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Abstract 

Despite the eminent performance of the organometallic halide perovskite solar cells (PSCs), the 

poor stability for humidity and ultraviolet irradiation is still major problem for the 

commercialization of PSCs. Herein, a novel functional organic compound 1-(ammonium 

acetyl)pyrene (PEYI) has successfully introduced for preparing the 2D/3D Hetero structured 

MAPbI3 perovskite. Because of the functional organic pyrene group with high humidity 

resistance and strong absorption in the ultraviolet region, the 2D/3D perovskite film showed 

notable stability with no degradation in ~60% relative humidity after even 6 months and 

exhibited a high ultraviolet irradiation stability which kept nearly no degradation after one hour 

in the UV Ozone treatment. Planar PSCs were fabricated in the ~60% relative humidity air 

outside glovebox. The champion efficiency of (PEY2PbI4)0.02MAPbI3 perovskite solar cells was 

14.7 % with nearly no hysteresis which is equal performance of 3D MAPbI3 devices (15.0%). 

This work presents a new direction for enhancing the solar cells` performance and stability by 

incorporating a functional organic aromatic compound into the perovskite layer.  

This is the peer reviewed version of the following article: https://onlinelibrary.wiley.com/doi/full/10.1002/
adfm.201804856, which has been published in final form at https://doi.org/10.1002/adfm.201804856. This article may be 
used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
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Introduction 

 

Three-dimensional (3D) perovskite-based solar cells (PSCs) employing halide perovskite with 

organic cations have now showed power conversion efficiency of more than 22% at an 

unprecedented rate.[1] However, there are still some challenge problems limiting the 

commercialization and mass production, such as instability and J-V hysteresis.[2] Methyl 

ammonium lead iodide (MAPbI3) and other perovskite materials still showed poor 

performances against humidity, heat and light soaking.[3] Moreover, other additional 

degradation by UV irradiation, molecular oxygen also restrict the performances.[4] Therefore, 

research in the area for designing more stable PSCs is highly necessary. Recently, it has been 

reported that two-dimensional (2D) PSCs exhibited the high stability. These 2D perovskites are 

described as (RNH3)2(MA)n-1PbnI3n+1 (where RNH3 usually is PEA= C6H5(CH2)2NH3+, BA=n-

butylammonium) as absorbers in PSCs.[5]  Despite the high stability, the efficiency of 2D PSCs 

is still lower than 3D PSCs. To solve this problem, 2D/3D stacking structures, which have both 

advantage of 2D and 3D perovskite materials were reported.[6] Stabilities of PSCs was enhanced 

with notable efficiency by introducing a thin 2D perovskite layer because these 2D perovskites 

would wrap the grain boundary and surface of 3D perovskites. However, most exploited 2D/3D 

perovskites are based on PEAI and BA organic compound, which prevent the research progress 

of the 2D/3D perovskites. In addition, there are many organic compound with functional group 

which could be useful for introducing into the perovskite layer to make the perovskite layer 

functional. Therefore, it is challenging and meaningful for researchers to find novel functional 

organic materials for the 2D/3D perovskite materials. 

Herein, we introduced a new organic compound, 1-(ammonium acetyl)pyrene (PEY) as the 2D 

cation for preparing a new  2D/3D hetero structure.  The 2D/3D perovskite has the advantage 



  

3 

 

of both the longtime stability of 2D perovskite and excellent carrier’s transport of the 3D 

perovskite, showed nearly no degradation after more than 6 months kept in ~60% RH air 

atmosphere. While the normal 3D MAPbI3 perovskite layer quickly degraded within two weeks. 

Moreover, the (PEY2PbI4)0.02MAPbI3 2D/3D perovskite film showed nearly no degradation 

upon 60 minutes UV-Ozone treatment, which indicated the high resistance of the UV light and 

molecular oxygen. Furthermore, the best planar solar cell of (PEY2PbI4)0.02MAPbI3 2D/3D 

perovskite devices showed a high efficiency of 14.7 % with nearly no hysteresis, and ultra-

stable PSCs with no efficiency loss than 3D PSCs after kept in ~60% RH air atmosphere for 

more than 400 hours. 

Results and Discussion 

 

In this report, the composition of (PEY2PbI4)xMAPbI3 (x: 0, 0.02, 0.05, and 0.10)  is abbreviated 

as 2D/3D-X, i. e. (PEY2PbI4)0.02MAPbI3 is abbreviated as 2D/3D-0.02.   Figure 1 shows the X-

ray diffraction (XRD) patterns 2D/3D-X (x: 0 0.02, 0.05, and 0.10) perovskite films with 

different PEY content on glass substrates.  All the films were prepared in an around 60% RH 

open air condition. In all 2D/3D-X, strong diffraction peaks located on 14.1o, 28.4o and 31.9o 

for the 2θ scan were absorbed and they correspond to the planes of (110), (220) and (222), 

which is in coincident to the previous reports.[7] The result conformed that all the films of 

2D/3D-X contain highly crystalized perovskite phase.[8] Furthermore, a weak diffraction pattern 

of PbI2 appeared at around 12.7 o in 2D/3D-0 films and the intensity of the peak decreased with 

an increase in x from 0 to 0.1. The 2D peaks appeared at 6.6o and 9.2o were observed in 2D/3D-

0.10. These peak intensities decreased as x decreases from 0.1 to 0 (Figure S2). It was noted 

that the increased concentration of PEY resulted in the completed PbI2 transformation. This 

maybe owning to the enhanced humidity resistance of 2D layer, which prevent MAI and PbI2 

from the moisture in the spin-coating progress. 
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The stability the 2D/3D-X films were tested by tracing the variation of the XRD patterns. 

Change of XRD patterns after storage in air atmosphere is also summarized in Figure 1.  As 

shown in Figure 1a, for 2D/3D-0, peak at (110) of MAPbI3 became very weak after the sample 

was stored in two weeks.  In addition, several peaks appeared, one of which is 12.7 o assigned 

as PbI2. This indicates the 3D MAPbI3 perovskite started to decompose immediately after 

exposed to open air because of loss of MA.  In contrast, as shown in Figure 1b, c, d, for 2D/3D-

0.02, 2D/3D-0.05, 2D/3D-0.10, peak at (110) of 3D MAPbI3 did not change after more than 6 

months, leading to the conclusion that only 0.02 addition of PEY can greatly enhance the 

stability of these perovskite layers. The UV-vis spectra of the 2D/3D-X perovskite film tested 

by different time also clearly exhibits the enhanced stability of the perovskite layer by PEY 

incorporation. As shown in Figure S4, the UV absorption decreased totally for MAPbI3 

perovskite film within two weeks. However, for keeping at about 60% RH atmosphere for more 

than 6 months, almost no difference of the absorption intensity can be detected for the 2D/3D-

x (x= 0.02, 0.05, 0.1) perovskite films, which showed the excellent moisture stability of the 

materials. The insert optic figures of the perovskite films show 2D/3D-x (x= 0.02, 0.05, 0.1) 

perovskite films kept as a shining film after even more than 6 months. 

Figure 2a showed the light absorption spectra for 2D/3D-X (x, 0, 0.02, 0.05, 0.10) perovskite 

films on FTO glass substrates. It was found that the absorbance intensity decreased and the 

absorption edge blue-shifted as x increased from 0 to 0.10. Meanwhile, Eg shifted from 752 nm 

(1.57 eV) for 2D/3D-0 to 735 nm (1.60 eV) for 2D/3D-0.10 as shown in Figure 2b.  These 

results shows that 2D structure is created in the 3D structure.  The valence band edge was shifted 

from -5.58 eV for 2D/3D-0 to more negative values of -5.60 eV, -5.63 eV, and -5.68 eV for 

2D/3D-0.02, 2D/3D-0.05, and 2D/3D-0.10, respectively, as determined by photoelectron 

spectroscopy (Figure 2c). The observation is in agreement of conventional consideration that 

predict destabilization of valence band.[9]  Figure 2d summarizes shift of conduction band and 
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valence band which were obtained from the valence band energy level and optical absorption 

edge. It is clear shown in Figure 2d that the electronic configuration of MAPbI3 suffers only 

minor changes when 2D structure was introduced low content 2D, which is critical in terms of 

keeping high photovoltaic performance of the MAPbI3 3D perovskite materials.  

Next, the contact angle tests were used to test the water resist ability of 2D/3D-X films. The 

water contact angle of 2D/3D-0 film was 29.6o. This contact angle was increased to 105o, 107.9o, 

and 112.7o for 2D/3D-0.02, 2D/3D-0.05, 2D/3D-0.10, respectively, as shown in Figure S6. 

When water was dripped on 2D/3D-X films, color for 2D/3D-0 film changed immediately from 

dark to yellow, however, 2D/3D-0.02 survived during 30 seconds (Figure S7). These results 

would be explained by the water repelling behavior of PEY, which was introduced in the 3D 

perovskite. The high moisture resistance could be owing to the high hydrophobicity of the 

pyrene group. 

As perovskite can be easy degraded by UV irradiation and molecular oxygen. Therefore, UV 

Ozone machine was utilized to test the stability of the 2D/3D-X perovskite film which shown 

in Figure 3. The UV-vis absorbance gradually decreased when 2D/3D-0 film was exposed to 

UV Ozone treatment as shown in Figure 3a. However, there was nearly no change of the UV-

vis absorbance for 2D/3D-0.02 after the films was exposed to UV Ozone for more than 60 

minutes as shown in Figure 3b. From the color of the perovskite film we can clear see that after 

60 minutes, the 2D/3D-0 perovskite film change from dark to yellow slightly. While for the 

2D/3D-0.02 perovskite, the film color showed nearly no change. The corresponding XRD of 

color changed perovskite films after UV Ozone treatment are shown in Figure S5. These results 

show the enhanced stability against light irradiation and oxidations for the film consisting of 

PEY.  
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Figure 4 showed the surface morphology of 2D/3D-X (x= 0, 0.02, 0.05, 0.10) film on 

FTO/compact SnO2 substrate. All the films showed a dense pinhole free morphology. However, 

there was a lot PbI2 residue on surface of MAPbI3 perovskite film, which was shown the white 

spot in Figure 4a.[10] Thelakkat and coworkers proved that the rate of degradation of 

CH3NH3PbI3 could be accelerated because of PbI2 residue present in the perovskite film.[11] 

Moreover, researchers have proved that the surface defects and trap state density originate from 

the uncoordinated Pb atoms of the residue PbI2 which would limit the performances of PSCs.[12] 

As shown in Figure 4b, c and d, these residues were not observed in 2D/3D-X (x=0.02, 0.05, 

0.10). These results were in consistent of the XRD date shown in Figure 1. The grain size was 

decreased gradually with the increase in X value of 2D/3D-X, as shown in Figure 4e-h.  The 

statistical grain size for the perovskite films is shown in Figure S8.[13] 

To investigate the effect of 2D/3D perovskite on the photo voltaic performance, the planar PSCs 

using SnO2 as the electron transport layer and 2,2`,7,7`-tetrakis (N,N-di-p-

methoxyphenylamino)-9,9-spirobifluorene (spiro-OMeTAD) as the hole transport layer as 

shown in Figure 5a. These results are summarized in Figure 5b, c and d. The champion PCE of 

2D/3D-0 devices was 15.0 % with Jsc of 21.85 mA/cm2, Voc of 1.01V and FF of 68.2 %. The 

performance of 2D/3D-0.02 showed equal compared with the 2D/3D-0 perovskite with a 

champion PCE of 14.7 %, with Jsc of 21.15 mA/cm2, Voc of 1.05 V and FF of 66.1 %. The Jsc 

and FF of the 2D/3D-0.02 devices were slightly lower than 2D/3D-0 devices which may be 

owing to the reduced charge mobility of the 2D perovskite.[14] The Voc of 2D/3D-0.02 was 

higher than that of 2D/3D-0 maybe owing to the increased bandgap.   

Hysteresis index (HI) values were calculated from the J-V curves.[15] A modified hysteresis 

index (HI) values is defined by equation 1.  The HI value of 2D/3D-0.02 was 0.02, which was 

less than 2D/3D-0 (HI, 0.21). This result shows introduction of PEY was able to eliminate 

effectively hysteresis behaviors. Figure 5b and 5e show the J-V curves and the corresponding 
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IPCE curves of the champion devices. The IPCE curve for 2D/3D-0.02 has higher value at short 

wavelength and lower at longer wavelength, compared with that for 2D/3D-0.02.  This may be 

explained by the little lower absorption for 2D/3D-0.02 at 700-800 nm region, as shown in 

Figure 2a. The IPCE edge was about 800 nm, which is consistent to that of light absorption. 

Indoor environment stability for 2D/3D-0.02 and 2D/3D-0 were investigated as shown in Figure 

5f. The unsealed devices were stored in ~60% RH and dark air atmosphere. 2D/3D-0 device 

degraded to 51.6% of its initial efficiency after 400 hours. However, for 2D/3D-0.02 device, 

the PCE was still kept with no decline after 400 hours. From all the results, it was proved that 

2D/3D-0.02 perovskite devices has enhanced stability with keeping the high efficiency of 

2D/3D-0.  

Conclusion 

In conclusion, we have successfully introduced pyreneammonium iodide as the 2D layer for 

preparing the 2D/3D perovskite. The 2D/3D perovskite solar cell showed notable stability, 

which there is no degradation in ~60% RH humidity after 6 months. Moreover, the 2D/3D 

perovskite also showed a high UV stability which kept nearly no degradation after one hour in 

the UV Ozone treatment. The contact angel can reached beyond 100o that is more 3.5 times 

than 2D/3D-0 perovskite layer (29.6o). The champion efficiency of 2D/3D-0.02 perovskite solar 

cells is 14.7% which is almost equal to the performance of 2D/3D-0 devices (15.0%) with 

nearly no hysteresis.  This work provides a novel concept for incorporating the functional 

organic compounds into the perovskite layer to enhance the solar cells` performance. 
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Figure 1. X-ray diffraction of 2D/3D-X (X: 0, 0.02, 0.05, 0.10) perovskite film on glass 

substrate. The samples was stored in ~60% RH humidity at ambient atmosphere in the dark 

condition without encapsulation. (a) 2D/3D-0 (b) 2D/3D-0.02 (c) 2D/3D-0.05 (d) 2D/3D-0.10. 

 

 

 
 

Figure 2. (a) The UV-vis absorption spectra for 2D/3D-X (b) (ahv)2 versus energy for 2D/3D-

X (x, 0, 0.02, 0.05, 0.10) perovskite films on FTO glass substrates. (c) The PESA for the for 

2D/3D-X (x, 0, 0.02, 0.05, 0.10) perovskite films on FTO glass substrates. (d) Corresponding 

electronic structure diagrams of for 2D/3D-X (x, 0, 0.02, 0.05, 0.10) perovskite. 
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Figure 3. The UV-vis spectra of 2D/3D-0, (b) 2D/3D-0.02, (c) Color change of perovskite film 

after UV Ozone treatment. Left: 2D/3D-0, Right 2D/3D-0.02. 

 

 

 

 

 

 
 

Figure 4. 2D/3D-X perovskite film on FTO substrates. (a)(e) 2D/3D-0; (b) (f) 2D/3D-0.02; (c) 

(g) 2D/3D-0.05; (d) (h) 2D/3D-0.10.  
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Figure 5. (a) Schematic structure of FTO/SnO2/perovskite/Spiro-OMeTAD/Au planar 

perovskite solar cells. (b) J-V curves in reverse direction of 2D/3D-0 and 2D/3D-0.02 planar 

perovskite solar cells. (c) J−V curves of the champion 2D/3D-0 perovskite solar cell under 

reverse and forward voltage scans. (d) J−V curves of the champion 2D/3D-0.02 perovskite solar 

cell under reverse and forward voltage scans. (e) EQE spectra of 2D/3D-0 and2D/3D-0.02 

planar perovskite solar cells. (f) Stability test for 400 h of the champion device under ambient 

atmosphere without sealing in dark condition under average humidity of around 60%.  

 

 

HI =
𝐽𝑅(0.8V𝑂𝐶)−𝐽𝐹(0.8V𝑂𝐶)

𝐽𝑅(0.8V𝑂𝐶)
                                Equation 1 

 

JR(0.8VOC) and JF(0.8VOC) represent photocurrent values at 0.8 of the VOC value for the 

reverse and forward scan direction.  
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A novel organic compound 1-(ammonium acetyl) pyrene has successfully introduced for 

preparing the 2D/3D hetero structured MAPbI3 perovskite. Because of the functional organic 

pyrene group with high humidity resistance and strong absorption in the ultraviolet region, the 

2D/3D perovskite film showed notable stability in humid air atmosphere and ultraviolet 

irradiation. The power conversation efficiency of 2D/3D perovskite solar cells is comparable 

with MAPbI3 with nearly no hysteresis.  

 

Keyword Two-dimensional; MAPbI3; Planar solar cells; Stability; UV light stability. 
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                                      Figure S1 Synthetic route of PYEHI 

 
Synthesis of PYEHI 

Figure S1 shows the synthetic route of PYEHI. 4.0 g 1-(Bromoacetyl)pyrene (Aldrich, 97%) , 

1.9 g hexamethylenetetramine(Aldrich, 99%)  were added into 60 ml chloroform (Aldrich, 99%) 

in a round-bottom flask. The solution was stirred at room temperature for 12h. The precipitate 
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was filtered and washed with chloroform 3 times to get the slight white solid. The solid was 

directly added into 100 ml ethanol (TCI, 99.5%). Then 6 ml hydriodic acid (Aldrich, 57 wt. % 

in water) was slowly added into the solution. The solution was stirred at 45 oC for 4 h and then 

cooled at room temperature. The precipitate was filtered. After washing with ethanol, acetone, 

and diethyl ether, compound PYEHI was obtained as a slight white solid. ESI-MS (m/z): calcd. 

[M+] for [C18H14NO]+ 260.11, found 260.11. Elemental analysis: calcd, C, 55.83, H, 3.64, N, 

3.62. Found, C 56.87, H, 3.81, N, 3.66. 

Preparation of perovskite solar cells 
Fluorine-doped tin oxide (FTO glass, Nippon Sheet Glass Co. Ltd) substrates were etched with r 

hydrochloric acid solution and zinc powder. Tin (II) chloride (Aldrich, 98 %) was dissolved in ethanol 

(Wako, 99.8 %) to form 0.1 M SnCl2 solution. Then the SnCl2 solution was spin-coated on the cleaned 

FTO glass at 2000 rpm for 30 seconds. The substrate was annealed at 180 °C for 60 min utes on a hot 

plate to form a dense SnO2 electron transport layer. The perovskite solution was prepared by dissolving 

239 mg MAI (TCI, 98 %) and 692 mg PbI2 (TCI, 99.99 %) into 0.2 mL dimethyl sulfoxide (DMSO, 

Aldrich, 99.8 %) and 0.8 mL dimethylformamide (DMF, Aldrich, 99.8 %)  to achieve 1.5 M MAPbI3 

perovskite precursor solution. For preparing the 2D/3D perovskite precursor solution, keeping the PbI2 

at 1.5M and adding a proper PYEHI and MAI into 0.2 mL dimethyl sulfoxide (DMSO, Aldrich, 99.8 %) 

and 0.8 mL dimethylformamide.  The Spiro-MeOTAD solution was prepared by mixing 72.3 mg Spiro-

MeOTAD (Aldrich, 99 %), 28.8μL tert-butylpyridine (Aldrich, 96 %) , 17.5 μL Li-TFSI (Aldrich, 

99.95 %) (520 mg/mL in acetonitrile) and 29 μL FK209 (Aldrich, 99 %) (300 mg/mL in acetonitrile) in 

1 mL chlorobenzene solution. The perovskite layer was prepared on the mesoporous TiO2 substrate by 

adding 0.1 mL perovskite precursor solution and spin-coated at 4000 rpm for 25 s. 0.5 mL ethyl acetate 

(99.8 %, Aldrich) antisolvent was dripped during the spin-coated progress.[15] The spin-coated 

perovskite film was annealed at 100 °C for 10 min. The Spiro -MeOTAD layer spin-coated on the 

perovskite layer at 4000 rpm for 30 s. Finally, Au electrode with 80 nm thickness was deposited on the 

Spiro film by thermal evaporation.  

Characterization 

Solar cell performance was measured by a solar simulator (CEP-2000SRR, Bunkoukeiki Inc., AM 

1.5G 100 mWcm-2) and a mask with exposure area 0.10 cm2 was used during the photovoltaic 

measurements with a 0.1 V/s scanning rate in reverse (from the open-circuit voltage (Voc) to the short-

current density (Jsc)) and forward (from Jsc to Voc) modes under standard global AM 1.5 illumination. 

The IPCE spectra were recorded using a monochromatic Xenon lamp (Bunkouki CEP-2000SRR). X-

ray Diffraction (XRD) Study. The surface morphology of the samples was observed through a scanning 

electron microscope (SEM) (JEOL, Neoscope, JCM-6000) and a Bruker Innova atomic force 

microscopy (AFM) (JSPM-5200). The XRD patterns were obtained by a Rigaku Smartlab X-ray 

diffractometer with monochromatic Cu-Kβ irradiation (45 kV/200 mA). The UV-Vis measurement was 

performed using a JASCO V-670. Spectrophotometer. Photoelectron yield spectroscopy (PYS) was used 

to determine the valence band using a Bunkoukeiki KV205-HK ionization energy measurement system 

with – 5.0 V of applied voltage under 10-4 Pa vacuum. 
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Figure S1 The perovskite films after kept at ambient atmosphere at different time. 

 
 

Figure S2 X-ray diffraction of (PEY2PbI4)xMAPbI3 (0, 0.02, 0.05, 0.10) perovskite film on 

glass substrate. (c) The zoomed XRD spectra. 
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Figure S3 X-ray diffraction of (PEY2PbI4)xMAPbI3 (0.02, 0.05, 0.10) perovskite film. The 

samples was stored in ~60% RH humidity at ambient atmosphere in the dark condition without 

encapsulation. (a) x=0.02, (b) x=0.05, (c) x=0.10. 

 

Figure S4 UV-vis spectra of 2D/3D-X (X: 0, 0.02, 0.05, 0.10) perovskite film on glass substrate. 

The samples was stored in ~60% RH humidity at ambient atmosphere in the dark condition 

without encapsulation. (a) 2D/3D-0 (b) 2D/3D-0.02 (c) 2D/3D-0.05 (d) 2D/3D-0.10.  
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Figure S5 X-ray diffraction of (a) 2D/3D-0 and (b) 2D/3D-0.02 perovskite film under UV 

Ozone treatment for different time.  
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Figure S6 Contact-angle test for the (PEY2PbI4)xMAPbI3 (0, 0.02, 0.05, 0.10) perovskite film 

with water droplets. (a) MAPbI3; (b) (PEY2PbI4)0.02MAPbI3; (c) (PEY2PbI4)0.05MAPbI3; (d) 

(PEY2PbI4)0.10MAPbI3. 

 

 
 

Figure S7 One drop water on MAPbI3 (a) and (PEY2PbI4)0.02MAPbI3  (b) perovskite film. 

 

 

 

 
Figure S8 The statistical distribution of the particle size for (PEY2PbI4)xMAPbI3 (0, 0.02, 

0.05, 0.10) perovskite film. 
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Figure S9 Photovoltaic statistics for the planar perovskite solar cells based on MAPbI3 and 

(PEY2PbI4)0.02MAPbI3  materials. (a) JSC, (b) VOC, (c) Fill factor, (d) Efficiency. The boxes 

represent 40 data from the VOC-to-JSC scan direction. 

 

 

 


