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An Approximation Algorithm for the Maximum Induced Matching
Problem on C5-Free Regular Graphs

Yuichi ASAHIRO†a), Guohui LIN††b), Zhilong LIU†††c), Nonmembers, and Eiji MIYANO†††d), Member

SUMMARY In this paper, we investigate the maximum induced match-
ing problem (MaxIM) on C5-free d-regular graphs. The previously
known best approximation ratio for MaxIM on C5-free d-regular graphs
is

(
3d
4 −

1
8 +

3
16d−8

)
. In this paper, we design a

(
2d
3 +

1
3
)
-approximation

algorithm, whose approximation ratio is strictly smaller/better than the pre-
vious one when d ≥ 6.
key words: induced matching problem,C5-free regular graph, approxima-
tion algorithm

1. Introduction

Let G = (V, E) be a simple unweighted graph, where V and
E are the set of vertices and the set of edges, respectively.
Two edges are called adjacent if they have a common vertex.
A matching in the graph G is a subset of edges, no two of
which are adjacent. A matching M is induced if no two
vertices belonging to different edges of M are adjacent. In
other words, an induced matching M in G is formed by the
edges of a 1-regular induced subgraph of G. An induced
matching is often called the strong matching [5], [7].

The Maximum Induced Matching problem (MaxIM)
is that of finding an induced matching of maximum cardi-
nality in an input graph. The MaxIM problem was originally
introduced by Stockmeyer and Vazirani [14] as a variant
of the Maximum Matching problem and motivated as the
Risk-Free Marriage problem. Induced matchings have
applications in the areas of concurrent transmission of mes-
sages in wireless ad hoc networks [1], secure communication
channels in broadcast networks [6], communication network
testing [14], and many other fields. Thus, MaxIM has re-
ceived much attention in recent years.

The MaxIM problem is generally intractable. Stock-
meyer and Vazirani [14], and Cameron [2] independently
proved that MaxIM is NP-hard. Also, it remains NP-hard for
several graph classes such as planar graphs of vertex degree
at most four [9], bipartite graphs of vertex degree at most
three [11], [13], line graphs, chair-free graphs, Hamiltonian
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graphs [10], and d-regular graphs for d ≥ 3 [3].
In this paper, we focus only on d-regular graphs as in-

put and consider the approximability of MaxIM on d-regular
graphs. Zito [15] proved that a natural greedy strategy yields
an approximation algorithm for MaxIM on d-regular graphs
with approximation ratio d − 1

2 +
1

4d−2 . Then, Duckworth,
Manlove, and Zito [3] improved the approximation ratio
slightly into n(d−1)

n−2 , i.e., asymptotically d − 1 for d-regular
graphs of n vertices. Subsequently, Gotthilf and Lewen-
stein [8] provided a

(
3d
4 + 0.15

)
-approximation algorithm

for MaxIM on d-regular graphs by combining a greedy ap-
proach with a local search.

For subclasses of d-regular graphs, several better ap-
proximation algorithms are known. Rautenbach [12] de-
signed a (0.7084d + 0.425)-approximation algorithm for
MaxIM on {C3,C5}-free d-regular graphs. Fürst, Le-
ichter, and Rautenbach [4] provided approximation al-
gorithms for the following three subclasses of d-regular
graphs: a

(
9d
16 +

33
80

)
-approximation algorithm for C4-free d-

regular graphs, a
(
d
2 +

1
4 +

1
8d−4

)
-approximation algorithm

for {C3,C4}-free d-regular graphs, and a
(

3d
4 −

1
8 +

3
16d−8

)
-

approximation algorithm for C5-free d-regular graphs.
The goal of this paper is to improve the previously

best known
(

3d
4 −

1
8 +

3
16d−8

)
-approximation algorithm for

C5-free d-regular graphs [4], and we design a
(

2d
3 +

1
3

)
-

approximation algorithm, whose approximation ratio is
strictly smaller/better than the previously best one when
d ≥ 6. It is important to note that our approximation
algorithm works also for {C3,C5}-free d-regular graphs,
i.e., MaxIM on {C3,C5}-free d-regular graphs can be bet-
ter (than [12]) approximated within an approximation ratio
of

(
2d
3 +

1
3

)
for d ≥ 3.

Related work. The inapproximability results on MaxIM
for graph subclasses are also known. Duckworth, Manlove,
and Zito [3] proved that for any ε > 0, it is NP-hard to
approximate MaxIM on graphs of maximum degree three
within 475

474 −ε, 3-regular graphs within
2375
2374 −ε, and bipartite

graphs of maximum degree three within 6600
6659 − ε.

On the other hand, polynomial-time algorithms for
MaxIM have been developed, for example, for chordal graphs,
interval graphs [2], trees [5], circular-arc graphs [7], trape-
zoid graphs, k-interval-dimension graphs, and cocompara-
bility graphs [6].

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers
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2. Preliminaries

Let G = (V, E) be a simple, unweighted, and undirected
graph, where V and E denote the set of vertices and the
set of edges, respectively. V (G) and E(G) also denote the
vertex set and the edge set of G, respectively. Throughout
the paper, let n = |V | and m = |E | for any given graph.
Let G[V ′] denote a vertex-induced subgraph of G = (V, E),
consisting of a subset V ′ ⊆ V and all the edges connecting
pairs of vertices in V ′. Also, let G[E ′] denote an edge-
induced subgraph of G = (V, E), consisting of a subset
E ′ ⊆ E and the vertices that are endpoints of edges in E ′.
Let H be a set of graphs. A graph is H-free if it does not
contain any graph in H as a vertex-induced subgraph.

For a vertex v in a graph G, the open neighborhood of v
in G is NG (v ) = {u ∈ V (G) | {u, v } ∈ E(G)} and the closed
neighborhood of v in G is NG[v] = NG (v )∪{v }. The degree
of v in G is denoted by degG (v ) = |NG (v ) |. A graph G is
d-regular if all the vertices in G have degree d. Throughout
the paper, we assume that d ≥ 3 since MaxIM on 1-regular
and 2-regular graphs can be solved in polynomial time.

A (simple) path Pk with k vertices v1, v2, · · · , vk is rep-
resented as a sequence 〈v1, v1, · · · , vk〉 of those k vertices
where {vi, vi+1} is an edge in Pk for each i = 1, 2, · · · , k − 1.
The length of the path P is the number of edges in P, i.e.,
the length of Pk with k vertices is k − 1. A cycle Ck with k
vertices is similarly written as Ck = 〈v1, v2, · · · , vk, v1〉.

For a pair of vertices v and v ′ in G, the distance
between v and v ′ is the length of a shortest path from
v to v ′, which is denoted by distG (v, v ′). For the path
P = {v1, v2, v3, v4, v5, · · · , vk } of length k − 1, for example,
distP (v1, v1) = 0, distP (v1, v2) = 1, distP (v1, v3) = 2 and
so on. If distG (v, v ′) = ` for two vertices v and v ′, then
v ′ is called a distance-` vertex of v . Let DV` (v ) be a set
of distance-` vertices of v . Similarly, for a pair of edges
e and e′ in E(G), we define the distance distG (e, e′) be-
tween two edges e and e′: The line graph L(G) of G is
the graph whose vertices are the edges of G, and in which
two vertices are adjacent only if they share an incident ver-
tex as edges of G. Then, the distance distG (e, e′) between
two edges e and e′ in G is defined as distL(G) (e, e′) be-
tween two vertices e and e′ in L(G), i.e., the length of
a shortest path from e to e′ in the line graph L(G) of
G. For example, for P = 〈v1, v2, v3, v4, v5, · · · , vk〉 again,
distP ({v1, v2}, {v1, v2}) = 0, distP ({v1, v2}, {v2, v3}) = 1,
distP ({v1, v2}, {v3, v4}) = 2, and so on. If distG (e, e′) = `
for two edges e and e′, then e′ is called a distance-` edge
of e. Let DE` (e) be a set of distance-` edges of e. Fur-
thermore, we define the distance between an edge e and a
vertex v as the length of a shortest path from one endpoint
of e to v , i.e., distG (e, v) = min{distG (ve, v), distG (v ′e, v)}
for e = {ve, v ′e}. For example, distP ({v2, v3}, v1) = 1,
distP ({v2, v3}, v4) = 1, distP ({v2, v3}, v5) = 2, and so on.

We say that an edge e ∈ E(G) is in conflict with another
edge e′ ∈ E(G) if distG (e, e′) ≤ 2 and the edge e ∈ E(G)
is called a conflict edge of e′ ∈ E(G). Then, for an edge e

of a graph G, let

CG (e) = {e′ ∈ E(G) | distG (e, e′) ≤ 2}
= {e} ∪ DE1(e) ∪ DE2(e).

be the set of all the conflict edges of e. Also, the set of all
the conflict edges of a set E ′ ⊆ E(G) is defined as follows:

CG (E ′) =
⋃
e∈E′

CG (e).

For a subset E ′ ⊆ E(G) of edges and an edge e in G, let

PCG (E ′, e) = CG (e) \
⋃

e′∈E′\{e }

CG (e′)

be the set of edges that are in conflict with e but not in conflict
with every e′ ∈ E ′ \ {e}. The edge in PCG (E ′, e) is called
a private conflict edge of e to the set E ′. For example, for
the graph G shown in Fig. 1, the conflict edges of e are e1,
e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, and e. Also, the private
conflict edges of e to the set M = {e, f , f ′, f ′′} are e2, e5,
e7, and e.

Let OPT (G) be an optimal induced matching on the
input G. We say that an algorithm ALG is a σ-approximation
algorithm for MaxIM or that ALG’s approximation ratio is at
most σ if |OPT (G) | ≤ σ · |ALG(G) | holds for any input G,
where ALG(G) is an induced matching returned by ALG.

3. Approximation Algorithm

In this section we design a
(

2d
3 +

1
3

)
-approximation algo-

rithm for MaxIM on C5-free d-regular graphs.

3.1 Algorithm

Here is an outline of our approximation algorithm for an
input C5-free d-regular graph G, which mainly consists of
two steps. (i) In the first step, the algorithm initially finds
a maximal induced matching M by iteratively picking an
edge e into the induced matching M , and eliminating all the
edges in CG (e) from the candidates of the solution. (ii) In
the second step, the algorithm tries to find a larger induced
matching from the temporally obtained induced matching M
by a “small modification” as follows: Let M be the set of
induced matching edges currently obtained. The algorithm
picks one edge e from M . Then, if there exist (at least) two
edges e′ and e′′ in PCG (M, e) \ {e} such that distG (e′, e′′) >
2, then the algorithm updates the “old” induced matching M
to the “new” M = (M \ {e}) ∪ {e′, e′′}. If there does not
exist such an edge e in M , then the algorithm tries to find
an edge emin from PCG (M, e) such that |CG (emin) | is the
minimum among |CG (e′) | for every e′ ∈ PCG (M, e). If the
algorithm finds emin, then it swaps e and emin, i.e., updates
M = (M \ {e}) ∪ {emin}.

The following is a description of our algorithm ALG,
where let M be the induced matching obtained by ALG:
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Fig. 1 Edges e1, e2, · · · , e11 and e in the dotted-line rectangle are conflict edges of e. If M =

{e, f , f ′, f ′′ }, then the private conflict edges of e to M are e2, e5, e7 and e.

Algorithm ALG

Input: A C5-free d-regular graph G = (V, E).
Output: An induced matching M of G.
Initialization: Set M = ∅, and obtain CG (e) and |CG (e) |

for every edge e ∈ E.
Step 1. /* Find an initial maximal set M of induced match-

ing edges. */
IfCG (M) = E, then go to Step 2; otherwise, arbitrarily
select an edge e from E \CG (M), set M = M ∪ {e} and
repeat Step 1.

Step 2. /* Find a larger set M of induced matching edges */
Obtain PCG (M, e) for every e ∈ M .

(i) If there exists an edge e such that the size
of a maximal induced matching M AX (e) in
PCG (M, e) \ {e} is at least two, then set M =

(M \ {e}) ∪ M AX (e) and repeat Step 2.
(ii) If there exists a pair of edges e ∈ M and e′ ∈

PCG (M, e) such that |CG (e) | > |CG (e′) | and
|CG (e′) | is the minimum among |CG (e′′) | for ev-
ery e′′ ∈ PCG (M, e), then set M = (M\{e})∪{e′}
and repeat Step 2.

(iii) Otherwise, go to Termination.

Termination. Output the solution M and halt.
[End of ALG]

Here is a detailed implementation of Step 2(i): Sup-
pose that PCG (M, e) has k edges and let PCG (M, e) =
{e, e1, e2, · · · , ek−1}. Also, for each 1 ≤ i ≤ k − 1,
let M AX (e, ei) be a maximal induced matching which is
obtained by first selecting ei from PCG (M, e) \ {e} and
then selecting induced matching edges from (PCG (M, e) \
{e}) \ CG (ei) if such induced matching edges exist. In
Step 2(i), ALG first obtains k−1 maximal induced matchings
M AX (e, e1) through M AX (e, ek−1), and then finds the set
of maximum cardinality among those k −1 sets as M AX (e).
One can see that if there exists at least one maximal match-
ing which has at least two induced matching edges, then ALG
surely finds it in polynomial time.

Now we show the feasibility of the induced matching
M output by ALG. One can see that if an edge e is selected
into M , then all the edges in CG (e) are eliminated from

candidates of the solution. Moreover, we can verify that
each edge in PCG (M, e) is not in conflict with any edge in
M except the edge e. Thus, the distance of any two edges in
M is at least three and thus all the edges in the output M are
induced matching edges. That is, ALG can always output a
feasible induced matching M .

Next, we bound the running time of ALG: Clearly, Ini-
tialization and Step 1 can be executed in O(m2) time. In
each execution of Step 2(i), the number of induced matching
edges in M is incremented at least by one. Hence the total
number of executions of Step 2(i) is at most O(m). Each
iteration of Step 2(i) can be done in O(m2). Therefore, the
total computational complexity of Step 2(i) is O(m3). As
for Step 2(ii), if |M | = i at some time point, then ALG has
to check i private conflict edge sets, PCG (M, e1) through
PCG (M, ei), in Step 2(ii). That is, the total number of ex-
ecutions of Step 2(ii) is at most O(m2). Step 2(ii) can be
implemented in O(m) time. Hence the total comutational
complexity of Step 2(ii) is again O(m3). In the beginning
of each iteration of Step 2 we need O(m2) time to obtain
PCG (M, e) for every e ∈ M . Since the iteration of Step 2
is bounded from above by O(m2), the time complexity of
Step 2 is O(m4). Therefore, ALG runs in O(m4).

We make a detailed observation on Step 2: From the
maximality of M ,

⋃
e∈M CG (e) = E(G) holds after Step 1.

Now suppose that in some iteration of Step 2(i), ALG finds
an edge e1 such that a maximal induced matching M AX (e1)
in PCG (M, e1) has at least two induced matching edges.
At this moment,

⋃
e∈M\{e1 } CG (e) = E(G) \ PCG (M, e1)

holds since all the edges in PCG (M, e1) are in conflict only
with e1. Moreover, from the maximality of M AX (e1),
PCG (M, e1) ⊆

⋃
e′∈MAX (e1) CG (e′) must hold. Since

ALG obtains a new temporal solution M ′ by setting M ′ =
(M \ {e1}) ∪ M AX (e1) in Step 2(i),

⋃
e∈M′ CG (e) = E(G)

is satisfied again for M ′. Note that Step 2(ii) guarantees that
when M is eventually output by ALG, |CG (e) | ≤ |CG (e′) |
must hold for every edge e′ ∈ PCG (M, e) . Therefore, from
the termination condition of ALG, the following should be
remarked:

Remark 1. When ALG terminates and outputs an induced
matching M for an input graph G, the following three prop-
erties must be satisfied:

1. As for every private conflict edge set PCG (M, e) of e
to M , any two edges in PCG (M, e) must be in conflict
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with each other;
2. For every edge e′ ∈ PCG (M, e), |CG (e) | ≤ |CG (e′) |

holds; and
3.

⋃
e∈M CG (e) = E(G) holds, i.e., M must be a maximal

set of induced matching edges.

3.2 Approximation Ratio

In this section, we investigate the approximation ratio of
the algorithm ALG. Now suppose that given a graph G =
(V, E), ALG finally outputs a set M of induced matching
edges, and |ALG(G) | = |M |. Note that the output M by ALG
cannot be enlarged by picking other two or more edges from
PCG (M, e) if edge e is in M . We can obtain the following
relationship between |CG (e) | and |PCG (M, e) |:

Lemma 1. For any maximal set M of induced matching
edges in a graph G = (V, E), the following inequality is
satisfied:∑

e∈M

( |CG (e) | − |PCG (M, e) |)

≥ 2(|E | −
∑
e∈M

|PCG (M, e) |).

Proof. Consider an edge e in a subset M of edges, the con-
flict edge set CG (e) of e, and the private conflict edge set
PCG (M, e) of e to M . From the definitions, we know⋃

e∈M

(CG (e) \ PCG (M, e)) = E \ *
,

⋃
e∈M

PCG (M, e)+
-
.

Since the private conflict edge sets are independent, the fol-
lowing equality holds:

������
E \ *

,

⋃
e∈M

PCG (M, e)+
-

������
= |E | −

∑
e∈M

|PCG (M, e) | .

Recall that every edge in CG (e) \ PCG (M, e) must be in-
cluded in at least one different conflict edge set, say, CG (e′)
of e′ ∈ M for e′ , e. Therefore, the inequality holds. �

Now we can estimate the maximum number Γd of con-
flict edges of an edge e in d-regular graphs, whichwas shown
in [3]:

Proposition 1 (Theorem 3.1 in [3]). For any edge e in a
d-regular graph G, the number |CG (e) | of conflict edges is
at most 2d2 − 2d + 1.

Let Γd be the upper bound of |CG (e) | of conflict edges
over all of the edges e ∈ E(G). One can see that the number
|CG (e) | of conflict edges of the edge e gets much smaller
than 2d2 − 2d + 1 if an edge e′ in CG (e) is in a short cycle,
for example, C3 or C4. Indeed, the following results are
known [8]:

Proposition 2 (Lemmas 4 and 6 in [8]). If a cycle C3 of
length three contains an edge e in CG (e) of a d-regular

Fig. 2 An edge e = {t, u } owns a triangle edge e′ = {w1, w2 }.

Fig. 3 Since an edge e = {t, u } owns a triangle edge e′ = {w1, w2 },
e′ = {w1, w2 } decreases the upper bound Γd of |CG (e) | by at least one.

graph G, then the cycle C3 decreases the upper bound Γd of
|CG (e) | by at least d. Moreover, if a cycle C4 of length four
contains an edge e in CG (e), then the cycle C4 decreases the
upper bound Γd by at least one.

Take a look at an edge e = {t, u} illustrated in Figure 2. If
two neighbor vertices, w1 and w2, of the edge e are connected
by an edge e′ = {w1, w2}, then e′ is called the triangle edge
of e, and we say that e owns the triangle edge e′ or e′ is the
triangle edge of e. Then, we can obtain Lemma 2:

Lemma 2. If an edge e in a graph G owns a triangle edge e′,
then e′ decreases the upper bound Γd of |CG (e) | by at least
one.

Proof. This lemma can be obtained by a simple observation
on two graphs illustrated in Fig. 3. The right graph does
not have any triangle edge but the left one has one triangle
edge e′ = {w1, w2}. That is, we can think that two edges
{w1, z3} and {w2, z4} in the right graph are replaced with one
triangle edge {w1, w2}, or two edges are combined into one
edge. Therefore, the value of Γd must decrease by at least
one, because of the triangle edge e′. �

Now consider an edge e = {t, u} in the solution M and
the private conflict edges of e to M , PCG (M, e). Then,
let UG (e) = ({e′ | distG (e′, u) ≤ 1} ∩ PCG (M, e)) \ {e}
and TG (e) = ({e′ | distG (e′, t) ≤ 1} ∩ PCG (M, e)) \ {e}.
Roughly speaking, UG (e) and TG (e) are the “u-side” sub-
set and the “t-side” subset of edges in PCG (M, e), re-
spectively. Note that PCG (M, e) = UG (e) ∪ TG (e) ∪ {e}
and UG (e) ∩ TG (e) may be non-empty. Moreover, let
U0
G

(e) = {e′ ∈ UG (e) | distG (e′, u) = 0}, U1
G (e) =

UG (e) \ U0
G

(e), T0
G

(e) = {e′ ∈ TG (e) | distG (e′, t) = 0},
and T1

G (e) = TG (e) \ T0
G

(e).
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Fig. 4 WG (e) = V (G[UG (e)]) ∩ DV1 (u) = {w1, w2, · · · , wδ } where
wi has ki neighbors, zi,1 through zi,ki .

From now on, let |PCG (M, e) | = β. Without loss of
generality, we assume that |UG (e) | ≥ |TG (e) | holds in the
following. Then, we obtain the following lemma, which is
quite trivial but plays a key role to estimate the approximation
ratio of ALG:

Lemma 3. For each e ∈ M , |U1
G (e) | ≥ β−1

2 − (d − 1) holds.

Proof. Clearly |U0
G

(e) | ≤ d − 1 holds. Since |UG (e) ∪
TG (e) | = β − 1 and |UG (e) | ≥ |TG (e) | by the assumptions,
|UG (e) | ≥ β−1

2 is satisfied. Hence, we can obtain |U1
G (e) | =

|UG (e) \U0
G

(e) | ≥ β−1
2 − (d − 1). �

See Fig. 4. Let WG (e) = V (G[UG (e)]) ∩ DV1(u) =
{w1, w2, · · · , wδ } be a set of δ neighbor vertices of u, where
δ ≤ |DV1(u) | − 1 holds (where “−1” comes from the
edge {t, u}). Then, we define U1

G (e, wi) = {(wi, v) | v ∈
DV1(wi)} ∩ U1

G (e) for each wi ∈ WG (e). Without loss
of generality, we assume that |U1

G (e, w1) | ≥ |U1
G (e, wi) |

for each i = 2, · · · , δ. Now, we consider the case where
|U1

G (e, w1) | ≤ 1 holds. Then, we obtain the following
lemma:

Lemma 4. Suppose that |U1
G (e, w1) | ≤ 1 and the algorithm

ALG outputs a solution M . Then |PCG (M, e) | ≤ 4d − 3 and
|CG (e) |+ |PCG (M, e) | ≤ 2d2+2d−2 hold for every induced
matching edge e ∈ M .

Proof. From the definition, PCG (M, e) = {e} ∪ UG (e) ∪
TG (e). Then, by the assumption |UG (e) | ≥ |TG (e) |, the
following inequality holds:

|PCG (M, e) | ≤ 1 + |UG (e) | + |TG (e) |
≤ 1 + 2|UG (e) |.

For a d-regular graph G, |U0
G

(e) | ≤ d − 1 holds. The
assumption |U1

G (e, w1) | ≤ 1 means that |U1
G (e, wi) | ≤ 1

holds for each i, 2 ≤ i ≤ δ. It follows that |U1
G (e) | ≤ d − 1

and |UG (e) | = |U0
G

(e) | + |U1
G (e) | ≤ 2(d − 1). Therefore,

|PCG (M, e) | ≤ 1 + 4(d − 1) = 4d − 3 holds.
Since |CG (e) | ≤ 2d2−2d+1 as shown in Proposition 1,

the inequality

|CG (e) | + |PC(M, e) | ≤ (2d2 − 2d + 1) + (4d − 3)

Fig. 5 Five types of conflicts of two edges e1 and e2 inU1
G

(e).

= 2d2 + 2d − 2

is obtained. �

Next, suppose that |U1
G (e, w1) | ≥ 2 holds. We first

depict all possible conflict ways of an edge ofU1
G (e, w1) and

another edge of U1
G (e, wi), where i , 1.

Recall that any two edges in PCG (M, e) (and thus
any two edges in U1

G (e)) are in conflict with each other
to the solution M of ALG. There are five types of
conflicts of two edges, say, e1 and e2, in U1

G (e) as
follows: (a) triangle-conflict, (b) ^-quadrangle-conflict,
(c) σ-quadrangle-conflict, (d) ρ-quadrangle-conflict, and
(e) pentagon-conflict. See Fig. 5 and consider two edges
e1 = {w1, z1} and e2 = {w2, z2} in U1

G (e). (a) If e1 is in
conflict with e2 since there exists the edge {w1, w2} as shown
in Fig. 5(a), then we say that e1 and e2 are in triangle-conflict
with each other by the edge {w1, w2}. (b) See Fig. 5(b). If e1
and e2 are incident to a common vertex z and U1

G (e) does
not have the edge {w1, w2}, then we say that e1 and e2 are
in ^-quadrangle-conflict with each other. Note that if the
graph shown in Fig. 5(b) has the edge {w1, w2}, then we re-
gard the conflict of e1 and e2 as the triangle conflict caused
by {w1, w2}. (c) If there exists the edge {w1, z2} but does not
exist the edge {w1, w2} as shown in Fig. 5(c), then we say
that e1 and e2 are in σ-quadrangle-conflict with each other
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by {w1, z2}. (d) If there exists the edge {w2, z1} but does not
exist the edge {w1, w2} as shown in Fig. 5(d), then we say
that e1 and e2 are in ρ-quadrangle-conflict with each other
by {w2, z1}. (e) See Fig. 5(e). If there exists the edge {z1, z2}
but does not exist the edge {w1, w2}, then we say that e1 and
e2 are in pentagon-conflict with each other by {z1, z2}. Re-
call, however, that all the input graphs are now C5-free. It
follows that the induced cycle 〈u, w1, z1, z2, w2, u〉 of length
5 must have at least one edge inside of it. For example, the
graph has the edge {w1, z2}, then we regard the conflict of
e1 and e2 as the σ-quadrangle-conflict caused by {w1, z2}.
Therefore, we do not need to take the pentagon-conflict into
account.

In the following, we slightly change the previous def-
inition of triangle edges. (We call the previously defined
triangle edge the original triangle edge in the following.)
An edge in U1

G (e) is called a triangle edge of the edge e if
its one endpoints is wi and the other is w j in WG (e) \ {wi },
where wi , w1, w j , w1, and wi , w j . That is, for example,
an edge {w1, w3} is not regarded as a triangle edge since its
one endpoint is w1. Let T EG (e) be the set of triangle edges.
Then, we define as follows:

AG (e) = U1
G (e) \ (U1

G (e, w1) ∪ T EG (e)).

Every edge e2 in AG (e) is in conflict with every edge e1
in U1

G (e, w1), and |U1
G (e, w1) | ≥ |U1

G (e, wi) | from the def-
inition. Then, all the edges in AG (e) are divided into the
following two sets, the sets of triangle-conflict edges and
quadrangle-conflict edges.

Triangle-Conflict edge: If an edge e′ in AG (e) is in
triangle-conflict with an edge in U1

G (e, w1), then we
say that e′ is a triangle-conflict edge. Let TCG (e) be
the set of triangle-conflict edges.

Quadrangle-Conflict edge: If an edge e′ in AG (e) is in
^-quadrangle, σ-quadrangle, or ρ-quadrangle-conflict
with an edge in U1

G (e, w1), then we simply say that the
edge e′ is a quadrangle-conflict edge. Let QCG (e) be
the set of quadrangle-conflict edges.

From the definitions, U1
G (e) = TCG (e) ∪ QCG (e) ∪

U1
G (e, w1) ∪ T EG (e) and TCG (e) ∩QCG (e) = ∅ hold.

Recall that we are now assuming that |U1
G (e, w1) | ≥ 2.

We take a look at the edge e′ = {u, w1} and calculate the
cardinality of the set CG (e′) of conflict edges of e′. Note
that each edge in TCG (e) creates one cycle C3 of length
three, which contains e′, and each edge in QCG (e) creates
one cycle C4 of length four, which contains e′. Also, each
edge in T EG (e) must be an original triangle edge of e′. It
follows that each edge inTCG (e)∪QCG (e)∪T EG (e) causes
decrease of the upper bound Γd of |CG (e′) | by at least one
from Proposition 2 and Lemma 2.

Lemma 5. Suppose that |U1
G (e, w1) | ≥ 2. Also, sup-

pose that the algorithm ALG outputs a solution M . Then,
|CG (e′) | ≤ 2d2 −

β
2 −

1
2 holds, where e′ = {u, w1}.

Proof. See Fig. 4 again and take a look at triangle-conflict,

quadrangle-conflict, and (original) triangle edges in the fol-
lowing:

(i) Suppose that p vertices in {w2, w3, · · · , wδ } of δ − 1
vertices are endpoints of triangle-conflict edges. Then, we
can verify that there are p cycles of length threewhich contain
the edge e′ = {u, w1}. Therefore, by Proposition 2, the value
of the upper bound Γd of e′ is reduced by at least pd. Since
each of those p vertices is connected to at most d − 1 edges
in TCG (e), |TCG (e) | ≤ p(d − 1) ≤ pd holds. Namely, we
can estimate that each edge in TCG (e) reduces the value of
Γd of e′ by at least one on average.

(ii) Each edge inQCG (e) obviously generates one cycle
of length four which contains the edge e′ = {u, w1}. Thus, by
Proposition 2, we can also estimate that each edge inQCG (e)
decreases the value of Γd of e′ by at least one.

(iii) Clearly, each edge in T EG (e) is a triangle edge of
e. Also, it is an original triangle edge of e′ = {u, w1}. Then,
by Lemma 2, we can estimate that each edge in T EG (e)
decreases the value of Γd of e′ by at least one.

Consequently, we can estimate that each edge in
TCG (e) ∪ QCG (e) ∪ T EG (e) decreases the value of Γd
of e′ by at least one. Thus, all the edges in TCG (e) ∪
QCG (e) ∪ T EG (e) decrease the value of Γd of e′ by at least
|TCG (e) ∪QCG (e) ∪ T EG (e) | in total.

Now, recall that U1
G (e) = TCG (e) ∪ QCG (e) ∪

U1
G (e, w1) ∪ T EG (e). Then,

|TCG (e) ∪QCG (e) ∪ T EG (e) |

= |U1
G (e) \U1

G (e, w1) |

≥ |U1
G (e) | − (d − 1)

holds since |U1
G (e, w1) | ≤ d − 1. Furthermore, since

|U1
G (e) | ≥ β−1

2 − (d − 1) as shown in Lemma 3, we ob-
tain the following:

|TCG (e) ∪QCG (e) ∪ T EG (e) |

≥ |U1
G (e) | − (d − 1)

≥

(
β − 1

2
− (d − 1)

)
− (d − 1)

=
β − 1

2
− 2(d − 1).

Therefore, the upper bound Γd of e′ decreases by at least
β−1

2 − 2d + 2.
From Proposition 1, we obtain the following inequali-

ties:

|CG (e′) | ≤ 2d2 − 2d + 1 −
(
β − 1

2
− 2d + 2

)
= 2d2 −

1
2
−
β

2
.

This completes the proof of this lemma. �

From Lemma 5, we can get the following corollary:
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Corollary 1. Suppose that |U1
G (e, w1) | ≥ 2 and the algo-

rithm ALG outputs a solution M . Then, |CG (e) | ≤ 2d2− 1
2−

β
2

for every induced matching edge e ∈ M .

Proof. From Lemma 5, we know that there is an edge e′

in UG (e) of PCG (M, e) such that |CG (e′) | ≤ 2d2 −
β
2 −

1
2

for any induced matching edge e. Furthermore, Remark 1
shows that |CG (e) | ≤ |CG (e′) | must be satisfied for e and
e′. Therefore, |CG (e) | ≤ 2d2 − 1

2 −
β
2 holds. �

The above corollary gives us the following lemma:

Lemma 6. Suppose that |U1
G (e, w1) | ≥ 2 and the algorithm

ALG outputs a solution M . Then, |PCG (M, e) | ≤ 4d2−1
3 ,

and |CG (e) | + |PCG (M, e) | ≤ 8d2−2
3 hold for every induced

matching edge e ∈ M .

Proof. From Corollary 1, we know that for each e ∈ M ,
|CG (e) | ≤ 2d2 − 1

2 −
β
2 holds. From the definitions,

PCG (M, e) ⊆ CG (e) holds. Therefore, we obtain

|PCG (M, e) | = β ≤ |CG (e) | ≤ 2d2 −
β

2
−

1
2
.

That is, β ≤ 2d2−
β
2 −

1
2 holds and hence β is bounded from

above as follows:

β ≤
4d2 − 1

3
. (1)

By the definition |PCG (M, e) | = β,

|CG (e) | + |PCG (M, e) | ≤ 2d2 −
β

2
−

1
2
+ β

= 2d2 +
β

2
−

1
2

≤
8d2 − 2

3
,

where the last inequality comes from the above (1). This
completes the proof of this lemma. �

From Lemmas 4 and 6, we have the following corollary:

Corollary 2. Suppose that a solution M is obtained by the
algorithm ALG. Then, |CG (e) | + |PCG (M, e) | ≤ 8d2−2

3 holds
for every induced matching edge e ∈ M .

Proof. By Lemma 6, we know that for |U1
G (e, w1) | ≥ 2,

|CG (e) | + |PCG (M, e) | ≤
8d2 − 2

3
.

From the assumption d ≥ 3 and Lemma 4, we obtain the
following inequality also for |U1

G (e, w1) | ≤ 1:

|CG (e) | + |PCG (M, e) | ≤ 2d2 + 2d − 2

≤
8d2 − 2

3
.

This completes the proof of this corollary. �

The following is our main theorem:

Theorem 1. The algorithm ALG is a
(

2d
3 +

1
3

)
-

approximation algorithm for MaxIM on C5-free d-regular
graphs, whose running time is O(m4).

Proof. From Remark 1, the solution for an input C5-free d-
regular graphG = (V, E) satisfies the inequality in Lemma1,
that is, we have obtained∑

e∈M

( |CG (e) | − |PCG (M, e) |)

≥ 2( |E | −
∑
e∈M

|PCG (M, e) |),

or equivalently,∑
e∈M

( |CG (e) | + |PCG (M, e) |) ≥ 2|E |. (2)

From Corollary 2 and |ALG(G) | = |M |, we obtain:∑
e∈M

( |CG (e) | + |PCG (M, e) |)

≤
|ALG(G) |(8d2 − 2)

3
. (3)

Suppose that |V | = n, and hence |E | = nd
2 . Then, the

above (2) and (3) give the following inequality:

|ALG(G) |(8d2 − 2)
3

≥ nd.

Thus,

|ALG(G) | ≥
3nd

8d2 − 2
.

It is known [15] that the size |OPT (G) | of an optimal solution
is at most nd

4d−2 . Therefore, the approximation ratio is as
follows:

|OPT (G) |
|ALG(G) |

≤
2d
3
+

1
3
.

�

4. Concluding Remarks

In this paper we have considered the approximability of
MaxIM on C5-free d-regular graphs. The previously best
known approximation ratio was ( 3d

4 −
1
8 +

3
16d−8 ). In this pa-

per we have provided a
(

2d
3 +

1
3

)
-approximation algorithm

ALG. One can verify that the new approximation ratio of
ALG is strictly better than the old one when d ≥ 6. Recall
that ALG initially finds a maximal induced matching M in
Step 1. However, it is important to note that Step 1 can be re-
placed with the

(
3d
4 −

1
8 +

3
16d−8

)
-approximation algorithm

as a subroutine. Step 2 surely finds an induced matching of
the same or larger size than the initial inducedmatching. This
implies that the “hybrid” approximation algorithm achieves
the approximation ratio of min

{
3d
4 −

1
8 +

3
16d−8,

2d
3 +

1
3

}
for

MaxIM on C5-free d-regular graphs for every d ≥ 3.



ASAHIRO et al.: AN APPROXIMATION ALGORITHM FOR THE MAXIMUM INDUCED MATCHING PROBLEM ONC5-FREE REGULAR GRAPHS
1149

Acknowledgments

This work was partially supported by the Natural Sciences
and Engineering Research Council of Canada, the Grants-
in-Aid for Scientific Research of Japan (KAKENHI) Grant
Numbers JP17K00016 and JP17K00024, and JST CREST
JPMJR1402.

References

[1] H. Balakrishnan, C.L. Barrett, V.S.A. Kumar, M.V. Marathe, and S.
Thite, “The distance-2 matching problem and its relationship to the
MAC-layer capacity of ad hoc wireless networks,” IEEE J. Sel. Areas
Commun., vol.22, no.6, pp.1069–1079, 2004.

[2] K. Cameron, “Induced matching,” Discrete Appl. Math., vol.24,
no.1-3, pp.97–102, 1989.

[3] W. Duckworth, D.F. Manlove, and M. Zito, “On the approximability
of the maximum induced matching problem,” J. Discrete Algorith-
mica, vol.3, no.1, pp.79–91, 2005.

[4] M. Fürst, M. Leichter, and D. Rautenbach, “Locally searching for
large induced matchings,” Theor. Comput. Sci., vol.720, pp.64–72,
2018.

[5] G. Fricke and R. Laskar, “Strong matching on trees,” Congressus
Numerantium, vol.89, pp.239–243, 1992.

[6] M.C. Golumbic andM. Lewenstein, “New results on induced match-
ings,” Discrete Appl. Math., vol.101, no.1-3, pp.157–167, 2000.

[7] M.C. Golumbic and R.C. Laskar, “Irredundancy in circular arc
graphs,” Discrete Appl. Math., vol.44, no.1-3, pp.79–89, 1993.

[8] Z. Gotthilf and M. Lewenstein, “Tighter approximations for max-
imum induced matchings in regular graphs,” Proc. 3rd Workshop
on Approximation and Online Algorithms (WAOA’05), LNCS3879,
pp.270–281, 2005.

[9] C.W. Ko and F.B. Shepherd, “Bipartite domination and simultaneous
matroid covers,” SIAM J. Discrete Math., vol.16, no.4, pp.517–523,
2003.

[10] D. Kobler and U. Rotics, “Finding maximum induced matchings in
subclasses of claw-free and P5-free graphs, and in graphswithmatch-
ing and induced matching of equal maximum size,” Algorithmica,
vol.37, no.4, pp.327–346, 2003.

[11] V.V. Lozin, “On maximum induced matchings in bipartite graphs,”
Inform. Process. Lett., vol.81, no.1, pp.7–11, 2002.

[12] D. Rautenbach, “Two greedy consequences for maximum induced
matchings,” Theor. Comput. Sci., vol.602, pp.32–38, 2015.

[13] I. Rusu, “Maximum weight edge-constrained matchings,” Discrete
Appl. Math., vol.156, no.5, pp.662–672, 2008.

[14] L.J. Stockmeyer and V.V. Vazirani, “NP-completeness of some gen-
eralizations of the maximum matching problem,” Inform. Process.
Lett., vol.15, no.1, pp.14–19, 1982.

[15] M. Zito, “Maximum induced matchings in regular graphs and trees,”
Proc. the 25th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG’95), LNCS1665, pp.89–100, 1999.

Yuichi Asahiro received B.Eng., M.Eng.,
and D.Eeng. degrees in computer science from
Kyushu University in 1994, 1996, and 1998, re-
spectively. He is currently a professor of Depart-
ment of Information Science, Kyushu Sangyo
University.

Guohui Lin received his B.Sc. in Applied
Mathematics and M.Sc. in Operations Research
from Zhejiang University in 1993 and 1995, re-
spectively, and his PhD in Computer Science
from Chinese Academy of Sciences in 1997. He
is currently a professor of Computing Science at
the University of Alberta.

ZhilongLiu received theM.Eng degree from
Kyushu Institute of Technology in 2015. He is
currently a Ph.D. student of the Department of
Systems Design and Informatics, Kyushu Insti-
tute of Technology.

Eiji Miyano received the B.Eng., M.Eng.,
and Dr.Eng. degrees in computer science from
Kyushu University in 1991, 1993, and 1995, re-
spectively. He is currently a professor of the
Department of Systems Design and Informatics,
Kyushu Institute of Technology.

http://dx.doi.org/10.1109/jsac.2004.830909
http://dx.doi.org/10.1109/jsac.2004.830909
http://dx.doi.org/10.1109/jsac.2004.830909
http://dx.doi.org/10.1109/jsac.2004.830909
http://dx.doi.org/10.1016/0166-218x(92)90275-f
http://dx.doi.org/10.1016/0166-218x(92)90275-f
http://dx.doi.org/10.1016/j.jda.2004.05.001
http://dx.doi.org/10.1016/j.jda.2004.05.001
http://dx.doi.org/10.1016/j.jda.2004.05.001
http://dx.doi.org/10.1016/j.tcs.2018.02.006
http://dx.doi.org/10.1016/j.tcs.2018.02.006
http://dx.doi.org/10.1016/j.tcs.2018.02.006
http://dx.doi.org/10.1016/s0166-218x(99)00194-8
http://dx.doi.org/10.1016/s0166-218x(99)00194-8
http://dx.doi.org/10.1016/0166-218x(93)90223-b
http://dx.doi.org/10.1016/0166-218x(93)90223-b
http://dx.doi.org/10.1007/11671411_21
http://dx.doi.org/10.1007/11671411_21
http://dx.doi.org/10.1007/11671411_21
http://dx.doi.org/10.1007/11671411_21
http://dx.doi.org/10.1137/s089548019828371x
http://dx.doi.org/10.1137/s089548019828371x
http://dx.doi.org/10.1137/s089548019828371x
http://dx.doi.org/10.1007/s00453-003-1035-4
http://dx.doi.org/10.1007/s00453-003-1035-4
http://dx.doi.org/10.1007/s00453-003-1035-4
http://dx.doi.org/10.1007/s00453-003-1035-4
http://dx.doi.org/10.1016/s0020-0190(01)00185-5
http://dx.doi.org/10.1016/s0020-0190(01)00185-5
http://dx.doi.org/10.1016/j.tcs.2015.08.002
http://dx.doi.org/10.1016/j.tcs.2015.08.002
http://dx.doi.org/10.1016/j.dam.2007.08.021
http://dx.doi.org/10.1016/j.dam.2007.08.021
http://dx.doi.org/10.1016/0020-0190(82)90077-1
http://dx.doi.org/10.1016/0020-0190(82)90077-1
http://dx.doi.org/10.1016/0020-0190(82)90077-1
http://dx.doi.org/10.1007/3-540-46784-x_10
http://dx.doi.org/10.1007/3-540-46784-x_10
http://dx.doi.org/10.1007/3-540-46784-x_10

