thus, the associated 

electric power is the rate of the work done by the Lorentz force. In fact, this was proved for 

the case of virtual displacement of flux lines by introducing strains to flux lines such as a 

gradient of the density9) or bending,10) which causes the magnetic pressure or line tension, 

respectively. The structures of magnetic flux lines that cause the Lorentz force are shown 

in Fig. 4. 

     In the first example the work done by the Lorentz force is dissipated as the pinning 

loss. In the second example, however, the work done by the Lorentz force is negative. It 

means that this energy was stored somewhere and appeared again in the decreasing field 

process. It is necessary to go back to the principle that determines the assumed magnetic 

flux distribution. All such distributions are realized by the flux pinning interaction. The 

critical state model describes the force-balance equation as 

                       𝑱 × 𝑩 + 𝑭p = 0,                                (24) 

where 𝑭p is the pinning force density. It is assumed as 

                       𝑭p = −𝐹p𝜹,                                    (25) 

where 𝐹p is an absolute value of 𝑭p and 𝜹 is a unit vector directed along the Lorentz 
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force. This assumption that the pinning force always works opposite to the driving force is 

the origin of the irreversibility and is proved theoretically.9, 11) The pinning loss in the first 

example is given by 

                       𝑊 = −𝑭p ∙ 𝒗.                                   (26)  

The magnetic flux distribution in the second example is also derived from Eq. (24) that 

describes the force balance condition. The pinning force density in this case is, however, 

reversible with respect to the flux motion and its strength is below the critical value, 𝐽c𝐵. 

The energetic situation is schematically illustrated in Fig. 5. The equilibrium position is 

determined by the condition: 

                   
∂ℊ

∂𝒖
= 0,                                           (27) 

where ℊ is the Gibbs free energy given by 

                     ℊ = 𝑈m + 𝑈p − (𝑱 × 𝑩) ∙ 𝒖                         (28) 

with 𝑈p and 𝒖 denoting the pinning energy and displacement of flux lines, respectively. 

Equation (27) describes the phenomena in the reversible state. From the relationship of 

                          
𝜕𝑈p

𝜕𝒖
= −𝑭p,                               (29) 

Eq. (24) is obtained in the critical state.9) Hence, the energy introduced by the Lorentz 

force can be absorbed as an increase in the pinning energy. This is exactly shown in 

Appendix. The appeared energy in the second case was stored in the pinning energy during 

the former process of increasing field to 𝐻m. 

     The reason why the energy is dissipated in the first case is that the pinning energy is full 

in the critical state, and hence, there is no room to store the energy additionally. As a result, 

all input energy is dissipated through unstable motion of depinned flux lines.5) This situation 

can be explained using the force-displacement profile in Fig. 6(a). The starting point is the 

former critical state when the field was increased to 𝐻m. Then, the flux lines are displaced to 

the opposite direction and the force-displacement relationship is linear with the slope of the 

Labusch parameter, 𝛼L. When the displacement reaches twice the interaction distance, 𝑑i, 

the opposite critical state is reached and the pinning force density is saturated for further 

displacement of flux lines. In this state, while new flux lines come in the pinning potential, 

some flux lines in the potential go out and the energy is dissipated. Thus, the Maxwell theory 

generally explains the origins of “dissipated energy” and “stored energy”. 

 

3. Longitudinal Field Geometry 
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When a current is applied to a wide superconducting slab in a parallel magnetic field as 

schematically shown in Fig. 7, peculiar phenomena called longitudinal field effect occur. 

Those include dramatic increase in the critical current density,12) break of the induced 

electric field from Eq. (1)13) and observation of a negative potential drop along the length 

of the superconductor in the resistive state,14, 15) etc. It is empirically known that the 

force-free state holds where the magnetic flux and current are locally parallel to each 

other:16) 

                 𝑱 × 𝑩 = 0.                                     (30) 

The structure of flux lines in this state is schematically shown in Fig. 8.17) The magnetic 

flux distribution below the critical state is given by 

                  𝑩 = (0, −𝐵0sin𝜃(𝑥), 𝐵0cos𝜃(𝑥))                (31) 

with 

𝜃(𝑥) = 𝜃0 − 𝛼f𝑥;        0 ≤ 𝑥 ≤ 𝑥0 = 𝜃0/𝛼f, 

                    = 0;               𝑥 > 𝑥0, 

where 𝜃0  is the field angle on the surface (𝑥 = 0) and 𝛼f  represents the rotational 

shearing deformation that is related to the force-free critical current density 𝐽c∥ through 

                               𝛼f =
𝜇0𝐽c∥

𝐵0
.                            (33) 

It is easy to show that the current density is 

                𝑱 =
1

𝜇0
rot𝑩 = (0, −𝐽c∥sin𝜃(𝑥), 𝐽c∥cos𝜃(𝑥)).                (34) 

The magnetic flux distribution in the region 𝑑 ≤ 𝑥 ≤ 2𝑑 is asymmetric with Eq. (31) with 

respect to the center, 𝑥 = 𝑑, of the slab. The magnetic flux distribution in the force-free 

state was investigated by superposing a transverse (along the 𝑦-direction in the present 

geometry) magnetic field that induced the force-free current along the 𝑧-axis.18) In this 

case the longitudinal component of the magnetic flux density is expected to be uniform 

inside the superconducting slab due to the abnormal transverse field effect.19) Figure 9 

shows the obtained distribution of transverse magnetic flux inside a superconducting slab 

when a small transverse in-plane magnetic field of amplitude ℎ0 was superposed to a 

large longitudinal magnetic field.18) Since the superposed transverse magnetic field is 

sufficiently smaller than the longitudinal magnetic field, the result of Fig. 9 shows that the 

variation in the magnetic field angle is linear as expected in Eq. (32). Thus, the force-free 

state is realized under the longitudinal magnetic field geometry. 

  On the other hand, when there is no current, the structure of flux lines is uniform as in 

(32) 
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Fig. 10. This suggests that the general driving force to release the deformed structure of 

flux lines is a torque to rotate the flux lines but not the force. In fact, the Lorentz force in 

this field configuration is zero as shown in Eq. (30).  

  To simply realize the force-free structure of flux lines it is enough to rotate the external 

magnetic field in a plane parallel to the surface of superconducting slab. In this case the 

magnetic flux distribution is symmetric with respect to the center, 𝑥 = 𝑑, and a half of the 

magnetic flux distribution is the same as that in the case of applied transport current. In 

experiments a wide superconducting disk is rotated in a parallel magnetic field for 

simplicity,20) which is relatively equivalent to a stationary superconducting disk in a 

rotating field. Since the rotation of magnetic flux is realized in the usual experimental 

procedure in which a parallel magnetic field is applied to a superconductor and then the 

transport current is applied,21) the rotation motion of flux lines is essential. When the 

deformation in the force-free state is virtually introduced by rotating the external magnetic 

field, the input energy can be similarly estimated using Poynting’s vector.22) A brief 

derivation of the input energy is shown here. First we assume a uniform magnetic field 𝐵0 

along the 𝑧-axis inside the superconductor and rotate the magnetic field at the surface by 

angle 𝜃0 in the 𝑦-𝑧 plane to achieve the magnetic structure given by Eqs. (31) and (32) 

with keeping 𝑦0 constant. The induced electric field is 

                           𝑬 = (0,  𝐸𝑦 ,  𝐸𝑧)                           (35) 

with 

𝐸𝑦(𝑥) = −
𝐵0

𝛼f
2

∙
𝜕𝛼f

𝜕𝑡
[sin𝜃(𝑥) − 𝜃(𝑥)cos𝜃(𝑥)], 

𝐸𝑧(𝑥) =
𝐵0

𝛼f
2

∙
𝜕𝛼f

𝜕𝑡
 [𝜃(𝑥)sin𝜃(𝑥) − cos𝜃(𝑥) + 1]. 

Hence, Poynting’s vector on the surface is 

                      𝑆P =
𝐵0

2

𝜇0𝛼f
2

∙
𝜕𝛼f

𝜕𝑡
(𝜃0 − sin𝜃0).                      (37) 

The energy density that flows into the superconductor during increasing the angle from 0 

to 𝜃m is 

                𝑤 =
𝐵0

2

𝜇0
∫

1

𝜃0
2

𝜃m

0

(𝜃0 − sin𝜃0)d𝜃0 ≅
𝐵0

2

12𝜇0
𝜃m

2 .                (38) 

This must be the work done by the driving torque, since the magnetic energy with density 

𝐵0
2/2𝜇0 does not change. The torque density is22) 

                        𝛺 = |−
𝜕𝑤

𝜕𝜃m
| =

𝐵0
2

6𝜇0
𝜃m =

1

6
𝐵0𝐽𝑦0.                (39) 

(36) 
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The work done by the torque must be absorbed in the pinning energy to be compatible with 

the Maxwell theory. That is, the deformed structure of flux lines is stabilized by the 

pinning interaction. This explains the fact that the critical current density in the 

longitudinal magnetic field is also determined by the flux pinning strength.12, 18, 23, 24) In 

usual experiments the transport current is applied to the superconductor after the 

longitudinal magnetic field is applied. In this case the strength of the magnetic field on the 

surface is also changed slightly, which causes the penetration of magnetic flux into the 

superconductor. The force-free structure is also established in this case. Hence, the above 

calculation is considered to hold valid generally. 

 

4. Discussion 

  We have shown the apparent discrepancy of the difference between the penetrated 

energy and change in the magnetic energy for the cases of usual transverse magnetic field 

geometry and longitudinal one. In the former case the difference was shown to be the work 

done by the Lorentz force under the equilibrium condition given by Eq. (27). It shows that 

the Maxwell theory is in harmony with thermodynamics and comprehensively includes the 

reversible and irreversible flux pinning phenomena in superconductors as a part of 

magnetic phenomena, although superconductivity and flux pinning phenomena were not 

known in the 19th century when the Maxwell theory was completed. 

  A similar discrepancy appears when the force-free state is induced in the superconductor 

in a parallel magnetic field. This strongly indicates that the difference in the energy is also 

the work done by a generalized driving force, i.e., the force-free torque, and is absorbed as 

an increase in the pinning energy. This explains the experimental results that the critical 

current density is determined by the flux pinning strength in this field geometry also.12, 18, 23, 

24) Under the rotation motion of flux lines it can be shown that the induced electric field is 

almost parallel to the external magnetic field, which shows deviation from Josephson’s 

relationship (1). Equation (36) shows actually the direction of the electric field on the 

surface; 𝐸𝑦(0)/𝐸𝑧(0) is approximately given by −(2/9)𝜃0 for small rotation angle 𝜃0. 

A similar result was obtained in the condition of experiments.21, 25) 

     The solution of rotating flux motion was obtained from the continuity equation of 

flux lines: 

                       
𝜕𝑩

𝜕𝑡
= −rot(𝑩 × 𝒗).                              (40) 

Here we derive the velocity of flux lines in the above case. If we assume that 𝒗 has a 
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single 𝑥 component that depends only on 𝑥, it is easy to show that there is no solution. 

We assume as 

                 𝒗 = (0,  𝑣𝑦 ,  𝑣𝑧).                                     (41) 

Under the variation in the magnetic flux distribution that corresponds to Eq. (36) for the 

electric field, we have 

−𝐵0sin𝜃
𝜕𝑣𝑧

𝜕𝑧
− 𝐵0cos𝜃

𝜕𝑣𝑦

𝜕𝑧
= 𝐵0cos𝜃

𝜕𝜃

𝜕𝑡
, 

 

𝐵0sin𝜃
𝜕𝑣𝑧

𝜕𝑦
+ 𝐵0cos𝜃

𝜕𝑣𝑦

𝜕𝑦
= 𝐵0sin𝜃

𝜕𝜃

𝜕𝑡
. 

If we assume as  

                𝑣𝑦 = −𝑟cos 𝜃
𝜕𝜃

𝜕𝑡
,    𝑣𝑦 = −𝑟sin𝜃

𝜕𝜃

𝜕𝑡
,                   (43) 

and 

                            𝑟 = (𝑦 − 𝑦0)sin𝜃 + (𝑧 − 𝑧0)cos𝜃             (44) 

with (𝑥,  𝑦0,  𝑧0) denoting the rotation center in the 𝑦-𝑧 plane, it is easy to find that Eqs. 

(43) and (44) satisfy Eq. (42). In Eq. (44) 𝑟 gives the radius of rotation. It is evident that 

the electric field is not given by Eq. (1) but follows in the form: 

                         𝑬 = 𝑩 × 𝒗 − ∇𝜙,                              (45) 

where 𝜙 is a scalar function. It should be noted that 𝜙 is not an electrostatic potential, 

since the electric field is induced by Faraday’s law. Since the scalar product of the first 

term with the current density 𝑱 is zero, the important component associated with the 

energy consumption is contained in the second term. A similar flux motion with a 

component along the 𝑥-axis was obtained for usual experimental condition.21) 

  On the other hand, the flux cutting model was proposed for explaining compatibility 

between the steady resistive state and constant longitudinal magnetization.26) Appearance 

of the resistance was attributed to continuous penetration of transverse field component 

based on Eq. (1), while the constant longitudinal magnetization indicated unchanged 

distribution of the longitudinal field component. Another flux cutting model, the direct flux 

cutting model, was proposed for explaining the experimental result that the AC electric 

field induced by a superposed small AC current was almost parallel to the longitudinal 

direction, showing a break of Josephson’s relationship (1).13) It was assumed that only the 

transverse AC self-field penetrated the superconductor cutting each other with longitudinal 

DC field. 

The assumption of the flux cutting can also be directly denied by the above discussion 

(42) 
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on the energy penetration during the achievement of the force-free state. The input energy 

during the process must be absorbed as an increase in the pinning energy to satisfy the 

principle of energy conservation. This insists that the flux cutting must be replaced by 

another mechanism of interaction with the flux pinning. It is different from a simple 

magnetic interaction between flux lines with a tilted angle assumed in Ref. 27. In other 

words, the flux cutting, i.e., a kind of magnetic interaction cannot absorb the input energy, 

since the magnetic energy is unchanged. This scenario of energetic interaction indicates a 

reversible behavior of flux lines below some threshold. In fact the penetration depth of AC 

transverse field component approaches tens of micrometers in the limit of zero field 

amplitude in Fig. 9. Since the flux line spacing at this DC magnetic field (0.290 T) is about 

90 nm, the variation in the magnetic flux distribution penetrates over hundreds of rows of 

flux lines. However, the processes of flux cutting such as direct flux cutting13) and 

intersection and cross-joining28, 29) seem to be incompatible with the reversible penetration 

of the transverse field component for such a long distance, since the irreversible flux 

cutting must be completed to start the interaction with flux lines on the next row.  

On the other hand, the rotational flux motion driven by the torque explains the deviation 

from Josephson’s relationship as discussed in the above. In the resistive state above the 

critical current density it is considered that a helical flux flow is initiated by the driving 

torque to satisfy the steady condition.30) Note that a simple rotation itself does not satisfy 

the steady condition. This explains a helical electric field structure with a negative voltage 

region where the flux lines go out of the superconductor. Such a break of helical symmetry 

cannot be derived by the mechanism of uniform flux cutting. This theoretical prediction 

was confirmed by the experimental result showing that Poynting’s vector is directed 

outward where the negative voltage appears.15) The flux cutting event has also been 

assumed to explain other phenomena.31) However, the problematic points in such 

assumption were argued in various aspects in Ref. 32.  

The problem in the flux cutting model arises from the assumption of similarity between 

mechanical motion and flux motion based on Eq. (1). For this reason it was discussed33) that 

flux lines must move translationally without rotation, since the rotational motion breaks the 

symmetry with larger loss at a longer distance from the rotation center. However, this 

equation does not hold and such a similarity is broken in the longitudinal field configuration. 

In fact, the solution of the continuity equation (40) shows compatibility between the rotation 

motion and symmetry. It is important to exactly understand the solution of such a 

fundamental equation without biased concept. 
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5. Conclusions 

In this paper the energy flow during the displacement of flux lines in the superconductor 

was investigated using Poynting’s vector. A part of energy appears or disappears depending 

on the process of displacement. This is the work done by the Lorentz force against the 

pinning force under the transverse magnetic field configuration. It is dissipated as Joule 

heat when the magnetic behavior obeys the irreversible critical state model. On the other 

hand, it is stored in or supplied from the pinning energy in the regime of reversible flux 

motion. This shows us the rigor of the Maxwell theory that includes the flux pinning as a 

kind of magnetic phenomena. 

The same investigation was done for the magnetic phenomena in the current-carrying 

superconductor in the longitudinal magnetic field configuration. The energy penetrates into 

the superconductor during rotation of flux lines to introduce the force-free structure, while 

the magnetic energy does not change. The penetrated energy must be the work done by the 

driving torque against the pinning interaction that keeps the distorted force-free structure of 

flux lines. Thus, it can be concluded that this torque drives the flux lines instead of the 

Lorentz force. As a result, peculiar longitudinal field effects such as enhancement of the 

critical current density due to different efficiency of flux pinning, deviation of induced 

electric field from Eq. (1) and the electric field structure in the resistive state are 

comprehensively explained, and such a rotation motion of flux lines is supported by the 

solution of the continuity equation of flux lines. 

 

Appendix 

When the external magnetic field is slightly decreased by ∆𝐻e after increasing to 𝐻m, 

the magnetic flux distribution is given by Eq. (10). If ∆𝐻e is sufficiently smaller than 𝐻m, 

the continuity equation (40) leads to 

                   𝐻m

𝜕

𝜕𝑥
𝑢′(𝑥) = −∆𝐻eexp (−

𝑥

𝜆0′
),                     (A. 1) 

where 𝑢′(𝑥) is the displacement of flux lines from the initial critical state. This is 

obtained as 

                         𝑢′(𝑥) =
∆𝐻e

𝐻m
 exp (−

𝑥

𝜆0′
).                     (A. 2) 

All flux lines stay at the position of 𝑢 = 2𝑑𝑖 and the pinning energy density is (1/

2)𝛼L𝑑i
2
 in the initial critical state (see Fig. 6(b)). Hence, the change in the pinning energy 
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in a unit surface area is 

         
1

2
𝛼L ∫ [(𝑑i − 𝑢′(𝑥))

2
− 𝑑i

2]
𝑑

0

d𝑥 = −𝜇0𝜆0
′ Δ𝐻e (𝐽c𝜆0

′ −
Δ𝐻e

4
),        (A. 3) 

where we have used Eq. (11). This is equal to the work done by the Lorentz force given by 

Eq. (22).  
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Figure Captions 

Fig. 1. Magnetic field distribution in the initial increasing field process. 

 

Fig. 2. Magnetic field distribution in the case where the external magnetic field is slightly 

decreased after reaching a sufficiently high value, 𝐻m . The broken line shows the 

prediction of the critical state model. 

 

Fig. 3. Field profile obtained using the AC inductive method for Nb-50at%Ta at 0.336 T.8) 

The penetration depth 𝜆′ in the abscissa is plotted as a function of the AC field amplitude 

𝜇0ℎ0 in the ordinate. 

 

Fig. 4. Distorted structures of magnetic flux lines that cause the Lorentz force: (a) gradient 

of magnetic flux density and (b) bending deformation. The restoring forces shown by the 

arrows are magnetic pressure and line tension, respectively. 

 

Fig. 5. Gibbs free energy ℊ vs. displacement of flux lines 𝑢 = |𝒖|. 

 

Fig. 6. (a) Force-displacement profile starting from the critical state to the opposite critical 

state and (b) the pinning energy density. The characteristics are reversible within the 

displacement by 2𝑑i. When the displacement exceeds 2𝑑i, the phenomenon becomes 

irreversible. 

 

Fig. 7. Configuration of external magnetic field (𝐻e) and current (𝐼) in which the 

longitudinal field effect is observed. 

 

Fig. 8. Structure of distorted flux lines in the force-free state with the force-free current. 

 

Fig. 9. Distribution of transverse magnetic field component in superconducting 

Nb-50at%Ta slab obtained using the AC inductive method at 0.290 T.18) 

 

Fig. 10. Structure of flux lines with no distortion. 
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Fig.1. (black and white) 
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Fig. 2. (black and white) 
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Fig. 3. (black and white) 
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Fig. 4. (black and white) 
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Fig. 5. (black and white) 
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Fig. 6. (black and white) 
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Fig. 7. (black and white) 
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Fig. 8. (black and white) 
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Fig. 9. (black and white) 
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Fig. 10. (black and white) 
 


