博士学位論文

画像の空間周波数変化に頑健な 顕著性マップの提案

2019年 9月

九州工業大学大学院生命体工学研究科

望月 隆吾

目次

第1章 序論	
1.1 研究背景	2
1.1.1 顕著性マップとその工学的応用	2
1.1.2 画像における撮影条件と空間周波数	4
1.1.3 顕著性マップの先行研究	5
1.1.4 顕著性マップの生成工程	9
1.1.5 画像特徴点とその問題点	17
1.2 研究目的	20
1.3 論文の構成	22
第2音 - 顕茎州マップの堤安	
第2章 頭省E、シンの提案2.1 提案する顕著性マップの概要	33
2.2 入力画像の分解	35
2.3 積分画像の導入	36
2.4 高周波成分と低周波成分	38
2.4.1 輝度・色特徴の場合の高周波・低周波成分生成	38
2.4.2 方位特徴の場合の高周波・低周波成分生成	39
2.5 差分画像の最小化	41
2.6 顕著性マップの生成	43
2.7 まとめ	45
第3章 顕著性マップを用いたシミュレーション実験	
3.1 実験目的	50
3.2 実験手法	51
3.2.1 使用する入力画像	51
3.2.2 設定パラメータとその値域	51
3.2.3 評価方法	54

3.2.3.1 縦縞/斜め縞の場合	54
3.2.3.2 縦縞(f _b 可変の場合)	55
3.2.4 縞模様の帯幅と空間周波数スペクトル	55
3.3 結果と考察	58
3.3.1 結果	58
3.3.2 各手法における顕著性の比較(縦縞)	58
3.3.2.1 顕著性マップの分析(縦縞)	58
3.3.2.2 顕著性マップ生成工程の分析(縦縞)	61
3.3.2.3 考察(縦縞: <i>o_{Sal}の</i> 結果)	66
3.3.3 各手法における顕著性の比較(斜め縞)	67
3.3.3.1 顕著性マップの分析(斜め縞)	67
3.3.3.2 顕著性マップ生成工程の分析(斜め縞)	70
3.3.3.3 考察(縞の方位変化に対するM _{sal} の安定性)	73
3.3.3.4 考察(斜め縞: <i>o_{sal}の</i> 結果)	74
3.3.4 各手法における顕著性の比較(f _b 可変の縦縞)	75
3.3.4.1 顕著性マップの分析 (fb可変の縦縞)	75
3.3.4.2 考察(f_b 可変の縦縞: σ_{sal} の結果)	77
3.3.5 結論	78
笠 / 妾 - 臣芝州マップし西佐特州と抽山の伝営州	
第4 早 與者性マツノと画像特徴忌油山の恒吊性 41 実験日的	120
4.1 天映口的	120
4.2 DRISK 伝 4.2.1 画像性微占伝補の選択	122
4.2.1 画像や国际医師の選択	122
4.2 両海院御占地田の恒常批評価	125
4.5 画家付取示油山の巨市に計画	123
	128
4.4.1 計Ш 渕秋	128
4.4.2 夫映 ご用い に 画像 と て の 空 间 向 波 叙 人 ヘ ク ト ル	128
4.4.3 設正バフメータとその値域	129

4.4.5 顕著性マップの生成結果 1		130
4.5 結果	と考察	131
4.5.1	結果(I _{Max,i} 可変時)	131
4.5.2	結果($\sigma_{G,i}$ 可変時)	132
4.5.3	結果(Wobj,i可変時)	134
4.5.4	結果(T _{FAT,i} 可変時)	135
4.5.5	考察	136
第5章		
5.1 結論	Ì	188
5.2 今後	の展望	189

参考文献

謝辞

付録

変数一覧

第2章 顕著性マップの提案

I _{IM}	入力用カラー画像
Ι	特徴画像. 但し, $I \in \{I_L, I_a, I_b\}, I_L, I_a, I_b$ は後述
IL	I _{IM} から分離された輝度の特徴画像(CIELab系のL成分)
$I_{ heta}$	I _{IM} から分離された方位の特徴画像.
θ	上記方位. <i>θ</i> ∈ {0,45,90,135[deg] }
I _{Cl}	I _{IM} から分離された色の特徴画像
I _a	<i>I_{cl}のうち、CIELab</i> 系で赤-緑の対比を示す特徴画像 <i>a</i>
Ib	<i>I_{cl}のうち、CIELab</i> 系で黄-青の対比を示す特徴画像 <i>b</i>

I _{INT}	積分画像. $I_{INT} \in \{I_{INT,L}, I_{INT,a}, I_{INT,b}\}, I_{INT,L}, I_{INT,a}, I_{INT,b}$ は後述
I _{INT,L}	I_L から生成した積分画像
I _{INT,a}	I_a から生成した積分画像
I _{INT,b}	<i>I_b</i> から生成した積分画像
I _{RINT}	積分画像(Rotated)
I _{RINT,L}	<i>I</i> Lから生成した積分画像(Rotated)
I(F)	I を平滑化フィルタ F で平滑化した画像. 但し, $I \in \{I_L, I_a, I_b\}$
<i>I</i> (<i>F</i> , <i>p</i>)	<i>I(F</i>)のピクセル p における画素値
I _c	高周波成分
Is	低周波成分
I _{Lc}	ILから生成した高周波成分
I _{LS}	ILから生成した低周波成分
I _{ac}	Iaから生成した高周波成分
I _{as}	Iaから生成した低周波成分
I _{bc}	Ibから生成した高周波成分
I _{bs}	Ibから生成した低周波成分
$I_{\theta_{-}c}$	方位θ[deg]の特徴より得られた高周波成分
I _{0_c}	方位0[deg]の特徴より得られた高周波成分
I _{45_c}	方位45[deg]の特徴より得られた高周波成分
I _{90_c}	方位90[deg]の特徴より得られた高周波成分
I _{135_c}	方位135[deg]の特徴より得られた高周波成分
$I_{\theta_{-}s}$	方位 $\theta[deg]$ の特徴低周波成分
I _{0_s}	方位0[deg]の特徴より得られた低周波成分

I _{45_s}	方位45[deg]の特徴より得られた低周波成分
I _{90_s}	方位90[deg]の特徴より得られた低周波成分
I _{135_s}	方位135[deg]の特徴より得られた低周波成分
I _{cs}	低周波・高周波成分の差分画像, $I_{cs} \in \{I_{Lcs}, I_{acs}, I_{bcs}, \forall I_{\theta_cs}\}$
I _{LCS}	輝度の特徴より得られたI _{cs}
I _{acs}	色aの特徴より得られたI _{cs}
I _{bcs}	色bの特徴より得られたI _{cs}
I_{θ_cs}	方位θ[deg]のI _{cs}
I _{0_cs}	方位0[deg]の特徴より得られたI _{cs}
I _{45_cs}	方位45[deg]の特徴より得られたI _{cs}
I _{90_cs}	方位90[deg]の特徴より得られたI _{cs}
I _{135_cs}	方位135[deg]の特徴より得られたI _{cs}
(x,y)	画像の画素座標
$W_{IM} \times H_{IM}$	画像のサイズ
F	平滑化フィルタ, $F \in \{F_G, F_B\}$
$F_G(\sigma_G)$	ガウシアンフィルタ F_G (ガウス関数の分散が σ_G)
σ_c	ガウシアンフィルタの分散:高周波成分生成用
σ_s	ガウシアンフィルタの分散:低周波成分生成用
F _B	ボックスフィルタ F_B (ガウス関数の分散が σ)
F _{Bc}	F _B :高周波成分生成用
F _{BS}	F _B :低周波成分生成用
$W_{Pmax} imes H_{Pmax}$	F _{BS} の最大拡大範囲
$W_B \times H_B$	F_B の幅×高さ, $W_B \in \{W_{Bc}, W_{Bs}\}, H_B \in \{H_{Bc}, H_{Bs}\}$

$W_{Bc} \times H_{Bc}$	F_{Bc} の幅×高さ
$W_{BS} \times H_{BS}$	F_{Bs} の幅×高さ
$F_H(\theta)$	方位 θ のHaar-Likeフィルタ, $\theta \in \{0, 90[deg]\}$
$F_{Hc}(\theta)$	F _H :高周波成分生成用
$F_{Hs}(\theta)$	F _H :低周波成分生成用
$W_H \times H_H$	Haar-Likeフィルタの幅×高さ
$W_{Hc} \times H_{Hc}$	F_{Hc} の幅×高さ
$W_{Hs} \times H_{Hs}$	F_{Hs} の幅×高さ
$F_{RH}(\theta)$	方位 θ のRotated Haar-Likeフィルタ, $\theta \in \{45, 135[deg]\}$
$F_{RHc}(\theta)$	$F_{RH}(\theta)$:高周波成分生成用
$F_{RHs}(\theta)$	$F_{RH}(\theta)$: 低周波成分生成用
$W_{RH} \times H_{RH}$	Rotated Haar-Likeフィルタの幅×高さ
$W_{RHc} imes H_{RHc}$	F_{RHc} の幅×高さ
$W_{RHs} \times H_{RHs}$	F_{RHs} の幅×高さ
p_p	$F, F_H(\theta), F_{RH}(\theta)$ の中心座標, $p_p=(x_p, y_p)$
M_{f}	特徴マップ. 但し, $M_f \in \{M_I, M_C, M_O\}$
M_I	輝度の特徴マップ
M _{Cc}	色 <i>c</i> の特徴マップ, 但し, <i>M_{Cc}</i> ∈ { <i>M_{Ca}</i> , <i>M_{Cb}</i> }
M _{Ca}	色aの特徴マップ
M _{Cb}	色bの特徴マップ
M _C	色の特徴マップ
M _O	方位の特徴マップ
М _{О_}	方位0の特徴マップ

f_{mix}	M_{Ca}, M_{Cb} 正規化用の関数
g_{mix}	各M _{0_0} 正規化用関数
h _{mix}	M_I, M_C, M_O 正規化用関数
C _f	M_f の係数. 但し, $w_f \in \{w_I, w_C, w_O, \forall w_{CC}, \forall w_{O\theta}\}$
CI	M _I の係数
C _{CC}	<i>M_{cc}の</i> 係数. 但し, <i>w_{cc}</i> ∈ { <i>w_{ca}</i> , <i>w_{cb}</i> }
c _{Ca}	M _{ca} の係数
C _{Cb}	<i>M_{cb}</i> の係数
c _C	M _c の係数
C _O	<i>M</i> ₀ の係数
С _{О_}	$M_{O_{-\theta}}$ の係数. 但し, $c_{O_{-\theta}} \in \{w_{O_{-0}}, w_{O_{-45}}, w_{O_{-90}}, w_{O_{-135}}\}$
f _{norm} , g _{norm}	マップ正規化演算子
M _{Sal}	顕著性マップ

第3章 顕著性マップを用いたシミュレーション実験

Wb	縞模様の帯幅
σ_{Sal}	顕著性の最大値の分散
N _{Cl}	<i>L, a, b</i> の階調数

第4章 顕著性マップと画像特徴点抽出の恒常性

Ip	画像特徴点が位置する画素の値
D	画像特徴点が持つ特徴ベクトル
Nq	小領域の総数

n_q	小領域のインデクス
$\boldsymbol{D}_{n_q,i,j}$	第 <i>i</i> 番目の条件下で撮影された画像より,第n _q 小領域において,
	抽出される画像特徴ベクトル.
	(特徴ベクトルのインデクスが第j番目)
d_H	特徴ベクトルのハミング距離
r _{Derr}	特徴ベクトルの変化率
r _{Derr,nq}	第n _q 小領域で求まった特徴ベクトル変化率の最小値
σ_{kp}	画像特徴点抽出数の分散
σ_{kp,n_q}	第n _q 小領域で抽出された画像特徴点抽出数の分散
$N_{kp,n_q,i}$	第i撮影条件下の第nq小領域において,抽出された画像特徴点数
M _{Sal,n_a,i}	
M _{Sali}	第:提影冬州における頭茎州マップ
M _{Sali}	$ \pi \ln k p \pi H (c n) / ひ 頭 a に < ワ / M = k N 個 生 か て 得 に わ ろ ベ ク ト ル$
I FAST	FASTスコア閾値 ※BRISK法の説明で使用
V _{FAST}	FASTスコア ※BRISK法の説明で使用
F_{stb,n_q}	第n _q 小領域における画像特徴点の安定度
F _{stb}	F_{stb,n_q} を N_q 個集めて得られるベクトル
r _{ftr,nq}	第n _q 小領域における画像特徴点抽出の再現度
r_{ftr}	r_{ftr,n_q} を N_q 個集めて得られるベクトル
S _{dsc,nq}	第n _q 小領域における特徴ベクトルの類似度
s _{dsc}	s_{dsc,n_q} を N_q 個集めて得られるベクトル

W	F_{stb,n_q} 計算における, r_{ftr,n_q} と s_{dsc,n_q} の比率
Ν	撮影条件及び画像の変更回数, $N \in \{N_B, N_F, N_S, N_{FAST}\}$
N_B	輝度の変更回数
N_F	画像平滑化の変更回数
N _S	物体サイズの変更回数
N _{FAST}	T _{FAST} の変更回数
$W_{Obj} \times H_{Obj}$	画像を占める物体のサイズ
$H_{Obj,i} \times H_{Obj,i}$	第 i 撮影条件における $W_{obj} \times H_{obj}$
σ_G	画像の平滑化に使用したガウシアンフィルタの分散
$\sigma_{G,i}$	第 i 撮影条件における σ_G
I _{Max,i}	第i撮影条件における画像の最大輝度
ϕ_i	F_{stb} と r_{ftr} の関連度(F_{stb} と r_{ftr} がなす角度)
$\left\ \Delta M_{Sal,i}\right\ $	M _{Sal} の変化量

図目次

図1-1 空	2間周波数成分(正弦波の縞模様)	23
図 1-2 学	空間周波数成分(三角波の合成)	23
図 1-3 利	多動ロボットの物体認識における運動パターン例	24
図 1-4 損	最影条件変化に伴う空間周波数スペクトルの変化	25
図 1-5 1	枚の画像の中で複数の対象物が観測される例	25
図 1-6 It	tti らによる顕著性マップの生成過程	26
図 1-7 ス	ガボールフィルタの構成	26
図 1-8 オ	ポップアウトを実現するための正規化	27
図 1-9 学	空間周波数対神経節細胞(X 細胞)の応答特性	27
図 1-10	VOCUS2 の構成図	28
図 1-11	SURF 特徴点の勾配ベクトル計算例	29
図 1-12	SURF 特徴点のマッチング	29
図 1-13 攅	最影条件変更に伴う画像特徴点抽出数の変化(SURF)	30
図 1-14 攅	最影条件変更に伴う画像特徴点抽出数の変化(BRISK)	30
図 1-15 牧	勿体認識過程と本研究の位置づけ	31
図 1-16 運	画像特徴点取捨選択の過程	31
図 1-17 圓	頃著性マップによる画像特徴点取捨選択	31
図 2-1 ジ	フィルタの自動調整アプローチ	46
図 2-2 圓	頃著性マップの生成工程(提案手法)	46
図 2-3 利	責分画像の生成	47
図 2-4 H	Haar-Like フィルタをベースとしたガボールフィルタ	47
図 2-5 利	責分画像による平滑化画像の生成	47
図 2-6 치	ドックスフィルタF _{Bc} ,F _{Bs} の配置	47
図 2-7 長	方形 S の平均輝度を求めるために参照するべき積分画像の画素	48
図 2-8 I _{cs}	の最大化	48
図 3-1 シ	ミュレーション実験の趣旨	80

図 3-2 シミュレーション実験のための入力画像	80
図 3-3 低周波成分における縞パターンの消失	80
図 3-4 VOCUS2 の実験条件設定	81
図 3-5 Itti 法の実験条件設定	81
図 3-6 提案手法の実験条件設定	82
図 3-7 M _{Sal} の応答を評価する範囲	82
図 3-8 ガウシアンフィルタの位置の場合分け	82
図 3-9 入力画像の波形(W _b を可変とした縦縞)	83
図 3-10 帯幅W _b の変化に伴って生じる空間周波数スペクトルの変化	84
図 3-11 ガボールフィルタ $F_H(0)$ の拡大	85
図 3-12 ガボールフィルタF _H (45)の拡大	85
図 3-13 顕著性マップの比較(W _b = W _{IM} /3=160[Pixel])	86
図 3-14 顕著性マップの比較 ($W_b = W_{IM}/15 = 40$ [Pixel])	87
図 3-15 顕著性マップの比較(W _b = W _{IM} /63=10[Pixel])	88
図 3-16 顕著性マップの波形比較(W _b = W _{IM} /3=160[Pixel])	89
図 3-17 顕著性マップの波形比較(W _b = W _{IM} /15=40[Pixel])	90
図 3-18 顕著性マップの波形比較(W _b = W _{IM} /63=10[Pixel])	91
図 3-19 VOCUS2 のピラミッド構成	92
図 3-20 顕著性マップ生成工程において観測する画像(VOCUS2)	92
図 3-21 顕著性マップ生成工程 (VOCUS2, 縦縞, $W_b = W_{IM}/3=160$ [Pixel])	93
図 3-22 顕著性マップ生成工程 (VOCUS2, 縦縞, $W_b = W_{IM}/63=10$ [Pixel])	94
図 3-23 Itti 法のピラミッド構成	95
図 3-24 顕著性マップ生成工程において観測する画像(Itti)	95
図 3-25 顕著性マップ生成工程 (Itti 法, 縦縞, $W_b = W_{IM}/3=160$ [Pixel])	96
図 3-26 顕著性マップ生成工程 (Itti 法, 縦縞, $W_b = W_{IM}/63=10$ [Pixel])	97
図 3-27 ボックスフィルタF _{Bs} のサイズ調整(縦縞)	98
図 3-28 フィルタの中心座標が帯の境界に位置する場合	98
図 3-29 顕著性マップ生成工程 (提案手法, 縦縞, $W_b = W_{IM}/3=160$ [Pixel])	99

図 3-30 顕著性マップ生成工程 (提案手法, 縦縞, $W_b = W_{IM}/63=10$ [Pixel])	99
図 3-31 顕著性マップの比較(W _b = W _{IM} /3=160[Pixel])	100
図 3-32 顕著性マップの比較 ($W_b = W_{IM} / 15 = 40$ [Pixel])	101
図 3-33 顕著性マップの比較(W _b = W _{IM} /63=10[Pixel])	102
図 3-34 顕著性マップの波形比較($W_{ m b}$ = $\sqrt{2}W_{ m IM}$ /3=160[Pixel]	103
図 3-35 顕著性マップの波形比較($W_{ m b}$ = $\sqrt{2}W_{ m IM}$ /15=40[Pixel])	104
図 3-36 顕著性マップの波形比較($W_{ m b}$ = $\sqrt{2}W_{ m IM}$ /63=10[Pixel])	105
図 3-37 ボックスフィルタF _{Bs} のサイズ調整(斜め縞)	106
図 3-38 縞の方位θの変化に伴うM _{Sal} のばらつきを抑えるための対策	106
図 3-39 Haar-Like フィルタF _{RHs} の配置(応答最大時)	107
図 3-40 差分画像 I_{θ_cs} の計算過程	107
図 3-41 顕著性マップの比較(VOCUS2, fb 可変の縦縞)	108
図 3-42 顕著性マップの比較(Itti 法, fb 可変の縦縞)	109
図 3-43 顕著性マップの比較(提案手法, fb 可変の縦縞)	110
図 3-44 空間周波数のばらつきが大きい場合の問題点	111
図 3-45 空間周波数のばらつきが大きい入力画像への対応策(その1)	111
図 3-46 空間周波数のばらつきが大きい入力画像への対応策(その2)	111
図 3-47 差分画像の総和 $I_{\Sigma cs}$ の生成	112
図 4-1 顕著性と画像特徴点の恒常性と実の関係を求める実験の趣旨	138
図 4-2 画像特徴点抽出のためのスケール空間	138
図 4-3 FAST によるコーナ検出の様子	138
図 4-4 BRISK 特徴量ベクトル記述のためのサンプリング点	139
図 4-5 画像特徴点同士の対応付け	139
図 4-6 小領域における画像特徴点数N _{kp,nq} の変化	139
図 4-7 特徴ベクトルの類似度s _{dsc,nq} の計算	140
図 4-8 評価関数 φ iの計算イメージ	141
図 4-9 実験で用いた画像	141
図 4-10 実験で用いた画像とその空間周波数スペクトル	142

図 4-11 顕著性マップの生成結果(Chair)	143
図 4-12 顕著性マップの生成結果(Flower)	143
図 4-13 顕著性マップの生成結果(Lenna)	144
図 4-14 顕著性マップの生成結果(Mandrill)	144
図 4-15 顕著性マップの生成結果(Things)	145
図 4-16 顕著性マップの生成結果(Multisize)	145
図 4-17 顕著性マップの生成結果(Tree)	146
図 4-18 顕著性マップの生成結果(Stop)	146
図 4-19 画像特徴点抽出数と顕著性の関係 (使用画像:Things,撮影条件:輝度変化, 顕著性マップ:VOCUS2 $\sigma_c/\sigma_c=1/10$)	147
図 4-20 画像特徴点抽出数と顕著性の関係 (使用画像:Things,撮影条件:輝度変化, 顕著性マップ:VOCUS2 $\sigma_c/\sigma_s=5/10$)	148
図 4-21 画像特徴点抽出数と顕著性の関係	149
(使用画像:Things, 撮影条件:輝度変化, 顕著性マップ:Itti)	
図 4-22 画像特徴点抽出数と顕著性の関係	150
(使用画像:Things, 撮影条件:輝度変化,	
顕著性マップ:提案手法(条件3))	
図 4-23 画像特徴点抽出数と顕著性の関係	151
(使用画像:Chair, 撮影条件:輝度変化,	
顕著性マップ:VOCUS2 σ_c/σ_s =1/10)	
図 4-24 画像特徴点抽出数と顕著性の関係	152
(使用画像:Chair, 撮影条件:輝度変化,	
顕著性マップ:VOCUS2 σ_c/σ_s =5/10)	
図 4-25 画像特徴点抽出数と顕著性の関係	153
(使用画像:Chair, 撮影条件:輝度変化, 顕著性マップ:Itti)	
図 4-26 画像特徴点抽出数と顕著性の関係	154
(使用画像:Chair, 撮影条件:輝度変化,	
顕著性マップ:提案手法(条件3))	
図 4-27 画像特徴点抽出数と顕著性の関係	155
(使用画像:Things, 撮影条件:焦点のズレ,	
顕著性マップ:VOCUS2 $\sigma_c/\sigma_s=1/10$)	

図 4-28 画像特徴点抽出数と顕著性の関係	156
(使用画像:Things, 撮影条件:焦点のズレ,	
顕著性マップ:VOCUS2 $\sigma_c/\sigma_s=5/10$)	
図 4-29 画像特徴点抽出数と顕著性の関係	157
(使用画像:Things,撮影条件:焦点のズレ,顕著性マップ:Itti)	
図 4-30 画像特徴点抽出数と顕著性の関係	158
(使用画像:Things, 撮影条件:焦点のズレ,	
顕著性マップ:提案手法(条件 3))	
図 4-31 画像特徴点抽出数と顕著性の関係	159
(使用画像:Chair, 撮影条件:焦点のズレ,	
顕著性マップ: VOCUS2 σ_c/σ_s =1/10)	
図 4-32 画像特徴点抽出数と顕著性の関係	160
(使用画像:Chair, 撮影条件:焦点のズレ,	
顕著性マップ: VOCUS2 $\sigma_c/\sigma_s=5/10)$	
図 4-33 画像特徴点抽出数と顕著性の関係	161
(使用画像:Chair, 撮影条件:焦点のズレ, 顕著性マップ: Itti)	
図 4-34 画像特徴点抽出数と顕著性の関係	162
(使用画像:Chair, 撮影条件:焦点のズレ,	
顕著性マップ: 提案手法(条件 3))	
図 4-35 画像特徴点抽出数と顕著性の関係	163
(使用画像:Things, 撮影条件:対象物の画素値,	
顕著性マップ:VOCUS2 σ_c/σ_s =1/10)	
図 4-36 画像特徴点抽出数と顕著性の関係	164
(使用画像:Things, 撮影条件:対象物の画素値,	
顕著性マップ:VOCUS2 $\sigma_c/\sigma_s=5/10$)	
図 4-37 画像特徴点抽出数と顕著性の関係	165
(使用画像:Things, 撮影条件:対象物の画素値, 顕著性マップ:Itti)	
図 4-38 画像特徴点抽出数と顕著性の関係	166
(使用画像:Things, 撮影条件:対象物の画素値,	
顕著性マップ:提案手法(条件3))	
図 4-39 画像特徴点抽出数と顕著性の関係	167

(使用画像:Chair, 撮影条件:対象物の画素値, 顕著性マップ: VOCUS2 $\sigma_c/\sigma_s=1/10$) 図 4-40 画像特徴点抽出数と顕著性の関係

(使用画像:Chair, 撮影条件:対象物の画素値, 顕著性マップ: VOCUS2 $\sigma_c/\sigma_s=5/10$)

図 4-41 画像特徴点抽出数と顕著性の関係 169

168

(使用画像: Chair, 撮影条件:対象物の画素値, 顕著性マップ: Itti)
図 4-42 画像特徴点抽出数と顕著性の関係 170
(使用画像: Chair, 撮影条件:対象物の画素値, 顕著性マップ:提案手法(条件3))

図 5-1 S. Goferman の顕著性 191

表目次

表 3-1 帯幅 W_b 毎の画像サイズ W_{IM} [Pixel]	112
表 3-2 設定パラメータとその値域(縦縞/斜め縞)	113
表 3-3 設定パラメータとその値域(帯幅W _b 可変の縦縞)	114
表 3-4 顕著性のばらつき σ_{Sal} の比較結果	115
表 3-5 WGの変化とボックスフィルタサイズ WBs, WBc, 顕著性最大値の 関係性(提案手法:条件3,縦縞)	115
表 3-6 WAの変化とボックスフィルタサイズ WBs, WBc, 顕著性最大値の 関係性(提案手法:条件3,斜め縞)	116
表 3-7 W _{Bs} , W _{RHs} の理想値と実際の値(提案手法, 斜め縞)	116
表 3-8 WGの変化と顕著性最大値の関係性(VOCUS2, WG可変の縦縞)	117
表 3-9 W_b の変化と顕著性最大値の関係性(Itti 法, W_b 可変の縦縞)	117
表 3-10 W&の変化と顕著性最大値の関係性(提案手法, W&可変の縦縞)	118
表 4-1 実験で用いた画像	171
表 4-2 設定パラメータとその値域	172
表 4·3 関連性の平均値 $ar{oldsymbol{\phi}}$ の比較	173
(顕著性 M_{sal,i} vs 再現度 r_{ftr},I_{max,i}変更時)	
表 4-4 関連性 ϕ_i の最小値記録回数	174
(顕著性 M_{Sal,i} vs 再現度 r_{ftr}, I_{max,i}変更時)	
表 4-5 関連性の平均値 $ar{oldsymbol{\phi}}$ の比較	175
(顕著性 M_{sal,i} vs 類似度 s dsc, I _{max,i} 変更時)	
表 4-6 関連性 ϕ_i の最小値記録回数	176
(顕著性 M_{sal,i} vs 類似度 s dsc, I _{max,i} 変更時)	
表 4-7 関連性の平均値 $ar{oldsymbol{\phi}}$ の比較	177
(顕著性 $M_{Sal,i}$ vs 再現度 r_{ftr} , $\sigma_{G,i}$ 変更時)	
表 4-8 関連性 ϕ_i の最小値記録回数	178
(顕著性 $M_{Sal,i}$ vs 再現度 r_{ftr} , $\sigma_{G,i}$ 変更時)	

表 4-9 関連性の平均値 $ar{m{\phi}}$ の比較	179
(顕著性 M_{sal,i} vs 類似度 s dsc, σ _{G,i} 変更時)	
表 4-10 関連性 ϕ_i の最小値記録回数	180
(顕著性 $M_{Sal,i}$ vs 類似度 S_{dsc} , $\sigma_{G,i}$ 変更時)	
表 4-11 関連性の平均値 $ar{m{\phi}}$ の比較	181
(顕著性 M sal,i vs 再現度 r ftr, W _{Obj,i} 変更時)	
表 4-12 関連性 ϕ_i の最小値記録回数	182
(顕著性 M sal,i vs 再現度 r ftr, W _{obj,i} 変更時)	
表 4-13 関連性の平均値 $\bar{\phi}$ の比較	183
(與者性 M_{Sal,i} vs 類似度 S dsc, W _{Obj,i} 変更時)	
表 4-14 関連性 ϕ_i の最小値記録回数	184
(頭者性M Sal,i VS 類似皮 Sdsc, W _{Obj,i} 泼史时)	
表 4-15 関連性 φ の比較	185
(與者性 M Sal,i VS 冉垷度 r _{ftr} , T _{FAST,i} 发更時)	
表 4-16 関連性 の最小値記録回数	185
(與者性 M sal,i vs 冉垷皮 r _{ftr} , T _{FAST,i} 发史時)	
表 4-17 関連性 φ の比較	186
(與者性 M Sal,i VS 類似度 Sdsc, T _{FAST,i} 发更時)	
表 4-18 関連性 φの最小値記録回数	186
(顕著性 M sal,i vs 類似度 S dsc,T _{FAST,i} 変更時)	

1.1 研究背景

1.1.1 顕著性マップとその工学的応用

人間が環境に対して適応的に行動し,身の回りの物事を認識するためには,ある対象 に対して注意を向けること,注目する能力が欠かせない.

近年,ビッグデータからの情報抽出,AIに関する研究が盛んであるが,データベース に蓄積された巨大な情報から特定の情報を取捨選択するような注意モデルを構築でき れば、人間に備わっている知性、直感、気づき等がコンピュータに実装可能となる.

認知心理学の分野では、古くから注意に関して研究がなされているが定義は難しい. 文献[1]によると、注意とは"一部の入力情報を取り入れ、それ以外を排除する心的能力" と定義されている.注意によって人間は、行動、記憶、思考、情動を適応的に制御して いると考えられる.

筆者の経験では,現在地を知るために建物の看板や道標などの静的なランドマークに 注目するが,道路を走行する車にはさほど注目しない.また,注意していた時の経験は 簡単に思い起こすことができるが,そうでない場合,はっきりと思い出すことができない.

五感から得られる刺激を通じて処理する過程で注意が発生するが,その中でも視覚刺激に対する注意を視覚的注意[2][3][4]と呼ぶ.視覚的注意は、ボトムアップ型とトップ ダウン型に区別される[5][4][6].外的な刺激によって誘発される視覚的注意はボトムア ップ型であり,過去に蓄積した知識,内的な刺激によって誘発される注意はトップダウ ン型と呼ばれる.

Itti らは、ボトムアップ型の注意を誘引する特性を Saliency(顕著性)と呼んでおり [7], 顕著性は視界の明るさ、物理特性だけで決まるものではなく、視界内の対象の特徴 がその周囲に対して性質が異なれば顕著性が生じる[8].

 $\mathbf{2}$

人間は、全ての視覚刺激を記憶するのではなく、顕著性が高い視覚領域からその特徴 的な情報を記憶することにより、高度な知性を獲得している.顕著性がコンピュータに おいて表現できれば、視覚刺激の全てを蓄積する必要はなく、効率的に注目した対象物 の情報を記憶・認識するシステムを構築することができる.

Itti らは、コンピュータビジョンの画像分析への応用を意識した視覚的注意のモデル を提案し、人間の視線移動をシミュレーションしている [9][10]. そのシミュレーショ ンにおいて、入力画像から顕著性マップを生成、視線の注目領域を選択し、次に、選択 された注目領域に対して抑制的なフィードバックを加えることで視線が次々と移動す ることを示した. 物体認識において、顕著性マップの使用目的は、識別器に入力される 情報の中から対象物の認識に有用な情報を取捨選択するための前処理である[11]. これ により、複雑な入力画像に対しても、識別器に入力する信号を取捨選択しながら対象物 の認識を精度良く行うことが可能になる.

教師あり学習の分野では、教示データを作成する(アノテーション[12]) 過程は利用 者に対して時間を要する作業である[13]. 顕著性マップ生成を機械学習モデルに導入す ることが可能になれば、この前処理が自動化され、アノテーションを省略できる.

顕著性マップはロボット分野において、ランドマーク認識[14]や、マニピュレータの 把持対象の認識[15]、深海底における生物捕獲のための対象認識[16]等に応用されつつ ある.また、撮影画像において、物体らしさを推定することで、教師なし学習による物 体認識への応用を目指す例もある[17].

Itti の手法では,撮影画像の平滑化処理が顕著性マップ生成に組込まれている. 解像 度の異なる画像が集合を構成し,共通のガウシアンフィルタで画像の集合を平滑化処理 することにより,高周波成分(The Center)及び,低周波成分(The Surround)が作り出され る. その後,解像度が異なる画像のペア同士より差分画像が得られる. このガウシア ンフィルタは,固有の分散により,周波数帯域が固定される. その関係で,入力画像の

3

空間周波数に変化が起これば、フィルタの出力に変化が表れるため、Itti 法は、空間周 波数変化に弱いことが予想される.空間周波数とは基本的に、単位長さ当たりに含まれ る波の数を示す、空間軸上で定義される周波数のことである.図1-1に示すのは、輝度 が正弦波上に変化する画像の例である.図(a)のように、帯の間隔が広い場合は、波の数 が少なくなり、空間周波数が小さい.図(b)のように、帯の間隔が狭ければ空間周波数が 高くなる.図1-2のように、三角波を合成することでパルス波に近づく例である.フー リエ級数の原理より、三角波の高調波g1、g2、g3などを足し合わせることで、その合成 波がパルス波に近づくことが知られている[18].従って、フィルタの出力では、幅が狭 い縞模様が観測されにくく、対象物のエッジが削られてしまう恐れがある.

観測される対象物に画素数の変化が表れる撮影条件変化も,空間周波数変化とのかかわりが大きい. そのため, Itti 法は, このようなカメラの撮影条件変化にも弱い. ロボットへの応用を考えたら,空間周波数変化に対してロバストなサリエンシーマップが必要である.

1.1.2 画像における撮影条件と空間周波数

カメラを搭載した移動ロボットが,3次元空間上を移動しながら物体認識する状況を 図1-3に示す. 図1-3(a)は,移動ロボットには照明を搭載しており,対象物との距離が 変わることにより,取得画像の明るさが変化する.

AGV のような二次元平面を移動するロボットの運動は、並進運動と回転運動の組み 合わせで表現され(図1-3(b))、同じ対象物でも対象物の画素数や焦点のズレ、射影変換 等が生じる.カメラの内部パラメータ(アナログゲイン及び露光時間)、撮影環境の照 度は、画像の輝度に影響するが、空間周波数への影響は小さい.一方、対象物の画素数 変化は、輝度変化の周期に影響するため、撮影画像の空間周波数への影響が大きい.ロ ボットの姿勢変化は、相対的に対象物の向きが変わるため、同様に空間周波数への影響 が大きい. 焦点のズレは、輝度変化の勾配がなだらかになるため、ローパスフィルタの 役割を果たす.

対象物の画素数の変化,及び,焦点のズレに対する空間周波数スペクトルの変化を図 1-4に示す. 左から原画像,画素数変更(縦横比 50[%]の縮小),平滑化画像(分散*σ*_{*G*} = 5.0のガウシアンフィルタによる平滑化)である. 焦点のズレは疑似的に,ガウシアンフィルタによる平滑化として表現できる[19][20].

図 1-4 は x 軸が横方向の空間周波数, y 軸が縦方向の空間周波数を表しており,周辺に 行くほど周波数が高い.この図によると,サイズ変更時の場合は縞模様がスペクトルに 表れていることから交流成分が離散的になった.一方,レンズの焦点ズレでは,高い周 波数成分が削られた.

また図 1-5 のように 1 枚の画像の中で同じ対象物が複数観測されることも想定する必要がある.この場合,サイズがそれぞれ異なる場合(図 1-5(a))や,いずれかの対象物に対して焦点合わせに成功しない場合(図 1-5(b))もある.この例では,同じ対象物に対して空間周波数分布が異なってしまう.

1.1.3 顕著性マップの先行研究

Itti 法(処理手順を図 1-6 に示す)は顕著性マップ生成法の先駆けとなった手法であ るが,その背後に当たる理論として,Treisman らによる特徴統合理論[21]や,Koch,Ulman による計算論などが挙げられる[22]. Treisman と Gelade による特徴統合理論では,2つ の段階を経て物体認識が進むと考えられる.このうちの第1段階では,知覚された画像 が3つの成分(輝度,色,方位)に分解され,これらの成分が自動的,並列的に分析さ れる.第2段階目では,この分析結果が最終的に統合される.特徴統合理論では,対象 物の探索時間に関する議論がなされている.対象物と妨害刺激を見分ける手掛かりが1 種類の特徴(輝度,色,方位のなかの1種類)である場合,探索時間はゼロに近づく. この現象をポップアウトとよぶ.一方,対象物の識別のために2種類以上の特徴を比較 する必要がある場合は,探索時間が長くなる[23].

心理学的な特徴統合理論について Koch と Ulman は,計算論の立場からボトムアッ プ性注意が如何に計算されているかを説明し[8][22],この計算論で示された過程が Itti[9][10]らにより,コンピュータのアルゴリズムで示された.[9]の手法は,ベンチマ ークテストにおけるリファレンスのような存在となっている[8]

Itti らは、ごま塩ノイズが付加された画像を用いて対象物検出の実験を行い、ノイズ 密度を変化させながら誤検出回数を調べることで顕著性マップを評価した.[9]による と、計 50回の実験回数のうち、65[%]のノイズ密度の下で誤検出の回数が 5 回以内に 抑えられていることが述べられている.

Itti のモデルを改良する例としては、R. Achanta [24]らやS. Frintrop[25]らによるモデル がある.彼らは、フィルタのパラメータ調整をすることで、顕著性マップにおいて物体 の形状が忠実に強調されるようにする手法を提案した(Frequency-Tuned Saliency [24])、 (VOCUS2: Visual Object detection with a CompUtational attention System[25]). そのうち、S. Frintrop らは[25]において、低周波成分と高周波成分について、ガウシアンピラミッドを 独立させるという思想により、新たな顕著性マップの生成法を提案した.このピラミッ ドも同様に、異なる解像度の画像の集合で構成されている.さらに彼らは、Itti の手法 においてガウシアンピラミッドを構成する画像の解像度の倍数が 2 のべき乗倍に限定 されていることに問題点を唱え、低周波成分と高周波成分の生成に使用されるガウシア ンフィルタ(それぞれ分散 σ_c 、 σ_s)を使い分ける手法を提案した.彼らはまた、 σ_c/σ_s が 顕著性を決める重要なパラメータであることを述べた(同文献ではガウシアンフィルタ の分散 σ_G が $\sigma_G = 2^k$ に従って変化するという表記が見られるが、サイズ $W_{IM} \times H_{IM}$ の画像 を2 σ_{G} で平滑化する処理は、サイズ $W_{IM}/2 \times H_{IM}/2$ の画像を σ_{G} で平滑化する処理の近似 であることが Lowe によって述べられている[26].). σ_{c}/σ_{s} を変更することにより、顕著 性マップの生成結果に変化が現れる.しかし、 σ_{c}/σ_{s} の変更が可能であるということは、 全ての入力画像において適切な σ_{c}/σ_{s} が一意に定められないと捉えることができる.

Itti 法および VOCUS2 では、フィルタの特性を動的に変更できないことから、顕著性マップが入力画像の空間周波数及びフィルタの特性によって左右される.

顕著性マップを用いて特徴の取捨選択を行う場合は、これを固定の閾値によって二値 化画像に変換し、二値化画像の画素値に従って特徴を選択するか否かを決める必要があ る.このとき、画像の撮影条件変化が起こることで入力画像の空間周波数に変化が現れ ると、これに伴って、フィルタの固定された周波数帯域のために顕著性マップにも応答 変化が表れることになる。この応答変化により二値化画像の結果にも変化が表れ、入力 画像における特徴の取捨選択過程へも影響が及ぶことになる。

また、VOCUS2 においては σ_c/σ_s の設定値として何が最適であるかを明確にすること が不可能であり、任意の画像に対して最適な顕著性とは何かを定めることも容易ではな い. 画像の性質に適したフィルタのパラメータ調整を自動化する手法はまだ提案されて いない. 次に、顕著性マップの応用例について 5 つ挙げる.

1) 自己位置推定の分野

移動ロボットによる自己位置推定の分野に用いられる顕著性マップの研究例[27] [28] [29]では, Frintrop らや Siagian らが,カメラ画像の中からランドマークとして用いる 特徴を選択するために顕著性マップを利用した.

7

2)海洋調査の分野

海洋調査に顕著性マップを応用する旨の研究例では,海上保安のための船舶等物体認 識に特化した顕著性マップが考えられている[30].

水中生物の探索を行う目的にも顕著性マップが活用されている例がある.水中画像に 対して色補正を行い,色補正後の画像に対して顕著性マップを生成することで,高い顕 著性を持つ局所領域が,海底の物体や生物が位置する領域として推定されている [31][32].

3)自動車の分野

自動車の自動運転システムの要素技術として、交通標識の自動識別器や、ドライバの 運転支援システムなどが挙げられる.自動車の移動環境の中で、標識の候補を認識する 目的のものは、[33]による手法が挙げられる.

顕著性マップは、ドライバを支援するために、運転中に注目すべき視線を示す目的 [34]でも活用されている.この手法では、ドライバの視線データを入力データとした機 械学習を実行することで、トップダウン性の顕著性マップが生成されている.

4)作物収穫システム

作物収穫システムの分野では、ロボットの自律移動により、作物を自動で収穫する仕 事を実現させる目的や、作物の生育状態を管理する目的において顕著性マップの有用性 が期待される.果実の色と葉・茎の色が大きく異なる場合は、果実だけが強調された顕 著性マップが生成されるので、移動ロボットによる果実の自動収穫において、果実観測 後の運動生成や、アクチュエータの駆動や制御へと行動パターンを連結することが可能 である.赤リンゴ[35]や青リンゴ[36]を認識するための顕著性マップが提案されている. 5)映像要約システム[37]

映像のオンラインコンテンツの業界では、急増している映像ファイルの管理を効率的 に行う目的で、顕著性マップを用いた研究が行われている。例えば、インターネットの ユーザが、これから視聴したい動画を探すため、1つの動画ファイルを全て見終わる前 に、動画サイト上にある動画の要約を知りたいという要望が考えられる。また、ユーザ によってサイトに入力されたキーワードと関連性が強い映像をすばやく見つけたいと いう要望もある[37]. そのような中顕著性マップは、映像ファイルを代表するようなシ ーン、映像の要約に相応しいシーンをコンピュータによって自動的に抽出するために採 用される例がある.

1.1.4 顕著性マップの生成工程

この節では, Itti 法[9][10]と VOCUS2[25]による顕著性マップ生成の工程を説明する.

i)Itti の手法

Itti 法の処理工程は、図 1-6 に示すように入力画像を画像の輝度,色,方位成分に分ける過程,それぞれの成分においてガウシアンフィルタを用い,高周波成分(Center)と低周波成分(Surround)を作り出す過程,周波数成分同士の差分をコントラストとして計算する過程,特徴がポップアップする傾向を評価してマップに示す過程,3つの成分で求められたマップを統合して顕著性マップにする過程で構成される.

詳細を説明すると、入力画像は3つの特徴(輝度、色、方位)に分割され、それぞれの特徴においてガウシアンピラミッドが構成される. ピラミッドは9つのスケール (図 1-6 では Scale と記載)で構成される. このピラミッドにおいて各画像は、画像のス ケール σ に応じ、高さと幅が 1/2°倍に縮小される[10]. ただし、各スケールにおいて適用されるガウシアンフィルタは、共通の分散 σ_{G} となっている.

σの大きい画像は Surround (スケール*s*) と呼ばれ,低周波成分と見なされる. σの小 さい画像は Center (スケール*c*) と呼ばれ,高周波成分として見なされる.両画像間の コントラストを数値化するために,高周波成分と低周波成分の差分画像*I*(*c*,*s*), *RG*(*c*,*s*), *BY*(*c*,*s*), *O*(*c*,*s*, *θ*)を計算する. *c*, *s*, $σ \in [0,1,...,8]$ である.

1) ガウシアンピラミッドの生成(輝度,色)

顕著性マップの生成手順について述べると,まず RGB 色相系のカラー画像を赤*r*,緑 g,青 b に分解する.そして,輝度成分の画像 *I*,色成分(赤,緑,青,黄)の画像 *R*,*G*, *B*,*Y* を,次のように色補正することで生成する(式(1-1)-(1-5)).但し,負の画素値はゼロ とする.第の段目に位置する画像は,*I*(σ),*R*(σ),*G*(σ),*B*(σ),*Y*(σ)で示される.

$$I = \frac{r+g+b}{3} \tag{1-1}$$

$$R = r - \frac{g+b}{2} \tag{1-2}$$

$$G = g - \frac{r+b}{2} \tag{1-3}$$

$$B = b - \frac{r+g}{2} \tag{1-4}$$

$$Y = \frac{r+g}{2} - \frac{|r-g|}{2} - b \tag{1-5}$$

2) ガウシアンピラミッドの生成(方位)

方位成分の画像 0 のガウシアンピラミッドを得るには 4 方位分(θ= 0,45,90,135[deg])のガボールフィルタを準備する. ガボールフィルタ(図 1-7)は, 平面 上を一方向に伝わる正弦波とガウス関数の積算で成り立つ. ガボールフィルタ $F_{GA}(\theta,\sigma)$ を用いて 2 つの周波数成分の畳み込み演算を求める過程は、式(1-6)に示される.

$$O(\sigma, \theta) = F_{GA}(\theta, \sigma) * I(\sigma)$$
(1-6)
$$\sigma \in \{c, s\}$$

そのため、ガボールフィルタによる畳み込み演算は、入力画像にガボールウェーブレット(図 1-7(c))を畳み込む演算をすることに相当する.

3) 差分画像の生成

前節までに生成したガウシアンピラミッドを用い,高周波成分と低周波成分の間で, 輝度の差分画像*I*(*c*,*s*),色の差分画像*RG*(*c*,*s*),*BY*(*c*,*s*)(それぞれ,赤・緑と青・黄色の補色 を示す),方位の差分画像 *O*(*c*,*s*,*θ*)を求める.この計算過程を式(1-7)-(1-9)に示す.

$$I(c,s) = |I(c) \ominus I(s)| \tag{1-7}$$

$$RG(c,s) = |(R(c) - G(c)) \ominus (G(s) - R(s))|$$
(1-8)

$$BY(c,s) = |(B(c) - Y(c)) \ominus (Y(s) - B(s))|$$
(1-9)

⊖は異なるスケール同士の差分を意味している.この際,画像のサイズがスケール間で 異なっている.そのため、それ以降、スケール間で画像の和と差を計算するには、両者 のサイズを共通にするための拡大処理をする必要がある.方位チャネルO(c,s,θ)の差分 画像は、式(1·10)に従って計算される.

$$O(c, s, \theta) = |O(c, \theta) \ominus O(s, \theta)|$$
(1-10)

4) 差分画像の統合

特徴(輝度,色,方位)毎に,差分画像を統合して得られるマップを \bar{I} , \bar{C} , \bar{O} と示 す. \bar{I} , \bar{C} , \bar{O} 得るためにはまず,各差分画像 I_{cs} を関数 $N(\cdot)$ によって正規化した画像を 足し合わせる. $N(\cdot)$ の正規化について説明する.差分画像の極値 m で最大値となるも のをM, mの平均値 \bar{m} ,これらを用いて, $N(\cdot)$ を式(1-11)-(1-13)で表すと,

$$N(I_{cs}) = c_f g_{Norm} \{ I_{cs}(x, y) \}$$
(1-11)

$$c_f = (M - \bar{m})^2$$
 (1-12)

$$I_{cs} \in \{I(c,s), RG(c,s), BY(c,s), \forall O(c,s,\theta)\}$$

$$(1-13)$$

となる.ここで、 g_{Norm} を、 I_{cs} を[0,M]の範囲で正規化する関数として示す.このとき の正規化は図 1-8 に示されるような処理手順に基づき、極値が単峰性に近くなるほど 高い係数 c_f がかけられ、多峰性で、極値同士の差が小さくなる場合は小さい c_f となる ように、 c_f の調整がなされる.この調整により、色彩的なコントラストが高く、ポッ プアウトの傾向が強い特徴が、顕著性マップ上で強調されるようになる.

差分画像を $N(\cdot)$ の正規化を施して合成すれば,式(1-14)-(1-16)により各成分に対応するマップ \overline{I} , \overline{C} , \overline{O} が得られる. 差分画像の和を Θ で示す.

$$\bar{I} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} N(I(c,s))$$
(1-14)

$$\bar{C} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} \{N(RG(c,s)) + N(BY(c,s))\}$$
(1-15)

$$\bar{O} = \sum_{\theta = \{0, 5, 90, 135\}} N\left(\bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} N(O(c, s))\right)$$
(1-16)

さらに, \bar{I} , \bar{C} , \bar{O} を再び $N(\cdot)$ で正規化し,式(1-17)のように合成することで,顕著性マップSが得られる.

$$S = \frac{1}{3} \left(N(\bar{I}) + N(\bar{C}) + N(\bar{O}) \right)$$
(1-17)

生体における視覚信号処理、及び顕著性マップ生成過程との類似性について説明す る. 高周波成分と低周波成分を生成する過程では、網膜の中心窩とその周辺部分の信 号処理と類似性が見られる.中心窩は、光刺激をきめ細かく撮る感じ取ることが可能 な直径 0.3[mm]の領域である。網膜に位置する視細胞は錐体細胞と悍体細胞に分類さ れ、前者の細胞は色やエッジの知覚に優れている.この錐体細胞は、中心窩において 密に分布している.輝度成分と色成分の差分を計算する過程は、神経節細胞における 信号処理と類似性が見られる.神経節細胞の受容野は中心部と周辺部からなり、この 受容野には、視細胞からの信号が後段の細胞を経由して入力される。中心部、周辺部 のどちらか片方のみ刺激が提示されたときに限り、神経節細胞は強い応答を示すよう になっている[38]. 錐体細胞はさらに3種類(L,M,S 錐体)に分類される. このL,M,S は、応答する光刺激の波長が長い(Long)、中間(Middle)、短い(Short)ことから名づけら れているものである.従って,L錐体は赤色,M錐体は緑色,S錐体は青色に反応する 錐体細胞である[39]. L, M, S 錐体の応答をそれぞれ L, M, S で示すと, 神経節細胞にお ける信号処理には、赤-緑の場合(L-M)、緑-赤の場合(M-L)、黄色-青の場合((M+L)-S)、 青-黄色の場合(S-(M+L))となるような計算過程が見られる[39]. また,神経節細胞に は、図1-9に示すような帯域制限フィルタのような応答特性が確認されている.この 図は C. Enroth-Cugel らによるネコの目を用いた実験により得られたものである.彼ら はネコの目に対して、移動する縞模様のパターンを照射し、正弦波の空間周波数と神 経節細胞の応答レベルの関係を調べる実験を行った.図1-9は、実験で分かった空間 周波数と神経節細胞の応答レベルとの関係性を示すグラフである.同図の白丸は縦縞 の正弦波が左から右側に移動した時、黒丸は横縞の正弦波が上から下に移動した時に 対応する. このことから, 神経節細胞が空間周波数に対する選択性を持っていること が確認できた[40]. Itti 法における差分画像生成は,ガウシアンフィルタの応答を差分 することに相当し、この演算で帯域通過フィルタの特性を示すことが可能である

13

網膜にある神経節細胞からの信号は、外側膝状体を経由し、一次視角野(V1)などから なる大脳皮質の視覚領に伝えられる.一次視角野の受容野は、細胞ごとに特有の方向性 を持っており、あらゆる方向性をもつ細胞が生物の脳に存在するといわれている. Hubel Wiesel らはこのような細胞を Simple cell と呼んでいる[41][42].

ii) VOCUS2の手法

S. Frintrop らによる VOCUS2(Visual Object detection with a CopUtational attention System) の構成図を図 1-10 に示す. 彼らはこの研究例において,顕著性マップの粒度を向上させるために,高周波成分用(Center)と低周波成分用(Surround)の生成に用いられるガウシアンピラミッドを独立させることを提案した.また,分散比 σ_c/σ_s (σ_c を高周波側, σ_s を低周波側におけるガウシアンフィルタの分散とする.)が,画像の顕著性を左右する極めて重要なパラメータであることを述べた.[25]のモデルでは, σ_c/σ_s が任意に設定可能である.しかし[25]では,[9]とは異なり,考慮される成分が輝度成分と色成分の2種類であり,方位成分が省略されている.その理由として,方位成分が色毎の領域分割をするための情報として必要性が薄く,方位成分によって物体のエッジが強調されるため,領域分割を困難にすることが記されている.

1) 色特徴画像の生成

各色成分 R, G, B, Yを生成する過程は, [9]の手法と同様である.

2) ピラミッドの生成

図 1-10(a)に VOCUS2 の全体図を示し,図 1-10(b)には、ピラミッドの構造を示す. [25]のシステムは、[26]のスケール空間を参考にして作られたものであるため、この手 法と[9]との間で、スケールの意味に違いがみられる.[9]では、ピラミッドにおける縮 小画像のインデクスがスケールと呼ばれていた.一方この例では、ピラミッドにおいて 平滑化に使用するフィルタの分散 σ_G のインデクス $j \in [0, N_P)$ がスケールと呼ばれている. 一方、縮小画像のインデクス $i \in [1, k)$ についてはレイヤと呼ばれる.図 1-10(b)によると、 1つのスケールは計 k 枚の画像で構成され、 σ_G の数は計 N_P 個で構成される.レイヤ i が 1 進むごとに画像が縦横比 1/2 のサイズへ縮小されるようになっている.サイズが半分 になることで、空間周波数が 2 倍となるため、これが 1 オクターブに相当する.このよ うに、[9]の手法とは異なり、1 つの σ_G を用いて k 種類の縮小画像が平滑化される.よっ て、ピラミッドは N_P x k 枚の画像で構成されることになる.

3) 差分画像の生成

ここでは、高周波成分と低周波成分に対応するガウシアンピラミッド(それぞれ *C*, *S* でしめす. スケール数 *k* 段)を生成する. それぞれ、*C* = (C_1 ,..., C_k)、*S* = (S_1 ,..., S_k) でしめされ、画像は C_i 、 S_i で示される.

両成分に対応するガウシアンフィルタの分散を比で示すと、全てのスケールにおいて $\sigma_c:\sigma_s$ の比率が共通になっている. *S*を得るには、各スケールにおいてあらかじめ σ_s を定 めた上で、*C*の各画像を分散 σ_x (式(1-18))のガウシアンフィルタを用いて平滑化する.

$$\sigma_x = \sqrt{\sigma_s^2 - \sigma_c^2} \tag{1-18}$$

また、この差分画像を生成する過程では、[9]以降の変更点が見られる.[9]では、差分の 計算が高周波成分から低周波成分を差し引く場合の差分画像(Center-Surround 間)のみ であった.一方、VOCUS2では、暗い色の背景に明るい色の物体が映っている状況、及 び明るい色の背景に暗い色の物体が映っている状況を想定し、Center-Surround 間、 Surround-Center 間の2種類の差分画像が計算されている.但し、この差分では、前述の 2つの状況を区別するため,差分の絶対値を考慮せず,輝度同士を差し引いて負の値を 示す場合は,輝度の差分がゼロと見なされる.

暗い背景に明るい色の物体が映った画像の場合,平滑化後は,高い輝度が拡散するこ とによって,物体が位置している座標において顕著性の応答が低下する.このとき高周 波画像から低周波画像を差し引いて得られる差分画像(Center-Surround 間)では,物体が 位置する座標において輝度が正となる.一方,明るい背景に暗い色の物体が映った画像 の場合は,平滑化後は,低い輝度が拡散することによって,物体が位置している座標に おいて顕著性の応答が上昇する.このとき,低周波画像から高周波画像を差し引いて得 られる差分画像 (Surround-Center 間)では,物体が位置する座標において輝度が正とな る.

2 つのピラミッドを作った後は、同じピラミッドのレイヤ*i*同士で画像の差分を計算 する.この計算過程を式(1-19)-(1-20)に示す.但し、画素値同士の差分が負になる場 合はゼロする.差分画像(Center-Surround 間) X_i^f , (Surround-Center 間) Y_i^f は、以下の 式(1-19),(1-20)によって求めることができる.

$$X_{i}^{f} = C_{i}^{f} - S_{i}^{f}$$

$$Y_{i}^{f} = S_{i}^{f} - C_{i}^{f}$$

$$(1-19)$$

$$f \in \{I, RG, BY\}$$

4)特徴マップの生成と合成

 X_i^f 及び, Y_i^f については,式(1-21)(1-22)に従って合成することで,差分画像が統合 されたマップ F_1^f , F_2^f が生成される.

$$F_1^f = \bigoplus_i X_i, \ i \in \{1, 2, \dots, k\}$$
(1-21)

$$F_2^f = \bigoplus_i Y_i, \ i \in \{1, 2, \dots, k\}$$
(1-22)

そして,各成分の F_1^f , F_2^f は関数 f_{fuse} (式(1·23)) に従って統合され,輝度成分や色成分(赤-緑,黄色-青)に対応するマップ C^f が生成される.添え字のfは式(1·20)に従う.顕著性マップSは, C^I , C^{RG} , C^{BY} を関数 g_{fuse} で合成することで得られる(式(1·24)).

$$C^{f} = f_{fuse}(F_{1}^{f}, F_{2}^{f})$$
 (1-23)

$$S = g_{fuse}(C^I, C^{RG}, C^{BY}) \tag{1-24}$$

 f_{fuse} , g_{fuse} として選択する関数は、任意に定めることができる.

1.1.5 画像特徴点とその問題点

画像特徴点は,点座標とその近辺における輝度勾配を表現するような特徴ベクトルで 構成される.画像特徴点抽出の分野では近年,対象物の回転や観測サイズ変化などの幾 何学変換が発生した場合においても安定した特徴点同士の対応付けが可能となるよう に,新たな特徴ベクトルの記述方法[26][43][44][45]が提案されている.まず, SURF(Speed-Up Robust Features[43])を例に,画像特徴点とその特徴ベクトルの計算を説 明する.SURFでは,特徴ベクトルの計算過程において,画像特徴点の点座標を中心と した赤い近傍領域が計 8x8 個の小領域に分割され,各小領域において輝度勾配が計算さ れる.赤い近傍領域を基準に横方向の輝度勾配が *dx*,縦方向の輝度勾配が*dy*として示 される.緑色の枠で囲まれた 2x2 個の小領域の範囲において,*dx dy*とその絶対値が足 し合わされる.その結果,緑色の枠に対して4種類の総和(絶対値つき,絶対値なしの *dx, dy*合計値)が定義される.緑の枠が計16 個得られるため,計64 次元の特徴ベクト ルが定義される.図 1-12(a)(b)に画像の例を2種類示す.(b)は,(a)に縮小,回転,並進
を施した画像であり、(c)は SURF 画像特徴点のマッチング例を示す. このように、SURF 法では、対象物の縮小、回転が起きた場合においても、画像特徴点同士のマッチングに 成功している. なお、SURF 法では特徴ベクトルの表記方法が実数ベクトルであるが、 マッチング演算と特徴ベクトル記述を高速化するために、BRISK(Binary Robust Invariant Scalable Keypoint[44])や ORB(Oriented fast and Rotated BRIEF[45])のようなバイナリ表記 型の画像特徴点も提案されている.

しかしあらゆる画像特徴点の抽出法において,画像の撮影条件や特徴点の抽出条件が 変化することにより,画像特徴点抽出数が大きく変動するという問題がある.

図 1-13, 1-14 は,撮影条件変化(輝度変更,サイズ変更),画像の平滑化(レンズの 焦点ズレを疑似的に再現)が生じる条件で画像特徴点抽出を行った時の様子を示す.図 1-13 は SURF 法,図 1-14 は BRISK 法に対応する.

コンピュータによる物体認識課題では、画像特徴点抽出結果が Visual Word ヒストグ ラム[46][47], 共起行列[48][49]などの形式に変換され、これが識別器を通じてデータベ ースと照合されることで、対象物の認識が実行される.仮に画像特徴点の抽出数が撮影 条件に応じて大きく変動することになれば、識別器へ入力されるデータにも変化が生じ、 対象物の誤認識を招く原因となる.

図 1-13,14 の例に示すように、入力画像より抽出される画像特徴点は、撮影条件変化 に伴って抽出が不安定になるものと、撮影条件の如何にかかわらず、継続して抽出され るものが含まれている. 特徴ベクトルについては、撮影条件変化に伴って大きく変化 するベクトルがあれば、変化が少ないベクトルがある.本研究では、撮影条件変化があ る中で抽出に継続性があり、特徴ベクトルの変化率が少ない画像特徴点のことを、抽出 に恒常性がある画像特徴点と呼ぶことにする.恒常性に乏しい画像特徴点を減らすこと で、識別器へ入力されるデータに大きな変化が現れなくなるため、物体検出の成功率を 向上させることができる. 顕著性マップは、入力画像において視覚的注意を引き起こす性質の強さを表現するこ とから、特徴の色彩的な目立ち易さを示すと捉えることができる。色彩的に目立つ局所 領域であれば、輝度勾配が大きいと捉えられる。そのため本研究では、恒常的に抽出さ れる画像特徴点が、高い顕著性を有する局所領域で得られやすいという仮説をたてる。

1.2 研究目的

本研究における1つ目の目的は,図1-4,1-5を例とした空間周波数変化を伴う撮影条 件変化に対して顕著性マップを安定させることである.これにより,顕著性マップが撮 影条件に左右されて特徴選択の結果が変化するのを防ぐことが可能になる.

2 つ目の目的は、変化する撮影条件に対して恒常的に抽出される画像特徴点を取捨選 択することである.

屋外の環境下において、変化する撮影条件に頑健な方法により、コンピュータを用い て対象物の検出を行うことは望まれている課題の1つである.提案する顕著性マップの 用途は、移動ロボットによる物体認識である.図1-15 に、物体認識の一般的な手順と 本研究の位置づけ説明する.物体認識用のシステムを構築するために最初に行うことは、 対象物として認識させたい物体のデータベース構築することである.このデータベース の表現方法は、Bag-of-Visual Word による表現[46][47]や、共起行列の表現[48][49]、3 次 元モデルの表現[50]、特徴同士のコンテクストなど[51][52]が提案されている.その後、 新たに入力される画像がデータベースの形式に合うように変換されることで、識別器に よる物体認識処理が可能な体制になる.図1-16 は、図1-15 の内、画像特徴点の取捨選 択をする工程を詳細に示した図である.

本研究では、データベース構築時や画像の表現形式変更の前処理用として図 1-15, 16 に赤枠の過程を設けることで、抽出する画像特徴点の取捨選択を行うための顕著性マッ プを提案する.図 1-17 下に画像特徴点の取捨選択を行う過程を示す.この図によると 取捨選択される画像特徴点は、特徴点抽出器が撮影条件変化から受ける要因(悪影響(1) と表記)、及び顕著性マップが撮影条件変化から受ける要因(悪影響(2)と表記)の影響 を受けることを意味する.顕著性マップは悪影響(1)を緩和するように働きかけること が可能である.しかし、画像特徴点の取捨選択過程が受ける撮影条件変化の影響を低減 するには、悪影響(2)の緩和も必要となる.顕著性マップを用いて画像特徴点の取捨選択 (図1-16)を行うには、顕著性マップの閾値処理を行い、この結果を基に特徴点の取捨選 択を決める必要がある.しかし、撮影条件が変化することで顕著性に揺らぎが発生する と、取捨選択の決定にも曖昧さが生じ、識別器が対象物を正常に認識できなくなる問題 につながる.そのため、撮影条件が変動する環境においても、顕著性のばらつきが生じ ないようにするための工夫が必要である.従って、この悪影響(1)及び(2)の両方を緩和 することが望ましい.この2種類の悪影響を緩和しながら目標の画像特徴点を取捨選択 するには、局所領域における空間周波数成分に順応するようにフィルタ特性を変化させ る必要がある.

強調されるべきものは,抽出に恒常性がある画像特徴点である.この画像特徴点を中 心とした近傍領域では,観測される空間周波数成分が不特定であるため,フィルタの設 定によっては対象物の認識に必要な画像特徴点が選ばれない場合がある.これを防ぐた めには,この近傍領域の空間周波数成分に見合うようなフィルタ特性の変更も同様に必 要となる.但し,撮影条件変化に対し,顕著性の変動が緩和されたとしても,画像特徴 点の減少が深刻になり不足する場合が想定される.この問題に備えて,抽出条件を自動 的に調整する機構が別途必要となるが,本研究ではこの戦略に関する議論を省略する.

入力画像のサイズが $W_{IM} \times H_{IM}$ [ii xel]であり,顕著性マップにおいて閾値以上の応答 を示す範囲が全体の r_{Sal} [%]である場合は, $r_{Sal}W_{IM}H_{IM}$ /100[iix el]の範囲で画像特徴点を 取捨選択すればよい.

21

1.3 論文の構成

論文の構成は,第1章では,顕著性マップが登場した背景,顕著性マップの導入例, 研究動向,及び,研究目的について説明する.第2章では,提案する顕著性マップの説 明,第3章は,提案手法の検証実験であり,縞模様のパターンで帯幅が変化した場合や, 図形の大きさを変化した場合において,顕著性がどのように変化するのかを調べる内容 である.第4章は,顕著性と画像特徴点抽出の恒常性との関係性を評価する実験を行う. また,この関係性の強さについて,提案手法と従来手法の顕著性マップで評価する.第 5章が結論となる.


```
(a)照明環境変化
```


(b)対象物に対する相対的な運動(並進及び回転)

図 1-3 移動ロボットの物体認識における運動パターン例

(上:撮影画像,下:空間周波数スペクトル)

(a)異なる対象物のサイズ
 (b)レンズの焦点ズレ
 図 1-5 1 枚の画像の中で複数の対象物が観測される例

図 1-6 Itti らによる顕著性マップの生成過程

図 1-7 ガボールフィルタの構成

図 1-8 ポップアウトを実現するための正規化

(b)ピラミッドの構造

図 1-10 VOCUS2 の構成図

(a)輝度勾配の例

(b)特徴ベクトル表現例

図 1-11 SURF 特徴点の勾配ベクトル計算例

(a)原画像

(b)原画像に回転,縮小,並進移動を施したもの

(c)画像特徴点マッチングの様子図 1-12 SURF 特徴点のマッチング

(a)原画像

(b)輝度変更(50[%])

(d)焦点ズレ($\sigma_G = 5.0$)

図 1-13 撮影条件変更に伴う画像特徴点抽出数の変化(SURF)

(a)原画像

(d)焦点ズレ($\sigma_G = 5.0$)

図 1-14 撮影条件変更に伴う画像特徴点抽出数の変化(BRISK)

(c)サイズ変更(50[%])

図 1-15 物体認識過程と本研究の位置づけ

図 1-16 画像特徴点取捨選択の過程

(a)画像特徵点抽出

(b)顕著性マップ生成 (c)取捨選択された画像特徴点
 図 1-17 顕著性マップによる画像特徴点取捨選択

第2章 提案する 顕著性マップ

第2章 顕著性マップの提案

2.1 提案する顕著性マップの概要

本研究では、空間周波数変化の影響を緩和するために、VOCUS2[25]の思想を発展さ せ、*o_cとo_s*の自動調整を行う.図 2-1 に提案手法であるフィルタの自動調整のアプロー チを示す.入力画像*I_L*(輝度成分を例に挙げる)の空間周波数が変更される前の段階を図 2-1(a)に示す.顕著性マップの生成は、2 種類の低域通過フィルタの応答を差分するこ とに相当するため、帯域通過フィルタの演算と同様である.図 2-1(a)は、高周波側の低 域通過フィルタのみ*I_L*に対する応答を示す状態である.

そこで対象物の観測サイズが縮小し,画像の空間周波数が上昇した場合(図 2-1(b)), 2 種類の低域通過フィルタの応答レベルは共に低下し,帯域通過フィルタの応答レベル も低下する.しかし,フィルタの利得が入力画像の空間周波数成分に応じて自動で変更 できるようになれば(図 2-1(c)), *M_{sal}*が空間周波数変化の影響を受けるのを防ぐこと ができる.このフィルタ調整のアプローチにより,提案手法では,任意の高周波成分と 低周波成分のコントラストを最大化する工程を採用する.

図 2-2 に提案手法の処理に関する流れ図を示す.提案手法では,特徴統合理論[21]に 倣い,画像の成分を輝度成分,色成分,方位成分に分配した上で,成分毎に独立した画 像処理を実行する.

このうち輝度成分と色成分では、2種類のボックスフィルタ(低周波成分及び、高周 波成分生成用)が準備されている.低周波成分は、積分画像上でボックスフィルタのサ イズを拡大することで得られる.高周波成分を得るには、ボックスフィルタを縮小すれ ばよい.この周波数成分同士のコントラストは、差分画像の画素値を計算することで得 られる.2種類のボックスフィルタは、差分画像の画素値が最大値を満たすように調節 される.

33

方位成分では、4 種類の Haar-Like[53]フィルタが準備されている. 輝度成分を入力 として Haar-Like フィルタによる畳み込み演算を実行すれば、輝度勾配の大きさが方 位毎に求まる. 方位成分の差分画像を計算するには、輝度成分の演算過程で定まった 2 種類(高周波用と低周波用)のボックスフィルタのサイズを Haar-Like フィルタのサ イズとして流用する.

輝度成分の差分画像はマップ M_I と等しく、2つの色成分(赤・緑、黄色・青)の差分画像を統合したものはマップ M_C と等しく、4方位分の差分画像を統合したものはマップ マップ M_O と等しくなる.この3種類のマップを合成すれば顕著性マップが得られる.

2.2 入力画像の分解

提案手法では、入力画像を輝度、色、方位特徴に分配する過程において、カラー画像 をRGB 色相系から CIELab 色相系に変換する.この変換で得られる成分は、輝度成分 I_L と色成分 $I_{cl} \in \{I_a, I_b\}$ である. I_a は赤・緑のコントラスト、 I_b は黄色・青のコントラスト を示す.カラー画像を CIELab 色相系に変換する理由は、 I_a, I_b がそのまま補色同士のコ ントラストを示す点で、Itti の手法で挙げられていた補色成分の計算が簡素化できるた めである.

方位成分 I_{θ} については、 I_L を Haar-Like フィルタ F_{GF} で畳込むことで得られる.本研 究では、Itti 法で使用されているガボールフィルタを、積分画像と Haar-Like フィルタ [53]を組合わせることで簡略化する. Haar-Like フィルタの形状(後述)は、方位 4 種類 分用意されているので、演算の際は、方位 θ に対応する F_{GF} を選べばよい.

2.3積分画像の導入

Viola らは顔認識の研究において、顔の局所的な特徴を抽出するために、積分画像と Haar-Like フィルタを用いた[53]. S. Frintrop は、顕著性マップの生成過程において、 入力画像の高周波成分と低周波成分の生成を高速化するために、積分画像を用いてボッ クスフィルタの演算をすることを提案した[54].本研究で用いる積分画像は2種類あり、 *I*_{INT}、*I*_{RINT}で示される.

このうちの I_{INT} は、式(2-1)に従い、入力画像 $I \in \{I_L, I_a, I_b\}$ の画素値を画像の原点(0,0) から任意の座標 $p_p = (x, y)$ (図 2-3(a)において緑の長方形で囲まれる範囲)まで足し合わ せることで得られる画像のことである.本文献では、 I_{INT} を積分画像(通常型)と称す.

$$I_{INT}(x,y) = \sum_{y'=0}^{y'=y} \sum_{x'=0}^{x'=x} I(x',y')$$
(2-1)

積分画像(通常型)は、フィルタサイズの拡大によって画像の平滑化に必要な演算量が 増加するのを防ぐことができるため、ボックスフィルタによる画像の平滑化処理を高速 に行うために有効である.積分画像(通常型)を用いた平滑化処理の詳細を 2.4.1 節に 述べる.

一方で I_{RINT} は、 I_{INT} における入力画像の積算範囲を図 2-3(a)から(b)に変更することに よって得られる積分画像であり、45[deg]の傾きを持つ Haar-Like フィルタで特徴抽出 を行うために、Lienhart らによって提案された積分画像である[55].本文献では、 I_{RINT} を積分画像(回転型)と称す、 $I_{RINT}(x, y)$ を得るには、長方形を 45[deg]傾けた図形と、 画像の短辺、長辺に囲まれる範囲(緑色の領域)で Iの画素を足し合わせることによっ て計算することができる(式(2-2))[55].

$$I_{RINT}(x,y) = \sum_{y'=y,y'=y-|x-x'|} I(x',y')$$
(2-2)

輝度成分,及び,色成分(赤-緑),(黄色-青)において,高周波成分と低周波成分を生成す るために用いる積分画像は通常型であり,それぞれ*I*_{INT,L},*I*_{INT,a}*F*_{INT,b}で示す.

方位成分の計算に用いる Haar-Like フィルタ $F_H(\theta)$, $F_{RH}(\theta)$ は, 図 2-4 のように白と 黒の 3 つの長方形で構成されている. そのため積分画像は, この長方形で囲まれる範囲 で平均画素値を求めるために用いられる. 但し, 積分画像 I_{INT} , I_{RINT} の選択方法につい ては, 方位 θ に応じて判断しなければならない. θ =0,90[deg]の場合, $F_H(\theta)$ の応答を計 算するために用いるべき積分画像は I_{INT} であるが, θ =45,135[deg]の場合, $F_{RH}(\theta)$ の応 答を計算するのに必要な積分画像は I_{RINT} である.

2.4 高周波成分と低周波成分

 I_L, I_a, I_b の各チャネルにおいて、ボックスフィルタ $F_B \in \{F_{Bs}, F_{Bc}\}$ による低周波成分 I_s , 高周波成分 I_c を計算するため、積分画像 $I_{INT} \in \{I_{INT,L}, I_{INT,a}, F_{INT,b}\}$ を使用する.高周波 の $F_B \delta F_{Bc}$,低周波用が F_{Bs} である.

 F_{Bs} , F_{Bc} のサイズ (それぞれ $W_{Bs} \times H_{Bs}$, $W_{Bc} \times H_{Bc}$ とし, $W_{Bs} = H_{Bs}$ かつ $W_{Bc} = H_{Bc}$ か つ $W_{Bs} > W_{Bc}$ を満たす)は、差分画像 $I_{cs} \in \{I_{Lcs}, I_{acs}, I_{bcs}\}$ のコントラストが最大化 (2.5 節で説明)されるように選択される.なお、この最大化は輝度特徴と色特徴だけで実行 することにする.方位特徴については方位が4つあるため、4方位全てにおいて I_{cs} のコ ントラストを最大化すると演算量の増大が深刻になる.これは、画像の中で画素を移動 するたびに F_{Bs} , F_{Bc} の調整を繰り返すためである.また、 I_{Lcs} の画素値を最大化したとこ ろで、 $I_{Lc} \geq I_{Ls}$ のコントラストが最大化されるので、輝度勾配も同様に最大化されたと見 なす.そのため、方位特徴で差分画像 $I_{\theta_{cs}}$ を求めるには、輝度特徴における I_{Lcs} の画素値 を最大化することで得られた $\widehat{W}_{Bs} \times \widehat{H}_{Bs}$ 、 $\widehat{W}_{Bc} \times \widehat{H}_{Bc}$ を、それぞれ、高周波、低周波用の Haar-Like フィルタ $F_{H}(\theta)$ ($\theta = 0,90[deg]$)、 $F_{RH}(\theta)$ ($\theta = 45,135[deg]$)の大きさとする. すなわち、 $\widehat{W}_{Bs} \times \widehat{H}_{Bs}$ 、 $\widehat{W}_{Bc} \times \widehat{H}_{Bc}$ が式(2-3),(2-4)を満たすようにする.

$$\widehat{W_{Bc}} \times \widehat{H_{Bc}} = W_{Hc} \times H_{Hc} \approx W_{RHc} \times H_{RHc}$$
(2-3)

$$\widehat{W}_{Bs} \times \widehat{H}_{Bs} = W_{Hs} \times H_{Hs} \approx W_{RHs} \times H_{RHs} \tag{2-4}$$

2.4.1 高周波·低周波成分生成(輝度·色成分)

高周波成分 I_c ,低周波成分 I_s は,積分画像 I_{INT} を用いたボックスフィルタの演算によって生成される.ボックスフィルタ F_B (サイズ: $W_B \times H_B$)による平滑化画像 $I(F_B, p_p)$ (但し, $I \in \{I_L, I_a, I_b\}$)は, I_{INT} を用いることで式(2-5)-(2-10)に従って計算される.

$$I(F_B, \boldsymbol{p}_p) = I_B = \frac{1}{W_B H_B} \{ I_{INT}(\boldsymbol{p}_C) - I_{INT}(\boldsymbol{p}_D) - I_{INT}(\boldsymbol{p}_B) + I_{INT}(\boldsymbol{p}_A) \}$$
(2-5)

$$\boldsymbol{p}_p = (x, y) \tag{2-6}$$

$$\boldsymbol{p}_A = \left(x - \frac{W_B}{2}, y - \frac{H_B}{2}\right) \tag{2-7}$$

$$\boldsymbol{p}_B = \left(x - \frac{W_B}{2}, y + \frac{H_B}{2}\right) \tag{2-8}$$

$$\boldsymbol{p}_{C} = \left(x + \frac{W_{B}}{2}, y + \frac{H_{B}}{2}\right) \tag{2-9}$$

$$\boldsymbol{p}_D = \left(x + \frac{W_B}{2}, y - \frac{H_B}{2} \right) \tag{2-10}$$

従って、 p_p において平滑化画像 $I_B(I_B \in \{I_c, I_s\})$ の画素値を求めるために必要な演算は、 計 5 回の四則演算である.この演算の内訳は、式(2-5)に沿った 3 回分の加減算と 2 回 分の乗除算であり、これは、積分画像の画素を計 4 点分参照し、この点で囲まれた範囲 における平均輝度を求めることに相当する.この演算回数は、 $W_B \times H_B$ に関わらず一定 となる.2つのボックスフィルタ F_{Bs} 、 F_{Bc} は、局所領域(中心座標、サイズ $W_{Pmax} \times H_{Pmax})$ のサイズを上限とし、 $p_p = (x, y)$ を中心として拡大縮小がなされるようになっている (図 2-6). I_c 、 I_s を計算するには、 $W_B \times H_B = W_{Bs} \times H_{Bs}$, $W_{Bc} \times H_{Bc}$ とした上で、式(2-5)-(2-10)に従った演算をすればよい. 但し、 F_B 拡大における最小ステップ幅は 6[Pixel] とする.これは、後述の F_H 、 F_{RH} が3つの等間隔なボックスフィルタで構成されている Haar-Like フィルタであり、この間隔の比率を維持したまま F_H 、 F_{RH} を拡大するには、 $W_H \times H_H$, $W_{RH} \times H_{RH}$ を縦横 6[Pixel]ずつ拡大する必要があるためである.

2.4.2 高周波·低周波成分生成(方位成分)

方位成分の高周波・低周波成分を生成するには、輝度成分における差分画像の画素値の最大化(後述)で定まった*F_{Bs}*、*F_{Bc}のサイズ*に最も近いサイズの Haar-Like フィルタ

(図 2-4) を使用する. ここで,最も近いと述べたのは,45[deg]に傾いた F_{RH} と,傾い ていない F_B の寸法の間には,それぞれを同じピクセル数ずつ拡大したとしても,両者の 間で縦横 2[Pixel]の誤差が発生するためである.この方位成分検出用のフィルタは, Haar-Like フィルタ及び,これを回転させたタイプのフィルタ[54]をそれぞれ拡大縮小 した上で,畳み込み演算することで,任意の周波数成分に対する輝度勾配を計算できる ようにして作ったものである. F_H , F_{RH} に着目すると,全てが3つの長方形 I_1 , I_2 , I_3 で構 成されている.そのため, F_H , F_{RH} の応答を計算するには,この3つの長方形で囲まれ た部分の平均輝度 $\overline{I_1}$, $\overline{I_2}$, $\overline{I_3}$ を求め,この平均値の加減算を行えばよい.

図 2-7 に示すような 4 点で囲まれた長方形 S の平均輝度 *I_{RectS}*を求める場合は,式(2-11),(2-12)に従って次のような計算をする.

$$\overline{I_{RectS}} = \frac{1}{S} \{ I_{INT}(\boldsymbol{p}_C) - I_{INT}(\boldsymbol{p}_D) - I_{INT}(\boldsymbol{p}_B) + I_{INT}(\boldsymbol{p}_A) \}$$
(2-11)

$$\overline{I_{RectS}} = \frac{1}{S} \{ I_{RINT}(\boldsymbol{p}_C) - I_{RINT}(\boldsymbol{p}_D) - I_{RINT}(\boldsymbol{p}_B) + I_{RINT}(\boldsymbol{p}_A) \}$$
(2-12)

従って, F_H , F_{RH} の応答 $I_{\theta}(F_H(\theta, p_p), p_p)$, $I_{\theta}(F_{RH}(\theta, p_p), p_p)$ はそれぞれ, 式(2-13),(2-14) によって求めることができる.

$$\theta = 0,90[deg]の場合は,フィルタF = F_H となるときで,$$
$$I_{\theta}(F_H(\theta, \boldsymbol{p_p}), \boldsymbol{p_p}) = \left|\overline{I_1(\boldsymbol{p_p})} - \frac{1}{2}\overline{I_2(\boldsymbol{p_p})} - \frac{1}{2}\overline{I_3(\boldsymbol{p_p})}\right|_{F=F_H}$$
(2-13)

 $\theta=45,135[deg]$ の場合は, $F=F_{RH}$ となるときで,

$$I_{\theta}(F_{RH}(\theta, \boldsymbol{p}_{\boldsymbol{p}}), \boldsymbol{p}_{\boldsymbol{p}}) = \left|\overline{I_{1}(\boldsymbol{p}_{\boldsymbol{p}})} - \frac{1}{2}\overline{I_{2}(\boldsymbol{p}_{\boldsymbol{p}})} - \frac{1}{2}\overline{I_{3}(\boldsymbol{p}_{\boldsymbol{p}})}\right|_{F=F_{RH}}$$
(2-14)

として計算される.

2.5 差分画像の最大化

差分画像の最大化は、局所領域(サイズ $W_{Pmax} \times H_{Pmax}$)の中心点 $p_p \& 1$ [Pixel]移動す るたびに、この領域における高周波成分と低周波成分のコントラストを最大化するよう な、局所順応型の演算を意味する.これは、幅 W_{Pmax} を限度にサイズが可変となるよう な、幅が W_{Bs} のボックスフィルタ F_{Bs} 、及び幅 W_{Bc} のボックスフィルタ F_{Bc} によって可能に なる(但し、 $W_{Bs} = H_{Bs}$ 、 $W_{Bc} = H_{Bc} \&$ する.). $p_p = (x,y)$ における I_{cs} の画素値は $I_{cs}(x,y)$ で示され、 W_{Bs} 、 W_{Bc} は、 p_p が移動するたびに変化する.よって、 W_{Bs} は $W_{Bs}(p_p)$)に、 W_{Bc} は $W_{Bc}(p_p)$ に書き換えられる.差分画像の最大化は、 p_p が移動するたびに繰り返される 演算であるため、コストが増大しがちである.本研究では、高・低周波成分を生成する ために[53]で用いられた積分画像を導入することにした.

計算手順について説明すると、まず $I_{cs}(x,y)$ の最大化は、 $W_{Bs}(p_p)$ が可変で $W_{Bc}(p_p)$ が $W_{Bc,0}$ に固定された状態で行われる. $I_{cs}(x,y)$ の最大化によって求まる $W_{Bs}(p_p)$ は、 $\widehat{W_{Bs}(p_p)}$ で示される.その後 $W_{Bs}(p_p)=W_{Bs}(p_p)$ に固定された状態で、 $W_{Bc}(p_p)$ を可変とし た $I_{cs}(x,y)$ の最大化が行われる.この最大化で得られる $W_{Bc}(p_p)$ は、 $W_{Bc}(p_p)$ で示される.

図 2-8 と式(2-15)は, $I_{cs}(x,y)$ 最大化の過程を示す.この最大化を行うには, I_{cs} のサン プル点が $W_{Bs}(p_p) \in [W_{Bc,0}, W_{Pmax}]$ の区間において計 N_{smp} 個得られるように, $W_{Bs}(p_p)$ を ΔW_{Bs} ずつ増加させる.その後, $I_{cs}(x,y)$ のサンプル点の中で最大値をとるものを探索し, この最大値と両サンプル点の区間(図 2-8 左のピンク枠で囲まれた範囲)を, $I_{cs}(p_p)$ の 最大値を探索するための新たな区間とする.ピンク枠で囲まれた区間は, $W_{Bs}(p_p) = W_{Bs,n}$ を中央とした, $W_{Bs}(p_p) \in [W_{Bs,n-1}, W_{Bs,n+1}]$ の区間である.ピンク枠の 区間において $I_{cs}(p_p)$ のサンプリングが改めて実施され,再度 $I_{cs}(p_p)$ の最大値が見つか れば, $I_{cs}(p_p)$ の最大値を探索する $W_{Bs}(p_p)$ の範囲がピンク枠から青枠へ狭まる.

サンプリングの為に $W_{Bs}(p_p)$ の値域が定められ、この値域に従って $I_{cs}(p_p)$ のサンプリングがなされ、得られたサンプル値の中から $I_{cs}(p_p)$ の最大値が探索される.この一連の

流れは、計 N_{rep} 回繰り返される.前述の演算により、 $I_{cs}(p_p)$ が最大を満たすときの $W_{Bs}(p_p)$ は $\widehat{W}_{Bs}(p_p)$ で示される、式(2-15)に $\widehat{W}_{Bs}(p_p)$ が定まる過程を示す.但し、 $I \in \{I_L, I_a, I_b\}$ である.

$$\widehat{W_{Bs}(\boldsymbol{p}_{p})} = \arg \max_{W_{Bs}(\boldsymbol{p}_{p})} I_{cs}(\boldsymbol{p}_{p})$$

$$= \arg \max_{W_{Bs}(\boldsymbol{p}_{p})} \left| I_{c}(\boldsymbol{p}_{p}) - I_{s}(\boldsymbol{p}_{p}) \right|$$

$$= \arg \max_{W_{Bs}(\boldsymbol{p}_{p})} \left| I(F_{c}(\boldsymbol{p}_{p}), \boldsymbol{p}_{p}) - I(F_{s}(\boldsymbol{p}_{p}), \boldsymbol{p}_{p}) \right| \qquad (2-15)$$

s.t.
$$W_{Bc}(\boldsymbol{p}_p) = W_{Bc,0} = H_{Bc,0}, W_{Bc}(\boldsymbol{p}_p) = H_{Bc}(\boldsymbol{p}_p), W_{Bs}(\boldsymbol{p}_p) = H_{Bs}(\boldsymbol{p}_p)$$

次に $I_{cs}(p_p)$ の最大値は、 $W_{Bc}(p_p)$ が可変の状態で、更新される.この時、 $W_{Bs}(p_p) = W_{Bs}(p_p)$ に固定されている. W_{Bc} 可変の場合も同様に、サンプリング点を計 N_{smp} 個取得し、 $I_{cs}(p_p)$ を最大化する $W_{Bc}(p_p)$ を探索する.これを満たす $W_{Bc}(p_p)$ は、 $W_{Bc}(p_p)$ で示される.この演算過程は式(2-16)に示され、式(2-15)と同様に計 N_{rep} 回繰り返される.最大化された $I_{cs}(p_p)$ を $I_{cs}(p_p)$ とする.

$$\widehat{W_{Bc}(\boldsymbol{p}_p)} = \arg \max_{W_{Bc}(\boldsymbol{p}_p)} I_{cs}(\boldsymbol{p}_p)$$

$$= \arg \max_{W_{Bc}(\boldsymbol{p}_p)} |I_c(\boldsymbol{p}_p) - I_s(\boldsymbol{p}_p)|$$

$$= \arg \max_{W_{Bc}(\boldsymbol{p}_p)} |I(F_c(\boldsymbol{p}_p), \boldsymbol{p}_p) - I(F_s(\boldsymbol{p}_p), \boldsymbol{p}_p)| \qquad (2-16)$$

s.t. $W_{Bs}(\boldsymbol{p}_p) = W_{Bs}(\boldsymbol{p}_p) = H_{Bs}(\boldsymbol{p}_p), \quad W_{Bc}(\boldsymbol{p}_p) = H_{Bc}(\boldsymbol{p}_p), \quad W_{Bs}(\boldsymbol{p}_p) = H_{Bs}(\boldsymbol{p}_p)$ (2-17)

こうして、 $I_{cs}(p_p)$ が最大を満たすように、 $W_{Bs} \times H_{Bs}, W_{Bc} \times H_{Bc}$ 選択する.

2.6 顕著性マップの生成

2.5 節において生成した差分画像 $I_{Lcs}(p_p), I_{acs}(p_p), I_{bcs}(p_p)$ (但し, $I_{cs}(p_p) \in \{I_{Lcs}(p_p), I_{acs}(p_p), I_{bcs}(p_p)\}$) は, $M_I(p_p) = I_{Lcs}(p_p), M_{Ca}(p_p) = I_{acs}(p_p),$ $M_{cb}(p_p) = I_{bcs}(p_p)$ によって輝度成分のマップ M_I, M_{Ca}, M_{cb} に反映される. -方, 方位成分のマップ $M_{0_{-}\theta}$ は, 式(2-18)~(2-21)に沿った演算により得ることがで きる. $F_H(\theta), F_{RH}(\theta)$ のサイズはそれぞれ式(2-19),(2-21)に従う. $I_{\theta} \in \{I_0, I_{45}, I_{90}, I_{135}\}$ で ある.

i) *θ*=0, 90[deg]の場合

$$M_{O_{-\theta}}(\boldsymbol{p}_{p}) = I_{\theta_{-cs}}(\boldsymbol{p}_{p}) = \left| I_{\theta_{-c}}(\boldsymbol{p}_{p}) - I_{\theta_{-s}}(\boldsymbol{p}_{p}) \right|$$
$$= \left| I_{\theta}(F_{Hc}(\theta, \boldsymbol{p}_{p}), \boldsymbol{p}_{p}) - I_{\theta}(F_{Hs}(\theta, \boldsymbol{p}_{p}), \boldsymbol{p}_{p}) \right|$$
(2-18)

s.t.
$$W_{Hc} = W_{Bc}(\hat{p}_p), W_{Hs} = W_{Bs}(\hat{p}_p), W_{Hc} = H_{Hc}, W_{Hs} = H_{Hs}$$
 (2-19)

ii) *θ*=45, 135[deg]の場合

$$M_{O_{-\theta}}(\boldsymbol{p}_{p}) = I_{\theta_{-cs}}(\boldsymbol{p}_{p}) = \left| I_{\theta_{-c}}(\boldsymbol{p}_{p}) - I_{\theta_{-s}}(\boldsymbol{p}_{p}) \right|$$
$$= \left| I_{\theta}(F_{RHc}(\theta, \boldsymbol{p}_{p}), \boldsymbol{p}_{p}) - I_{\theta}(F_{RHs}(\theta, \boldsymbol{p}_{p}), \boldsymbol{p}_{p}) \right|$$
(2-20)

s.t.
$$W_{RHc} \approx W_{Bc}(\overline{p}_p), W_{RHs} \approx W_{Bs}(\overline{p}_p), W_{RHc} = H_{RHc}, W_{RHs} = H_{RHs}$$
 (2-21)

(2-15)~(2-21)の演算が全ての画素 p_p に対して繰り返されると、 M_I , M_{Ca} , M_{Cb} , $\forall M_{0_{-}\theta}$ が得られる.そしてマップ M_C (色), M_0 (方位)は、式(2-22)~(2-23)に従った M_f の重み付け及び加算により得られる.マップ合成のための関数 f_{mix} , g_{mix} は、 任意設定である.

$$M_C = f_{mix}(M_{Ca}, M_{Cb}) \tag{2-22}$$

$$M_0 = g_{mix} (M_{0_0}, M_{0_45}, M_{0_90}, M_{0_{135}})$$
(2-23)

マップ M_I, M_C, M_O が求まったところで、式(2·24)に示すように顕著性マップ M_{Sal} は、こ関数 h_{mix} によって M_I, M_C, M_O を統合することで、が得られる.

$$M_{Sal} = h_{mix}(M_I, M_C, M_O) \tag{2-24}$$

h_{mix}については、任意設定とする.

2.7 まとめ

顕著性マップ生成において使用されるフィルタは,高周波成分用と低周波成分があり, それぞれのパラメータを変更することで周波数特性が変化する.これに伴い,顕著性マ ップにも変化が現れる.また,フィルタの特性が固定であっても,画像の撮影条件に変 化が生じれば,空間周波数にも変化が現れる場合があり,同じ対象物に対して顕著性の 応答が変わる要因となる.例えば,カメラを持つ移動ロボットが運動することで,観測 される対象物のサイズに変化が表れる.これに伴い,画像の空間周波数に変化が表れ, 顕著性にも変化が現れかねない.また,画像に局所領域を設け,これを走査することに よっても,局所領域内で観測される空間周波数成分に変化が表れる.

そこで本研究では、空間周波数変化による顕著性への影響を打ち消すべく、高周波成 分と低周波成分の差分が最大になるようにフィルタを動的に調整することで、顕著性の 応答変化が相殺されるようにする手法を提案した.

図 2-2 顕著性マップの生成工程(提案手法)

図 2-4 Haar-Like フィルタをベースとしたガボールフィルタ $F_H(0,90[\text{deg}] \oplus), F_{RH}(45,135[\text{deg}] \oplus)$

図 2-6 F_{Bc}, F_{Bs}の配置

(a) *I*_{INT}の場合 (b) *I*_{RINT}の場合

図 2-7 長方形 Sの平均輝度を求めるために参照するべき積分画像の画素

第3章 顕著性マップを用いた シミュレーション実験

第3章 顕著性マップを用いたシミュレーション実験

3.1 実験目的

Itti 法や VOCUS2 によるアルゴリズムにおいて,顕著性マップは,入力画像の空間周 波数とガウシアンフィルタの分散との組み合わせによって決まるようになっている. 本研究では,入力画像の局所領域(サイズW_{Pmax} × H_{Pmax}[Pixel])における空間周波成 分に応じ,ボックスフィルタのパラメータを動的に変化させることで,フィルタと空間 周波数の組み合わせによらない顕著性マップ生成を目指している.

実験の趣旨を示す図を図 3-1 に示す.本実験の 1 つ目の目的は、VOCUS2 において、 空間周波数 f_b , σ_c , σ_s 及び M_{Sal} の関係を確かめることである.すなわち、 f_b すなわち、 W_b)や σ_c , σ_s が変化すると、 M_{Sal} に如何なる変化が現れるかを調べる 図 3-1).提案手法 において、 $W_{Pmax} \times H_{Pmax}$ が変化した場合に、 M_{Sal} が受ける影響についても調べる.

2 つ目の目的は、提案する M_{Sal} の生成法が、 f_b の変化を相殺できるか否かを確かめる ことである.この2 つ目の目的を達成するため、3 種類の縞模様の入力画像を準備する. 縞模様の帯幅は W_b [Pixel]であり、 $f_b \propto 1/(2W_b)$ を満たす.第1、2 種類目の縞模様はそ れぞれ縦縞と斜め縞であり、共に f_b が固定である.この縞模様は、1 枚の画像の中に複 数の対象物が共通のサイズで写ることを想定して作ったものである.また、縞模様の方 位を変えることで、入力画像に写る対象物が傾いていることを想定する.

第3種類目は、Wbが1枚の画像の中で変化する例である.第1,2種類目の入力画像では、顕著性マップの応答がfbに関わらず共通の値域で正規化されるため、fbが異なることによって顕著性に違いが表れなくなる恐れがある.第3種類目の画像ではこれを避けるために、1枚の画像の中でfbを変化させ、顕著性が受ける影響を確かめる.カメラによって撮影される画像の中で、サイズ異なる複数の対象物が観測される場合は、これを空間周波数成分が局所領域毎に変化する画像としてとらえることができる.サイズが異なる複数の対象物がカメラ画像の中で観測される現象を第3種類目の画像で表現する.

50

3.2 実験手法

3.2.1 使用する入力画像

この実験では、図 3-2 に示すように、a)縦縞、b)斜め縞 c) W_b が変化する縦縞の入力 画像を使用する.図 3-2 a) b)の場合について説明すると、帯幅は縦縞、斜め縞共に W_b であり、縞の方位を縦方向、斜め方向と切り替えることによって、 M_{Sal} にムラが生じ ていないかどうかを確認する.画像の幅 W_{IM} [Pixel]と高さ H_{IM} [Pixel]は等しく、 W_{IM} が W_b の奇数倍を満たす.これは、 W_{IM} が W_b の偶数倍となる入力画像を生成した時、VOCUS2 による顕著性マップ生成過程において、中央の縞模様のパターンが消失することがあっ たためである 図 3-3).この現象を防ぐことで、 W_b の奇数倍となる W_{IM} にすることによ って、応答変化が左右対称である顕著性マップが得られることを目指した. W_b は2の べき乗倍に変化するようになっている. W_{IM} が W_b の奇数倍となったことや、画像の対角 線の長さが $\sqrt{2}W_{IM}$ となる関係で、 W_{IM} は W_b と縞模様の方向によって表 3-1 に従って変化 する.図 3-2 c)の場合について説明すると、サイズは $W_{IM} \times H_{IM}$ =2560× 640 [Pixel]であり、 W_b は、 $W_{IM}/32$ =20[Pixel])、 $W_{IM}/16$ =40[Pixel])、 $W_{IM}/8$ =80[Pixel])、 $W_{IM}/4$ =160[Pixel]) と 4 段階の変化する.

3.2.2 設定パラメータとその値域

実験における設定パラメータとその値域を、表 3-2(縦縞と斜め縞を入力画像とした 場合)、表 3-3(*W*^bが可変となる縦縞を入力画像とした場合)に示す.同表の*W*^bは、*W*^{IM} を基準とした倍数の表示で示されている.VOCUS2では、第1節に述べたように低周波 成分と高周波成分に対応するガウシアンフィルタについて、パラメータの比率*σ*_c/*σ*_sを 任意に設定することが可能であり、この比率を変更することで、顕著性マップを調節す ることができる 図 3-4).VOCUS2の条件1のように*σ*_cの比率を小さくすれば、高周波 成分が強調された顕著性マップが得られ、エッジが表れやすくなる.そして条件2のよ うに、 σ_c の比率を大きくすれば、低周波成分が強調された顕著性マップが得られ、対象物全体が強調される傾向になる.

Itti の手法では,表 3-2,3,図 3-5 で示すように,高周波成分側と低周波成分側のスケー ル c,s を変化させながら差分画像を生成し,統合することで,顕著性マップを生成する. この際,色成分のマップ \bar{c} ,方位成分のマップ \bar{o} の計算においても,c,sの定義域が \bar{l} と 同等になる. Itti 法の条件 1 では,c,sの定義域が原著論文通り 図 3-5 a))であり,条件 2 では,c とsの定義域がピラミッドの高周波側へ 図 3-5 b))移る.条件 3 図 3-5 c)では, cの定義域が条件 1 から変更なしであるが,c とsのスケール差が狭まる設定である. 実験用に用いる VOCUS2 や Itti 法のソースコードは,それぞれ[56],[57]より入手され たものを使用する.

提案手法では図 3-6 に示すように、3 種類の条件を用意する.条件 1 (図 3-6 a)) で は、 $W_{Pmax} = W_{IM}/4$,条件 2、3 (図 3-6 b)) では $W_{IM} = W_{IM}/2$ となる.条件 2 では M_0 が 生成されず、条件 3 では M_0 が生成されて M_{Sal} 生成時に合成される. W_{Pmax} が変更され ると、差分画像の差分をサンプリングする範囲とサンプリングのステップに変化が表れ る. W_{Pmax} を変更することで、 M_{Sal} が受ける影響を確かめる.また、方位特徴の特徴マ ップ M_0 を用意しない例でも M_{Sal} の評価を行う.

各種マップの正規化法

1) VOCUS2 の場合

各種マップ F_1^f , F_2^f , C^I , C^{RG} , C^{BY} が正規化される過程を式(3-1),(3-2)に示す.

$$f_{fuse} = \frac{1}{2} \left(F_1^f + F_2^f \right) \tag{3-1}$$

$$g_{fuse} = \frac{1}{3} (C^{I} + C^{RG} + C^{BY})$$
(3-2)

2) 提案手法の場合

提案手法における特徴マップの正規化については, Mode1 を使用する. Mode1 は, 各特徴(2 種類の色成分, 4 種類の方位成分・3 種類の特徴マップ)について, 差分画像の 係数を等しくするという考え方に基づく.

Itti 法[9][10]では、特徴マップ $M_f \in \{M_I, M_C, M_0\}$ を求める場合、任意の M_f を共通の定 義域へ正規化する処理がなされる.しかし、この演算は、本来であれば狭い I_{cs} の振幅も 同様に共通の定義域へ広げる処理となる.従って、Mode1の演算ではこの正規化を省 略する.その代わり、方位成分における各 $w_{0,\theta}$ 、色成分における各 w_{cc} 、輝度、色、方 位成分における各 w_f は均等に割り振られる.方位成分の係数 $\{w_{0,0}, w_{0,45}, w_{0,90}, w_{0,135}\}$ の各 $w_{0,\theta}$ 、 $\{w_{ca}, w_{cb}\}$ の各 w_{cc} 、 $\{w_I, w_C, w_0\}$ の各 w_f はそれぞれ等しくなる(式(3-3)-(3-8)). なお、提案手法における正規化は式(3-8)に示すように、 M_I, M_C, M_0 を合成したマップに 対してのみ[0, 255]を示すような正規化を関数 f_{Norm} により行う.

$$w_{0_0} = w_{0_45} = w_{0_90} = w_{0_{135}}$$
 3-3)

$$w_I = w_C = w_O \tag{3-5}$$

$$M_{C} = f_{mix}(M_{Ca}, M_{Cb}) = \frac{1}{2}(M_{Ca} + M_{Cb})$$
3-6)

$$M_{O} = g_{mix}(M_{Ca}, M_{Cb}) = \frac{1}{4} \left(M_{O_{-0}} + M_{O_{-45}} + M_{O_{-90}} + M_{O_{-135}} \right)$$
3-7)

$$M_{Sal} = h_{mix}(M_I, M_C, M_O) = \frac{1}{3} f_{Norm}(M_I + M_C + M_O)$$
 3-8)

その他の設定

1) Itti 法

SimpSal Itti 法)において,輝度,色,方位のマップ \overline{I} , \overline{O} , \overline{C} を統合する際の平滑化処理 は行わない.
2) VOCUS2

ソースコードの初期条件では,図 3-4 において高周波用と低周波用のそれぞれに用意 されるピラミッド数が $N_p=2$ となっている.また,ピラミッドのスケール数 k=5 である. 実験では,この条件通りに N_p と kを決定する.また,同手法の発展型にあるような領域 分割法は採用せず,考慮するモデルは VOCUS2 Basic[25]である.

3.2.3 評価方法

3.2.3.1 縦縞/斜め縞の場合

図 3-7 に, *M_{sal}*(Ittiと VOCUS2 では *S*)を取得する範囲を赤い実線で示す.式 3-9)-3-11)は、この実線が示している範囲を意味する.

$$y = \frac{W_{IM}}{4}$$
 3-9)

s.t.
$$x \in \mathbb{Z}$$
, $x \in \left[\frac{W_{IM}}{4}, \frac{3W_{IM}}{4}\right]$ 3-11)

ガウシアンフィルタを用いた平滑化では、フィルタの分散σ_Gが大きくなるにつれ、フィ ルタのサイズも大きくなることを注意しなければならない. そのため、図 3-8 a)のよう にフィルタが画像の中で完全に収まる場合もあれば、b)のようにフィルタの中心座標 x、 y)が画像の境界付近に位置していることでフィルタが画像から嵌み出す場合がある. この際、プログラムでは例外処理に入る可能性があるため、M_{sal}の最大値を取得する 範囲に関しては、画像の両端から幅W_{IM}/4以内の範囲を除く.

 M_{sal}(もしくは S) について,空間周波数変化に対する安定性を評価するには、W_b毎

 にM_{sal}最大値を該当領域式 3-11))から抽出し,式 3-12)に従ってM_{sal}の最大値の分散

 σ_{Sal} を計算することにする. すなわち σ_{Sal} は, f_b の変化によって生じる顕著性のばらつき としてみなすことができる. W_b は N 種類あるものとすると, この実験では N=5 である.

$$\sigma_{Sal} = \sqrt{\frac{1}{N} \sum_{W_b \in \{10, 20, 40, 80, 160\}} \left\{ \max_{x} M_{Sal}(x, y) - \overline{M_{Sal}} \right\}^2}$$
 3-12)

 σ_{Sal} が小さい程, M_{Sal} が f_b の変化に対して影響を受けにくくなることを示す.

3.2.3.2 縦縞 (fb可変の場合)

顕著性マップの応答について最大値を取得する範囲は、図 3-9 の赤い実線が描かれ ている範囲 $y = H_{IM}/2$)である.つまり、 f_b の切替わりから見て幅 $W_{IM}/4$ の範囲を除 く.これは、 f_b の替わり目が顕著性のばらつき評価に影響するのを防ぐためである. f_b が切り替わる回数を Nで示すと、この実験では N=4 である.

 f_b が変化することによって生じる顕著性のばらつきについては,顕著性 M_{sal} の最大値の分散 σ_{sal} として評価し,式(3-13)に従って計算する.

$$\sigma_{Sal} = \sqrt{\frac{1}{N} \sum_{W_b \in \{20, 40, 80, 160\}} \left\{ \max_{x} M_{Sal}(x, y) - \overline{M_{Sal}} \right\}^2}$$
 3-13)

 σ_{sal} が小さい程, f_b の変化によって顕著性が影響を受けにくくなることを示す.

3.2.4 編模様の帯幅W_bと空間周波数スペクトル

FFT Fast-Fourier Transform)による演算により、空間座標で表現される画像は、周波数 空間の表現形式に変換される.空間周波数スペクトルは周波数空間で表現され、空間周 波数毎の信号強度がこのスペクトルで表現されている.空間周波数スペクトルの中心点 は直流成分を示す点であり、それ以外の領域が交流成分である.中心から離れる程空間 周波数が高くなる.

縦縞の空間周波数スペクトルは、同図の中心点から左右方向へ離れた地点において、 中心点に対して左右対称に現れる(図 3·10(a)).横縞の空間周波数スペクトルは、中心 点から見て上下方向へ離れた地点において、中心点に対して上下対称に現れる(図 3· 10(b)).図 3-10 c)によると、スペクトルの向きは、縞模様の傾きに依存して変化する(縦 縞の場合、スペクトルは横方向に拡がり、斜め縞の場合は斜め方向に拡がる.).そして、 W_bが狭まることでスペクトルの分布が離散的になる.これは、W_bが短い縞模様である ほど、高周波成分を多く含むことを意味する.

ガボールフィルタの拡大条件

Haar-Like フィルタ $F_H(\theta)$ の演算をするには、図 3-11, 3-12 に示される積分画像 $I_{INT}(\theta = 0,90[deg]$ の場合)および、 $I_{RINT}(\theta = 45,135[deg]$ の場合)を用い、そのうちの赤丸で記された画素値を参照し、領域 I_1, I_2, I_3 の平均輝度を求め、加減算する.

この節において、 $F_H(\theta)$ のサイズ $W_H \times H_H$ 及び、 $F_{RH}(\theta)$ のサイズ $W_{RH} \times H_{RH}$ の決め方つ いて述べる. $F_H(\theta)$ を拡大させる場合は、 I_1, I_2, I_3 の高さと幅が全て等間隔となる条件を 満たし.なおかつ、 $F_H(\theta)$ の中心が定まるようにするため、 H_H, W_H は共に奇数となる条 件をみたす必要がある.ただし、 $F_{RH}(\theta)$ は $F_H(\theta)$ を 45[deg]回転させたフィルタであるた め、 $F_{RH}(\theta)$ と $F_H(\theta)$ の最小幅に違いが表れる.従って、 W_H, H_H の決めるための数式と、 W_{RH}, H_{RH} を決めるための数式はそれぞれ異なる.

1) $\theta = 0,90[deg]$

 F_H を拡大する回数をkとすると、前述の条件を満たす数式は、(3-14)となる.

$$H_H = W_H = 6k + 3 3-14)$$

 H_H, W_H の最小サイズは 3[Pixel]である. H_H, W_H がともに奇数を満たしながら, I_1, I_2, I_3 の 高さと幅を全て等間隔にするためには,最小サイズの 3x3 に対して H_H, W_H の増分は偶数 でなければならない.また,領域が計 3 つあるので, $H_H \ge W_H$ の増分は 6[Pixel]である. 図 3-11 は, $F_H(0)$ を拡大する例である.同図の左側には k=0,右側には k=1 の F_H を示す.

2) $\theta = 45,135[deg]$

 F_{RH} を拡大する回数をkとすると、前述の条件を満たす数式は、(3-15)(3-16)となる.

$$W_{RH} = 6k + 5$$
 3-15)

$$H_{RH} = 6k + 6$$
 3-16)

 I_1, I_2, I_3 のサイズが全て同一であること、及び、 W_{RH} が奇数であることは、 F_{RH} のサイズ 変更に必要な条件である. I_{RINT} のうち赤丸で示された画素が、参照されるべき画素を示 す.式 3-15)を満たす W_{RH} の最小値は 5 であり、 W_{RH} の拡大ステップは 6[Pixel]である. さらに、 F_{RH} は、左右対象かつ上下対象な形状でなければならない(これは F_H も同様である.).これが 3 つ目の条件である.この条件を満足するには、経験上 H_{RH} を 奇数にすることはできなかった. H_{RH} の最小値は 6[Pixel]である.図 3-12 右の F_H (45)は、 図 3-12 左の F_H (45)を拡大した例であり、右と左はそれぞれ k=0, 1 を示す.

ボックスフィルタの拡大条件

W_{BF},*H_{BF}*の計算式 3-17)については, *W_H*,*H_H*に順じ,

$$W_{BF} = H_{BF} = 6k + 3$$
 3-17)

で示される.

3.3 結果と考察

3.3.1 結果

表 3-4 に σ_{sal} の比較結果を示す.最良値を太字で示す.帯の方位に関わらず,提案手法の設定 2 において σ_{sal} が最小となった.しかし,提案手法では,縞の方位が垂直方向から斜めに変わった場合, σ_{sal} が増加傾向にあった.また, W_b が変化する縦縞の例では,VOCUS2 $\sigma_c/\sigma_s=1/10$ と比べ,提案手法を適用した時において, σ_{sal} が大きくなった.

VOCUS2 の場合は、 σ_c/σ_s が小さい程、 σ_{sal} が小さくなった. Itti 法の場合は、cの初期 値が髙周波側へ移動することで σ_{sal} が小さくなった. これは、縞の方位が縦縞、斜め縞、 W_b が変化する縦縞とした場合において、共通に言える結果であった.

3.3.2 各手法における顕著性の比較(縦縞)

3.3.2.1 顕著性マップの分析(縦縞)

W_b= W_{IM}/3=160[Pixel]の縦縞を用いて生成した顕著性マップを図 3-13 に示す.

W_b= W_{IM}/15=40[Pixel]の縦縞を用いて生成した顕著性マップを図 3-14 に示す.

W_b= W_{IM}/63=10[Pixel]の縦縞を用いて生成した顕著性マップを図 3-15 に示す.

 $W_b = W_{IM}/3 = 160$ [Pixel]の縦縞を入力したときに得られた,顕著性マップの波形の比較を 図 3-16 に示す. $W_b = W_{IM}/15 = 40$ [Pixel]の縦縞を入力したときに得られた,顕著性マップ の波形の比較を図 3-17 に示す. $W_b = W_{IM}/63 = 10$ [Pixel] の縦縞を入力したときに得られ た,顕著性マップの波形の比較を図 3-18 に示す.図 3-16~18 に示される波形は, $y = W_{IM}/2$ の直線上で観測される顕著性マップ応答を示したものである.但し,顕著性マ ップの画素値の最大値を参照する区間は図 3-7,8 に従って制限されている.各 W_b の条 件ごとに顕著性マップの特徴を述べる.

顕著性マップの分析(W_b= W_{IM}/3=160[Pixel],図 3-16参照)

1) VOCUS2 の場合

 σ_c/σ_s=1/10の条件 図 3-16 b1))であれば,差分画像の周波数帯域が広がるため、入力 波形の立上がりと立下りの境界付近において、顕著性マップSに鋭いエッジが表れ
 σ_c/σ_s=5/10 図 3-16 b2))の条件であれば、差分画像の周波数帯域が狭まり、入力波 形の帯中央付近 x=250 近辺)において、波形の窪みが小さくなる.

2) Itti 法の場合

高周波側のガウシアンピラミッドのスケールについて, *c* の開始点を文献[9]の通り にした場合(図 3-16 cl): 条件 1, *c* の初期値は 2) や, ピラミッドの下段に移動した場 合(図 3-16 c2): 条件 2, *c* の初期値は 1), *s* の開始点を *c* に対して相対的に狭めた場合 に(図 3-16 c3): 条件 3, *s* の初期値は *c*+1) ついて顕著性マップ *S* の比較を行った. 条 件 1 と 2 の場合,入力波形の帯中央 *x*=250 近辺)において顕著性が高いが,顕著性の振 幅は同程度である.条件 3 (図 3-16 c3))の場合は,入力波形の切替わり位置に高い顕 著性が集中している.

3) 提案手法の場合

提案手法では、高周波用のボックスフィルタサイズ W_{Bs} について、最大拡大範囲 $W_{Pmax}=W_{IM}/4$ までとして、方位のマップ M_0 を加算した場合 条件 1,図 3-16 d1))、 $W_{Pmax}=W_{IM}/2$ まで拡大し、 M_0 を省略した場合 条件 2、図 3-16 d2))、 $W_{Pmax}=W_{IM}/2$ ま ま、 M_0 を加味した場合 条件 3,図 3-16 d3))がある。 $W_{Pmax}=W_{IM}/4$ とした場合、高い顕 著性は帯の切替わり位置に集中していたのに対し、 $W_{Pmax}=W_{IM}/2$ した場合、x=250近 辺 (帯の中央) において、顕著性の上昇が観測された。また、この W_{Pmax} 条件下で M_0 を加算すると、入力波形の切替わり付近よりも x=250 近辺の方が高い顕著性を示し た.

顕著性マップの分析(W_b= W_{IM}/15=40[Pixel],図 3-17参照)

1) VOCUS2 の場合

 σ_c/σ_s =1/10 図 3-17 b1))とした場合は、入力波形の立ち上がりから立下りに至るまでの間に、顕著性の波形において帯が非対称な形にひずんでいる.一方、 σ_c/σ_s =5/10 の場合 図 3-17 b2))は、歪みが抑えられている.しかし、波形の減衰には大きな違いがみられない.

2) Itti 法の場合

この時の*f_b*においては,条件1の場合 図 3-17 c1))と条件2 図 3-17 c2))の場合を比較 すると,条件1の方が*c*の初期値が大きいにもかかわらず,顕著性の振幅が条件2と 比較して大きくなった.条件3の場合 図 3-17 c3))は,入力波形の切替わり位置に高い 顕著性が集中している.

3) 提案手法場合

この f_b では,条件1図3-17 d1))と条件3図3-17 d3))の場合で大きな波形の差が見られない.唯一, M_o がある場合(条件3)と無い場合(条件2:図3-17 d2))だけで違いが表れている. M_o が顕著性マップに加算されることによって,黒帯中央における顕著性の応答に盛り上がりが観測された.

顕著性マップの分析(W_b= W_{IM}/63=10[Pixel],図 3-18 参照)

1) VOCUS2 の場合

W_b= *W_{IM}*/63 では, σ_c/σ_s=1/10 図 3-18 b1))とσ_c/σ_s=5/10 図 3-18 b2))の場合において, 波形の減衰に大きな違いが表れている. 2) Itti 法の場合

この時のf_bでは,条件1の場合図3-18 c1))と条件2図3-18 c2))の場合を比較すると,条件2の方が顕著性の応答が大きくなっている,条件3図3-18 c3))では,前回の2種類のW_bとは異なり,顕著性の応答が減衰した.

3) 提案手法場合

提案手法 図 3-18 d1)- d3))では $W_b = W_{IM}/63 = 10$ [Pixel]に対し、2 種類の W_{Pmax} の条件 に対して顕著性の振幅に関する大きな違いが表れなかった. Itti 法や VOCUS 法と比較 した場合、 $W_b = W_{IM}/63 = 10$ [Pixel]のような高周波成分の入力に対し、 M_{Sal} の減衰は表 れにくくなった.

3.3.2.2 顕著性マップ生成工程の分析(縦縞)

これ以降,以下の2つについて原因を調べる.

i) Itti, VOCUS2 において、 σ_{sal} が大きくなる理由

ii) 提案する顕著性マップM_{sal}生成法において、W_bの変化が相殺される理由

i)の原因を調べるために、 $W_b や \sigma_c / \sigma_s$ が変化することにより、顕著性マップ生成過程で生じる波形に如何なる変化が生じているのかを分析する.

観測する顕著性マップ生成工程の波形

1) VOCUS2 の場合

図 3-19 に示される画像のうち,低周波成分 S_i^l ,高周波成分 C_i^l ,差分画像 X_i^l (= $C_i^l - S_i^l$)の波形分析を行う.分析を行う画像は輝度成分に限る.画像サイズはiの増加により縦 横比 1/2 ずつ縮小されるため. i>1 に属する画像については,全てサイズをi=1のもの に合わせるための拡大処理をしたうえで、上に挙げた成分について輝度の変化を観測す ることにする. VOCUS2 による顕著性マップの生成工程において観測する画像を、図 3-20 の赤い印で示す. 即ちこれは、低周波成分 S_1^l , S_3^l , S_5^l)、高周波成分 C_1^l , C_3^l , C_5^l)、差 分画像 X_1^l , X_3^l , X_5^l)のうち、図 3-19 の σ_G が $\sigma_G = \sigma_0$ となる画像である. 但し、各画像の 輝度比較を容易にするため、図 3-20 に示すように、この全ての画像を原画像と等しい サイズまで拡大しておく. そして、VOCUS2 による工程において実際に観測された画像 について、 $y = H_{IM}/2$ で画素値の変化を観測した時の波形を図 3-21 ($W_b = W_{IM}/3$)、図 3-22 ($W_b = W_{IM}/63$) に示す.

図 3-21 a)のように、VOCUS2 の設定条件を σ_c/σ_s =1/10 の条件下では、高周波成分と低 周波成分のコントラストが高い条件となり、 $W_b = W_{IM}/3$ の入力波形に対し、高周波成分 C_5^l の応答において急峻な立上がり/立下りが見られる.一方、 σ_c/σ_s =5/10 となることに より、図 3-21 b)のように、 σ_c が高くなるため、 C_5^l の傾きが緩やかになり、顕著性の応答 も緩やかな状態に変化している.

さらに、 $W_b = W_{IM}/63$ の条件下では、高周波成分 C'_3 の応答の違いが $\sigma_c/\sigma_s = 1/10$ 図 3-22 a)) と $\sigma_c/\sigma_s = 5/10$ 図 3-22 b))の間で顕著に表れている. このように、顕著性マップ生成過程 において、空間周波数変化と共に高周波成分の応答に違いが生じるため、フィルタのパ ラメータを固定とする方式の顕著性マップでは、 f_b 変化に対する顕著性のばらつきが表 れることが分かった.

2) Itti 法の場合

Itti 法については,図 3-23 のようなピラミッドで構成されている.波形分析を行う画像は,高周波成分*I(c)*,低周波成分*I(s)*,差分画像*I(c,s)*であり,全て輝度成分である.

Itti 法による顕著性マップの生成工程において観測する画像を,図 3-24 の赤い印で示す. 観測対象となる画像は,低周波成分I(s),高周波成分I(c),差分画像に正規化演算を施した成分I(c,s)である.同図では, $W_b=W_{IM}/63$, $W_{IM}/3$ の縦縞に対して顕著性マッ

プを生成した際に $y = H_{IM}/2$ おいて観測されるI(s), I(c), I(c,s)の波形を示す. 但し, 各画像の輝度比較を容易にするため, 図 3-24 に示すように, この全ての画像を原画像 と等しいサイズまで拡大しておく.

W_b=W_{IM}/3=160[Pixel]に対するI(s), I(c), I(c,s)を図 3-25 に示す. 同図の a)は,条件
1 の場合, b)は条件 3 の場合に対応する. 但し Itti 法の場合は,条件により,合成され
る画像の c, s の値域が異なるため図 3-25 の a), b)に示される画像の c, s が異なる.

 $W_b = W_{IM}/3 = 160$ [Pixel]の縦縞を入力とした場合において,Itti 法の工程で観測される I(s),I(c),I(c,s)の特徴について説明する.図 3-25 a)の条件1は,cが[2,3,4]と変化 し,sが[c+3,c+4]の範囲で変化する条件であった.条件1では,低周波成分I8)と高周 波成分I4)の差分I8,4)を計算する過程において,黒帯の中央部分で画素値の盛り上が りが表れている.図 3-25 b)の条件3は,cが[2,3,4]と変化し,sが[c+1,c+2]の範囲で変 化する条件であった.全ての差分I4,2),I5,3),I6,4)を計算する過程において,画素 値の盛り上がりが表れている位置はいずれも,黒帯と白帯の境界であった.その結果, 顕著性マップSにおいても黒帯と白帯の境界で応答が盛り上がることになった.

Itti 法において $W_b = W_{IM}/63 = 10$ [Pixel]の縦縞を入力としたとき、I(s)、I(c)、I(c,s)の波 形を図 3-26 に示す. cとsの間隔の違いにより、I(c,s)の波形において振動の振幅に差が 表れている.特に、 $W_b = W_{IM}/3$ のケースにおいて、I(c,s)の盛り上がりが、帯の中央に位 置するか、帯の境界に位置するかの違いがあり、この違いが σ_{sal} の大小に影響を及ぼし ていることが分かった.

3)提案手法の場合

波形の分析を行う画像は、輝度成分の高周波成分 I_c 、低周波成分 I_s 、差分画像 I_{cs} である.ここでは、 I_{cs} が最大値を満たすための W_{Bc} 、 W_{Bs} の理論値を計算する過程を示す. 図 3-27 のように F_{Bs} (サイズ W_{Bs} × H_{Bs} [Pixel])は、両端が白帯になるように、 $4W_b$ ずつ拡大されるものとし、 F_{Bc} (サイズ W_{Bc} × H_{Bc} [Pixel])は黒帯の中に収まる状態を想 定する. 図 3-27(a)は、 W_{Bs} が最小となる場合であり、図 3-27(b)は 3-27(a)より、 F_{Bs} を縦横4 W_b ずつ拡大したときの様子である.

このとき, αを整数, N_W, N_Bをそれぞれ白帯と黒帯がW_{Bs}の範囲に含まれる総数で示 すと, W_{Bs}は式(3-18)(3-19)に従って変化する.

$$W_{Bs} = \alpha W_b = (N_W + N_B)W_b \tag{3-18}$$

$$N_W = N_B + 1$$
 (3-19)

従って, N_Wは式(3-20)

$$N_W = \frac{\alpha + 1}{2} \tag{3-20}$$

を満たす.

また, F_{Bs} の面積 S_{Bs} は式(3-18)より($\alpha_1 W_b$)²を満たし, F_{Bs} の中で白帯が占める面積 S_W は式(3-21)で示される.

$$S_W = \frac{\alpha(\alpha+1)}{2} W_b^2$$
(3-21)

白帯がF_{Bs}の中で占める割合は、式(3-22)により

$$\frac{S_W}{S_{Bs}} = \frac{\alpha(\alpha+1)/2}{\alpha^2} = \frac{1}{2} \left(1 + \frac{1}{\alpha} \right)$$
(3-22)
 $\alpha = 3, 7, 11, \dots, 4n-1$

として計算される.式(3-22)は、αの増加に対して単純減少を示すため、

 I_{cs} が最大となるときの条件は α =3のときであり、このとき I_{cs} は、式(3-23)を満たす.

$$I_{cs} = 2N_{Cl}/3$$
 (3-23)

これにより、 $N_{cl} = 255$ とした場合、画素値 170 が I_{cs} の最大値であることが分かる. 但し、1 フレームの中で W_b が変化する場合は、この限りではない.

なお、 I_{cs} の波形では、 W_b の条件に関わらず、帯の境界において急激な立下りが表れる. これは、図 3-28 に示すように、フィルタの中心座標が境界に位置する場合に、 F_{Bs} で囲まれた黒の画素と白の画素が同数に近くなるためである. 一方、 F_{Bc} が最小サイズの場合は、白の画素と黒の画素について、下図の比率が 2:1 となる. この状態で I_c から I_s を差分した場合には、大きな画素値の差が表れない.

提案手法(条件 2) において, I_c , I_s , I_{cs} , M_{Sal} の $y = H_{IM}/2$ で観測された画素値の波 形, W_s の変化を図 3-29 $W_b = W_{IM}/3 = 160$ [Pixel]), 図 3-30 $W_b = W_{IM}/63 = 10$ [Pixel])に示す. $W_s i W_b$ に応じて変化し, W_b の変化による I_{cs} のばらつきが抑えられていることが確認で きた. これにより, M_{Sal} のばらつきも抑えられている.

次に、3.3.2.2節の"ii) 提案する顕著性マップにおいて、 W_b の変化が相殺される理 由"について原因を調べる。条件3では、 $W_{Pmax} = W_{IM}/2$ となる例である。表 3-5 に、 M_{Sal} が最大となったときの W_{Bs} や W_{Bc} の拡大状況、及びこの時の I_{Lcs} を示す。 I_{Lcs} または M_{Sal} が最大となるには、任意の W_b に対して W_{Bs} =3 W_b を満たす必要がある。以 下の表を参照すると、 W_b =10[Pixel]の帯に対して W_{Bs} =27[Pixel]、 W_b =40[Pixel]の帯に 対して W_{Bs} =117[Pixel]となる。これは、 W_{Bs} =3 W_b をほぼ満たしている。そのため提案 手法において W_{Bs} が、空間周波数 f_b に従って I_{Lcs} の最大を満たすように自動調整されて いることが分かった。 W_b =10[Pixel]と 40[Pixel]の場合を比較すると、 I_{Lcs} の差は 6 に、 M_{Sal} の差が 3 に抑えられ、これが 3.3.2.2 節の"ii) 提案する顕著性マップにおい て、 W_b の変化が相殺される理由"に対する調査結果である。しかし W_b =160[Pixel]の 条件では、 $3W_b > 1/2 * W_{IM}$ となるため、 I_{Lcs} はこの影響により大きく減少した.

 $W_{Pmax} = W_{IM}/2$ となる条件3においても、 I_{Lcs} は最大とならず、 M_{Sal} の減少につながった.

3.3.2.3 考察(縦縞: *o*_{Sal}の結果)

本実験では、入力画像において W_b を変化させることにより、画像の f_b が変化する環境を実現させ、従来手法と提案手法について f_b の変化に伴う顕著性の応答変化の違いを観測した.

実験結果より,従来法 Itti 法と VOCUS2)では,フィルタの周波数帯域に制限がある ために *f*_bが変わることにより,高周波成分と低周波成分において振幅に変化が表れ る.そのため,これが顕著性マップに変化を生じさせる要因となり,*σ*_{Sal}の増加につ ながっていたことが分かった.また,高周波成分と低周波成分のフィルタについて, パラメータ設定が変わることで,顕著性マップの応答がピークになる位置が,帯の中 央か,帯の境界に現れるかの2通りの違いがあらわれることも確認できた.顕著性マ ップを応用する分野において,顕著性に比重を置く特徴が対象物の輪郭であるか,対 象物の重心付近であるかが分かれる場合があるので,VOCUS2のように,フィルタの パラメータを手動で選択するような手法は,目的に応じてパラメータ調整に試行錯誤 が必要である.

提案手法は、フィルタのパラメータが f_b に応じ、自動調整されるアルゴリズムである ため、 σ_{Sal} を低く抑えることができた.しかし、表 3-5 を参照すると、 $W_b = W_{IM}/3 =$ 160[Pixel]の条件下では、 I_{Lcs} の減衰が表れたことが分かる.これは M_{Sal} を低下させる原 因になる.提案手法を用いる場合でも、ボックスフィルタ F_{Bs} を拡大させる条件が厳し くなる程、低い f_b に対して I_{Lcs} の振幅が狭くなり、 M_{Sal} が減衰する傾向にあることが分 かる.この問題の解決策は、3.3.4.2 節で説明する.

3.3.3 各手法における顕著性の比較(斜め編)

3.3.3.1 顕著性マップの分析(斜め縞)

顕著性マップの比較については、図 3-31 に W_b =160[Pixel]の例を示す. $W_b=\sqrt{2}W_{IM}/15=40$ [Pixel]の顕著性マップの波形を図 3-32 に示す.

 $W_b = \sqrt{2} W_{IM} / 63 = 10$ [Pixel]の場合の顕著性マップを図 3-33 に示す,

 $W_b = \sqrt{2} W_{IM}/3 = 160$ [Pixel] を入力したときに得られた顕著性マップの波形の比較を図 3-34 に示す. $W_b = \sqrt{2} W_{IM}/15 = 40$ [Pixel] を入力したときに得られた顕著性マップの波形の比較を図 3-35 に示す. $W_b = \sqrt{2} W_{IM}/63 = 10$ [Pixel] を入力したときに得られた顕著性マップの波形の比較を図 3-36 に示す.

1) VOCUS2 の場合

 $\sigma_c/\sigma_s=1/10$ の条件であれば、高周波成分と低周波成分の差分が大きい条件となる. そのため、顕著性の立ち上がりと立下りが入力波形の切替わり付近で観測された 図 3-34 b1)). これは、縦縞の時と同様である.一方で、入力波形の帯中央 x=170 近辺)で は、顕著性の応答に窪みが見られる. $\sigma_c/\sigma_s=5/10$ の条件であれば、高周波成分と低周 波成分の差分が小さい条件となる.x=170 近辺では、 $\sigma_c/\sigma_s=1/10$ において観測された波 形の窪みが小さくなり、高い顕著性が表れる位置が、帯の境界から帯の中央に推移し つつあった 図 3-34 b2)).

2) Itti 法の場合

Itti 法においても,高周波側のガウシアンピラミッドのスケールについて, cの開始 点を文献[]の通りにした場合(図 3-34 cl):条件 1, cの初期値は 2)や,ピラミッドの 下段に移動した場合(図 3-34 c2):条件 2, cの初期値は 1), sの初期値を c に近づけた 場合(図 3-34 c3):条件 3, sの初期値は c+1),について顕著性の比較を行った.ただ し,縦縞の場合と異なり,条件 1 と条件 2 において,帯の中央 x=170 近辺)において顕 著性の高さに大きな差が見られなかった.条件3の場合は,帯中央において顕著性の 応答に僅かな盛り上がりが見られた.

3) 提案手法場合

提案手法では、 $W_{Pmax}=W_{IM}/4$ として、方位のマップ M_{o} を加味した場合 条件 1,図 3-34 d1))、 $W_{Pmax}=W_{IM}/2$ とし、 M_{o} を省略した場合 条件 2,図 3-34 d2))、 $W_{Pmax}=W_{IM}/2$ を 保ったまま、 M_{o} を加味した場合 条件 3、図 3-34 d3))がある. W_{Pmax} を $W_{IM}/2$ した場 合、x=170近辺において、顕著性の上昇が観測された.また、この W_{Pmax} の条件下で 顕著性に M_{o} を加算すると、x=170近辺においてわずかな顕著性の上昇がみられる程度 にとどまる.しかし顕著性の上昇は、入力を縦縞としたときと比べて大きく現れなか った.縦縞の時との大きな違いは、 M_{Sal} における振幅の最大値である.縦縞では全て の条件において振幅が 200 を超えていたが、縞が斜めになったときは、全ての条件に おいて顕著性の最大値が 200 を下回っていた.

次に、 $W_b = \sqrt{2} W_{IM} / 15 = 40$ [Pixel]における顕著性マップの波形を図 3-35 に示す.

1) VOCUS2 の場合

 $\sigma_c/\sigma_s=1/10$ とした場合は、入力波形の立上りから立下りに至るまでの間に、顕著性の波形において帯が非対称な形に歪んでいる 図 3-35 b1)). 一方、 $\sigma_c/\sigma_s=5/10$ の場合は、歪みが抑えられている 図 3-35 b2)). しかし、波形の減衰に大きな違いがみられない.

2) Itti 法の場合

Itti 法においても,高周波側のガウシアンピラミッドのスケールについて, cの開始 点を文献[9]の通りにした場合(図 3-35 cl):条件 1, cの初期値は 2)や,ピラミッドの 下段に移動した場合(図 3-35 c2):条件 2, cの初期値は 1)について顕著性の比較を行 った.この空間周波数では,条件 1,2,3の場合を比較すると,条件 2 の場合で顕著 性の振幅が大きくなった一方,縦縞の場合は条件1の方が顕著性の振幅が大きかった).

3) 提案手法場合

提案手法では,高周波用のボックスフィルタサイズ W_{Bs} について,最大拡大範囲 $W_{Pmax}=W_{IM}/4$ までとして,方位のマップ M_0 を加算した場合 条件 1,図 3-35 d1)), $W_{Pmax}=W_{IM}/2$ まで拡大し, M_0 を省略した場合 条件 2,図 3-35 d2)), $W_{Pmax}=W_{IM}/2$ ま ま, M_0 を加算した場合 条件 3,図 3-35 d3))がある.この f_b では,条件 1 と条件 3 の場 合とで M_{Sal} 大きな波形の差が見られない.唯一, M_0 がある場合と無い場合だけで違い が表れている.なお,同じ f_b の縦縞よりも,顕著性の最大値は全ての条件において低 い数値を示した.

次に、 $W_b = \sqrt{2} W_{IM} / 63 = 10$ [Pixel]における顕著性マップの比較を図 3-36 に示す.

1) VOCUS2 の場合

 $W_b = \sqrt{2} W_{IM}/63$ となったところで、 $\sigma_c/\sigma_s = 1/10$ と $\sigma_c/\sigma_s = 5/10$ の場合において、波形の減衰に大きな違いが表れている 図 3-36 b1) b2)).

2) Itti 法の場合

条件 1, 2, 3 の場合を比較すると,条件 2 の場合において顕著性マップの応答が最 も大きくなっている.条件 1,3 の場合は顕著性マップの応答が小さくなっている 図 3-36 c1) c2) c3)).

3) 提案手法場合

提案手法では $W_b = \sqrt{2} W_{IM}/63 = 10$ [Pixel]に対し、全ての条件に対して顕著性の応答に違いが表れなかった 図 3-36 d1) d2) d3)). しかし、同じ f_b の縦縞と比較すると、顕著性の最大値が減少する傾向を示した.

顕著性マップ生成過程の波形を分析する前に簡単な考察を述べると,提案手法は,高 周波成分と低周波成分の差分を最大化するため,局所順応型のハイパスフィルタとして 機能する.そのため,Itti 法や VOCUS 法と比較し, $W_b=\sqrt{2}W_{IM}/63=10$ [Pixel]のような高 周波成分において M_{Sal} の減衰が表れにくくなる.しかし,提案手法の場合でも, M_0 が加 算されている条件や, W_{Pmax} の設定が小さい場合は, σ_{Sal} が増加したことが分かった. W_{Pmax} を小さくすると,差分画像をサンプリングする W_{Bs} の可動範囲が狭くなるため, 差分画像の最大値が取得できなかったことが原因である.これが正しいか否かを確かめ るため, M_{Sal} の生成過程を確認する.

3.3.3.2 顕著性マップ生成工程の分析(斜め縞)

入力画像を斜め縞とした場合において、 I_{cs} が最大を満たす場合の W_{Bs} 、 W_{Bc} を導く. 縦縞の時と同様に、 F_{Bc} サイズ W_{Bc} × H_{Bc} 、 W_{Bc} = H_{Bc})が黒帯の中に収まっていることを 前提に、 W_{Bs} を可変にした状態で、 I_{cs} と W_{Bs} の関係性を分析する. 図 3-37 において F_{Bs} サ イズ W_{Bs} × H_{Bs} , W_{Bs} = H_{Bs})は、 W_{Pmax} × H_{Pmax} を上限にその対角線の長さ $\sqrt{2}W_{Bs}$ が(4n - 1) W_{b} ずつ拡大されていくものと仮定する. このとき nは帯の数を示す正の整数でかつ、 F_{Bs} の対角線上の両端が自帯であるという条件を満たす.

 F_{Bs} に含まれる赤い直角三角形の面積 S_{Δ} は、 $S_{Bs} = W_{Bs} \times H_{Bs}$ としたとき、式 3-24)によって示される.

$$S_{\Delta} = \frac{S_{BS}}{2} = \frac{W_{BS}H_{BS}}{2}$$
 3-24)

また、 W_{Bs} 、直角三角形の高さ αW_b 、同三角形中に含まれる白帯の数 N_W 、黒帯の数 N_B の関係性は式 3-25) 3-26)で示される.

$$\frac{W_{Bs}}{2} = W_b (N_W + N_B) = \alpha W_b$$
 3-25)

$$N_B = N_W - \frac{1}{2}$$
 3-26)

よって, N_Wは式 3-27)を満たす.

$$N_W = \frac{1}{2} \left(\alpha + \frac{1}{2} \right) \tag{3-27}$$

ここで、 I_{cs} の最大化問題を解くために、 F_{Bc} が黒帯に覆われていることを前提に考え れば、 W_{Bs} によって F_{Bs} に掛かる領域の平均画素値を最大化する問題に置き換えればよ い. 直角三角形に含まれる任意の帯が形成する台形について、下底の長さ L_{TD} とx'の関 係性を示す式を3-28)に示すと、

$$L_{TD} = 2\alpha W_b - \beta x' \qquad 3-28)$$

さらに, $x'=\alpha W_b$ のとき $L_{TD}=0$ を満たすので, $\beta = 2$ となる.

白帯のインデクスを n_W で示し、白帯が形作る台形について上底の長さ L_{TU} 、下底の長さ L_{TD} をそれぞれ式 3-29)、3-30)にしめすと、

$$L_{TU} = 2\alpha W_b - 2\left(\frac{3W_b}{2}\right), \ 2\alpha W_b - 2\left(\frac{7W_b}{2}\right), \dots, \ 2\alpha W_b - 2\left(\frac{(4n_W - 1)W_b}{2}\right)$$
3-29)
s.t. $x' = \frac{3W_b}{2}, \ \frac{7W_b}{2}, \dots, \ \frac{(4n_W - 1)W_b}{2}$ を満たす. また,

$$L_{TD} = 2\alpha W_b - 2\left(\frac{W_b}{2}\right), \ 2\alpha W_b - 2\left(\frac{5W_b}{2}\right), \dots, \ 2\alpha W_b - 2\left(\frac{(4n_W - 3)W_b}{2}\right)$$
3-30)
s.t. $x' = \frac{W_b}{2}, \ \frac{5W_b}{2}, \dots, \ \frac{(4n_W - 3)W_b}{2}$ を満たす.

赤い直角三角形の中で白帯が占める面積 S_W の計算式を式 3-31)に示すと、白色の台形 について面積の総和を求める問題に置き換えられる.従って、

$$S_{W} = \sum_{n_{W}=1}^{N_{W}} \frac{1}{2} W_{b} \left\{ 2\alpha W_{b} - 2\left(\frac{4n_{W}-3}{2}\right) W_{b} + 2\alpha W_{b} - 2\left(\frac{4n_{W}-1}{2}\right) W_{b} \right\}$$

$$= \sum_{n_{W}=1}^{N_{W}} W_{b}^{2} \left\{ 2\alpha - 4n_{W} + 2 \right\}$$

$$= W_{b}^{2} \left\{ 2\alpha N_{W} - 2N_{W}(N_{W} + 1) + 2N_{W} \right\}$$

$$= 2W_{b}^{2} N_{W}(\alpha - N_{W})$$
 3-31)

さらに,式 3-27)より式 3-31)は 3-32)に変形できる. Swは,

$$S_W = \frac{W_b^2}{2} \left(\alpha^2 - \frac{1}{4} \right)$$
 3-32)

として計算される. I_{cs} が最大を満たすような W_{Bs} を計算するために, α によって式 3-33) を最大化することを考えると,

$$I_{cs} = \frac{S_W}{S_\Delta} N_{Cl} = \frac{\frac{W_b^2}{2} \left(\alpha^2 - \frac{1}{4}\right)}{\alpha^2 W_b^2} N_{Cl} = \frac{1}{2} \left(1 - \frac{1}{4\alpha^2}\right) N_{Cl}$$
 3-33)

s.t.
$$W_{Bs} = \sqrt{2} \alpha W_b$$
, $\alpha = 3, 7, ..., 4n_W - 1, ...$ 3-34)

となるため、同式はαに対して単調増加を示し、Icsの最大値は式 3-35)

$$\max_{\alpha} I_{cs} = \lim_{\alpha \to \infty} \frac{1}{2} \left(1 - \frac{1}{4\alpha^2} \right) N_{Cl} = \frac{N_{Cl}}{2}$$
 3-35)

をみたす.

3.3.3.3 考察(編の方位変化に対するM_{sal}の安定性)

本実験では、入力画像において縞模様を 45[deg]傾けた状態でWbを変化させること により,画像の空間周波数fbが変化する環境を実現させ,従来手法と提案手法につい て空間周波数変化に伴う顕著性の応答変化の違いを観測した.表 3-6 にM_{sal}が最大と なったときの W_{Bs} , W_{Bc} I_{Lcs} , $I_{45 cs}$ を示す.表 3-5(縦縞の場合)と比較して, I_{Lcs} と Msalの応答が低下したことが分かる.

3.3.3.2 節の式(3-35)を参照して議論できる点は、入力が斜め縞である場合、縦縞(式 (3-23))の時と比較してIcsの最大値が低下することである.実際(3-23)によると、入力が 縦縞の場合はI_{cs}の最大値が 2N_{Cl}/3 であるのに対し,45[deg]の斜め縞が入力となったと きは最大値Ncl/2となる.提案手法ではIcsが減衰することにより、帯の傾きに対しては 顕著性が変わる弱点を持つと判断することができる. 縞が傾くことによってIcsが減衰す る問題を防ぐには、図 3-38 に示すように、F_{BS}とF_{BC}のペアを 0[deg]用、45[deg]用に個 別に用意する必要がある (F_{Bs} と F_{Bc} のサイズをそれぞれ $W_{Bs,0}(0[deg]), W_{Bs,45}(45[deg]),$ W_{Bc,0}(0[deg]), W_{Bc,0}(45[deg])として同図に示す.)そして,式(3-36)-(3-46)に従い,方位 別にIcsの最大化を行い、最大化された 2 方位分のIcsを平均すれば、縞模様が傾くこと によって顕著性が変化する問題を避けることが可能である. W_{Bs.45}, W_{Bc.45}のサイズに ついては, F_{RHs} , F_{RHc} のサイズに準じる.

$$\max_{W_{BS,0}(\boldsymbol{p}_p), W_{BS,45}(\boldsymbol{p}_p)} I_{cs}(\boldsymbol{p}_p) = \frac{1}{2} \left\{ \max_{W_{BS,0}(\boldsymbol{p}_p)} I_{cs}(\boldsymbol{p}_p) + \max_{W_{BS,45}(\boldsymbol{p}_p)} I_{cs}(\boldsymbol{p}_p) \right\}$$
 3-36)

s.t.
$$W_{Bs,0}(\boldsymbol{p}_p) = H_{Bs,0}(\boldsymbol{p}_p) \le W_{Pmax}$$
 (3-37)

s.t.
$$W_{Bs,45}(\boldsymbol{p}_p) = H_{Bs,45}(\boldsymbol{p}_p) - 1 \le W_{Pmax}$$
 3-38)

$$\max_{B_{c,0}(\boldsymbol{p}_{p}),W_{B_{c,45}}(\boldsymbol{p}_{p})} I_{cs}(\boldsymbol{p}_{p}) = \frac{1}{2} \left\{ \max_{W_{B_{c,0}}(\boldsymbol{p}_{p})} I_{cs}(\boldsymbol{p}_{p}) + \max_{W_{B_{c,45}}(\boldsymbol{p}_{p})} I_{cs}(\boldsymbol{p}_{p}) \right\}$$
 3-39)

s.t.
$$W_{Bc,0}(\boldsymbol{p}_p) = H_{Bc,0}(\boldsymbol{p}_p) < W_{Bs,0}(\boldsymbol{p}_p) \le W_{Pmax}$$
 3-40)

W

s.t.
$$W_{Bc,45}(\boldsymbol{p}_p) = H_{Bc,45}(\boldsymbol{p}_p) - 1 < W_{Bs,45}(\boldsymbol{p}_p) \le W_{Pmax}$$
 3-41)
73

s.t. $W_{B,0} \in \{W_{Bs,0}, W_{Bc,0}\}, H_{B,0} \in \{H_{Bs,0}, H_{Bc,0}\}$ (3-43)

$$W_{B,45} = 6k + 5$$
 3-44)

$$H_{B,45} = 6k + 6$$
 3-45)

s.t.
$$W_{B,45} \in \{W_{BS,45}, W_{Bc,45}\}, H_{B,45} \in \{H_{BS,45}, H_{Bc,45}\}$$
 (3-46)

3.3.3.4 考察(斜め縞: *o*salの結果)

提案手法を用いた場合のみ、 σ_{Sal} の計算過程に関する考察をする.ここでは、斜め縞 の入力において提案手法適用時に σ_{Sal} が大きくなる原因を調べる.表 3-6 によると、斜 め縞の入力時では W_b の違いによって I_{Lcs} に大きなばらつきが生じる現象は見られなか った.しかし、ばらつきが顕著に表れていたのは I_{45_cs} であった. W_{Bs} の拡大状況につい ては、 I_{Lcs} のばらつきが生じないようなサイズ調整が行われているが、一方では I_{45_cs} に 大きなばらつきが表れたことが分かった.このことから、 $W_{Bs}=W_{RHs}$ として Haar-Like フィルタのサイズを決定したことに問題がなかったかを検討する.

 W_b =10[Pixel]から 20[Pixel]に変化した時は、 W_{Bs} が W_b に比例するように 27[Pixel]から 55[Pixel]程度に変化するのが理想である.しかし、表 3-6 によると、 W_b =20[Pixel]のと き W_{Bs} =105[Pixel]を示している.このように、 W_{Bs} の拡大状況が W_b に比例した拡大にな っていない例も観測された.それでも I_{Lcs} のばらつきは画素値 5 以内となっている.

一方で、 $I_{45_{cs}}$ には画素値 110 程度のばらつきがみられることが分かる.任意の空間 周波数に対して、 $I_{45_{cs}}$ の応答を最大化するには、斜め縞に対して F_{RHs} が図 3-39 に従っ て配置されなければならない.この時 W_{RHs} が式(3-47)を満たす必要がある.

$$W_{RHs} = 3\sqrt{2}W_b \tag{3-47}$$

従って、式(3·33)が式(3·34)を満たす限り単調増加を示すこと、及び、 W_{RHS} に関する式 (3·47)の条件により、任意の空間周波数 f_b に対して M_{Sal} を一定にするには、 $W_{BS} \geq W_{RHS}$ が表 3·7 の理想値を満たす必要がある.しかし、実際は $W_{BS} \geq W_{RHS}$ は表 3·7 の実測値を 示している.このことからも、 $W_{BS} \approx W_{RHS}$ として W_{RHS} を決定したことにより、 M_{Sal} の ばらつきが大きくなるという問題が生じたことが分かる.従って、斜め縞に対する M_{Sal} のばらつきを抑えるには、ボックスフィルタ F_{BS} 、 F_{Bc} を用いた I_{LcS} 最大化だけではなく、 Haar-Like フィルタの応答についても I_{θ_cS} 差分画像の画素値を最大化させるための処 理を式(3·48)、図 3·40 に従って別途行う必要がある.但し、 θ 毎に独立して差分画像の 画素値を最大する処理は計算コストが増大するため、4 方位分の差分を足し合わせて評 価した値を最大化することをこの節の問題に対する解決策として提案する.

$$M_{O}(\boldsymbol{p}_{p}) = \max_{k_{s},k_{c}} \sum_{\theta \in \{0,45,90,135\}} I_{\theta_{c}cs}(\boldsymbol{p}_{p})$$

=
$$\max_{k_{s},k_{c}} \{A(k_{s},k_{c}) + B(k_{s},k_{c})\}$$
(3-48)

$$A(k_s, k_c) = \sum_{\theta \in \{0,90\}} \left| I_{\theta}(F_{Hc}(\theta, \boldsymbol{p}_p), \boldsymbol{p}_p) - I_{\theta}(F_{Hs}(\theta, \boldsymbol{p}_p), \boldsymbol{p}_p) \right|$$
(3-49)

$$B(k_s, k_c) = \sum_{\theta \in \{45, 135\}} \left| I_{\theta}(F_{RHc}(\theta, \boldsymbol{p}_p), \boldsymbol{p}_p) - I_{\theta}(F_{RHs}(\theta, \boldsymbol{p}_p), \boldsymbol{p}_p) \right| \quad (3-50)$$

s.t. $(W_{Hs}, W_{Hc}) = (6k_s + 3, 6k_c + 3), (W_{RHs}, W_{RHc}) = (6k_s + 5, 6k_c + 5), k_s > k_c$ (3-51)

3.3.4 各手法における顕著性の比較(f_b可変の縦縞)

3.3.4.1 顕著性マップの分析 (fb可変の縦縞)

図 3-41 に、VOCUS2 による顕著性マップ S の生成結果を示す. 図 3-42 に Itti 法による顕著性マップ S の生成結果、図 3-43 に提案手法による顕著性マップ M_{Sal} の生成結果を示す. σ_{Sal} の計算のために S の最大値を採取した区間は同図の赤矢印で示される区間である.

VOCUS2 の場合は、 $\sigma_c/\sigma_s = 1/10$ の条件下において顕著性のピークに大きなばらつ きが見られない. 但し、 σ_c/σ_s の設定が高コントラストになっているため、長い W_b に対 しては、帯の境界において顕著性のピークが分布する傾向が強い. $\sigma_c/\sigma_s = 5/10$ に変更 した場合、 $W_b = H_{IM}/32 = 20$ [Pixel]の区間において、顕著性の応答に減少が見られる. 一方、 $W_b = H_{IM}/4 = 160$ [Pixel]に対する応答が強くなり、帯の中腹において顕著性の上 昇がみられる. これは、3.3.2.1 節の実験でも確認された現象である.

次に、Itti 法による顕著性マップ S の生成結果について説明する.Itti 法における条 件 1 とは、高周波成分側のピラミッドのスケール cが[2, 4]の値域で変化し、条件 2 で は[1, 3] 値域で、条件 3 では s が[c+1, c+2]の値域で変化する設定であった。条件 1 で は、VOCUS2 の σ_c/σ_s =5/10 と同様に、c 側で周波数成分が大きく削られる設定とな る.したがって、 $W_b = H_{IM}/32=20$ [Pixel]の区間において、顕著性の応答に減少が見 られる。条件 2 では、c の値域が[1, 3]に変化する例である。この例では、VOCUS2 の σ_c/σ_s =1/10 と似たような傾向になり、全ての f_b に対し、顕著性の応答にばらつきが抑 えられている。しかし、VOCUS2 とは異なり条件 1、2 共に帯の境界部分において高 い顕著性が分布している。条件 3 では、 $W_b=H_{IM}/4$ 以外の区間において、応答のばらつ きが少なくなり、提案手法よりも σ_{sal} が低い値を示した。但し、顕著性が高くなる部 分が帯境界に位置していることは、他の条件と同様である。

次に,提案手法による顕著性マップの生成結果について述べる.提案手法における 条件1では, F_{Bs} の拡大範囲が最大で $H_{IM}/4$ まで拡大され,条件3では $H_{IM}/2$ まで拡大 される.条件1の場合, $W_b = H_{IM}/32$ の区間と $W_b = H_{IM}/16$ の区間において M_{Sal} の最 大値が平担になっているが, $W_b \ge H_{IM}/8$ では M_{Sal} の低下が著しくなる.条件3では, M_{Sal} の最大値が平担になっている区間が $W_b = H_{IM}/8$ まで伸びるものの, $W_b = H_{IM}/4$ 以 降で低下が確認された.

76

3.3.4.2 考察(*f*_b可変の縦縞: σ_{Sal}の結果)

表 3-8 に VOCUS2 を適用時,表 3-9 に Itti 法を適用時における W_b と顕著性Sの最大値の関係性を示す.また,表 3-10 に提案手法適用時における W_b と顕著性 M_{Sal} の最大値の関係性を示す.この表から,従来手法でもフィルタの調整を試行錯誤すれば,提案手法よりも σ_{Sal} や顕著性の最大最小差を低くすることができると判断できる.

一方,提案手法の場合は、フィルタのパラメータを自動調整することで、空間周波数の変化に対して*M_{sal}を*平担にすることができるということが表 3-10 により読み取れる.しかし、提案手法にも次に示すような問題点が挙げられる.それは、図 3-44 に示すように、*W_{IM}とH_{IM}の相違が大きい画像が入力された場合で、かつ、この画像において局所領域の<i>f_bが極端に大きく変化する場合である*.

この例のように $W_{IM} \gg H_{IM}$ に近くなる場合において W_{Bs} = H_{Bs} の制約を守る限り、変更できる W_{Bs} の値域は、画像サイズで短い方の H_{IM} に依存して狭まってしまう.

 f_b が低い場合 ($W_b = W_{IM}/3$) に、 M_{Sal} が低下する現象は、表 3-10 から読み取ることが 可能である. この f_b によっては、この図で示すように $W_{Pmax} & H_{IM}$ と等倍にした場合で もは I_{Lc} は0を示し、 I_s も0に近い値を示すため、 I_{Lcs} を大きくすることができない. 但 し手法を変えない場合でも、図 3-45 に示すように入力画像サイズの $W_{IM} & H_{IM}$ の相違 を少なくすれば、 W_{Bs} の値域に相当する W_{Pmax} を拡大することが可能になり、任意の f_b に対して M_{Sal} を幾分平坦に近づけることができるが、任意の f_b 成分に対して適切な W_{Pmax} を求める問題が依然として残る. 異なる f_b に対して W_{Pmax} が共通に設定されて いると、低い f_b に対しては式(3·23)を満たすような I_{Lcs} が得られない. その結果、顕著 性マップにおいて高周波成分の影響ばかりが際立つことになる. そのため、この問題 を解決するには、図 3-46 に示すように、 f_b の大きさによって W_{Pmax} を変化させること が必要である. しかし、実際のカメラ画像では、本実験で用いた画像のように W_b を目 安に f_b を推定することが不可能である.

この場合を含め、任意の f_b に対して M_{Sal} の応答を平坦となるような対策を述べる. まず、Itti 法に見られるようなガウシアンピラミッドを活用することで原画像、高周 波成分の画像,低周波成分の画像を生成し,図 3-47 や式(3-52)に見られるように,最 も低い低周波成分に対する他の周波数成分の差分を足し合わせて*I_{Σcs}を*得ることで,原 画像にどの程度の高周波成分が含まれるかを推定することができる.従って,

 $I_{\Sigma cs}(x,y)$ が周波数成分の差分の和に対応する.低周波成分の強調に比重を置き,高周 波成分の強調を抑えるためには,式(3-53)のように W_{Pmax} と $I_{\Sigma cs}(x,y)$ が反比例の関係を 示すような式を求めることで,高いに f_b 対して W_{Pmax} が狭まるような仕組みを作るこ とを問題解決策として提案する.

$$I_{\Sigma cs} = \sum_{\sigma=0}^{7} I(\sigma) \tag{3-52}$$

$$W_{Pmax}(\mathbf{x}, \mathbf{y}) \propto \frac{1}{I_{\Sigma cs}(x, y)}$$
 (3-53)

このようにすることで,図 3-46 のように, f_b に応じて W_{Pmax} を変更することができるようになる.

3.3.5 結論

本章の実験では、帯幅W_bが異なる縦縞と斜め縞の画像(空間周波数が異なる画像)を 使用した場合について、顕著性マップの応答のムラを確認する実験を行った. VOCUS2 においては、σ_c/σ_sのσ_cの比率を変化させることで、顕著性マップがどのよう に変化するかを確認した.σ_cの比率が大きい場合は、高い空間周波数の成分が通過しに くくなり、W_bが狭い帯に対して顕著性が減少するが、顕著性の分布が帯全体に広がる ようにすることが可能である.σ_cの比率が小さい場合は、空間周波数の選択性が弱くな り、W_bが異なることによる顕著性のばらつきが抑えられる.但し、高い顕著性がえられ る部分が帯の境界になる傾向が強い.これについては、輪郭に顕著性を配分するべきか、 対象物全体に顕著性を配分するべきかで対応が異なる. Itti 法においても、高周波成分として使う画像を選ぶために、ガウシアンピラミッドのスケール c の開始点を小さな値に変更するだけで、VOCUS2 のうちσ_cの比率が小さい設定のときと同様に顕著性のばらつきが抑えられる.

提案手法を使用し場合は、入力画像が縦縞である場合は、差分画像のコントラストが 最大化されるようになり、空間周波数変化に依存しにくい顕著性マップが得られること が分かった.狭い範囲でW_bが変化する場合に限り、平坦なM_{Sal}が得られ、VOCUS2 や Itti 法よりも、空間周波数変化に対する顕著性のムラが少なくなる.但し、W_{Pmax}が小 さすぎる場合やW_bが大きすぎる場合は、このW_bに対してF_{Bs}が十分に拡大されないため、 W_bの違いによっては顕著性に大きなばらつきが生じる場合がある.また、提案手法を 適用した場合において、縞模様が斜めになる場合も同様に、顕著性の低下、空間周波数 変化による顕著性ばらつき増加の問題があることが分かった.

図 3-1 シミュレーション実験の趣旨

(a)条件1
 (b)条件2,3
 図 3-6 提案手法の実験条件設定

(a) x, y)が max M_{Sal})を取得する
 範囲内にある場合

b) *x, y*)が max *M_{sal}*)を取得する 範囲外にある場合

図 3-9 入力画像の波形(Wbを可変とした縦縞)

図 3-10 Wbの変化に伴って生じる空間周波数スペクトルの変化

図 3-11 ガボールフィルタF_H(0)の拡大

(d1)提案手法 条件 1(d2)提案手法 条件 2(d3)提案手法 条件 3図 3-13 顕著性マップの比較 (Wb=WIM/3=160[Pixel])

図 3-16 顕著性マップの波形比較 ($W_b = W_{IM}/3=160$ [Pixel])

図 3-19 VOCUS2 のピラミッド構成

図 3-20 顕著性マップ生成工程において観測する画像 VOCUS2)

図 3-21 顕著性マップ生成工程 VOCUS2,縦縞, $W_b = W_{IM}/3=160$ [Pixel])

図 3-22 顕著性マップ生成工程 VOCUS2, 縦縞, $W_b = W_{IM}/63=10$ [Pixel])

図 3-23 Itti 法のピラミッド構成

図 3-24 顕著性マップ生成工程において観測する画像 Itti)

図 3-25 顕著性マップ生成工程 Itti 法,縦縞, W_b = W_{IM}/3=160[Pixel])

図 3-26 顕著性マップ生成工程 Itti 法,縦縞, W_b = W_{IM}/63=10[Pixel])

図 3-28 フィルタの中心座標が帯の境界に位置する場合

提案手法, 縦縞,
$$W_b = W_{IM}/3=160$$
[Pixel])

図 3-30 顕著性マップ生成工程 提案手法,縦縞, $W_b = W_{IM}/63=10$ [Pixel])

(a)入力画像

(b1)VOCUS2 1/10

(b2)VOCUS2 3/10

(b3)VOCUS2 5/10

(c1)Itti 条件 1

(c2)Itti 条件 2

(c3)Itti 条件 3

(d1)提案手法 条件 1 図 3-31 顕著性マップの比較 ($W_b = \sqrt{2}W_{IM}/3=160$ [Pixel])

(d2)提案手法 条件 2 (d3)提案手法 条件 3

図 3-33 顕著性マップの比較 ($W_b = \sqrt{2}W_{IM}/63=10$ [Pixel])

図 3-34 顕著性マップの波形比較 ($W_b = \sqrt{2}W_{IM}/3=160$ [Pixel]) 103

図 3-35 顕著性マップの波形比較 ($W_b = \sqrt{2}W_{IM}/15=40$ [Pixel])

a) $\sqrt{2}W_{BS} = 3W_b$

b) $\sqrt{2}W_{BS} = 7W_b$

図 3-37 F_{Bs}のサイズ調整(斜め縞)

(a) F_{Bs}, F_{Bc} (回転なし) (b) F_{Bs}, F_{Bc} (45[deg]回転あり) 図 3-38 θ の変化に伴う M_{Sal} のばらつきを抑えるための対策

図 3-39 F_{RHs}の配置(応答最大時)

図 3-42 顕著性マップの比較(Itti 法, fb可変の縦縞)

図 3-43 顕著性マップの比較(提案手法, fb可変の縦縞)

 W_{IM}

図 3-45 空間周波数のばらつきが大きい入力画像への対応策(その1)

図 3-47 差分画像の総和 $I_{\Sigma cs}$ の生成

W _b [Pixel]	Vertical Stripe	Oblique Stripe
W_{IM} is based images of		
Vertical Stripes)		
$W_{IM}/63 = 10$	630	445
$W_{IM}/31 = 20$	620	438
<i>W_{IM}</i> /15 =40	600	424
<i>W_{IM}</i> /7 =80	560	396
<i>W_{IM}</i> /3 =160	480	339

表 3-1 帯幅 W_b 毎の画像サイズ W_{IM} [Pixel]

Methods			$W_{\rm b}(W_{\rm IM} \text{ is })$	based on vert	tical stripe im	age)	
	Setting (Vertical Stripe)	$W_{\rm IM}/63 = 10$	$W_{\rm IM}/31 = 20$	$W_{\rm IM}/15=40$	$W_{\rm IM}/7{=}80$	$W_{\rm IM}/3 = 160$
	Setting (Oblique Stripe)	$\sqrt{2}W_{IM}/63 = 10$	$\sqrt{2}W_{IM}/31 = 20$	$\sqrt{2}W_{IM}/15 = 40$	$\sqrt{2}W_{IM}/7=80$	$\sqrt{2}W_{IM}/3 = 160$
	$\sigma_{ m c}/\sigma_{ m s}$	1/10, Min $\sigma_c=1.0$	0	0	0	0	0
VOCUS2	$\sigma_{ m c}/\sigma_{ m s}$	3/10, Min $\sigma_c=1.0$	0	0	0	0	0
[1-11]	$\sigma_{ m c}/\sigma_{ m s}$	5/10, Min $\sigma_c=1.0$	0	0	0	о	о
Itti [1-9] (Setting1)	$\bar{I} = \bigoplus_{c=2}^{4}$	$\bigoplus_{s=c+3}^{s=c+4} N(I(c,s))$	0	0	0	0	0
Itti (Setting2)	$\bar{I} = \bigoplus_{c=1}^{3}$	$\bigoplus_{s=c+3}^{s=c+4} N(I(c,s))$	0	0	0	0	0
Itti (Setting3)	$\bar{I} = \bigoplus_{c=2}^{4}$	$\bigoplus_{s=c+1}^{s=c+2} N(I(c,s))$	0	0	0	0	0
Proposed (Setting1)	$\begin{array}{l} \text{Min } W_{\text{Bc}} \\ \Delta W_{\text{Bc}} = \Delta \\ \text{Max } W_{\text{B}} \\ W_{\text{Bc}} < W_{\text{B}} \\ \text{With } M_{\text{C}} \end{array}$	$=3[Pixel]$ $1W_{Bs}=6[Pixel]$ $s=1/4W_{IM}$ Ss	0	0	0	0	0
Proposed (Setting2)	$\begin{array}{c} \operatorname{Min} W_{\mathrm{Bc}} \\ \Delta W_{\mathrm{Bc}} = \Delta \\ \operatorname{Max} W_{\mathrm{B}} \\ W_{\mathrm{Bc}} < W_{\mathrm{E}} \\ \operatorname{No} M_{\mathrm{o}} \end{array}$	$=3[Pixel]$ $M W_{Bs}=6[Pixel]$ $s=1/2 W_{IM}$ Bs	0	0	0	0	0
Proposed (Setting3)	$\begin{array}{c} \text{Min } W_{\text{Bc}} \\ \Delta W_{\text{Bc}} = \Delta \\ \text{Max } W_{\text{B}} \\ W_{\text{Bc}} < W_{\text{E}} \\ \text{With } M_{\text{c}} \end{array}$	$=3[Pixel]$ $1W_{Bs}=6[Pixel]$ $_{s}=1/2W_{IM}$ Bs	0	0	0	0	0

表 3-2 設定パラメータとその値域(縦縞/斜め縞)

Methods			$W_{\rm b}$ ($W_{\rm IM}$ is based on vertical stripe image)				
	Setting (Vertical Stripe)	$H_{IM}/32=20$	$H_{IM}/16=40$	$H_{IM}/8=80$	$H_{IM}/4=160$	
	$\sigma_{ m c}/\sigma_{ m s}$	$1/10$, Min $\sigma_c=1.0$	0	0	0	0	
VOCUS2	$\sigma_{ m c}/\sigma_{ m s}$	$3/10$, Min $\sigma_c=1.0$	0	0	0	0	
[1-11]	$\sigma_{ m c}/\sigma_{ m s}$	5/10, Min $\sigma_c=1.0$	о	0	0	о	
Itti [1] (Setting1)	$\bar{I} = \bigoplus_{c=2}^{4} \tilde{I}$	$\bigoplus_{s=c+3}^{s=c+4} N(I(c,s))$	0	0	0	0	
Itti (Setting2)	$\bar{I} = \bigoplus_{c=1}^{3} \sum_{i=1}^{3} \sum_{i=1}^{$	$\bigoplus_{s=c+3}^{s=c+4} N(I(c,s))$	0	0	0	0	
Itti (Setting3)	$\bar{I} = \bigoplus_{c=2}^{4} \tilde{I}$	$\bigoplus_{s=c+1}^{s=c+2} N(I(c,s))$	0	0	0	0	
Proposed (Setting1)	$\begin{array}{c} \operatorname{Min} W_{\mathrm{Bc}} = 3[\operatorname{Pixel}] \\ \Delta W_{\mathrm{Bc}} = \Delta W_{\mathrm{Bs}} = 6[\operatorname{Pixel}] \\ \operatorname{Max} W_{\mathrm{Bs}} = 1/4 W_{\mathrm{IM}} \\ W_{\mathrm{Bc}} < W_{\mathrm{Bs}} \\ \text{With } M_{\mathrm{o}} \end{array}$		0	0	0	0	
Proposed (Setting3)	$\begin{array}{l} \text{Min } W_{\text{Bc}} = 3 [\text{Pixel}] \\ \Delta W_{\text{Bc}} = \Delta W_{\text{Bs}} = 6 [\text{Pixel}] \\ \text{Max } W_{\text{Bs}} = 1/2 W_{\text{IM}} \\ W_{\text{Bc}} < W_{\text{Bs}} \\ \text{With } M_{\text{o}} \end{array}$		0	0	0	0	

表 3-3 設定パラメータとその値域(Wb可変の縦縞)

表	3-4	σ_{Sal}	D]	北較	え結	課
---	-----	----------------	----	----	----	---

Methods		σ_{Sal} : Variance of M_{sal} (or S in Itti and VOCUS2 Models)			
Methods	Setting	Vertical Stripe	Oblique Stripe	Vertcal Stripe (W _b Variable)	
VOCUS	$\sigma_{\rm c}/\sigma_{\rm s}$ 1/10, Min $\sigma_{\rm c}$ =1.0	31.32	20.48	10.76	
VUCUS2	$\sigma_{\rm c}/\sigma_{\rm s}$ 3/10, Min $\sigma_{\rm c}$ =1.0	37.03	31.49	24.98	
	$\sigma_{\rm c}/\sigma_{\rm s}$ 5/10, Min $\sigma_{\rm c}$ =1.0	55.65	56.07	32.71	
Itti[1-5] (Setting1)	$\bar{I} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{s=c+4} N(I(c,s))$	60.42	59.59	48.74	
(Setting2)	$\bar{I} = \bigoplus_{c=1}^{3} \bigoplus_{s=c+3}^{s=c+4} N(I(c,s))$	47.94	33.74	31.00	
(Setting3)	$\bar{I} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+2}^{s=c+2} N(I(c,s))$	56.52	56.51	14.81	
Proposed (Setting1)	$ \begin{array}{l} \operatorname{Min} W_{\mathrm{Bc}} = 3 \\ \Delta W_{\mathrm{Bc}} = \Delta W_{\mathrm{Bs}} = 6 \\ W_{\mathrm{PMax}} = \operatorname{Max} W_{\mathrm{Bs}} = 1/4 W_{\mathrm{IM}} \\ W_{\mathrm{Bc}} < W_{\mathrm{Bs}} \\ \text{With } M_{\mathrm{o}} \end{array} $	8.58	30.45	41.14	
(Setting2)	$\begin{array}{l} \operatorname{Min} W_{\mathrm{Bc}} = 3 \\ \Delta W_{\mathrm{Bc}} = \Delta W_{\mathrm{Bs}} = 6 \\ W_{\mathrm{PMax}} = \operatorname{Max} W_{\mathrm{Bs}} = 1/2 W_{\mathrm{IM}} \\ W_{\mathrm{Bc}} < W_{\mathrm{Bs}} \\ \operatorname{No} M_{\mathrm{o}} \end{array}$	5.27	14.93	22.39	
(Setting3)	$\begin{array}{l} \operatorname{Min} W_{\mathrm{Bc}} = 3 \\ \Delta W_{\mathrm{Bc}} = \Delta W_{\mathrm{Bs}} = 6 \\ W_{\mathrm{PMax}} = \operatorname{Max} W_{\mathrm{Bs}} = 1/2 W_{\mathrm{IM}} \\ W_{\mathrm{Bc}} < W_{\mathrm{Bs}} \\ \text{With } M_{\mathrm{o}} \end{array}$	10.17	22.14	19.69	

表 3-5 W_b の変化と $W_{Bs'}$, $W_{Bc'}$, M_{Sal} 最大値の関係性提案手法:条件3,縦縞)

$\sigma_{Sal} = 10.17$					
Wb	$W_{\rm IM}$	$W_{\rm Bs}$	$W_{ m Bc}$	$I_{\rm Lcs}$	$M_{ m Sal}$
[Pixel]	[Pixel]	[Pixel]	[Pixel]		
W _{IM} /3=160	480	183	3	125	228
W _{IM} /15=40	600	117	3	168	255
W _{IM} /63=10	630	27	3	161	252

表 3-6 Wbの変化とWBs, WBc, 顕著性最大値の関係性 提案手法, 斜め縞)

Wb	W _{IM} [Pixel]	W _{Bs} [Pixel]	$W_{\rm Bc}[Pixel]$	I _{Lcs}	<i>I</i> _{45_cs}	$M_{ m Sal}$
$1.414W_{IM}/3=160$	339	171	3	123	99	161
$1.414W_{IM}/7=80$	396	195	3	125	166	204
$1.414W_{IM}/15=40$	424	111	3	128	195	213
$1.414W_{\rm IM}/31=20$	438	105	3	127	119	196
1.414 <i>W</i> _{IM} /63=10	445	27	3	127	208	227

σ_{Sal}	= 22.14	(条件 3)
Jui		

表 3-7 W_{Bs}, W_{RHs}の理想値と実際の値 提案手法, 斜め縞)

※但し、理想値については W_{Bs} や W_{RHs} が W_{Pmax} の制限を受けない場合について示す.

W _b	W _{IM} [Pixel]	$W_{\rm Bs}[{\rm Pixel}]$		W _{RHs} [Pixel]	
		理想値	実測値	理想値	実測値
1.414 <i>W</i> _{IM} /3=160	339	œ	171	œ	173
1.414 <i>W</i> _{IM} /7=80	396	œ	195	œ	197
$1.414W_{IM}/15=40$	424	œ	111	œ	113
$1.414W_{IM}/31=20$	438	œ	105	œ	107
$1.414W_{\rm IM}/63=10$	445	œ	27	œ	29

表 3-8 Wbの変化顕著性最大値の関係性 VOCUS2, Wb可変の縦縞)

(a) $\sigma_c / \sigma_s = 1/10$: $\sigma_{Sal} = 10.76$

(b) $\sigma_c / \sigma_s = 5/10$: $\sigma_{Sal} = 32.71$

Wb	Max of S
H _{IM} /32	193
H _{IM} /16	212
H _{IM} /8	211
<i>H</i> _{IM} /4	223
Max – Min of $M_{\rm Sal}$	30

Wb	Max of S
H _{IM} /32	163
<i>H</i> _{IM} /16	195
H _{IM} /8	209
<i>H</i> _{IM} /4	254
Max – Min of $M_{\rm Sal}$	91

表 3-9 Wbの変化と顕著性最大値の関係性 Itti 法, Wb可変の縦縞)

(a)条件1: *o*_{Sal}=48.74

(b) 条件2: *o*_{Sal}=31.00

(c) 条件3: *o*_{Sal}=14.81

Wb	Max of S
H _{IM} /32=20	107
H _{IM} /16=40	143
H _{IM} /8=80	179
H _{IM} /4=160	239
Max – Min	132
of $M_{ m Sal}$	

 W_b Max of S

 $H_{IM}/32=20$ 165

 $H_{IM}/16=40$ 199

 $H_{IM}/8=80$ 236

 $H_{IM}/4=160$ 242

 Max - Min
 77

of $M_{\rm Sal}$

W _b	Max of S
H _{IM} /32=20	197
<i>H</i> _{IM} /16=40	211
H _{IM} /8=80	212
H _{IM} /4=160	238
Max – Min	41
of $M_{\rm Sal}$	

Wb	W _{Bs}	W _{Bc}	I _{cs}	$M_{ m Sal}$
<i>H</i> _{IM} /32=20	57	3	166	255
<i>H</i> _{IM} /16=40	117	3	168	255
H _{IM} /8=80	159	3	126	210
H _{IM} /4=160	147	3	124	155
Max–Min of M_{Sal}			100	

表 3-10	W_b の変化と W_{Bs} ,	W _{Bc} ,M _{Sal} 最大値の関	係性 提案手法,	W _b 可変の縦縞)
--------	-----------------------	---	----------	-----------------------

Wb	$W_{\rm Bs}$	W _{Bc}	Ics	$M_{ m Sal}$
<i>H</i> _{IM} /32=20	63	3	162	234
H _{IM} /16=40	117	3	168	253
H _{IM} /8=80	237	3	169	255
H _{IM} /4=160	255	3	126	206
Max–Min of M _{Sal}			49	

(a)条件 1	: $\sigma_{Sal}=41.14$
	• • • • • • • • • • • • • • • • • • • •

(b)条件 3 : *o*_{Sal}=19.69

第4章 顕著性と 画像特徴点抽出の 恒常性

第4章 顕著性と画像特徴点抽出の恒常性

4.1 実験目的

本実験の目的は、従来手法の顕著性マップ(itti 法[9], VOCUS2[25])及び提案手法について、顕著性と画像特徴点抽出の恒常性 ϕ_i の比較をすることである.図4-1に示すように画像特徴点抽出数の変動は、画像の明るさ、画像を占める物体のサイズ $W_{obj} \times H_{obj}$ 、カメラの焦点ズレ、特徴点抽出条件の T_{FAST} (後述)が変化することにより発生する.画像の明るさを変えるための操作法について説明する.文献[58]のSIFT[26], SURF[43]特徴点のマッチング評価を行う実験では、明るさの条件を変更するための演算として、設定されたオフセットが原画像全体の画素値に対して加減算が行われている.本研究でもこの手法を参考にしているが、輝度の飽和が起こらないようにするため、1次関数のトーンカーブを採用した.

カメラの焦点ズレを再現する研究では、ガウシアンフィルタによる平滑化が採用され る例がある[19][20].本研究でもこの手法を参考にし、フィルタの畳み込みによって焦 点ズレを簡易的に再現することにした.

画像特徴点抽出数を変化させる条件として、この4種類の撮影条件を選んだ理由を述べる. 観測される対象物サイズの変動は、ロボットの移動によってカメラから物体までの距離が変化することによって生じる.また、撮影距離が変化すると、これがカメラの 焦点合わせにズレを発生させる原因となる.また、ロボットが環境内を移動することに よって、照明からロボットまでの距離が変化し、*I_{Max}*にも変化が現れる.画像特徴点抽 出は、*T_{FAST}の変更によっても大きな影響を受ける.T_{FAST}が大きすぎる場合は、対象物* を代表する画像特徴点が抽出されないことに繋がり、*T_{FAST}が小さすぎる場合は、対象* 物の認識に関係が無い画像特徴点が急増するため、マッチングの所要時間が長くなる問 題、マッチングに誤対応が発生する問題にも繋がる.*T_{FAST}*の調整も試行錯誤を要する. 第1章において、画像の顕著性 $||M_{Sal}||$ ($||M_{Sal}||$ については後述)が高いほど、画像特 徴点抽出の恒常性 $||F_{Stb}||$ ($||F_{Stb}||$ については後述)が高いという仮説と立てた.この実 験は、機械学習の識別器へ入力するためのデータ作成をする上で、画像特徴点の取捨選 択をするための位置づけとなる.

4.2 BRISK 法

BRISK 法[44]では,バイナリ標記型の特徴ベクトル(512[bit])が採用されている.特徴 ベクトル保存に必要なメモリ所要量は,実数表記の SIFT 法(128 次元の実数)を選択 した時と比べて削減される.特徴点マッチングに必要な計算の内訳は,ハミング距離の 計算をするだけであるため,画像特徴点の追跡が高速に行えるようになる.そのため, 本研究では BRISK を使用することにする.BRISK 法は,画像特徴点候補の選択,特徴 ベクトルの表記で構成される.

4.2.1 画像特徴点候補の選択

画像特徴点抽出を行う過程において画像は、2次元平面座標(x, y)の空間及び、スケー ル σ_{c} からなる、計3次元のスケール空間を構成するとみなされる. σ_{c} は、画像を平滑化 するガウシアンフィルタの大きさに相当し、輝度勾配が計算される近傍領域の広さにも 相当する.この近傍領域は、画像特徴点を中心とした領域である。図4-2のスケール空間 では、フィルタの周波数の整数倍に当たるオクターブ μ_{h} 、及び周波数の半整数倍にあた るイントラオクターブ λ_{h} と呼ばれる層が用意されている.添字hは、オクターブ、イン トラオクターブの番号である.

FAST(Features from Accelerated Segment Test)[59]によると、特徴のコーナらしさの評価が、スケール空間の考えにより画素毎に行われる.FASTは、BRISK法において、画像特徴点を選択するときに使われる、コーナ検出法である.BRISK法では、FASTスコア V_{FAST} (式(4-1)(4-2))によって画素のコーナらしさが評価される.

$$V_{FAST} = max \left(\sum_{\xi \in S_{bright}} \left(\left| I_{p \to \xi} - I_{p} \right| - T_{FAST} \right), \sum_{\xi \in S_{dark}} \left(\left| I_{p} - I_{p \to \xi} \right| - T_{FAST} \right) \right)$$
(4-1)

$$S_{p \to \xi} = \begin{cases} dark, I_{p \to \xi} \le I_p - T_{FAST} \\ same, I_p - T_{FAST} \le I_{p \to \xi} \le I_p + T_{FAST} \\ bright, I_p + T_{FAST} \le I_{p \to \xi} \end{cases}$$
(4-2)

図4-3は、FASTによるコーナ検出の様子を示す.ここで、基準点pを中心に、周囲16個の画素が並んでいる状況を想定する.画素値 I_p がコーナとみなされる条件とは、p周辺の画素値 $I_{p>\xi}$ が、pの画素値 I_p に対して差が T_{FAST} 以上となり、このような $I_{p>\xi}$ が、16画素中9個以上連続していることである. V_{FAST} は、 T_{FAST} を大きくした場合に、pがまだコーナであるとみなすことができる、最大の閾値 T_{FAST} である.pが画像特徴点の候補となるためには、pのFASTスコアが、同一層上の8近傍、そして、上下にある隣接層にある計18近傍の画素の間で極値を満たしている必要がある.これは、図4-2の層(オクターブ μ_h 、または、4ントラオクターブ λ_h)に属する1つの画素が、スケール空間において極値を満たすようなFASTスコアを有していることに相当する.

画像特徴点の候補が挙げられた後,次に行うべき手順は,この座標計算の精度を向上 させるための処理や,画像特徴点のスケールを精度よく求める処理である.画像特徴点 候補の周辺(計18近傍)に属している画素については,そのスケール空間座標及びFAST スコアが式(4-3)の2次関数に代入される.その後,式(4-4)に従った極値計算によって 2次関数の係数が求められる.

$$V_{FAST} = f_{FAST}(x, y, s) \tag{4-3}$$

$$\frac{\partial V_{FAST}}{\partial x} = \frac{\partial V_{FAST}}{\partial y} = \frac{\partial V_{FAST}}{\partial s} = 0$$
(4-4)

4.2.2 特徴ベクトルの表記

BRISK法において特徴ベクトルの記述は,画像特徴点候補を中心とした4つの同心円 (図4-4)上において,等間隔にサンプリングされた60個の画素値を用いることで行わ れる.このベクトル表記は,方位の決定,記述子の表記で構成される. i) 方位の決定

画像特徴点に付与される方位 ψ は、60個のサンプル点のうち、式(4-5)を満たす集合 $G_{Smp,L}$ からの組を用いることで求められる. 閾値 T_{Dmin} は、 p_i, p_j 間の距離が長いと判定 されるための基準となる. そして $G_{Smp,L}$ は、 p_i, p_j のペアにより構成される集合で有り、 この両サンプル点間の距離が式(4-5)に従い、長いものとして判定されている.

$$G_{Smp,L} = \left\{ \left(\boldsymbol{p}_{i}, \boldsymbol{p}_{j} \right) \mid \left\| \boldsymbol{p}_{j} - \boldsymbol{p}_{i} \right\| > T_{Dmin} \right\}$$
(4-5)

その後、勾配 $g(p_i, p_j)(=(\overline{g_x}, \overline{g_y}))$ が計算される. $G_{smp,L}$ より選んだサンプル点の組は、式(4-6)に沿った輝度勾配の計算に用いられ、勾配の平均値 $\overline{g_x}, \overline{g_y}$ が求まる.これが式(4-7)に代入されることで、 ψ が求められる.

$$\boldsymbol{g}(\boldsymbol{p}_{i}, \boldsymbol{p}_{j}) = (\boldsymbol{p}_{i} - \boldsymbol{p}_{j}) \frac{l(\boldsymbol{p}_{j}, \sigma_{j}) - l(\boldsymbol{p}_{i}, \sigma_{i})}{\|\boldsymbol{p}_{j} - \boldsymbol{p}_{i}\|^{2}}$$
(4-6)

$$\psi = \tan^{-1} \frac{\overline{g_y}}{\overline{g_x}} \tag{4-7}$$

ii) 記述子の表記

次に、画像特徴点の近傍は角度 ψ だけ回転される、回転後の画素は (p_i^{ψ}, p_j^{ψ}) として表記される。画素値を比較するための画素の組は、サンプリングされた60個の画素(図4-4)のうち、式(4-8)を満たす組の集合 $G_{smp,S}$ から選び出される。サンプル点の画素値の比較結果は、1[bit]の数値 ζ (式(4-9)(4-10))で示され、 ζ が512組分並べられることで、512[bit]の特徴ベクトルが決定する。

$$G_{Smp,S} = \left\{ \left(\boldsymbol{p}_{i}, \boldsymbol{p}_{j} \right) \mid \left\| \boldsymbol{p}_{j} - \boldsymbol{p}_{i} \right\| < T_{Dmax} \right\}$$
(4-8)

$$\zeta = \begin{cases} 1, & I(\boldsymbol{p}_{j}^{\phi}, \sigma_{j}) > I(\boldsymbol{p}_{i}^{\phi}, \sigma_{i}) \\ 0, & Otherwuze \end{cases}$$
(4-9)

$$\forall (\boldsymbol{p}_i^{\phi}, \boldsymbol{p}_j^{\phi}) \in G_{Smp,S} \tag{4-10}$$

4.3 画像特徴点抽出の恒常性評価

本研究では、抽出に恒常性がある画像特徴点の条件として2つ考慮する.そのうちの 1つは、撮影条件の変動にかかわらず、画像特徴点が同じ座標で継続して抽出され続け ることである.この性質を座標の再現性と称す.2つ目は、撮影条件変化に対して特徴 ベクトルの内容が現状のままで保たれることである.撮影条件変更前後において、特徴 ベクトルの変化が少ない性質のことを、特徴ベクトルの類似性と称する.従ってこの研 究では、前述の2つの性質を統合して抽出の恒常性と称す.

画像特徴点の恒常性を評価するために,撮影条件が異なる画像から得られる画像特徴 点同士を分析するには,撮影時に発生する画像のちらつきや,画像の拡大縮小を伴う幾 何学変化によって,画像特徴点の座標が数ピクセル程度移動することを考慮しなければ ならない.例えば,同一の画像特徴点同士の正しい組み合わせは,図4-5中の(イ)と(ロ) の何れかを確かめる必要がある.そこで,同じ画像特徴点を探索する範囲を決めるため にサイズ $W_{IM} \times H_{IM}$ の画像を小領域(サイズ: $W_q \times H_q$)に分割する.

この評価では、 ϕ_i の計算のために考慮する小領域が、特徴ベクトルの類似度 s_{dsc,n_q} (詳細は後述)の計算ができることを条件とする.これを満たす小領域は、合計 N_q 個あるものとして数えられる.そのため、画像が変わるたびに N_q も変化する.画像の撮影条件や T_{FAST} は、計N回変更される.ただし、Nを ($N \in \{N_B, N_F, N_S, N_{FAST}\}$)で示す、このインデクス*i*は、 $i \in [1, N]$ を満たすものとする.本評価で考慮する撮影条件は、画像の輝度I(変更回数 N_B)、ガウシアンフィルタの分散 σ_G (変更回数 ϵN_F)、物体サイズ $W_{obj} \times H_{obj}$ (変更回数 N_S)である.

 F_{Stb} について,詳細を説明する. F_{Stb,n_q} は,座標の再現度 r_{ftr,n_q} 及び,特徴ベクトルの類似度 s_{dsc,n_q} をそれぞれで w,1-w 重み付けをした後加算して得られる評価関数(式(4-11))である. F_{Stb} は,この計算で求まった F_{Stb,n_q} を N_q 個統合して得られるベクトルである.

125
$$F_{Stb,n_q} = wr_{ftr,n_q} + (1 - w)s_{dsc,n_q}$$
(4-11)

 r_{ftr,n_a} は,式(4-12)に従った計算により求められる.

$$r_{ftr,n_q} = 1 - \frac{\sigma_{kp,n_q}}{\max_{n_q} \sigma_{kp,n_q}}$$
(4-12)

 r_{ftr,n_q} の計算では,図4-6のように,撮影条件が計N回変わるうちに,同じ特徴点が同 じ座標で抽出された回数が評価される.しかし撮影条件によっては,前述のように特徴 点の位置ズレが生じるため、1 つの小領域内で観測される画像特徴点抽出数 N_{kp,n_q} のば らつき σ_{kp,n_q} が,同じ特徴点が同じ座標で抽出される回数の近似値として計算される. そして, σ_{kp,n_q} の最大値によって σ_{kp,n_q} が正規化される.正規化後の値を1から差引くこ とで, σ_{kp,n_q} が小さい程, r_{ftr,n_q} が大きくなる性質をもつ評価式を得ることができる. s_{dsc,n_q} は,式(4-13), (4-14)の要領に従って計算する.

$$s_{dsc,n_q} = 1 - \frac{r_{Derr,n_q}}{\max_{n_q} r_{Derr,n_q}}$$
(4-13)

$$r_{Derr,n_q} = \frac{\min_{K} \sum_{l=1}^{N-1} \sum_{m=l+1}^{N} d_H(D_{n_q,l,k_l}, D_{n_q,m,k_m})}{c\binom{N}{2}} * \frac{1}{L_D}$$
(4-14)
s.t. $\boldsymbol{K} = [k_1, k_2, k_3, \dots, k_{N_i}], l, m = 1, 2, \dots, N_i, l \neq m$

第*i*番目の条件で画像を撮影したとき、小領域の中に計 $N_{kp,n_q,i}$ 個の画像特徴点が含まれていたとする.このような特徴点の集合を $G_{n_q,i}$ とする. $\{G_{n_q,1}, G_{n_q,2}, \dots, G_{n_q,N}\}$ の各集合から画像特徴点を1つずつ選び出すことを考えれば、この選択の組合わせ数は $\prod_{i=1}^{N} N_{kp,n_q,i}$ 通りである(図4-7(a)).この過程で生成された新たな特徴点の集合を(図

4-7(b)) 中の G_{n_q} で示す.次に、 G_{n_q} に含まれる画像特徴点について、特徴ベクトル D_{n_q,n,k_n} 同士のハミング距離 d_H を式(4-14)の分子に示すように足し合わせる. d_H の計算 で特徴ベクトル同士の論理積を求める回数は、計 NC2回である.そのためこれを式(4-14)の分母とする.さらに、これを特徴ベクトルのビット数 L_D で割れば、特徴ベクトル のビットが変化した割合を求めることができる.特徴ベクトルの類似度を求める場合 は、小領域ごとに特徴ベクトル変化率 r_{Derr,n_q} を求め、 r_{Derr,n_q} の最大値で r_{Derr,n_q} の正規 化をして得られる分数を1から差し引けばよい(式(4-13)).但し、小領域によって は、画像特徴点が一度も抽出されない場合、若しくは、特定のiにおいて1回のみ抽出 されるが、それ以外のiでは抽出されない場合がある.このような小領域は、 s_{dsc,n_q} を 計算することができないため、計 N_q 個の小領域に含めない.

4.4 顕著性と画像特徴点抽出恒常性の関連性評価

4.4.1 評価関数

顕著性と画像特徴点抽出恒常性の関連性*ϕ*iを式(4-15)に従って評価する.

 $\phi_{i} = \cos^{-1} \left(\frac{M_{Sal,i} \cdot F_{Stb}}{\|M_{Sal,i}\| \|F_{Stb}\|} \right)$ $N \in \{N_{B}, N_{F}, N_{S}\}$ $F_{Stb} = \left[F_{Stb,1}, F_{Stb,2}, \dots, F_{Stb,n_{q}}, \dots, F_{Stb,N_{q}} \right]$ $M_{Sal,i} = \left[M_{Sal,i,1}, M_{Sal,i,2}, \dots, M_{Sal,i,n_{q}}, \dots, M_{Sal,i,N_{q}} \right]$ $F_{Stb}, \forall M_{Sal,i} \in {}^{1 \times N_{q}} \mathbb{R}$ (4-15)

 F_{Stb} は、小領域(後述)毎に画像特徴点抽出の恒常性 F_{Stb,n_q} (後述)を示すような配列をベクトルに変換したものである($n_q \in N_q$, N_q は小領域の数である). $M_{Sal,i}$ (*i* は撮影条件のインデクス)は、i番目の撮影条件で撮影した画像を用いて生成した顕著性マップ $M_{Sal,i}$ を小領域(後述)に分割して、それぞれの小領域の範囲で顕著性の最大値を算出し、顕著性の最大値を計 N_q 個統合して得られたベクトルである. ϕ_i を計算するには、図 4-8 に示すように、2 つのベクトル $M_{Sal,i}$, F_{Stb} がなす間の角度として考える. $M_{Sal,i}$ と F_{Stb} の単位ベクトルを計算し、これらの内積について余弦の逆関数を計算することで、 ϕ_i が求まる. 従って、 $M_{Sal,i}$, F_{Stb} の関連性が強いほど、 ϕ_i が0に近づく.

4.4.2 実験で用いた画像とその空間周波数スペクトル

実験で用いた画像は、図 4-9 に示すように、Chair、Flower、Lenna、Mandrill、Things、Things (Multiple), Tree, Stop の 8 種類である. 図 4-10 には、図 4-9 の画像に対応した周波数ス

ペクトルを示す. これらの画像は, SIDBA(Standard Image Data BAse)[60], カリフォルニ ア工科大学 Caltech101[61], Caltech256[62]のデータベースから得たものである. ϕ_i を求める実験では,変更する撮影条件に応じて使用する画像が変わる. 表 4-1 に示さ れる数字は,実験で用いた画像の枚数である. '8'は,図 4-9 で示されている画像全て(計 8 枚)を意味し,'4'は,背景が白色である計 4 枚の画像("chair", "stop", "things", "Tree") を意味する.

4.4.3 設定パラメータとその値域

次に、変更した撮影条件 ($\sigma_{G,i}, W_{obj,i}, I_{Max,i}, T_{FAST,i}$)の設定パラメータについて説明 する.表 4-2 に設定パラメータとその値域を表に示す.表(a)は $I_{Max,i}$ 変更時,(b)は $\sigma_{G,i}$ 変 更時,(c)は $W_{obj,i}$ 変更時,(d)は $T_{FAST,i}$ 変更時に対応する. T_{FAST} は、画像特徴点の抽出条 件の違いにより T_{FAST} =20,40 のパターンがある. T_{FAST} が極めて小さい場合,抽出数が増 加することで小領域に含まれる画像特徴点も急増する.これに伴い、 d_{H} の計算過程にお いて、特徴ベクトル同士のペア数も急増し、特徴ベクトルの比較に要する時間が極めて 長くなる.そこで、抽出条件が緩やかな方 T_{FAST} については,所要時間増加が許容できる 上限として T_{FAST} =20を選択した. $I_{Max,i}$ については画像の明るさが初期条件の半分にな るように $I_{Max,i}$ の最小値を 0.5 $I_{Max,1}$ とした($I_{Max,1}$ が I_{Max} の初期値であり、最大値である.). $\sigma_{G,i}$ については、カメラの焦点ズレにより、考えられる画像の劣化の著しさを想定し、 が初期条件の半分になることを想定し、 $W_{obj,i}$ の最小値を 0.5 $W_{obj,1}$ に決定した($W_{obj,1}$ が W_{obj} の初期値であり、最大値である.). $N_{B}, N_{F}, N_{S}, N_{FAST}$ は全て6である.

その他の設定について説明する. Itti 法では, *c*, *s* の値域を文献[9]の通りに設定する. 従って, マップ \overline{I} は式(4-16)に従って計算される.

$$\bar{I} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} N(I(c,s))$$
(4-16)

また,Simpsalの設定にあるような,顕著性マップSの平滑化については,第3章と同様に省略する. VOCUS2と提案手法の設定は,第3章と同一である.

4.4.4 顕著性マップの生成結果

図 4-11~18 に顕著性マップの生成結果を示す.

4.5 結果と考察

4.5.1 結果(I_{Max.i}可変時)

表 A-1~8(付録)に, $I_{Max,i}$ を可変にした場合の ϕ_i の比較結果を示す. 図 A-1~8 (付録) に, VOCUS2, Itti, 提案手法によって得られた顕著性マップと, 画像特徴点抽出結果の 対応関係を示す. この図には, $I_{Max,i}$ が変わる条件下において, 顕著性マップが変化する 様子や, 画像特徴点抽出状況が変化する様子が示されている. 表 4-3,4 に $M_{Sal,i}$ と r_{ftr} の 関係性を調べる実験の結果をまとめて示す. この表は付録の表 A-1~8 を用いて作成し たものである. 表 4-3 には ϕ_i の平均値の比較を, 表 4-4 には顕著性マップ毎に, ϕ_i の最小 値記録回数を示す. 表 4-4 によると, 提案手法において ϕ_i の最小値を記録する回数は, $T_{FAST}=20$ の場合: 48 例中 45 例, $T_{FAST}=40$ の場合: 48 例全てであった.

次に、 $I_{Max,i}$ が可変(計6回変更)の条件下において、 $M_{Sal,i}$ と S_{dsc} の関係性を調べる 実験の結果を表 4-5,6 にまとめて示す. この表も同様に付録の表 A-1~8 を用いて作成し た.表 4-5 には ϕ_i の平均値の比較を、表 4-6 には顕著性マップ毎に、 ϕ_i の最小値記録回数 を示す.表 4-6 によると、提案手法において ϕ_i の最小値を記録する回数は、 T_{FAST} =20 の 場合:48 例中 34 例、 T_{FAST} =40 の場合:48 例中 44 例であった.

図 4-19~22 に、入力画像を Things とした場合の、画像特徴点抽出の推移、顕著性マ ップの推移、及びヒストグラムを示す.このヒストグラムは、横軸が顕著性マップの応 答、縦軸が、画像特徴点抽出数である.このヒストグラムを参照することで、例えば、 顕著性マップの応答が 100 を示す座標において、画像特徴点がいくつ抽出されたかを知 ることができる.

図 4-19 で用いられた顕著性マップは VOCUS2(σ_c/σ_s =1/10),図 4-20 では VOCUS2 (σ_c/σ_s =5/10),図 4-21 では Itti 法,図 4-22 では提案手法(条件 3)が用いられた.

図 4-23~26 に,入力画像を Chair とした場合の,画像特徴点抽出の推移,顕著性マップの推移,及びヒストグラムを示す.このヒストグラムは,横軸が顕著性マップの応答,

縦軸が、画像特徴点抽出数である. 図 4-23 で用いられた顕著性マップは VOCUS2(σ_c/σ_s =1/10)、図 4-24 では VOCUS2 (σ_c/σ_s =5/10)、図 4-25 では Itti 法、図 4-26 では提案手法 (条件 3)が用いられた.

図 4-19~22(Things の例)によると、VOCUS2($\sigma_c/\sigma_s=1/10$)や Itti 法を使用した時は、ヒ ストグラムの極値が、顕著性が低い側に偏りが生じている.このため、 ϕ_i の開きが大き くなっている.一方、VOCUS2($\sigma_c/\sigma_s=5/10$)では、ヒストグラムに、2つの山が表れ、こ れに伴って ϕ_i が僅かに狭まった.提案手法では、ヒストグラムの山が他の手法と比べて 高い顕著性の位置に表れているため、 ϕ_i がより狭まった.

一方,図 4-23~26 (Chair の例)では、Itti の例を除けば、提案手法と VOCUS2 はと もにヒストグラムが類似しており、両者において ϕ_i の大きな差が表れなかった.

4.5.2 結果(σ_{G,i}可変時)

表 B-1~8(付録)に, $\sigma_{G,i}$ を可変にした場合の ϕ_i の比較結果を示す. 図 B-1~8 (付録) に, VOCUS2, Itti, 提案手法によって得られた顕著性マップと, 画像特徴点抽出結果の対応 関係を示す. この図には, $\sigma_{G,i}$ が変わる条件下において, 顕著性マップが変化する様子 や, 画像特徴点抽出状況が変化する様子が示されている.

表 4-7,8 に $M_{Sal,i}$ と r_{ftr} の関係性を調べる実験の結果をまとめて示す.この表は付録 の表 B-1~8 を用いて作成したものである.表 4-7 には ϕ_i の平均値の比較を,表 4-8 には 顕著性マップ毎に、 ϕ_i の最小値記録回数を示す.表 4-8 によると、提案手法において ϕ_i の最小値を記録する回数は、 T_{FAST} =20 の場合:48 例中 35 例、 T_{FAST} =40 の場合:48 例中 32 例であった).となった.しかし、その回数は $I_{Max,i}$ 変更時と比較して減少し た.

次に、 $\sigma_{G,i}$ が可変(計6回変更)の条件下において、 $M_{Sal,i}$ と s_{dsc} の関係性を調べる実験の結果を表 4-9,10 にまとめて示す. この表も同様に付録の表 B-1~8 を用いて作成した. 表 4-9 には ϕ_i 平均値の比較を、表 4-10 には顕著性マップ毎に、 ϕ_i の最小値記録回数を示す. 表 4-10 によると、提案手法において ϕ_i の最小値を記録する回数は、 T_{FAST} =20 の場合: 48 例中 38 例、 T_{FAST} =40 の場合: 48 例中 32 例)であった.

図 4-27~30 に、入力画像を Things とした場合の、画像特徴点抽出の推移、顕著性マ ップの推移、及びヒストグラムを示す.このヒストグラムは、横軸が顕著性マップの応 答、縦軸が、画像特徴点抽出数である.このヒストグラムを参照することで、例えば、 顕著性マップの応答が 100 を示す座標において、画像特徴点がいくつ抽出されたかを知 ることができる.図 4-27 で用いられた顕著性マップは VOCUS2($\sigma_c/\sigma_s=1/10$)、図 4-28 で は VOCUS2($\sigma_c/\sigma_s=5/10$)、図 4-29 では Itti 法、図 4-30 では提案手法(条件 3)が用いら れた.図 4-31~34 に、入力画像を Chair とした場合の、画像特徴点抽出の推移、顕著性 マップの推移、及びヒストグラムを示す.このヒストグラムは、横軸が顕著性マップの 応答、縦軸が、画像特徴点抽出数である.図 4-31 で用いられた顕著性マップは VOCUS2($\sigma_c/\sigma_s=1/10$)、図 4-32 では VOCUS2($\sigma_c/\sigma_s=5/10$)、図 4-33 では Itti 法、図 4-34 では提案手法(条件 3)が用いられた.

図 4-27~30(Things の例)によると、VOCUS2(σ_c/σ_s =1/10)や Itti 法を使用した時は、ヒ ストグラムの極値が、顕著性が低い側に偏りが生じている.このため、 ϕ_i の開きが大き くなっている.一方、VOCUS2(σ_c/σ_s =5/10)では、ヒストグラムに、2つの山が表れ、こ れに伴って ϕ_i が僅かに狭まった.提案手法では、ヒストグラムの山が他の手法と比べて 高い顕著性の位置に表れているため、 ϕ_i がより狭まった.但し、この例は画像の空間周 波数が削られることによって画像特徴点の抽出数が大幅に減少するため、ヒストグラム の山の高さは著しく下がる.

4.5.3 結果(Wobj,i可変時)

表 C-1~8(付録)に、 $W_{obj,i}$ を可変にした場合の ϕ_i の比較結果を示す. 図 C-1~8(付録) に、VOCUS2、Itti,提案手法によって得られた顕著性マップと、画像特徴点抽出結果の 対応関係を示す.この図には、 $W_{obj,i}$ が変わる条件下において、顕著性マップが変化す る様子や、画像特徴点抽出状況が変化する様子が示されている.

表 4-11,12 に $M_{Sal,i}$ と r_{ftr} の関係性を調べる実験の結果をまとめて示す.この表は付録 の表 C-1~8 を用いて作成したものである.表 4-11 には ϕ_i の平均値の比較を,表 4-12 に は顕著性マップ毎に、 ϕ_i の最小値記録回数を示す.表 4-11 によると、提案手法を用いた 場合は ϕ_i の最小値を記録する回数が最多 (T_{FAST} =20 の場合:24 例中 20 例、 T_{FAST} =40 の 場合:24 例中 21 例)であった.

次に、 $W_{obj,i}$ が可変(計6回変更)の条件下において、 $M_{Sal,i}$ と s_{dsc} の関係性を調べる実験の結果を表 4-13,14 にまとめて示す.この表も同様に付録の表 C-1~8 を用いて作成した.表 4-13 には ϕ_i の平均値の比較を、表 4-14 には顕著性マップ毎に、 ϕ_i の最小値記録回数を示す.表 4-14 によると提案手法の顕著性マップを用いた場合は、 ϕ_i の最小値を記録する回数が最多(T_{FAST} =20 の場合:24 例中全て、 T_{FAST} =40 の場合:24 例中全て)であった.

図 4-35~38 に、入力画像を Things とした場合の、画像特徴点抽出の推移、顕著性マップの推移、及びヒストグラムを示す.このヒストグラムは、横軸が顕著性マップの応答,縦軸が、画像特徴点抽出数である.このヒストグラムを参照することで、例えば、顕著性マップの応答が 100 を示す座標において、画像特徴点がいくつ抽出されたかを知ることができる.図 4-35 で用いられた顕著性マップは VOCUS2($\sigma_c/\sigma_s=1/10$)、図 4-36 では VOCUS2($\sigma_c/\sigma_s=5/10$)、図 4-37 では Itti 法、図 4-38 では提案手法(条件 3)が用いられた.

図 4-39~42 に,入力画像を Chair とした場合の,画像特徴点抽出の推移,顕著性マップの推移,及びヒストグラムを示す.このヒストグラムは,横軸が顕著性マップの応答,縦軸が,画像特徴点抽出数である.

図 4-39 で用いられた顕著性マップは VOCUS2($\sigma_c/\sigma_s = 1/10$),図 4-40 では VOCUS2($\sigma_c/\sigma_s = 5/10$),図 4-41 では Itti 法,図 4-42 では提案手法(条件 3)が用いられ た.図 4-35~38 及び,図 4-39~42 を参照すると,Chair,Things とも,画像サイズが小 さくなることによってヒストグラムの山が顕著性の大きくなる方向へ移動している.

4.5.4 結果(T_{FAST.i}可変時)

表 D-1~8(付録)に、 $T_{FAST,i}$ を可変にした場合の ϕ_i の比較結果を示す. 図 D-1~8 (付録) に、VOCUS2、Itti,提案手法によって得られた顕著性マップと、画像特徴点抽出結果の 対応関係を示す.この図には、 $T_{FAST,i}$ が変わる条件下において、顕著性マップが変化す る様子や、画像特徴点抽出状況が変化する様子が示されている.ただし、この条件下に おいては、撮影条件の変化との関連性がないため、任意の $T_{FAST,i}$ に対し、顕著性マップ を生成したときの画像は撮影条件が共通である.

表 4-15,16 に $M_{Sal,i}$ と r_{ftr} の関係性を調べる実験の結果をまとめて示す.この表は付録 の表 A-1~8 を用いて作成したものである.表 4-15 には ϕ の比較を,表 4-16 には顕著性 マップ毎に, ϕ_i の最小値記録回数を示す.表 4-16 を参照すると,提案手法の顕著性マッ プを用いた場合は, ϕ の最小値を記録する回数 8 例全てで最多であることが分かった.

次に, *T_{FAST,i}*が可変(計6回変更)の条件下において, *M_{Sal,i}とs_{dsc}*の関係性を調べる 実験の結果を表 4-17, 18 にまとめて示す.この表も同様に付録の表 D-1~8 を用いて作 成した.表 4-17 にはφの比較を,表 4-18 には顕著性マップ毎に, φ_iの最小値記録回数を

示す. 表 4-18 を参照すると, 提案手法の顕著性マップを用いた場合は φの最小値を記録 する回数が最多(8 例中 7 例)であることが分かった.

4.5.5 考察

3 つの撮影条件の変化(最大輝度,高周波成分の減少,物体サイズの変化),画像特 徴点抽出条件(FAST スコア閾値)が生じた場合は,画像特徴点の抽出数に変化が生じ る.そのため,顕著性マップを用いて恒常的に抽出される画像特徴点を取捨選択する ような提案をした.画像特徴点抽出との恒常性 F_{stb} と顕著性をそれぞれベクトルで考 え,両ベクトル間の角度 ϕ_i の狭さを評価することで,両者の関係性の強さを比較し た.その際,従来手法(Itti 法と VOCUS2)及び,提案手法において, ϕ_i を行った.恒常 性については,画像特徴点抽出の再現率 r_{ftr} (抽出数のばらつきの低さ)や,特徴ベ クトルの類似度 s_{dsc} (特徴ベクトルの変化率の少なさ)に分けて考えた.

3 つの撮影条件変化,1 つの画像特徴点抽出条件の変化が生じる環境において,提案 手法によって ϕ_i を評価した場合,他の手法よりも狭い ϕ_i が多く観測された.特に,低周 波・高周波成分用のボックスフィルタ F_{Bc} , F_{Bs} を拡大する範囲を広げれば,差分画像の 画素値の最大値が得られやすくなり,これによって ϕ_i がさらに狭まるが読み取れた.こ れは,恒常的に抽出される画像特徴点を取捨選択する面で,提案手法の顕著性マップが, 他の顕著性マップよりも適していることを意味する.輝度変化・サイズ変化のように, 周波数成分の減衰が少ない撮影条件変更時においては,この関連性の面で提案手法が有 利であることが分かった.

しかし,カメラの焦点ズレのように,高周波成分が著しく減少するような撮影条件変化の場合は,他の撮影条件変更時と比較して,提案手法を適用した場合よりも,VOCUS2を適用した場合でこの関連性が強くなる例が多くみられた.この場合,フィルタのパラ

メータ比率 σ_c/σ_s を増加させることによって顕著性に拡がりが表れるため、顕著性が高い領域と抽出恒常性に優れた画像特徴点が重なる確率が増加する.これに伴って VOCUS2による ϕ_i がより狭まることになる.

図 4-1 顕著性と画像特徴点の恒常性と実の関係を求める実験の趣旨

図 4-2 画像特徴点抽出のためのスケール空間

図4-3 FASTによるコーナ検出の様子

図 4-5 画像特徴点同士の対応付け

図 4-6 小領域 (インデクス n_q) における N_{kp,n_q} の変化

(a)小領域に含まれる特徴ベクトル(撮影条件毎)

(b)撮影条件毎に小領域から一つずつ特徴ベクトルを 選び出して新たな特徴ベクトルの集合*G_{nq}を*生成

図 4-8 評価関数 ϕ_i の計算イメージ

※画像は[60][61][62]より引用.ただし、Things (Multi)は[61]のものを改変図 4-9 実験で用いた画像

図 4-10 実験で用いた画像とその空間周波数スペクトル

(a) VOCUS2 ($\sigma_c/\sigma_s=1/10$) (b) VOCUS2 ($\sigma_c/\sigma_s=3/10$) (c) VOCUS2 ($\sigma_c/\sigma_s=5/10$)

(d)Itti

(e)提案手法(Setting1)

(f)提案手法(Setting2)

図 4-11 顕著性マップの生成結果(Chair)

(g)提案手法(Setting3)

(d)Itti

(e)提案手法(Setting1)

(f)提案手法(Setting2)

(g)提案手法(Setting3)

図 4-12 顕著性マップの生成結果(Flower)

(a)VOCUS2 ($\sigma_c/\sigma_s=1/10$) (b)VOCUS2 ($\sigma_c/\sigma_s=3/10$)(c)VOCUS2 ($\sigma_c/\sigma_s=5/10$)

(e)提案手法(Setting1)

(f)提案手法(Setting2) (g)提案手法(Setting3) 図 4-13 顕著性マップの生成結果 (Lenna)

(d)Itti

(a) VOCUS2 (σ_c/σ_s =1/10) (b) VOCUS2 (σ_c/σ_s =3/10) (c) VOCUS2 (σ_c/σ_s =5/10)

図 4-14 顕著性マップの生成結果 (Mandrill)

(a) VOCUS2 ($\sigma_c/\sigma_s=1/10$) (b) VOCUS2 ($\sigma_c/\sigma_s=3/10$)(c) VOCUS2 ($\sigma_c/\sigma_s=5/10$)

(e)提案手法(Setting1)

(f)提案手法(Setting2) 図 4-15 顕著性マップの生成結果 (Things)

(a) VOCUS2 (σ_c/σ_s =1/10)(b) VOCUS2 (σ_c/σ_s =3/10)(c) VOCUS2 (σ_c/σ_s =5/10)

(e)提案手法(Setting1)

(g)提案手法(Setting3) (f)提案手法(Setting2) 図 4-16 顕著性マップの生成結果 (Multisize)

(d)Itti

(a) VOCUS2 ($\sigma_c/\sigma_s=1/10$) (b) VOCUS2 ($\sigma_c/\sigma_s=3/10$) (c) VOCUS2 ($\sigma_c/\sigma_s=5/10$)

(g)提案手法(Setting1)

(h)提案手法(Setting2)

(g)提案手法(Setting3)

図 4-17 顕著性マップの生成結果 (Tree)

(g)提案手法(Setting1)

(g)提案手法(Setting3)

図 4-18 顕著性マップの生成結果 (Stop)

 $I_{Max,i}=1.0I_{Max,1}$

φ_i(顕著性 vs 再現度)= 31.24[deg]

255

 $I_{Max,i} = 0.8 I_{Max,1}$

φ_i(顕著性 vs 再現度)=31.25[deg]

I_{Max,i}= 0.6*I_{Max,1}* φ_i(顕著性 vs 再現度)=31.24[deg]
 図 4-19 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化、中:顕著性マップ、右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Things,撮影条件:輝度変化、顕著性マップ:VOCUS2 $\sigma_c/\sigma_s=1/10$)

 $I_{Max,i}$ =1.0 $I_{Max,1}$ ϕ_i (顕著性 vs 再現度)=29.77[deg]

I_{Max,i}=0.8I_{Max,1} φ_i(顕著性 vs 再現度)=29.76[deg]

I_{Max,i}=0.6I_{Max,1} φ_i(顕著性 vs 再現度)=29.77[deg]

図 4-20 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化、中:顕著性マップ、右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Things,撮影条件:輝度変化、顕著性マップ:VOCUS2 $\sigma_c/\sigma_s=5/10$)

 $I_{Max,i}$ = 1.0 $I_{Max,1}$ ϕ_i (顕著性 vs 再現度)= 28.30[deg]

 $I_{Max,i}$ = 0.8 $I_{Max,1}$ ϕ_i (顕著性 vs 再現度)= 28.40[deg]

I_{Max,i}= 0.6*I_{Max,1}* φ_i(顕著性 vs 再現度)= 28.34[deg]

左:画像特徴点抽出の変化,中:顕著性マップ,右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Things,撮影条件:輝度変化,顕著性マップ:Itti)

図 4-21 画像特徴点抽出数と顕著性の関係

 $I_{Max,i} = 1.0I_{Max,1}$

φ_i(顕著性 vs 再現度)= 18.40[deg]

 $I_{Max,i} = 0.8 I_{Max,1}$

φ_i(顕著性 vs 再現度)= 18.44[deg]

 $I_{Max,i} = 0.6 I_{Max,1}$

φ_i(顕著性 vs 再現度)= 18.36[deg]

図 4-22 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化,中:顕著性マップ,右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Things,撮影条件:輝度変化,顕著性マップ:提案手法(条件3))

 $I_{Max,i} = 1.0 I_{Max,1}$

φ_i(顕著性 vs 再現度)= 18.62[deg]

 $I_{Max,i} = 0.8 I_{Max,1}$

φ_i(顕著性 vs 再現度)= 18.61[deg]

 $I_{Max,i} = 0.6 I_{Max,1}$

φ_i(顕著性 vs 再現度)= 18.61

図 4-23 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化、中:顕著性マップ、右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Chair、撮影条件:輝度変化、顕著性マップ:VOCUS2 $\sigma_c/\sigma_s=1/10$)

 $I_{Max,i} = 1.0 I_{Max,1}$

φ_i(顕著性 vs 再現度)= 19.96[deg]

 $I_{Max,i} = 0.8 I_{Max,1}$

φ_i(顕著性 vs 再現度)= 19.96[deg]

図 4-24 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化、中:顕著性マップ、右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Chair,撮影条件:輝度変化、顕著性マップ:VOCUS2 $\sigma_c/\sigma_s=5/10$)

 $I_{Max,i} = 1.0 I_{Max,1}$

φ_i(顕著性 vs 再現度)=31.71[deg]

 $I_{Max,i} = 0.8 I_{Max,1}$

φ_i(顕著性vs 再現度)=31.69[deg]

 $I_{Max,i} = 0.6 I_{Max,1}$

φ_i(顕著性 vs 再現度)=31.69[deg]

図 4-25 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化,中:顕著性マップ,右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Chair,撮影条件:輝度変化,顕著性マップ:Itti)

 $I_{Max,i} = 1.0 I_{Max,1}$

φ_i(顕著性 vs 再現度)= 17.75[deg]

 $I_{Max,i} = 0.8 I_{Max,1}$

51

102

153

204

255

 $I_{Max,i} = 0.6 I_{Max,1}$

図 4-26 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化,中:顕著性マップ,右:顕著性と抽出数の関係を示すヒストグラム (使用画像: Chair,撮影条件:輝度変化,顕著性マップ:提案手法(条件3))

 $\sigma_{G,i}=0.0$

φ_i(顕著性 vs 再現度)=31.40[deg]

 $G_{G,i} = 2.0$

φ_i(顕著性 vs 再現度)= 31.82[deg]

 $G_{G,i} = 4.0$

φ_i(顕著性 vs 再現度)= 33.74[deg]

図 4-27 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化、中:顕著性マップ、右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Things,撮影条件:焦点のズレ、顕著性マップ:VOCUS2 σ_c/σ_s =1/10)

 $\sigma_{G,i} = 0.0$

φ_i(顕著性 vs 再現度)=31.75[deg]

*G*_{*G*,i}= 2.0 φ_i(顕著)

 ϕ_i (顕著性 vs 再現度)= 31.64[deg]

 $G_{G,i} = 4.0$

φ_i(顕著性 vs 再現度)=32.40[deg]

図 4-28 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化、中:顕著性マップ、右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Things,撮影条件:焦点のズレ、顕著性マップ:VOCUS2 $\sigma_c/\sigma_s=5/10$)

 $\sigma_{G,i}=0.0$

φ_i(顕著性 vs 再現度)= 29.68[deg]

 $G_{G,i} = 2.0$

φ_i(顕著性 vs 再現度)= 31.20[deg]

 $G_{G,i}$ = 4.0 ϕ_i (顕著性 vs 再現度)= 34.26[deg] 図 4-29 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化,中:顕著性マップ,右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Things,撮影条件:焦点のズレ,顕著性マップ:Itti)

 $\sigma_{G,i} = 0.0$

φ_i(顕著性 vs 再現度)= 18.70[deg]

 $G_{G,i} = 2.0$

*φ*_i(顕著性 vs 再現度)= 18.38[deg]

φ_i(顕著性 vs 再現度)= 18.86[deg] $G_{G,i} = 4.0$

図 4-30 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化、中:顕著性マップ、右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Things, 撮影条件: 焦点のズレ, 顕著性マップ: 提案手法(条件3))

 $\sigma_{G,i} = 0.0$

 $G_{G,i}=2.0$

φ_i(顕著性 vs 再現度)= 17.11[deg]

 $G_{G,i} = 4.0$ φ_i(顕著性 vs 再現度)= 17.44[deg] 図 4-31 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化、中:顕著性マップ、右:顕著性と抽出数の関係を示すヒストグラム (使用画像: Chair, 撮影条件: 焦点のズレ, 顕著性マップ: VOCUS2 σ_c/σ_s =1/10)

 $\sigma_{G,i}=0.0$

φ_i(顕著性 vs 再現度)= 16.49[deg]

 $G_{G,i}=2.0$

φ_i(顕著性 vs 再現度)= 16.57[deg]

 $G_{G,i}=4.0$

 ϕ_i (顕著性 vs 再現度)= 16.94[deg]

図 4-32 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化,中:顕著性マップ,右:顕著性と抽出数の関係を示すヒストグラム (使用画像: Chair,撮影条件:焦点のズレ,顕著性マップ: VOCUS2 σ_c/σ_s=5/10)

 $\sigma_{G,i}=0.0$

φ_i(顕著性 vs 再現度)= 33.58[deg]

 $G_{G,i}=2.0$

*φ*_i(顕著性 vs 再現度)= 34.82[deg]

G_{G,i}=4.0 φ_i(顕著性 vs 再現度)= 35.66

図 4-33 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化,中:顕著性マップ,右:顕著性と抽出数の関係を示すヒストグラム (使用画像: Chair,撮影条件:焦点のズレ,顕著性マップ: Itti)

 $\sigma_{G,i} = 0.0$

φ_i(顕著性 vs 再現度)= 17.61[deg]

 $G_{G,i}=2.0$

φ_i(顕著性 vs 再現度)= 17.44[deg]

*G*_{*G*,i}=4.0 φ_i(顕著性 vs 再現度)= 17.55[deg]

図 4-34 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化,中:顕著性マップ,右:顕著性と抽出数の関係を示すヒストグラム (使用画像: Chair,撮影条件:焦点のズレ,顕著性マップ: 提案手法(条件3))

 $W_{Obj,i} = 1.0 W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 29.75[deg]

 $W_{Obj,i} = 0.8 W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 28.81[deg]

 $W_{obj,i} = 0.6 W_{Obj,1}$

 ϕ_i (顕著性 vs 再現度)= 28.32[deg]

図 4-35 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化、中:顕著性マップ、右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Things,撮影条件:対象物の画素値、顕著性マップ:VOCUS2 σ_c/σ_s =1/10)

 $W_{Obj,i} = 1.0 W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 29.77[deg]

 $W_{Obj,i} = 0.8 W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 27.23[deg]

 $W_{obj,i} = 0.6 W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 23.29[deg]

図 4-36 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化、中:顕著性マップ、右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Things,撮影条件:対象物の画素値、顕著性マップ:VOCUS2 $\sigma_c/\sigma_s=5/10$)

 $W_{Obj,i}=1.0W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 29.60[deg]

 $W_{Obj,i}=0.8W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 30.48[deg]

255

 $W_{obj,i}=0.6W_{Obj,1}$

 ϕ_i (顕著性 vs 再現度)= 29.48[deg]

図 4-37 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化,中:顕著性マップ,右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Things,撮影条件:対象物の画素値,顕著性マップ:Itti)

 $W_{Obj,i}=1.0W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 29.60[deg]

 $W_{Obj,i} = 0.8 W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 30.48[deg]

 $W_{obj,i}=0.6W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 29.48[deg]

図 4-38 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化,中:顕著性マップ,右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Things,撮影条件:対象物の画素値,顕著性マップ:提案手法)

 $W_{Obj,i} = 1.0 W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 18.22[deg]

 $W_{Obj,i} = 0.8 W_{Obj,1}$

 $W_{obj,i} = 0.6 W_{Obj,1}$

図 4-39 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化,中:顕著性マップ,右:顕著性と抽出数の関係を示すヒストグラム (使用画像: Chair,撮影条件:対象物の画素値,顕著性マップ: VOCUS2 *σ_c/σ_s=1/10*)

 $W_{Obj,i}=1.0W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 17.21[deg]

 $W_{Obj,i} = 0.8 W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 16.53[deg]

 $W_{obj,i} = 0.6 W_{Obj,1}$

 ϕ_i (顕著性 vs 再現度)= 17.14[deg]

左:画像特徴点抽出の変化、中:顕著性マップ、右:顕著性と抽出数の関係を示すヒストグラム (使用画像:Chair、撮影条件:対象物の画素値、顕著性マップ:VOCUS2 $\sigma_c/\sigma_s=5/10$)

- $W_{Obj,i} = 1.0W_{Obj,1}$
- φ_i(顕著性 vs 再現度)= 34.61[deg]

φ_i(顕著性 vs 再現度)= 35.41[deg]

図 4-41 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化、中:顕著性マップ、右:顕著性と抽出数の関係を示すヒストグラム (使用画像: Chair, 撮影条件: 対象物の画素値, 顕著性マップ: Itti)

 $W_{Obj,i} = 1.0 W_{Obj,1}$

 $W_{Obj,i} = 0.8 W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 16.38[deg]

 $W_{obj,i} = 0.6 W_{Obj,1}$

φ_i(顕著性 vs 再現度)= 15.51[deg]

図 4-42 画像特徴点抽出数と顕著性の関係

左:画像特徴点抽出の変化,中:顕著性マップ,右:顕著性と抽出数の関係を示すヒストグラム (使用画像: Chair,撮影条件:対象物の画素値,顕著性マップ:提案手法(条件3))

Changed	VOCUS2	Itti		
Condition	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	Program by [57]
I _{Max} Variable	8	8	8	8
σ_F Variable	8	8	8	8
W _{obj} Variable	4	4	4	4

表 4-1 実験で用いた画像

Changed	Proposed Method (f _{norm} : Mode1)							
Condition	$W_{Pmax} = W_{IM}/2$	$W_{Pmax} = W_{IM}/4$	$W_{Pmax} = W_{IM}/2$					
	No <i>M</i> ₀	With M ₀	With M ₀					
I _{Max} Variable	8	8	8					
σ_F Variable	8	8	8					
W _{obj} Variable	4	4	4					

表 4-2 設定パラメータとその値域

(a) I_{Max,i}変更時

	$I_{Max,i}/I_{Max,1}$							
	1.0	0.9	0.8	0.7	0.6	0.5		
$T_{FAST} = 20$	0	0	0	0	0	0		
$T_{FAST} = 40$	0	0	0					

(c) W_{0bj,i}変更時

	$W_{obj,i}/W_{obj,1}$							
	1.0	0.9	0.8	0.7	0.6	0.5		
$T_{FAST} = 20$	0	0	0	0	0	0		
$T_{FAST} = 40$	0	0	0	0	0	0		

(b) σ_{G,i}変更時

	$\sigma_{G,i}$						
	0.0	1.0	2.0	3.0	4.0	5.0	
$T_{FAST} = 20$	0	0	0	0	0	0	
$T_{FAST} = 40$	0	0	0	0	0	0	

(d) T_{FAST,i}変更時

	$W_{obj,i}/W_{obj,1}$						
	10	20	30	40	50	60	
$\frac{I_{Max,i}}{I_{Max,1}} = 1.0$							
$\sigma_{G,i} = 0.0$	0	0	0	0	0	0	
$\frac{W_{obj,i}}{W_{obj,1}} = 1.0$							

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	18.61	18.69	19.96	31.70	20.59	18.67	17.66
Flower	29.00	29.52	29.64	41.39	19.72	20.05	18.98
Lenna	18.13	19.48	20.63	31.61	19.94	18.92	18.04
Mandrill	31.32	30.29	30.22	32.06	21.47	22.22	21.89
Things	31.24	30.53	29.77	28.36	19.60	18.80	18.37
Things(Multi))	23.78	20.24	19.74	31.60	20.20	21.15	19.61
Tree	21.85	23.67	24.34	33.97	20.76	20.32	20.10
Stop	25.90	26.46	27.82	28.85	21.50	21.68	20.93

表 4-3 $\bar{\phi}$ の比較 ($I_{Max,i}$ 可変, $M_{Sal,i}$ vs r_{ftr}) (a) $T_{FAST} = 20$

(b) $T_{FAST} = 40$

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	19.91	20.09	21.41	26.97	19.75	19.02	18.17
Flower	26.52	27.65	28.16	37.25	17.96	18.27	17.49
Lenna	21.43	23.09	24.35	29.07	20.93	21.26	20.29
Mandrill	24.35	22.99	23.31	28.13	18.97	18.97	18.83
Things	30.10	30.51	30.00	27.07	17.48	16.93	16.05
Things(Multi)	24.98	21.45	20.84	31.74	20.20	21.32	19.77
Tree	18.44	20.60	21.65	31.00	18.48	16.68	16.37
Stop	26.93	27.69	29.20	29.88	21.79	21.99	21.02

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	0	0	0	0	0	0	6
Flower	0	0	0	0	0	0	6
Lenna	2	0	0	0	0	0	4
Mandrill	0	0	0	0	6	0	0
Things	0	0	0	0	0	0	6
Things(Multi)	0	0	2	0	0	0	4
Tree	0	0	0	0	0	0	6
Stop	0	0	0	0	0	0	6
Total	1	0	2	0	6	0	39

表 4-4 ϕ_i 最小値記録回数($I_{Max,i}$ 可変, $M_{Sal,i}$ vs r_{ftr}) (a) $T_{FAST} = 20$

(b) $T_{FAST} = 40$

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	0	0	0	0	0	0	6
Flower	0	0	0	0	0	0	6
Lenna	0	0	0	0	0	0	6
Mandrill	0	0	0	0	1	1	4
Things	0	0	0	0	0	0	6
Things(Multi)	0	0	0	0	0	0	6
Tree	0	0	0	0	0	0	6
Stop	0	0	0	0	0	0	6
Total	0	0	0	0	1	1	46

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	16.26	14.67	15.57	33.44	20.46	17.43	15.90
Flower	28.85	29.28	29.32	42.18	19.66	19.97	18.82
Lenna	17.20	17.81	18.45	33.15	20.05	18.70	17.65
Mandrill	31.06	29.78	29.58	31.74	20.20	20.55	20.04
Things	28.58	28.16	27.40	26.67	15.21	13.96	13.11
Things(Multi)	20.06	15.81	15.17	29.72	15.91	16.84	15.00
Tree	18.97	20.84	21.53	33.90	19.24	17.68	17.27
Stop	21.58	23.77	26.43	25.96	16.23	16.42	15.19

表 4-5 $\bar{\phi}$ の比較($I_{Max,i}$ 可変, $M_{Sal,i}$ vs s_{dsc}) (a) $T_{FAST} = 20$

(b) $T_{FAST} = 40$

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	15.05	14.24	15.51	27.04	16.71	14.70	13.65
Flower	26.70	27.58	27.78	38.84	18.16	18.41	17.58
Lenna	16.26	17.11	18.09	28.04	17.53	17.09	16.16
Mandrill	24.15	22.62	22.80	27.95	18.71	18.62	18.32
Things	28.03	28.80	28.26	26.51	15.88	14.43	13.50
Things(Multi)	21.88	17.24	16.29	31.09	16.91	18.13	16.28
Tree	18.88	21.25	22.17	32.36	19.22	17.28	16.98
Stop	21.85	23.33	25.45	26.02	16.34	16.61	15.35

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	0	6	0	0	0	0	0
Flower	0	0	0	0	0	0	6
Lenna	6	0	0	0	0	0	0
Mandrill	0	0	0	0	0	0	6
Things	0	0	0	0	0	0	6
Things(Multi)	0	0	2	0	0	0	4
Tree	0	0	0	0	0	0	6
Stop	0	0	0	0	0	0	6
Total	6	6	2	0	0	0	34

表 4-6 ϕ_i 最小値記録回数 $(I_{Max,i}$ 可変, $M_{Sal,i}$ vs s_{dsc}) (a) $T_{FAST} = 20$

(b) $T_{FAST} = 40$

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	0	0	0	0	0	0	6
Flower	0	0	0	0	0	0	6
Lenna	0	0	0	0	0	0	6
Mandrill	0	0	0	0	0	0	6
Things	0	0	0	0	0	0	6
Things(Multi)	0	0	4	0	0	0	2
Tree	0	0	0	0	0	0	6
Stop	0	0	0	0	0	0	6
Total	0	0	4	0	0	0	44

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	17.28	15.97	16.71	34.82	21.63	18.99	17.55
Flower	30.78	30.19	30.06	40.26	22.40	22.47	21.09
Lenna	22.24	22.87	23.44	38.70	24.32	23.39	22.47
Mandrill	33.85	31.94	31.62	38.94	26.43	26.42	25.95
Things	32.65	32.40	31.95	32.20	21.13	19.49	18.64
Things(Multi)	20.10	17.53	17.50	33.81	20.24	18.80	17.64
Tree	21.41	22.40	22.75	36.52	22.35	21.27	20.94
Stop	27.71	25.69	25.53	35.78	23.78	25.15	23.58

表 4-7 $\bar{\phi}$ の比較($\sigma_{G,i}$ 可変, $M_{Sal,i}$ vs r_{ftr}) (a) $T_{FAST} = 20$

(b) $T_{FAST} = 40$

Image	VOCUS2			Itti	Proposed Method			
	1/10	3/10	5/10		Setting1	Setting2	Setting3	
Chair	18.49	18.10	18.82	31.48	20.80	19.22	17.87	
Flower	28.63	28.39	28.45	39.74	21.91	22.22	20.98	
Lenna	19.72	20.84	21.60	34.47	22.22	21.40	20.64	
Mandrill	25.76	23.82	23.75	30.99	20.68	19.94	19.47	
Things	32.79	33.04	32.64	32.56	22.23	20.38	19.61	
Things(Multi)	19.12	17.07	17.23	31.77	19.27	17.92	17.07	
Tree	20.08	21.69	22.33	37.42	22.10	20.17	19.34	
Stop	27.28	22.65	20.66	34.54	23.06	25.00	23.00	

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	0	6	0	0	0	0	0
Flower	0	0	0	0	0	0	6
Lenna	6	0	0	0	0	0	2
Mandrill	0	0	0	0	0	0	6
Things	0	0	0	0	0	0	6
Things(Multi)	0	2	3	0	0	0	2
Tree	0	0	0	0	0	0	6
Stop	0	0	0	0	1	0	6
Total	6	8	3	0	1	0	34

表 4-8 ϕ_i 最小値記録回数($\sigma_{G,i}$ 可変, $M_{Sal,i}$ vs r_{ftr}) (a) $T_{FAST} = 20$

(b) $T_{FAST} = 40$

Image	VOC	VOCUS2			Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	0	1	0	0	0	0	5
Flower	0	0	0	0	0	0	6
Lenna	6	0	0	0	0	0	0
Mandrill	0	0	0	0	0	0	6
Things	0	0	0	0	0	0	6
Things(Multi)	0	3	0	0	0	0	3
Tree	0	0	0	0	0	0	6
Stop	0	0	6	0	0	0	0
Total	6	4	6	0	0	0	32

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	22.81	23.53	24.64	36.01	24.45	23.25	22.33
Flower	32.95	32.50	32.34	42.33	26.16	26.22	25.09
Lenna	20.19	20.52	20.85	39.21	23.42	21.77	20.85
Mandrill	31.13	29.31	28.99	36.11	22.26	22.07	21.62
Things	32.26	32.39	32.08	32.92	23.18	21.61	21.02
Things(Multi)	22.56	20.56	20.53	35.97	22.93	21.65	20.64
Tree	24.08	25.40	25.79	37.81	23.79	23.35	23.07
Stop	26.85	26.12	26.63	34.19	23.57	24.02	22.67

表 4-9 $\bar{\phi}$ の比較($\sigma_{G,i}$ 可変, $M_{Sal,i}$ vs s_{dsc})

(a) $T_{FAST} = 20$

(b) $T_{FAST} = 40$

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	19.64	20.47	21.57	32.58	21.58	20.35	19.28
Flower	29.87	29.76	29.80	41.28	24.01	24.17	23.13
Lenna	17.93	19.15	20.27	35.04	22.32	21.13	20.64
Mandrill	26.04	24.86	24.91	28.41	19.44	18.42	18.81
Things	33.06	33.40	33.08	33.45	23.04	21.29	20.64
Things(Multi)	21.35	19.08	19.05	35.11	21.48	20.20	19.07
Tree	21.95	23.77	24.46	38.74	23.67	21.66	20.98
Stop	27.69	23.63	21.82	34.54	23.98	25.47	23.89

Image	VOCUS2			Itti	Proposed	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3	
Chair	0	0	0	0	0	0	6	
Flower	0	0	0	0	0	0	6	
Lenna	6	0	0	0	0	0	0	
Mandrill	0	0	0	0	0	0	6	
Things	0	0	0	0	0	0	6	
Things(Multi)	0	0	4	0	0	0	2	
Tree	0	0	0	0	0	0	6	
Stop	0	0	0	0	0	0	6	
Total	6	0	4	0	0	0	38	

表 4-10 ϕ_i 最小値記録回数($\sigma_{G,i}$ 可変, $M_{Sal,i}$ vs S_{dsc}) (a) $T_{FAST} = 20$

(b) $T_{FAST} = 40$

Image	VOC	VOCUS2			Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	0	0	0	0	0	0	6
Flower	0	0	0	0	0	0	6
Lenna	6	0	0	0	0	0	0
Mandrill	0	0	0	0	0	6	0
Things	0	0	0	0	0	0	6
Things(Multi)	0	1	3	0	0	0	2
Tree	0	0	0	0	0	0	6
Stop	0	0	6	0	0	0	0
Total	6	1	9	0	0	6	26

Image	VOCU	S2		Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	17.12	16.21	16.96	34.84	20.91	17.55	16.44
Stop	22.63	23.21	23.90	29.08	20.38	20.28	19.22
Things	28.74	26.90	25.83	29.56	18.96	18.44	17.68
Tree	22.62	22.93	23.22	34.06	21.87	22.39	22.16

表 4-11 $\bar{\phi}$ の比較($W_{obj,i}$ 可変, $M_{Sal,i}$ vs r_{ftr}) (a) $T_{FAST} = 20$

Image	VOCU	<u>S2</u>		Itti	Proposed Method			
	1/10	3/10	5/10		Setting1	Setting2	Setting3	
Chair	18.73	17.98	18.68	32.66	20.62	18.72	17.62	
Stop	23.59	22.47	22.32	30.65	22.21	22.41	21.17	
Things	29.10	27.82	26.72	29.44	18.63	17.94	17.12	
Tree	20.67	21.19	21.61	34.55	20.37	20.18	19.76	

(b) $T_{FAST} = 40$

Image	VOCU	VOCUS2			Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	0	3	0	0	0	0	3
Stop	0	0	0	0	0	0	6
Things	0	0	0	0	0	0	6
Tree	0	0	1	0	3	0	2
Total	0	3	1	0	3	0	17

表 4-12 ϕ_i 最小値記録回数($W_{obj,i}$ 可変, $M_{Sal,i}$ vs r_{ftr}) (a) $T_{FAST} = 20$

(b) $T_{FAST} = 40$

Image	VOCU	VOCUS2			Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	0	2	0	0	0	0	4
Stop	0	0	0	0	0	0	6
Things	0	0	0	0	0	0	6
Tree	0	0	1	0	2	0	4
Total	0	2	1	0	1	0	20

Image	VOCU	S2		Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	21.54	22.50	23.60	34.59	22.81	20.67	20.30
Stop	28.80	30.81	31.67	34.00	26.33	25.67	24.65
Things	28.30	27.57	27.06	29.74	21.52	20.40	20.09
Tree	24.57	25.03	25.37	35.30	23.24	24.04	23.88

表 4-13 $\bar{\phi}$ の比較($W_{obj,i}$ 可変, $M_{Sal,i}$ vs s_{dsc}) (a) $T_{FAST} = 20$

(b)	T_{FAST}	=	40

Image	VOCU	S2		Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	20.41	22.01	23.21	31.97	20.75	19.29	18.93
Stop	27.15	27.07	26.96	32.92	25.58	25.47	24.46
Things	29.58	29.29	28.79	29.88	22.22	21.37	21.09
Tree	25.46	26.10	26.51	37.59	24.51	24.60	24.34

Image	VOCUS2			Itti	Proposed Method		
	1/10	1/10 3/10 5/10			Setting1	Setting2	Setting3
Chair	0	0	0	0	0	0	6
Stop	0	0	0	0	0	0	6
Things	0	0	0	0	0	0	6
Tree	0	0	0	0	4	0	2
Total	0	0	0	0	4	0	20

表 4-14 ϕ_i 最小値記録回数($W_{obj,i}$ 可変, $M_{Sal,i}$ vs s_{dsc}) (a) $T_{FAST} = 20$

(b) $T_{FAST} = 40$

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	0	0	0	0	0	1	5
Stop	0	0	0	0	0	0	6
Things	0	0	0	0	0	0	6
Tree	0	0	0	0	3	0	3
Total	0	0	0	0	3	1	20

Image	VOCUS2			Itti	Proposed Method			
	1/10	3/10	5/10		Setting1	Setting2	Setting3	
Chair	17.40	16.89	18.03	32.20	20.12	18.11	16.74	
Flower	29.63	30.09	30.22	41.81	20.47	20.59	19.61	
Lenna	18.89	20.15	21.24	31.72	20.12	19.42	18.39	
Mandrill	32.86	31.65	31.53	33.57	22.84	23.36	23.05	
Things	30.14	29.07	28.30	27.30	18.72	18.10	17.63	
Things(Multi)	24.74	21.64	21.22	31.54	20.94	21.90	20.46	
Tree	22.28	23.87	24.53	33.65	21.17	20.86	20.90	
Stop	21.80	21.83	23.58	25.11	17.68	17.95	17.17	

表 4-15 ¢の比較 (T_{FAST,i}可変, **M_{Sal,i} vs r_{ftr}**)

表 4-16 ϕ の最小値記録回数($T_{FAST,i}$ 可変, $M_{Sal,i}$ vs r_{ftr})

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	0	0	0	0	0	0	1
Flower	0	0	0	0	0	0	1
Lenna	0	0	0	0	0	0	1
Mandrill	0	0	0	0	1	0	0
Things	0	0	0	0	0	0	1
Things(Multi)	0	0	0	0	0	0	1
Tree	0	0	0	0	0	1	0
Stop	0	0	0	0	0	0	1
Total	0	0	0	0	1	1	6

Image	VOCUS2	2		Itti	Proposed Method			
	1/10	3/10	5/10		Setting1	Setting2	Setting3	
Chair	16.15	14.05	14.81	34.36	20.86	17.86	16.27	
Flower	29.16	29.44	29.38	43.01	19.68	19.73	18.61	
Lenna	15.45	15.81	16.33	32.84	19.32	17.45	16.36	
Mandrill	31.27	29.64	29.34	31.83	19.83	20.15	19.76	
Things	28.78	28.25	27.47	26.64	15.34	13.96	13.11	
Things(Multi)	18.58	14.53	14.11	28.68	15.10	15.95	14.06	
Tree	18.06	19.64	20.23	33.83	19.03	17.06	16.66	
Stop	18.59	21.01	24.03	23.18	13.01	13.18	11.77	

表 4-17 ϕ の比較 ($T_{FAST,i}$ 可変, $M_{Sal,i}$ vs s_{dsc})

表 4-18 ϕ の最小値記録回数 ($T_{FAST,i}$ 可変, $M_{Sal,i}$ vs s_{dsc})

Image	VOCUS2			Itti	Proposed Method		
	1/10	3/10	5/10		Setting1	Setting2	Setting3
Chair	0	1	0	0	0	0	0
Flower	0	0	0	0	0	0	1
Lenna	1	0	0	0	0	0	0
Mandrill	0	0	0	0	0	0	1
Things	0	0	0	0	0	0	1
Things(Multi)	0	0	0	0	0	0	1
Tree	0	0	0	0	0	0	1
Stop	0	0	0	0	0	0	1
Total	1	1	0	0	1	0	6

第5章 結論

5.1 結論

提案手法では,画像の高周波成分と低周波成分の最大化をすることで,画像の空間周 波数に依存しない顕著性マップを生成することを提案した.実験は,第3章のシミュレ ーションや,第4章の画像特徴点抽出恒常性との関連性を評価する内容で構成された.

第3章の実験では、帯幅が異なる縞模様の入力画像を使用し、空間周波数変化を実現 させた.そして、提案手法において、低周波成分や高周波成分をつくるためのフィルタ を、異なる帯幅に対して適応的に調整をすることで、空間周波数変化に依存しにくい顕 著性を表現することができた.しかし、縞の方位が斜めになる場合は、顕著性が低下す る問題や顕著性のばらつきが大きくなるという問題が発生した.また、複数の対象物が 一枚の画像の中に映っている場合で、かつ、そのサイズに大きなばらつきが生じる場合 は、提案手法により顕著性マップを生成した場合でも、それぞれの対象物ごとに大きな 顕著性のばらつきが生じることが懸念される.

第4章の実験では、3つの撮影条件変化により画像特徴点抽出数が変化するというこ とを背景に、顕著性マップを用いて、抽出に恒常性がある特徴点を選ぶことを想定し、 提案手法と従来手法の顕著性マップによって画像特徴点抽出恒常性との関係性評価を 行った.提案手法を使用することで、抽出恒常性との関係性が強くなることが分かった が、高周波成分が著しく減衰するような撮影条件変化の場合は、この関係性が乏しくな る場合が多くみられた.

5.2 今後の展望

顕著性マップは、人間の視覚的注意の過程を数学モデルで表現したアルゴリズムによっ て生成されるものであるため、計算機による探索課題への適用が期待される.なおかつ、こ の探索課題をリアルタイムで実現する必用がある.

現在の提案手法では、画像を構成する全ての画素に対して個別に差分画像の最大化をす るようなアルゴリズムであるため、処理速度の面では実用的であるということが出来ない. 2.4[Ghz]の計算機を用い、640x640[Pixel]の画像を入力して顕著性マップを生成した場合、 3 分程度の処理時間を要するのが現状である. 今後の展望として期待される課題は 6 つあ る.

1 つ目に,顕著性マップの生成速度を大幅に向上させる必要がある.その為には,提案手法を GPU や CPU の SIMD 演算に適用するようなプログラム改造をすることが望まれる.

2 つ目に、この顕著性マップ生成に採用された Model の係数決めでは、輝度、方位、色 のマップについてポップアウトが実現できるような係数の計算がなされていない.全ての 画素に対する差分の最大化を行った影響で、顕著性マップ全体が明るくなり、画像認識に必 要な情報の絞り込みが実現できなくなる場合がある. Itti の手法[9][10]で見られるような、 ポップアウトを実現するための演算を改良し、Mode2 の係数決め手法として提案し、これ を顕著性マップ生成のアルゴリズムに組み込む必要がある.

3つ目に. 顕著性のばらつきを評価する基準を見直すことである. 高い顕著性が表れるべ き部分は,対象物の輪郭であるか,対象物の重心付近であるかによって,顕著性マップの用 途に応じて変更となる場合がある.本研究で取り上げたような,顕著性マップの最大輝度の みに着目するばらつき評価は,高い顕著性が表れている部分が輪郭に位置しているか,対象 物の重心付近であるかの区別がつかないという問題点がある.このため,輪郭における顕著 性のばらつきをみる評価方法と,対象物の重心における顕著性のばらつきの評価方法の2種 類を検討する必要がある. 4 つ目に,入力画像における空間周波数変動が大きい場合(極端に大きさが異なる複数の 対象物が1 枚の画像の中に写る場合など)において,顕著性のばらつきが生じないように する手法を再検討することである.現在の提案手法においては,画像の空間周波数成分に関 わらず,高周波成分と低周波成分の差分を最大化すること以外には考えられていない.画像 の局所領域における周波数成分に応じて,ボックスフィルタの拡大範囲を決めることも考 える必要がある.

5 つ目に、この研究活動において着手できなかった実験とは、顕著性マップで選ばれた画 像特徴点と画素を用いた、物体認識実験である.提案する顕著性マップは、画像特徴点の取 捨選択を行うために使われるものであるため、従来手法と提案手法の顕著性マップを用い てこのような取捨選択を行った場合、物体認識の精度を比較する実験と考察が必要になる.

6 つ目に述べるのは、コンピュータによる画像理解を実現させるための展望である. その ためには、顕著性マップによる特徴の取捨選択おいて、特徴統合理論に基づくボトムアップ 性の顕著性だけでなく、特徴間の文脈を考慮した顕著性を生成する必要である. 図 5-1 に示 すのは、図 5-1(a)のシーンの説明をする上で注目すべき特徴の取捨選択をするために顕著性 マップを用いる例である. 図 5-1 (b)は、人間によって述べられるような図 5-1 (a)のシーン に関する文章の説明である. 図 5-1 (c)は通常の顕著性マップによって選ばれるような特徴 であるが、図 5-1 (b)の説明を可能にするためには、顕著性マップによって、シーンの描写 を代表する特徴を選ぶ必要がある. これが成功している例が図 5-1 (d)の結果である.

190

•

(a)原画像

Olympic weight lifter Olympic victory Olympic achievement

(b)シーンの説明

(c)対象物に着目した顕著性

(d)対象物とその文脈に着目した顕著性

図 5-1 S. Goferman の顕著性 ※S. Goferman らの文献[64]より引用

参考文献

第1章

- [1] 河原純一郎, 横澤一彦:シリーズ統合的認知 第1巻 注意 選択と統合 勁草書房, pp.1-3, 2015.
- [2] 塩入諭: "視覚的注意-現象とそのメカニズム-",光学,vol. 28, no. 5, pp. 261-272, 1999.
- [3] 中島亮一,横澤一彦:"視覚的注意の時空間的維持による変化検出の促進",心理 学研究, vol. 89, no. 5, pp. 527-532, 2018.
- [4] 伊丸岡俊英: "FMRI による注意関連領域の活動的特性の検討", VISION, vol. 15, no.
 3, pp. 165-169, 2003.
- [5] R. Desimoe, J. Duncun: "Neural Mechanism of Selective Visual Attention," Annual Review of Neuroscience, vol. 18, pp. 193-222, 1995.
- [6] 小川正: "サル大脳皮質におけるボトムアップ型注意とトップダウン型注意の神経 メカニズム", VISION, vol. 19, no. 2, pp. 97-106, 2007.
- [7] Scholarpedia Homepage

http://www.scholarpedia.org/article/Visual salience, 2019年8月8日参照

- [8] 吉田正俊: "サリエンシー・マップの視覚探索解析への応用", 日本神経回路学会誌
 vol. 21, no. 1, pp. 3-12, 2014.
- [9] L. Itti, C. Koch, and E. Niebur: "A Model of Saliency-based Visual Attention for Rapid Scene Analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, issue 11, pp. 1254-1259, 1998.
- [10] L. Itti: "Models of Bottom-Up and Top-Down Visual Attention," California Institute of Technology Dissertation, pp. 1-216, 2000.

[11] D. Gao, N. Vasconcelos: "Discriminant Saliency for Visual Recognition from Cluttered Scenes," Proceedings of the 17th International Conference on Neural Information Processing Systems, pp.481-488, 2004.

[12] CyberTech Homepage

https://www.cybertech.co.jp/ito/service/annotation/, 2019年8月8日参照

- [13] 前橋一輝,木村雅之,金崎朝子,小澤淳: "半教師あり学習による商品画像中の 個数と位置の同時推定",第 32 回人工知能学会, pp. 1-2, 2018.
- [14] S. Frintrop, P. Jensfelt and H. Christensen: "Pay Attention When Selecting Features," International Conference on Pattern Recognition, pp. 163-166, 2006.
- [15] W. Qu, W. Shng, Y. Shao, D. Wang, X. Yu and H. Song: "Segmentation of Foreground Apple Targets by Fusing Visual Attention Mechanism and Growth Rules of Seed Points," Spanish Journal of Agricultural Research, vol. 13, no. 3, pp 1-9, 2015.
- [16] S. Yasukawa, J. Ahn, Y. Nishida, T. Sonoda, K. Ishii and T. Ura: "Vision System for an Autonomous Underwater Vehicle with a Benthos Sampling Function", Journal of Robotics and Mechatronics, vol. 30, no. 2, 2018.
- [17] U. Rutishauser, D. Walther and C. Koch: "Is bottom-up Attention Useful for Object Recognition?," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II32-II44, 2004.
- [18] 新潟大学 HP 周波数領域における画像処理

http://www.clg.niigatau.ac.jp/~medimg/practice_medical_imaging/imgproc_scion/ 5fourier/index.htm, 2019 年 8 月 7 日参照

[19] S. Zhuo and T. Sim: "On the Recovery of Depth from a Single Defocused Image," International Conference on Computer Analysis of Images and Patterns, pp. 889-897, 2009.

- [20] 山本琢磨,三島直,森達矢: "多眼カメラを用いたデジタルリフォーカス技術",
 東芝レビュー, vol. 69, no. 11, pp. 30-24, 2014.
- [21] A. Treisman: "A Feature-Interation Theory of Attention," Cognitive Psychology vol. 12, issue 1, pp. 97-136, 1980.
- [22] C. Koch, S. Ullman: "Shifts in Selective Visual Attention: Towards the Underlying Neural Circuity," Human Neurobiology vol.4, issue 4, pp. 219-227, 1985.
- [23] 武田裕司,八木昭宏:"視覚探索課題と注意に関する研究動向",人文論究,vol.
 46, no. 3, pp. 116-130, 1996.
- [24] R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk: "Frequency-tuned Salient Region Detection," IEEE International Conference on Computer Vision and Pattern Recognition, pp.1597–1604, 2009.
- [25] S. Frintrop, T. Werner, and G. M. García: "Traditional Saliency Reloaded: A Good Old Model in New Shape," Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 82-90, 2015.
- [26] D. G. Lowe: "Distinctive Image Features from Scale-Invariant Keypoints," vol. 60, issue2, pp. 91-110, 2004.
- [27] N. Ouerhani and H. Hugli: "Robot Self-Localization Using Visual Attention," Proceedings of IEEE 6th International Symposium on Computational Intelligence in Robotics and Automation, pp. 1-6, 2005.
- [28] C. Siagian and L. Itti: "Biologically Inspired Mobile Robot Vision Localization," IEEE Transactions on Robotics, vol. 25, issue 4. pp. 861-873, 2009.
- [29] S. Frintrop, P. Jensfelt and H. I. Christensen: "Pay Attention When Selecting Features", International Conference on Pattern Recognition, pp. 1-4, 2006.

- [30] F. Xu, J. Liu, M. Sun, D. Zeng, and X. Wang : "A Hierarchical Maritime Target Detection Method for Optical Remote Sensing Imagery," MDPI Remote Sensing vol. 9, no. 3, pp. 2-23, 2017.
- [31] C. Barat and R. Phlypo : "A Fully Automated Method to Detect and Segment a Manufactured Object in an Underwater Color Image," EURASIP Journal on Advances in Signal Processing, article number: 568092, pp. 1-9, 2010.
- [32] H. Wang, X. Dong, J. Shen, X. Wu and Z. Chen : "Saliency-Based Adaptive Object Extraction for Color Underwater Images," Proceeding of the 2nd International Conference on Computer Science and Electronics Engineering, pp. 2651-2655, 2013.
- [33] T. Chen and S. Lu: "Accurate and Efficient Traffic Sign Detection Using Discriminative AdaBoost and Support Vector Regression," IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4006-4015, 2016.
- [34] T. Deng, A. Chen, M. Gao and H. Yan: "Top-down Based Saliency Model in Traffic Driving Environment," IEEE International Conference on Intelligent Transportation Systems, pp. 1-6, 2014.
- [35] W. Qu, W. Shng, Y. Shao, D. Wang, X. Yu and H. Song: "Segmentation of Foreground Apple Targets by Fusing Visual Attention Mechanism and Growth Rules of Seed Points," Spanish Journal of Agricultural Research, vol. 13, no. 3, pp 1-9, 2015.
- [36] B. Li, Y. Long and H. Song: "Detection of Green Apples in Natural Scenes Based on Saliency Theory and Gaussian Cure Fitting," International Journal of Agricultural and Biological Engineering, vol. 11, no. 1, pp. 192-198, 2018.
- [37] N. Ejaz, I. Mehmood, M. Sajjad and S. W. Baik: "Video Summarization by Employing Visual Saliency in a Sufficient Content Change Method," International Journal of Computer Theory and Engineering, vol. 6, no. 1, 2014.

- [38] 花沢明俊:"講座 視覚心理(第2回) 視覚情報処理の神経機構",映像情報メディ ア学会誌, vol. 58, no. 2, pp. 199-204, 2004.
- [39] S. Frintrop: VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search, Lecture Notes in Artificial Inteligence, 3899, Springer, pp. 1-125, 2005.
- [40] C. Enroth-Cugell and J. G. Robson: "The Contrast Sensitivity of Retinal Ganglion Cells of the Cat," Journal of Phisiology, vol. 187, issue 3, pp. 517-552, 1966.
- [41] 福島邦彦 : "解説 : 視覚系とそのモデル",光学, vol. 1, issue 4, pp. 212-224, 1972.
- [42] D. H. Hubel and T. N. Wiesel: "Receptive Fields and Functional Architecture of Monkey Striate Cortex," Journal of Physiology, vol 195, issue 1, pp. 215-243, 1968.
- [43] H. Bay, A. Ess, T. Tuytelaas and L. V. Gool: "Speed-Up Robust Features (SURF),"European Conference on Computer Vision, pp. 404-417, 2006.
- [44] S. Leutenegger, M. Chli and R. Y. Siegwart: "BRISK: Binary Robust Invariant Scalable Keypoints," International Conference on Computer Vision, pp. 2548-2555, 2011.
- [45] E. Rublee, V. Rabaud, K. Konolige and G. Bradski: "ORB: An efficient alternative to SIFT or SURF," International Conference on Computer Vision, pp. 2564-2571, 2011.
- [46] M. Aly, M. Munich and P. Perona: "Bag of Words for Large Scale Object Recognition Properties and Benchmark," Proceedings of the Sixth International Conference on Computer Vision Theory and Applications, pp. 1-8, 2011.
- [47] H. Bonjut, A. Bugeau and J. B. Pineau: "Visual Search for Objects in a Complex Visual Context: What We Wish to See," Semantic Multimedia Analysis and Processing, pp. 31-63, 2014.
- [48] R. Nosaka, Y. Ohkawa and, K. Fukui: "Feature Extraction Based on Co-occurrence of Adjacent Local Binary Patterns," Pacific-Rim Symposium on Image and Video Technology, pp. 82-91, 2011.
- [49] J. Yuan, M. Yang and Y. Wu: "Mining Discriminative Co-occurrence Patterns for Visual Recognition," Computer Vision and Pattern Recognition, pp. 2777-2784, 2011.
- [50] P. Yan, S. M. Khan and M. Shah: "3D Model based Object Class Detection in An Arbitrary View," IEEE 11th International Conference on Computer Vision, pp. 1-6, 2007.
- [51] X. Wang, X. Bai, W. Liu and L. J. Latechi: "Feature Context for Image Classification and Object Detection," Computer Vision and Pattern Recognition, pp. 961-968, 2011.
- [52] S. Kim, K. Yoon and I. Kwon: "Object Recognition Using a Generalized Robust Invariant Feature and Gestalt's Law of Proximity and Similarity," Pattern Recognition, vol. 41, issue 2, pp. 726-741, 2008.

第2章

- [53] P. Viola and M. Jones: "Rapid Object Detection Using a Boosted Cascade of Simple Features," Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 511-518, 2001.
- [54] S. Frintrop, M. Klodt and E. Rome: "A Real-time Visual Attention System Using Integral Images," The 5th International Conference on Computer Vision Systems, pp. 1-8, 2007.
- [55] R. Lienhart, A. Kuranov and V. Pisarevsky: "Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection," Joint Pattern Recognition Symposium DAGM 2003 Pattern Recognition pp. 297-304, 2003.

第3章

[56] Saliency System VOCUS2 Universität Bonn Home Page

http://pages.iai.uni-bonn.de/frintrop_simone/vocus2.html, 2017年6月24日参照

[57] MATLAB Saliency – Caltech Vision- Home

Pagehttp://www.vision.caltech.edu/~harel/share/gbvs.php, 2019年5月15日参照

第4章

- [58] N. Y. Khan, B. NcCane and G. Wyvill: "SIFT and SURF Performance Evaluation Against Various Image Deformations on Benchmark Dataset," International Conference on Digital Image Computing: Techniques and Applications, pp. 501-506, 2011.
- [59] E. Rosten and T. Drummond: "Machine Learning for High-Speed corner Detection," European Conference on Computer Vision, pp 430-443, 2006.
- [60] 神奈川工科大学 SIDBA ホームページ

http://www.ess.ic.kanagawa-it.ac.jp/app images j.html, 2019年2月25日参照

[61] Caltech101 Database Homepage

http://www.vision.caltech.edu/Image Datasets/Caltech101/, 2019年2月25日参照

[62] Caltech256 Database Homepage

http://www.vision.caltech.edu/Image_Datasets/Caltech256/, 2019年2月25日参照

[63] GitHub Homepage

https://github.com, 2018年3月27日参照

第5章

[64] S. Goferman, L. Manor and A. Tal: "Context-Aware Saliency Detection," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 34, No. 10, pp.1915-1926, 2009.

謝辞

私は会社を 2013 年の年末頃に退社し,当時も現在も話題となっているロボットや人工知 能に強い関心を持ちつつありました.そのため,再度本大学院に入学することを選びました. その頃の私は数学的な知識や物理的な知識が頭の中から消え去った状態で,学問の再スタ ートを切ることになりました.私は入学当初,自分が今後取り組むであろう専門分野に関す る用語について,知識が皆無な状態であり,論文をいくら読んでも理解できない日々を毎日 過ごしていました.そのとき,石井教授から教わった教訓がいくつかありました.

一つ目に,工学の世界で一般的に定義されている用語を,研究報告時に正確に使用すべき ということです.専門用語の正確な概念が頭の中に無ければ,専門家と会話をしても通じな くなることを体感しました.これは,平素の研究進捗のプレゼン報告を何度も経験して教わ ることが出来ました.

二つ目に,自分の研究や仕事の位置づけを理解する大切さです.全ての研究者は現行の手 法に問題意識をもって研究に着手しています.そしてこの問題を解決する手法はこれだと いったストーリー展開をしています.この件は,仕事をする場合に,今の仕事が今後どのよ うに役立つのかを意識することと共通点があります.普段,何気なく行動をする自分の悪い 習性を改めるために,この教訓は役に立ちました.

三つ目に数字を意識することです.製品開発をする場合に要求仕様が提示されますが,設 計工程の上でなぜこのようなパラメータを選んだのかが重要になります.私も,数字を意識 した話をすれば相手を説得できるという考えに共感するようになりました.現在では資料 作成においても,例えば必要な表のマスがいくつになるのかを意識するような習性が身に 付きつつあります.

このような教訓は、私の企業生活における反省点を考えるヒントになりました.私は博士 号取得のために、上達が遅く、話下手で物分かりが悪いという劣等意識を感じる毎日を過ご していました.下手な研究報告を繰り返す日常でしたが、必死に食らいついていく私を今ま で応援してくださった石井教授には感謝の毎日です.

そして, ICAROB の国際会議に出席するための論文作成,実験手法の検討についてアド バイスをして下さった安川准教授,自分の研究手法の存在意義を失いかけていると感じた 時に,望ましい応用例を考えてくださった西田助教,そして,数学や電子工学の面白い話を 提供してくれた上田拓実君にも感謝の意を示します.

最後に、私が資金難で困っていた場合に、金銭的な支援を始め、実家にそのまま住まわせ て下さった両親に対する感謝は、言葉で語りつくせない程です。

私は今後も国際会議の参加について場数を踏むことや,海外の研究機関に従事すること を計画しています.語学の学習を始め,世の中の社会問題を発見しながら,解決するための 研究を継続します.今後ともよろしくお願いします.

表 A $I_{Max,i}$ 可変時の ϕ_i

VOCUS2 ($\sigma_c/\sigma_s = 1/10$) VOCUS2 (σ_c/σ_s			$c(\sigma_c/\sigma_s =$	3/10) VOCUS2 ($\sigma_c / \sigma_s = 5/10$)						
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i
1.0	25.82	4614.47	112891	18.62	4966.96	121466	18.69	4601.13	111648	19.96
0.9	25.82	4610.40	112791	18.62	4964.82	121415	18.69	4599.62	111613	19.96
0.8	25.82	4619.52	113020	18.61	4959.61	121289	18.69	4596.68	111538	19.96
0.7	25.82	4616.29	112938	18.62	4971.67	121581	18.69	4603.02	111697	19.96
0.6	25.82	4614.92	112911	18.61	4963.87	121389	18.69	4599.23	111597	19.97
0.5	25.82	4609.60	112784	18.60	4973.04	121622	18.68	4603.98	111719	19.96

表 A-1 ϕ_i の比較 (画像 : Chair) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed 1	Method Sett	ing1	Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i
1.0	25.82	2960.71	65022	31.71	4791.63	115862	20.51	4961.44	121244	18.81
0.9	25.82	2819.09	61951	31.66	4811.23	116314	20.54	4967.10	121423	18.75
0.8	25.82	2946.89	64738	31.69	4863.35	117519	20.61	4985.46	121917	18.69
0.7	25.82	2943.75	64665	31.69	4863.98	117546	20.59	5020.45	122787	18.67
0.6	25.82	2943.75	64665	31.69	4814.05	116330	20.61	5020.36	122862	18.56
0.5	25.82	2956.14	64890	31.76	4748.59	114695	20.68	5013.47	122712	18.54

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
1.0	25.82	5199.40	127842	17.75			
0.9	25.82	5230.77	128640	17.71			
0.8	25.82	5225.78	128543	17.67			
0.7	25.82	5223.71	128508	17.65			
0.6	25.82	5179.39	127419	17.65			
0.5	25.82	5222.20	128542	17.55			

		VOCUS2	$l(\sigma_c/\sigma_s =$	1/10)	VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	
1.0	18.28	3531.00	60701	19.91	3655.79	62772	20.09	3332.10	56719	21.41	
0.9	18.28	3527.53	60642	19.91	3654.27	62745	20.10	3330.66	56694	21.41	
0.8	18.28	3535.05	60772	19.90	3651.05	62691	20.09	3328.87	56659	21.42	
0.7	18.28	3532.58	60727	19.91	3659.81	62841	20.09	3333.28	56741	21.40	
0.6	18.28	3532.00	60721	19.90	3654.09	62742	20.10	3330.63	56692	21.41	
0.5	18.28	3527.23	60639	19.90	3659.97	62849	20.08	3334.13	56753	21.41	

表 A-1 ϕ_i の比較 (画像 : Chair) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

1		Itti			Proposed	Method Sett	ing1	Proposed	Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	
1.0	18.28	2485.85	40496	27.00	3865.92	66537	19.72	3923.57	67793	19.09	
0.9	18.28	2358.05	38449	26.90	3884.07	66840	19.74	3926.53	67853	19.06	
0.8	18.28	2467.55	40216	26.95	3923.93	67521	19.75	3940.45	68122	18.99	
0.7	18.28	2465.42	40170	26.98	3927.28	67565	19.79	3966.25	68557	19.02	
0.6	18.28	2465.42	40170	26.98	3885.28	66856	19.76	3966.53	68597	18.94	
0.5	18.28	2476.87	40345	27.01	3832.15	65945	19.75	3954.85	68369	19.00	

		Proposed Method Setting3						
$\frac{Max(I)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i				
1.0	18.28	4087.54	70983	18.23				
0.9	18.28	4111.71	71411	18.21				
0.8	18.28	4106.16	71320	18.20				
0.7	18.28	4102.14	71259	18.18				
0.6	18.28	4068.42	70694	18.12				
0.5	18.28	4092.21	71118	18.10				

	VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			1/10)	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2	US2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ⋅ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	
1.0	31.00	4614.47	137328	16.27	4966.96	148970	14.67	4601.13	137412	15.57	
0.9	31.00	4610.40	137213	16.26	4964.82	148909	14.66	4599.62	137371	15.56	
0.8	31.00	4619.52	137486	16.26	4959.61	148748	14.67	4596.68	137275	15.57	
0.7	31.00	4616.29	137383	16.27	4971.67	149107	14.67	4603.02	137471	15.56	
0.6	31.00	4614.92	137347	16.26	4963.87	148870	14.68	4599.23	137349	15.58	
0.5	31.00	4609.60	137203	16.24	4973.04	149163	14.65	4603.98	137503	15.56	

表 A-1 ϕ_i の比較 (Chair) (b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 20$)

	Itti				Proposed Method Setting1			Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i
1.0	31.00	2960.71	76538	33.50	4791.63	139238	20.40	4961.44	146590	17.63
0.9	31.00	2819.09	72987	33.37	4811.23	139776	20.43	4967.10	146818	17.56
0.8	31.00	2946.89	76254	33.42	4863.35	141243	20.48	4985.46	147417	17.49
0.7	31.00	2943.75	76163	33.43	4863.98	141261	20.48	5020.45	148503	17.43
0.6	31.00	2943.75	76163	33.43	4814.05	139831	20.46	5020.36	148608	17.29
0.5	31.00	2956.14	76422	33.50	4748.59	137900	20.49	5013.47	148513	17.16

		Proposed Method Setting3						
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i				
1.0	31.00	5199.40	154897	16.07				
0.9	31.00	5230.77	155863	16.03				
0.8	31.00	5225.78	155771	15.95				
0.7	31.00	5223.71	155743	15.91				
0.6	31.00	5179.39	154473	15.84				
0.5	31.00	5222.20	155933	15.60				

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	
1.0	22.70	3531.00	77401	15.05	3655.79	80435	14.24	3332.10	72883	15.51	
0.9	22.70	3527.53	77326	15.05	3654.27	80403	14.24	3330.66	72854	15.50	
0.8	22.70	3535.05	77494	15.04	3651.05	80329	14.24	3328.87	72808	15.52	
0.7	22.70	3532.58	77439	15.05	3659.81	80521	14.25	3333.28	72909	15.51	
0.6	22.70	3532.00	77425	15.05	3654.09	80393	14.25	3330.63	72847	15.52	
0.5	22.70	3527.23	77326	15.03	3659.97	80534	14.22	3334.13	72929	15.51	

表 A-1 ϕ_i の比較 (Chair) (b2) $M_{Sal,i,n_a} \geq s_{dsc,n_a}$ の相関 ($T_{FAST} = 40$)

Itti				Proposed Method Setting1			Proposed Method Setting2			
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	22.70	2485.85	50235	27.10	3865.92	84075	16.65	3923.57	86118	14.78
0.9	22.70	2358.05	47718	26.94	3884.07	84461	16.67	3926.53	86195	14.75
0.8	22.70	2467.55	49911	26.99	3923.93	85310	16.71	3940.45	86517	14.70
0.7	22.70	2465.42	49852	27.03	3927.28	85378	16.72	3966.25	87089	14.69
0.6	22.70	2465.42	49852	27.03	3885.28	84463	16.73	3966.53	87120	14.63
0.5	22.70	2476.87	50042	27.12	3832.15	83287	16.77	3954.85	86845	14.67

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i			
1.0	22.70	4087.54	90149	13.69			
0.9	22.70	4111.71	90697	13.65			
0.8	22.70	4106.16	90579	13.64			
0.7	22.70	4102.14	90484	13.66			
0.6	22.70	4068.42	89758	13.61			
0.5	22.70	4092.21	90279	13.62			

		VOCUS2	$c(\sigma_c/\sigma_s =$	1/10)	VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	
1.0	43.76	3786.16	144935	28.99	3562.15	135638	29.53	3428.51	130425	29.63	
0.9	43.76	3787.14	144971	28.99	3564.37	135710	29.54	3428.21	130367	29.67	
0.8	43.76	3782.47	144744	29.03	3560.83	135574	29.54	3430.22	130533	29.60	
0.7	43.76	3781.35	144684	29.04	3562.56	135649	29.54	3426.85	130331	29.65	
0.6	43.76	3788.51	145074	28.96	3565.98	135863	29.47	3427.76	130376	29.65	
0.5	43.76	3788.51	145074	28.96	3565.98	135863	29.47	3427.76	130376	29.65	

表 A-2 $\phi_i \mathcal{O}$ 比較 (画像 : flower) (a1) $M_{Sal,i,n_q} \ge r_{ftr,n_q} \mathcal{O}$ 相関($T_{FAST} = 20$)

	Itti			Proposed Method Setting1			Proposed Method Setting2			
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	43.76	2628.65	85845	41.74	6168.70	254210	19.67	6163.48	253665	19.88
0.9	43.76	2639.29	86477	41.52	6064.20	249882	19.69	6133.94	252360	19.93
0.8	43.76	2678.15	89090	40.53	6091.19	250991	19.69	6204.09	255180	19.98
0.7	43.76	2632.67	86039	41.69	6025.19	248170	19.75	6219.21	255549	20.13
0.6	43.76	2632.67	86039	41.69	6005.33	247319	19.77	6167.28	253331	20.18
0.5	43.76	2653.53	87432	41.16	6005.33	247319	19.77	6167.28	253331	20.18

		Proposed	Method Sett	ting3
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙M _{Sal,i}	ϕ_i
1.0	43.76	6291.67	260505	18.90
0.9	43.76	6266.04	259390	18.93
0.8	43.76	6294.02	260512	18.96
0.7	43.76	6220.69	257365	19.03
0.6	43.76	6197.46	256383	19.04
0.5	43.76	6197.46	256383	19.04

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	$c(\sigma_c/\sigma_s =$	3/10)	VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	
1.0	23.36	2421.17	50603	26.51	2212.76	45773	27.66	2095.22	43143	28.16	
0.9	23.36	2422.04	50617	26.52	2214.07	45797	27.67	2095.07	43132	28.18	
0.8	23.36	2419.05	50546	26.53	2211.63	45745	27.67	2096.10	43173	28.13	
0.7	23.36	2418.74	50535	26.54	2213.16	45777	27.67	2094.41	43120	28.17	
0.6	23.36	2422.42	50630	26.50	2214.97	45836	27.62	2095.01	43134	28.17	
0.5	23.36	2422.42	50630	26.50	2214.97	45836	27.62	2095.01	43134	28.17	

表 A-2 ϕ_i の比較 (画像 : flower) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関($T_{FAST} = 40$)

Itti				Proposed Method Setting1			Proposed Method Setting2			
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	r _{ftr} · M _{Sal,i}	ϕ_i
1.0	23.36	2067.85	38314	37.50	4047.19	89960	17.88	4033.51	89551	18.08
0.9	23.36	2073.38	38495	37.35	3982.15	88487	17.93	4016.77	89139	18.16
0.8	23.36	2094.60	39225	36.70	3997.99	88832	17.94	4064.47	90172	18.21
0.7	23.36	2070.02	38386	37.44	3958.69	87946	17.97	4077.29	90372	18.37
0.6	23.36	2070.02	38386	37.44	3945.13	87626	18.01	4044.24	89628	18.39
0.5	23.36	2081.35	38785	37.07	3945.13	87626	18.01	4044.24	89628	18.39

		Proposed Method Setting3						
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i				
1.0	23.36	4089.30	91162	17.35				
0.9	23.36	4073.36	90783	17.40				
0.8	23.36	4094.74	91209	17.50				
0.7	23.36	4047.07	90136	17.52				
0.6	23.36	4032.96	89785	17.59				
0.5	23.36	4032.96	89785	17.59				

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	
1.0	50.40	3786.16	167144	28.85	3562.15	156570	29.30	3428.51	150674	29.31	
0.9	50.40	3787.14	167186	28.85	3564.37	156655	29.31	3428.21	150607	29.35	
0.8	50.40	3782.47	166917	28.89	3560.83	156498	29.31	3430.22	150801	29.28	
0.7	50.40	3781.35	166848	28.90	3562.56	156584	29.30	3426.85	150565	29.34	
0.6	50.40	3788.51	167308	28.81	3565.98	156827	29.24	3427.76	150616	29.33	
0.5	50.40	3788.51	167308	28.81	3565.98	156827	29.24	3427.76	150616	29.33	

表 A-2 ϕ_i の比較 (画像 : flower) (b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed	Method Sett	ing1	Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	50.40	2628.65	97628	42.53	6168.70	292886	19.61	6163.48	292296	19.79
0.9	50.40	2639.29	98375	42.31	6064.20	287883	19.63	6133.94	290782	19.86
0.8	50.40	2678.15	101406	41.30	6091.19	289177	19.62	6204.09	294049	19.89
0.7	50.40	2632.67	97862	42.48	6025.19	285956	19.67	6219.21	294438	20.06
0.6	50.40	2632.67	97862	42.48	6005.33	284932	19.72	6167.28	291903	20.10
0.5	50.40	2653.53	99475	41.95	6005.33	284932	19.72	6167.28	291903	20.10

		Proposed	Proposed Method Setting3						
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i					
1.0	50.40	6291.67	300315	18.73					
0.9	50.40	6266.04	298987	18.79					
0.8	50.40	6294.02	300314	18.79					
0.7	50.40	6220.69	296674	18.87					
0.6	50.40	6197.46	295566	18.87					
0.5	50.40	6197.46	295566	18.87					

		VOCUS2	$2 (\sigma_c / \sigma_s =$	1/10)	VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	
1.0	29.03	2421.17	62785	26.69	2212.76	56921	27.59	2095.22	53807	27.78	
0.9	29.03	2422.04	62802	26.71	2214.07	56950	27.60	2095.07	53789	27.80	
0.8	29.03	2419.05	62714	26.72	2211.63	56886	27.60	2096.10	53844	27.75	
0.7	29.03	2418.74	62701	26.73	2213.16	56929	27.60	2094.41	53779	27.79	
0.6	29.03	2422.42	62824	26.68	2214.97	57004	27.54	2095.01	53793	27.79	
0.5	29.03	2422.42	62824	26.68	2214.97	57004	27.54	2095.01	53793	27.79	

表 A-2 ϕ_i の比較 (画像 : flower) (b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed	Method Sett	ing1	Proposed	ing2	
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	29.03	2067.85	46570	39.11	4047.19	111692	18.05	4033.51	111230	18.18
0.9	29.03	2073.38	46813	38.93	3982.15	109882	18.07	4016.77	110728	18.24
0.8	29.03	2094.60	47737	38.26	3997.99	110264	18.16	4064.47	111988	18.33
0.7	29.03	2070.02	46673	39.03	3958.69	109157	18.20	4077.29	112196	18.55
0.6	29.03	2070.02	46673	39.03	3945.13	108750	18.25	4044.24	111263	18.59
0.5	29.03	2081.35	47169	38.67	3945.13	108750	18.25	4044.24	111263	18.59

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i			
1.0	29.03	4089.30	113272	17.39			
0.9	29.03	4073.36	112801	17.43			
0.8	29.03	4094.74	113300	17.58			
0.7	29.03	4047.07	111921	17.68			
0.6	29.03	4032.96	111522	17.69			
0.5	29.03	4032.96	111522	17.69			

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	
1.0	16.54	3136.16	49313	18.12	3424.80	53414	19.49	3299.18	51084	20.62	
0.9	16.54	3139.40	49359	18.13	3425.84	53430	19.49	3298.96	51077	20.63	
0.8	16.54	3143.14	49422	18.12	3424.86	53414	19.49	3299.55	51087	20.63	
0.7	16.54	3132.92	49262	18.12	3425.82	53428	19.49	3295.74	51032	20.62	
0.6	16.54	3133.53	49266	18.13	3423.10	53387	19.49	3295.50	51021	20.64	
0.5	16.54	3138.89	49352	18.13	3426.39	53461	19.42	3297.65	51059	20.63	

表 A-3 ϕ_i の比較 (画像:Lenna) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed	Method Sett	ing1	Proposed	ing2	
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	16.54	1457.69	20524	31.67	3051.64	47422	20.06	3108.66	48654	18.91
0.9	16.54	1469.08	20692	31.64	2969.93	46178	19.98	3102.92	48575	18.87
0.8	16.54	1469.19	20685	31.68	3004.94	46733	19.94	3103.69	48580	18.90
0.7	16.54	1474.48	20780	31.59	2935.97	45668	19.91	3116.16	48743	19.01
0.6	16.54	1474.48	20780	31.59	2929.01	45548	19.96	3123.13	48851	19.01
0.5	16.54	1475.39	20811	31.50	3017.19	46967	19.79	3078.63	48216	18.80

		Proposed	ting3	
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i
1.0	16.54	3232.09	50823	18.11
0.9	16.54	3203.36	50376	18.09
0.8	16.54	3170.12	49839	18.14
0.7	16.54	3162.13	49754	18.00
0.6	16.54	3155.33	49640	18.03
0.5	16.54	3247.14	51124	17.89

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)VOCUS2			$2(\sigma_c/\sigma_s =$	$(\sigma_c/\sigma_s = 5/10)$	
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	7.35	1751.48	11976	21.43	1821.69	12309	23.09	1706.75	11422	24.34
0.9	7.35	1753.24	11986	21.45	1822.41	12314	23.09	1706.78	11421	24.35
0.8	7.35	1755.40	12002	21.43	1821.87	12309	23.10	1706.83	11422	24.35
0.7	7.35	1749.63	11965	21.41	1822.31	12311	23.11	1705.36	11412	24.35
0.6	7.35	1750.51	11969	21.43	1820.63	12301	23.10	1705.27	11410	24.37
0.5	7.35	1753.81	11992	21.43	1821.25	12310	23.04	1705.70	11416	24.33

表 A-3 ϕ_i の比較 (画像:Lenna)

(a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 $(T_{FAST} = 40)$

	Itti				Proposed Method Setting1			Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	7.35	1045.40	6707	29.14	1904.35	13056	21.03	1884.66	12901	21.26
0.9	7.35	1054.23	6769	29.05	1858.06	12754	20.85	1883.68	12902	21.17
0.8	7.35	1053.95	6761	29.16	1874.27	12857	20.95	1880.97	12877	21.25
0.7	7.35	1056.81	6788	29.02	1831.16	12561	20.95	1892.72	12954	21.29
0.6	7.35	1056.81	6788	29.02	1826.85	12534	20.93	1893.98	12949	21.45
0.5	7.35	1056.45	6787	29.00	1877.12	12885	20.86	1869.76	12809	21.15

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
1.0	7.35	1930.28	13292	20.37			
0.9	7.35	1916.03	13198	20.32			
0.8	7.35	1894.82	13051	20.33			
0.7	7.35	1891.69	13034	20.28			
0.6	7.35	1881.60	12967	20.24			
0.5	7.35	1941.22	13383	20.19			

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	
1.0	20.27	3136.16	60740	17.19	3424.80	66101	17.82	3299.18	63451	18.44	
0.9	20.27	3139.40	60799	17.20	3425.84	66120	17.82	3298.96	63444	18.45	
0.8	20.27	3143.14	60875	17.19	3424.86	66101	17.82	3299.55	63455	18.45	
0.7	20.27	3132.92	60677	17.19	3425.82	66120	17.82	3295.74	63385	18.44	
0.6	20.27	3133.53	60687	17.20	3423.10	66068	17.82	3295.50	63375	18.45	
0.5	20.27	3138.89	60789	17.20	3426.39	66161	17.74	3297.65	63420	18.44	

表 A-3 ϕ_i の比較 (画像:Lenna) (b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 20$)

F F		Itti			Proposed	Method Sett	ing1	Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	20.27	1457.69	24728	33.20	3051.64	58074	20.17	3108.66	59702	18.68
0.9	20.27	1469.08	24928	33.17	2969.93	56524	20.15	3102.92	59590	18.68
0.8	20.27	1469.19	24923	33.20	3004.94	57241	20.01	3103.69	59617	18.65
0.7	20.27	1474.48	25037	33.12	2935.97	55931	20.00	3116.16	59791	18.84
0.6	20.27	1474.48	25037	33.12	2929.01	55757	20.12	3123.13	59954	18.76
0.5	20.27	1475.39	25069	33.06	3017.19	57527	19.87	3078.63	59152	18.60

		Proposed Method Setting3						
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i				
1.0	20.27	3232.09	62416	17.72				
0.9	20.27	3203.36	61866	17.71				
0.8	20.27	3170.12	61218	17.72				
0.7	20.27	3162.13	61098	17.62				
0.6	20.27	3155.33	60972	17.61				
0.5	20.27	3247.14	62784	17.50				

	- · · · · · · · · · · · · · · · · · · ·									
		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(I)}{Max(I_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	10.75	1751.48	18070	16.26	1821.69	18710	17.12	1706.75	17437	18.07
0.9	10.75	1753.24	18088	16.26	1822.41	18718	17.11	1706.78	17436	18.09
0.8	10.75	1755.40	18111	16.25	1821.87	18711	17.13	1706.83	17437	18.08
0.7	10.75	1749.63	18052	16.25	1822.31	18715	17.13	1705.36	17421	18.09
0.6	10.75	1750.51	18059	16.26	1820.63	18700	17.11	1705.27	17419	18.10
0.5	10.75	1753.81	18094	16.25	1821.25	18712	17.05	1705.70	17425	18.08

表 A-3 ϕ_i の比較 (画像:Lenna) (b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)

	Itti			Proposed Method Setting1			Proposed Method Setting2			
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	10.75	1045.40	9907	28.13	1904.35	19513	17.55	1884.66	19356	17.12
0.9	10.75	1054.23	10001	28.03	1858.06	19051	17.43	1883.68	19355	17.04
0.8	10.75	1053.95	9991	28.11	1874.27	19206	17.54	1880.97	19322	17.09
0.7	10.75	1056.81	10026	28.02	1831.16	18768	17.50	1892.72	19435	17.16
0.6	10.75	1056.81	10026	28.02	1826.85	18703	17.70	1893.98	19447	17.17
0.5	10.75	1056.45	10029	27.95	1877.12	19245	17.45	1869.76	19219	16.96

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i			
1.0	10.75	1930.28	19923	16.17			
0.9	10.75	1916.03	19772	16.21			
0.8	10.75	1894.82	19554	16.20			
0.7	10.75	1891.69	19524	16.18			
0.6	10.75	1881.60	19432	16.06			
0.5	10.75	1941.22	20038	16.15			

	(a1) M_{Sal,i,n_q} と r_{ftr,n_q} の相関 ($T_{FAST} = 20$)									
		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	$c(\sigma_c/\sigma_s =$	3/10)	VOCUS2	5/10)	
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	19.83	2444.01	41404	31.33	2484.59	42553	30.29	2469.26	42318	30.22
0.9	19.83	2441.31	41361	31.33	2485.01	42563	30.28	2468.91	42314	30.22
0.8	19.83	2443.14	41390	31.33	2484.83	42555	30.29	2468.45	42302	30.23
0.7	19.83	2443.39	41394	31.33	2483.89	42540	30.29	2468.51	42304	30.23
0.6	19.83	2442.52	41387	31.32	2485.37	42563	30.29	2469.68	42326	30.22
0.5	19.83	2444.53	41430	31.30	2485.23	42566	30.28	2469.98	42331	30.22

表 A-4 ϕ_i の比較(画像:Mandrill)

		Itti			Proposed	Method Sett	ing1	Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ \boldsymbol{M}_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i
1.0	19.83	1724.17	28990	32.03	3399.11	62658	21.66	3406.78	62505	22.32
0.9	19.83	1742.95	29295	32.07	3408.69	62846	21.63	3402.05	62401	22.36
0.8	19.83	1747.91	29404	31.99	3392.73	62617	21.48	3490.36	64091	22.21
0.7	19.83	1758.01	29532	32.12	3391.22	62616	21.42	3546.82	65117	22.23
0.6	19.83	1758.01	29532	32.12	3458.79	63868	21.41	3585.38	65848	22.18
0.5	19.83	1849.81	31101	32.04	3416.46	63157	21.24	3712.09	68258	22.01

		Proposed Method Setting3					
$\frac{Max(I)}{Max(I_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
1.0	19.83	3590.68	65988	22.09			
0.9	19.83	3566.38	65538	22.10			
0.8	19.83	3596.36	66196	21.87			
0.7	19.83	3641.61	67036	21.86			
0.6	19.83	3675.40	67725	21.71			
0.5	19.83	3829.56	70568	21.71			

ГГ		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2	5/10)	
$\frac{Max(I)}{Max(I_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	5.41	921.31	4542	24.36	881.22	4390	22.99	860.26	4275	23.31
0.9	5.41	920.64	4539	24.34	881.30	4390	22.98	860.14	4276	23.27
0.8	5.41	921.00	4541	24.35	881.24	4390	23.00	860.12	4275	23.31
0.7	5.41	921.36	4542	24.35	881.22	4390	22.99	860.28	4275	23.33
0.6	5.41	921.13	4542	24.34	881.30	4390	22.98	860.26	4275	23.30
0.5	5.41	921.77	4545	24.33	881.38	4391	22.99	860.26	4275	23.31

表 A-4 ϕ_i の比較(画像: Mandrill) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed 1	Method Sett	ing1	Proposed 1	Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	
1.0	5.41	769.00	3672	28.07	1344.19	6870	19.18	1294.65	6622	19.05	
0.9	5.41	777.22	3707	28.18	1342.34	6860	19.21	1290.24	6599	19.07	
0.8	5.41	777.69	3712	28.12	1339.01	6847	19.11	1320.43	6757	18.97	
0.7	5.41	783.09	3736	28.17	1334.48	6832	18.90	1344.43	6882	18.93	
0.6	5.41	783.09	3736	28.17	1360.35	6967	18.83	1360.97	6968	18.88	
0.5	5.41	823.92	3935	28.04	1336.76	6856	18.60	1403.59	7184	18.94	

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
1.0	5.41	1331.55	6808	19.13			
0.9	5.41	1317.67	6746	18.90			
0.8	5.41	1329.12	6812	18.72			
0.7	5.41	1348.35	6908	18.79			
0.6	5.41	1352.70	6935	18.66			
0.5	5.41	1405.35	7201	18.75			

表 A-4 ϕ_i の比較(画像: Mandrill)

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	
1.0	26.49	2444.01	55447	31.06	2484.59	57119	29.77	2469.26	56877	29.58	
0.9	26.49	2441.31	55387	31.06	2485.01	57131	29.77	2468.91	56873	29.57	
0.8	26.49	2443.14	55426	31.07	2484.83	57121	29.78	2468.45	56857	29.58	
0.7	26.49	2443.39	55434	31.06	2483.89	57101	29.78	2468.51	56857	29.58	
0.6	26.49	2442.52	55420	31.05	2485.37	57134	29.78	2469.68	56887	29.58	
0.5	26.49	2444.53	55480	31.03	2485.23	57136	29.77	2469.98	56895	29.57	

Г		Itti			Proposed	Method Sett	ing1	Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	26.49	1724.17	38837	31.74	3399.11	84386	20.39	3406.78	84422	20.67
0.9	26.49	1742.95	39252	31.76	3408.69	84671	20.30	3402.05	84300	20.68
0.8	26.49	1747.91	39401	31.67	3392.73	84310	20.24	3490.36	86546	20.57
0.7	26.49	1758.01	39582	31.78	3391.22	84330	20.13	3546.82	87968	20.54
0.6	26.49	1758.01	39582	31.78	3458.79	85969	20.21	3585.38	88952	20.49
0.5	26.49	1849.81	41671	31.73	3416.46	85066	19.93	3712.09	92182	20.35

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i			
1.0	26.49	3590.68	89200	20.29			
0.9	26.49	3566.38	88614	20.26			
0.8	26.49	3596.36	89479	20.05			
0.7	26.49	3641.61	90623	20.02			
0.6	26.49	3675.40	91584	19.81			
0.5	26.49	3829.56	95437	19.79			

[]		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2 ($\sigma_c/\sigma_s = 5/10$		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	8.01	921.31	6736	24.16	881.22	6518	22.62	860.26	6355	22.79
0.9	8.01	920.64	6732	24.15	881.30	6519	22.62	860.14	6354	22.80
0.8	8.01	921.00	6734	24.15	881.24	6518	22.63	860.12	6354	22.80
0.7	8.01	921.36	6736	24.17	881.22	6518	22.62	860.28	6355	22.80
0.6	8.01	921.13	6736	24.14	881.30	6519	22.62	860.26	6355	22.79
0.5	8.01	921.77	6742	24.12	881.38	6520	22.61	860.26	6355	22.79

表 A-4 ϕ_i の比較(画像: Mandrill) (b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed	Method Sett	ing1	Proposed	oposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	
1.0	8.01	769.00	5448	27.85	1344.19	10190	18.92	1294.65	9834	18.57	
0.9	8.01	777.22	5497	28.03	1342.34	10170	19.01	1290.24	9795	18.68	
0.8	8.01	777.69	5504	27.97	1339.01	10157	18.81	1320.43	10027	18.62	
0.7	8.01	783.09	5540	28.01	1334.48	10133	18.63	1344.43	10214	18.54	
0.6	8.01	783.09	5540	28.01	1360.35	10326	18.69	1360.97	10336	18.60	
0.5	8.01	823.92	5838	27.84	1336.76	10176	18.19	1403.59	10655	18.68	

		Proposed Method Setting3						
$\frac{Max(I)}{Max(I_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i				
1.0	8.01	1331.55	10117	18.53				
0.9	8.01	1317.67	10012	18.51				
0.8	8.01	1329.12	10107	18.39				
0.7	8.01	1348.35	10252	18.40				
0.6	8.01	1352.70	10310	17.99				
0.5	8.01	1405.35	10705	18.09				

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2 ($\sigma_c/\sigma_s = 1$		5/10)
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	29.99	3750.62	96162	31.24	4017.07	103761	30.53	4098.23	106677	29.77
0.9	29.99	3753.22	96230	31.24	4018.46	103804	30.52	4099.32	106710	29.76
0.8	29.99	3750.16	96143	31.25	4019.06	103817	30.52	4098.76	106699	29.76
0.7	29.99	3752.23	96186	31.26	4014.36	103685	30.53	4095.73	106610	29.77
0.6	29.99	3750.45	96155	31.24	4013.49	103651	30.54	4097.20	106643	29.77
0.5	29.99	3750.91	96175	31.23	4019.98	103813	30.55	4097.60	106637	29.79

表 A-5 ϕ_i の比較(画像:Things) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

· · · · · ·		Itti			Proposed Method Setting1			Proposed	Method Sett	ing2
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i
1.0	29.99	3316.72	87568	28.30	5201.00	146812	19.72	5178.00	146926	18.87
0.9	29.99	3325.45	87719	28.40	5172.47	146008	19.72	5171.42	146761	18.85
0.8	29.99	3324.05	87679	28.40	5204.49	146945	19.69	5144.70	146021	18.83
0.7	29.99	3309.21	87344	28.34	5228.41	147739	19.56	5109.29	145057	18.78
0.6	29.99	3309.21	87344	28.34	5223.80	147605	19.56	5147.64	146158	18.76
0.5	29.99	3301.93	87098	28.40	5211.66	147437	19.37	5202.46	147788	18.68

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ \boldsymbol{M}_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
1.0	29.99	5616.87	159821	18.40			
0.9	29.99	5590.02	159026	18.43			
0.8	29.99	5544.11	157719	18.44			
0.7	29.99	5557.51	158169	18.36			
0.6	29.99	5625.19	160097	18.36			
0.5	29.99	5598.92	159480	18.22			

表 A-5	ϕ_i の比較	(画像	: Things)
-------	--------------	-----	-----------

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2	$2(\sigma_c/\sigma_s =$	5/10)
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	23.62	2882.45	58893	30.10	3167.75	64455	30.51	3258.68	66656	29.99
0.9	23.62	2884.56	58936	30.10	3169.03	64481	30.51	3259.83	66682	29.99
0.8	23.62	2882.46	58893	30.10	3169.32	64491	30.50	3258.82	66666	29.98
0.7	23.62	2883.92	58913	30.12	3165.62	64410	30.51	3256.60	66611	29.99
0.6	23.62	2882.18	58884	30.11	3165.10	64395	30.52	3258.09	66638	30.00
0.5	23.62	2883.06	58911	30.09	3170.33	64494	30.53	3258.40	66630	30.02

(a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q} \mathcal{O}$ 相関 $(T_{FAST} = 40)$

		Itti			Proposed 1	Method Sett	ing1	Proposed 1	Method Sett	ing2
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	23.62	2739.57	57682	26.93	4076.95	91740	17.67	4050.22	91451	17.05
0.9	23.62	2746.04	57716	27.13	4053.52	91219	17.66	4044.73	91341	17.02
0.8	23.62	2743.25	57638	27.17	4078.08	91814	17.58	4022.17	90857	16.97
0.7	23.62	2733.77	57514	27.02	4094.08	92251	17.43	3995.06	90270	16.91
0.6	23.62	2733.77	57514	27.02	4090.34	92183	17.40	4023.17	90926	16.87
0.5	23.62	2726.17	57285	27.16	4077.56	92032	17.12	4065.78	91949	16.75

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
1.0	23.62	4366.99	99080	16.12			
0.9	23.62	4345.54	98573	16.16			
0.8	23.62	4309.56	97773	16.13			
0.7	23.62	4318.50	98001	16.08			
0.6	23.62	4371.03	99233	16.00			
0.5	23.62	4349.16	98818	15.83			

		(b1) M_{Sal,i,n_q} と s_{dsc,n_q} の相関 ($T_{FAST} = 20$)								
[]		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	36.21	3750.62	119287	28.57	4017.07	128263	28.15	4098.23	131765	27.40
0.9	36.21	3753.22	119371	28.57	4018.46	128314	28.15	4099.32	131804	27.40
0.8	36.21	3750.16	119259	28.58	4019.06	128332	28.15	4098.76	131794	27.39
0.7	36.21	3752.23	119315	28.59	4014.36	128169	28.16	4095.73	131681	27.40
0.6	36.21	3750.45	119281	28.57	4013.49	128125	28.17	4097.20	131721	27.41
0.5	36.21	3750.91	119298	28.57	4019.98	128322	28.18	4097.60	131717	27.42

表 A-5 ϕ_i の比較(画像:Things)

		Itti			Proposed Method Setting1			Proposed	ting2	
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	36.21	3316.72	107402	26.60	5201.00	181547	15.45	5178.00	181851	14.12
0.9	36.21	3325.45	107604	26.68	5172.47	180565	15.43	5171.42	181661	14.07
0.8	36.21	3324.05	107543	26.70	5204.49	181769	15.33	5144.70	180766	14.01
0.7	36.21	3309.21	107100	26.66	5228.41	182780	15.13	5109.29	179573	13.95
0.6	36.21	3309.21	107100	26.66	5223.80	182628	15.12	5147.64	180973	13.88
0.5	36.21	3301.93	106826	26.70	5211.66	182458	14.82	5202.46	183013	13.74

		Proposed Method Setting3						
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i				
1.0	36.21	5616.87	198010	13.23				
0.9	36.21	5590.02	197062	13.23				
0.8	36.21	5544.11	195469	13.20				
0.7	36.21	5557.51	196015	13.11				
0.6	36.21	5625.19	198440	13.06				
0.5	36.21	5598.92	197679	12.85				

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2	5/10)	
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	27.30	2882.45	69473	28.03	3167.75	75800	28.79	3258.68	78375	28.25
0.9	27.30	2884.56	69522	28.03	3169.03	75832	28.79	3259.83	78405	28.25
0.8	27.30	2882.46	69469	28.03	3169.32	75843	28.78	3258.82	78387	28.24
0.7	27.30	2883.92	69497	28.04	3165.62	75745	28.80	3256.60	78321	28.26
0.6	27.30	2882.18	69463	28.03	3165.10	75729	28.80	3258.09	78353	28.26
0.5	27.30	2883.06	69495	28.02	3170.33	75846	28.81	3258.40	78347	28.28

表 A-5 ϕ_i の比較(画像:Things)

		Itti			Proposed Method Setting1			Proposed Method Settin		ing2
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	27.30	2739.57	67005	26.39	4076.95	106938	16.12	4050.22	107033	14.57
0.9	27.30	2746.04	67074	26.55	4053.52	106335	16.10	4044.73	106909	14.52
0.8	27.30	2743.25	66985	26.58	4078.08	107039	15.99	4022.17	106335	14.48
0.7	27.30	2733.77	66807	26.49	4094.08	107549	15.82	3995.06	105644	14.42
0.6	27.30	2733.77	66807	26.49	4090.34	107470	15.79	4023.17	106414	14.37
0.5	27.30	2726.17	66567	26.58	4077.56	107294	15.48	4065.78	107613	14.22

(b2)	M _{Sal,i,nq} とs _{dsc,nq} の相関	$(T_{FAST} = 40)$
------	--	-------------------

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i			
1.0	27.30	4366.99	115896	13.59			
0.9	27.30	4345.54	115306	13.64			
0.8	27.30	4309.56	114380	13.58			
0.7	27.30	4318.50	114656	13.50			
0.6	27.30	4371.03	116081	13.43			
0.5	27.30	4349.16	115601	13.23			

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	19.44	3426.53	60961	23.78	3537.33	64526	20.23	3672.40	67199	19.74
0.9	19.44	3426.40	60962	23.77	3537.78	64534	20.23	3672.70	67207	19.74
0.8	19.44	3428.24	60989	23.78	3538.57	64548	20.23	3673.79	67227	19.74
0.7	19.44	3423.89	60912	23.78	3536.24	64502	20.24	3671.89	67191	19.74
0.6	19.44	3426.32	60959	23.77	3537.16	64524	20.23	3672.25	67203	19.73
0.5	19.44	3428.44	60986	23.80	3536.99	64511	20.25	3670.74	67167	19.74

表 A-6 ϕ_i の比較 (画像: Things (Multiple)) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	19.44	2857.25	47246	31.73	3831.74	69766	20.52	4135.93	74826	21.47
0.9	19.44	2868.46	47485	31.62	3824.18	69669	20.43	4123.22	74651	21.36
0.8	19.44	2884.60	47765	31.60	3846.29	70138	20.29	4142.95	75039	21.30
0.7	19.44	2917.13	48339	31.53	3885.20	70890	20.19	4158.55	75402	21.15
0.6	19.44	2917.13	48339	31.53	3890.38	71053	20.04	4315.31	78364	20.92
0.5	19.44	2896.53	47966	31.59	3956.78	72408	19.73	4298.94	78190	20.68

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ \boldsymbol{M}_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
1.0	19.44	4212.21	77023	19.85			
0.9	19.44	4193.49	76700	19.81			
0.8	19.44	4200.25	76885	19.69			
0.7	19.44	4216.15	77209	19.62			
0.6	19.44	4245.26	77817	19.46			
0.5	19.44	4308.09	79097	19.20			

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i
1.0	16.38	3011.47	44720	24.98	3122.46	47610	21.45	3247.82	49723	20.85
0.9	16.38	3011.38	44721	24.97	3122.88	47617	21.45	3248.25	49731	20.84
0.8	16.38	3012.78	44740	24.98	3123.25	47623	21.44	3249.23	49745	20.84
0.7	16.38	3009.14	44684	24.98	3121.43	47591	21.46	3247.46	49718	20.84
0.6	16.38	3011.14	44718	24.97	3122.32	47608	21.45	3247.77	49726	20.84
0.5	16.38	3012.81	44735	24.99	3121.82	47593	21.47	3246.19	49697	20.85

表 A-6 ϕ_i の比較 (画像: Things (Multiple)) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i
1.0	16.38	2564.00	35678	31.85	3400.31	52198	20.43	3663.91	55839	21.52
0.9	16.38	2574.10	35855	31.76	3393.94	52120	20.38	3654.25	55708	21.48
0.8	16.38	2588.75	36068	31.74	3414.08	52464	20.28	3672.43	55993	21.45
0.7	16.38	2617.55	36494	31.67	3449.43	53040	20.18	3687.74	56276	21.32
0.6	16.38	2617.55	36494	31.67	3455.62	53181	20.04	3828.14	58474	21.19
0.5	16.38	2599.07	36207	31.75	3516.93	54183	19.87	3815.75	58372	20.96

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙M _{Sal,i}	ϕ_i			
1.0	16.38	3736.88	57558	19.91			
0.9	16.38	3721.22	57309	19.93			
0.8	16.38	3728.50	57460	19.83			
0.7	16.38	3743.09	57705	19.77			
0.6	16.38	3769.39	58153	19.65			
0.5	16.38	3828.83	59125	19.50			

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	21.41	3426.53	68898	20.05	3537.33	72853	15.80	3672.40	75867	15.17
0.9	21.41	3426.40	68898	20.04	3537.78	72863	15.80	3672.70	75876	15.16
0.8	21.41	3428.24	68929	20.06	3538.57	72878	15.80	3673.79	75896	15.17
0.7	21.41	3423.89	68842	20.06	3536.24	72827	15.81	3671.89	75856	15.17
0.6	21.41	3426.32	68895	20.05	3537.16	72850	15.80	3672.25	75868	15.16
0.5	21.41	3428.44	68927	20.07	3536.99	72839	15.82	3670.74	75832	15.17

表 A-6 ϕ_i の比較 (画像 : Things(Multiple))

	Itti		Proposed Method Setting1			Proposed Method Setting2				
$\frac{Max(I)}{Max(I_0)}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	21.41	2857.25	53046	29.85	3831.74	78734	16.26	4135.93	84578	17.18
0.9	21.41	2868.46	53310	29.74	3824.18	78615	16.17	4123.22	84363	17.08
0.8	21.41	2884.60	53620	29.72	3846.29	79136	16.01	4142.95	84797	17.01
0.7	21.41	2917.13	54270	29.64	3885.20	79975	15.91	4158.55	85198	16.83
0.6	21.41	2917.13	54270	29.64	3890.38	80163	15.70	4315.31	88512	16.61
0.5	21.41	2896.53	53850	29.71	3956.78	81658	15.39	4298.94	88303	16.33

(b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$	の相関(T _{FAST}	= 20)
---------------------------------------	-----------------------	-------

		Proposed Method Setting3						
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i				
1.0	21.41	4212.21	86982	15.26				
0.9	21.41	4193.49	86604	15.24				
0.8	21.41	4200.25	86795	15.11				
0.7	21.41	4216.15	87172	14.99				
0.6	21.41	4245.26	87839	14.83				
0.5	21.41	4308.09	89246	14.57				

		VOCUS	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	5/10)
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	18.69	3011.47	52231	21.88	3122.46	55740	17.23	3247.82	58265	16.29
0.9	18.69	3011.38	52231	21.87	3122.88	55747	17.23	3248.25	58274	16.28
0.8	18.69	3012.78	52250	21.89	3123.25	55754	17.23	3249.23	58290	16.29
0.7	18.69	3009.14	52187	21.88	3121.43	55718	17.24	3247.46	58258	16.29
0.6	18.69	3011.14	52227	21.87	3122.32	55737	17.23	3247.77	58267	16.28
0.5	18.69	3012.81	52247	21.90	3121.82	55722	17.25	3246.19	58236	16.29

表 A-6 ϕ_i の比較(画像: Things(Multiple)) (b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)

			Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	
1.0	18.69	2564.00	40981	31.22	3400.31	60710	17.20	3663.91	64988	18.37	
0.9	18.69	2574.10	41188	31.11	3393.94	60621	17.12	3654.25	64833	18.33	
0.8	18.69	2588.75	41428	31.10	3414.08	61023	16.99	3672.43	65173	18.28	
0.7	18.69	2617.55	41933	31.00	3449.43	61682	16.91	3687.74	65496	18.14	
0.6	18.69	2617.55	41933	31.00	3455.62	61850	16.73	3828.14	68066	17.94	
0.5	18.69	2599.07	41603	31.08	3516.93	63022	16.51	3815.75	67935	17.71	

		Proposed	Method Sett	ting3
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
1.0	18.69	3736.88	66983	16.45
0.9	18.69	3721.22	66693	16.48
0.8	18.69	3728.50	66867	16.35
0.7	18.69	3743.09	67143	16.31
0.6	18.69	3769.39	67668	16.15
0.5	18.69	3828.83	68801	15.96

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	30.59	5371.11	152504	21.85	5958.78	166944	23.67	5678.59	158265	24.34
0.9	30.59	5370.09	152471	21.85	5959.87	166972	23.67	5685.44	158454	24.34
0.8	30.59	5371.66	152516	21.85	5957.28	166901	23.67	5676.42	158202	24.34
0.7	30.59	5376.53	152648	21.85	5951.58	166746	23.67	5675.98	158194	24.34
0.6	30.59	5367.18	152394	21.84	5953.17	166794	23.66	5670.09	158030	24.34
0.5	30.59	5374.31	152603	21.84	5960.84	167009	23.66	5681.26	158336	24.34

表 A-7 ϕ_i の比較(画像:Tree) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	30.59	2671.05	67744	33.99	4290.16	122582	20.92	5286.15	151520	20.44
0.9	30.59	2676.87	67864	34.03	4291.85	122673	20.87	5262.20	150887	20.39
0.8	30.59	2680.61	67987	33.99	4335.79	124008	20.77	5268.87	151089	20.38
0.7	30.59	2687.98	68198	33.96	4236.51	121223	20.71	5280.58	151438	20.36
0.6	30.59	2702.39	68574	33.95	4257.03	121843	20.67	5429.34	155841	20.23
0.5	30.59	2713.13	68904	33.88	4271.37	122304	20.60	5298.37	152194	20.11

		Proposed Method Setting3					
$\frac{Max(I)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ \boldsymbol{M}_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
1.0	30.59	5293.09	151873	20.29			
0.9	30.59	5215.16	149653	20.27			
0.8	30.59	5255.70	150859	20.22			
0.7	30.59	5214.08	149751	20.13			
0.6	30.59	5228.81	150336	19.97			
0.5	30.59	5114.77	147296	19.71			

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$\sigma_c/\sigma_s =$	3/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	5/10)
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i
1.0	17.48	3032.06	50275	18.44	3305.19	54078	20.60	3133.56	50907	21.65
0.9	17.48	3031.27	50263	18.44	3305.74	54088	20.60	3137.81	50972	21.66
0.8	17.48	3032.46	50284	18.44	3304.43	54066	20.60	3132.18	50884	21.65
0.7	17.48	3034.99	50328	18.43	3300.78	54009	20.59	3132.34	50888	21.65
0.6	17.48	3030.05	50247	18.43	3301.99	54029	20.59	3128.94	50831	21.65
0.5	17.48	3034.56	50322	18.43	3307.01	54109	20.60	3135.68	50939	21.66

表 A-7 ϕ_i の比較(画像:Tree) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 $(T_{FAST} = 40)$

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	17.48	1842.54	27589	31.06	2703.01	44763	18.66	3108.78	52034	16.75
0.9	17.48	1844.17	27613	31.06	2702.49	44782	18.55	3095.26	51808	16.75
0.8	17.48	1843.70	27619	31.02	2732.68	45285	18.54	3100.99	51920	16.69
0.7	17.48	1845.11	27650	30.98	2670.51	44278	18.45	3107.96	52033	16.70
0.6	17.48	1852.70	27770	30.96	2680.51	44436	18.48	3195.03	53511	16.63
0.5	17.48	1854.25	27810	30.90	2694.61	44741	18.21	3123.90	52339	16.56

		Proposed Method Setting3					
$\frac{Max(l)}{Max(l_0)}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
1.0	17.48	3057.49	51219	16.58			
0.9	17.48	3008.49	50421	16.50			
0.8	17.48	3035.54	50864	16.54			
0.7	17.48	3011.66	50503	16.39			
0.6	17.48	3019.64	50667	16.27			
0.5	17.48	2963.39	49805	15.94			

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(I)}{Max(I_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	S _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	37.56	5371.11	190766	18.97	5958.78	209151	20.84	5678.59	198385	21.53
0.9	37.56	5370.09	190723	18.97	5959.87	209186	20.84	5685.44	198622	21.53
0.8	37.56	5371.66	190780	18.97	5957.28	209095	20.84	5676.42	198310	21.53
0.7	37.56	5376.53	190945	18.98	5951.58	208901	20.84	5675.98	198297	21.53
0.6	37.56	5367.18	190622	18.97	5953.17	208961	20.83	5670.09	198093	21.53
0.5	37.56	5374.31	190885	18.96	5960.84	209224	20.84	5681.26	198471	21.54

表 A-7 ϕ_i の比較(画像:Tree)

	- · ·				I					
		Itti			Proposed	Method Sett	ing1	Proposed	Method Set	ing2
$\frac{Max(I)}{Max(I_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i
1.0	37.56	2671.05	83186	33.98	4290.16	151975	19.40	5286.15	189015	17.81
0.9	37.56	2676.87	83363	33.98	4291.85	152065	19.37	5262.20	188196	17.77
0.8	37.56	2680.61	83528	33.93	4335.79	153714	19.27	5268.87	188471	17.74
0.7	37.56	2687.98	83809	33.88	4236.51	150258	19.20	5280.58	188920	17.71
0.6	37.56	2702.39	84280	33.86	4257.03	151036	19.15	5429.34	194383	17.58
0.5	37.56	2713.13	84698	33.78	4271.37	151637	19.04	5298.37	189788	17.49

(b1) M _{Sal,i,nq} とs _{dsc,nq} の相関	$(T_{FAST}=20)$
---	-----------------

		Proposed	Method Sett	ing3
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	S _{dsc} ∙ M _{Sal,i}	ϕ_i
1.0	37.56	5293.09	189604	17.49
0.9	37.56	5215.16	186854	17.45
0.8	37.56	5255.70	188349	17.40
0.7	37.56	5214.08	186975	17.29
0.6	37.56	5228.81	187670	17.12
0.5	37.56	5114.77	183829	16.87

¥ 1										
		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	21.36	3032.06	61266	18.89	3305.19	65784	21.25	3133.56	61973	22.17
0.9	21.36	3031.27	61252	18.88	3305.74	65796	21.25	3137.81	62055	22.17
0.8	21.36	3032.46	61276	18.88	3304.43	65768	21.26	3132.18	61945	22.17
0.7	21.36	3034.99	61329	18.88	3300.78	65701	21.25	3132.34	61950	22.17
0.6	21.36	3030.05	61229	18.88	3301.99	65725	21.25	3128.94	61880	22.17
0.5	21.36	3034.56	61319	18.88	3307.01	65818	21.26	3135.68	62010	22.18

表 A-7 ϕ_i の比較(画像:Tree)

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{Max(I)}{Max(I_0)}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
1.0	21.36	1842.54	33220	32.41	2703.01	54450	19.39	3108.78	63366	17.36
0.9	21.36	1844.17	33237	32.44	2702.49	54464	19.32	3095.26	63091	17.36
0.8	21.36	1843.70	33256	32.37	2732.68	55088	19.27	3100.99	63245	17.25
0.7	21.36	1845.11	33293	32.34	2670.51	53865	19.18	3107.96	63360	17.33
0.6	21.36	1852.70	33432	32.33	2680.51	54066	19.18	3195.03	65180	17.21
0.5	21.36	1854.25	33494	32.24	2694.61	54422	18.97	3123.90	63740	17.17

$\frac{Max(I)}{Max(I_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	21.36	3057.49	62379	17.19
0.9	21.36	3008.49	61388	17.16
0.8	21.36	3035.54	61949	17.14
0.7	21.36	3011.66	61517	16.97
0.6	21.36	3019.64	61711	16.87

2963.39 60661

16.56

21.36

0.5

Proposed Method Setting3

(b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 $(T_{FAST} = 40)$

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	14.22	2705.30	34605	25.90	2600.84	33109	26.46	2499.01	31429	27.82
0.9	14.22	2708.08	34640	25.90	2601.44	33116	26.46	2498.80	31427	27.82
0.8	14.22	2703.88	34589	25.89	2601.75	33122	26.46	2499.35	31433	27.82
0.7	14.22	2707.03	34630	25.89	2601.32	33116	26.46	2499.65	31441	27.80
0.6	14.22	2706.79	34626	25.90	2602.10	33125	26.46	2500.08	31446	27.81
0.5	14.22	2707.35	34634	25.89	2602.38	33133	26.45	2498.30	31420	27.82

表 A-8 ϕ_i の比較(画像 Stop) (a1) $M_{Sal,i,n_q} \ge r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

Itti		Proposed Method Setting1			Proposed Method Setting2					
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	14.22	2573.12	32064	28.80	3168.19	41957	21.36	3262.35	43133	21.60
0.9	14.22	2570.14	32019	28.83	3170.21	41962	21.44	3231.34	42722	21.60
0.8	14.22	2570.87	32021	28.85	3160.89	41818	21.51	3267.23	43193	21.62
0.7	14.22	2570.26	32007	28.87	3144.94	41595	21.55	3220.95	42545	21.74
0.6	14.22	2570.26	32007	28.87	3163.66	41827	21.60	3238.44	42774	21.75
0.5	14.22	2565.06	31933	28.90	3092.04	40895	21.55	3233.02	42697	21.76

		Proposed Method Setting3								
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ \boldsymbol{M}_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i						
1.0	14.22	3203.41	42575	20.83						
0.9	14.22	3205.95	42597	20.87						
0.8	14.22	3194.47	42439	20.89						
0.7	14.22	3178.88	42206	20.98						
0.6	14.22	3201.75	42488	21.06						
0.5	14.22	3121.29	41451	20.95						
		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
---------------------------	----------------------------	---------------------------------------	---------------------------------------	----------	---------------------------------------	---------------------------------------	----------	---------------------------------------	---------------------------------------	----------
$\frac{Max(I)}{Max(I_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	14.22	2556.11	30939	26.93	2477.77	29782	27.70	2392.57	28353	29.20
0.9	14.22	2558.73	30969	26.93	2478.17	29789	27.69	2392.38	28351	29.20
0.8	14.22	2554.77	30923	26.93	2478.40	29793	27.69	2392.87	28357	29.20
0.7	14.22	2557.79	30962	26.92	2478.07	29788	27.69	2393.21	28363	29.19
0.6	14.22	2557.44	30956	26.92	2478.73	29796	27.69	2393.53	28366	29.19
0.5	14.22	2557.90	30963	26.92	2478.89	29804	27.67	2391.94	28348	29.19

表 A-8 ϕ_i の比較(画像 Stop)

(a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 $(T_{FAST} = 40)$

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
1.0	14.22	2452.37	28880	29.83	2987.03	37705	21.59	3074.68	38741	21.85
0.9	14.22	2449.41	28846	29.83	2988.07	37694	21.68	3045.31	38367	21.87
0.8	14.22	2450.39	28843	29.88	2979.73	37565	21.78	3079.78	38785	21.93
0.7	14.22	2450.10	28834	29.90	2966.24	37374	21.86	3036.00	38203	22.04
0.6	14.22	2450.10	28834	29.90	2984.94	37596	21.91	3054.54	38422	22.10
0.5	14.22	2445.04	28762	29.95	2918.90	36770	21.89	3049.44	38347	22.13

		Proposed Method Setting3				
$\frac{Max(l)}{Max(l_0)}$	$\left\ r_{ftr} \right\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i		
1.0	14.22	3014.45	38244	20.85		
0.9	14.22	3016.76	38250	20.94		
0.8	14.22	3007.97	38135	20.95		
0.7	14.22	2991.37	37898	21.06		
0.6	14.22	3016.25	38190	21.15		
0.5	14.22	2940.50	37221	21.19		

表 A-8 ϕ_i の比較(画像 Stop)

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	14.64	2705.30	36820	21.58	2600.84	34834	23.78	2499.01	32750	26.44
0.9	14.64	2708.08	36856	21.59	2601.44	34843	23.78	2498.80	32748	26.44
0.8	14.64	2703.88	36804	21.57	2601.75	34849	23.77	2499.35	32756	26.44
0.7	14.64	2707.03	36846	21.57	2601.32	34842	23.78	2499.65	32763	26.42
0.6	14.64	2706.79	36842	21.57	2602.10	34851	23.78	2500.08	32769	26.42
0.5	14.64	2707.35	36851	21.57	2602.38	34863	23.75	2498.30	32741	26.44

(b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 $(T_{FAST} = 20)$

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	14.64	2573.12	33884	25.88	3168.19	44587	15.94	3262.35	45845	16.23
0.9	14.64	2570.14	33837	25.91	3170.21	44587	16.07	3231.34	45396	16.29
0.8	14.64	2570.87	33833	25.95	3160.89	44438	16.15	3267.23	45897	16.30
0.7	14.64	2570.26	33815	25.99	3144.94	44181	16.30	3220.95	45215	16.44
0.6	14.64	2570.26	33815	25.99	3163.66	44399	16.49	3238.44	45411	16.65
0.5	14.64	2565.06	33730	26.05	3092.04	43406	16.44	3233.02	45345	16.61

		Proposed Method Setting3				
$\frac{Max(I)}{Max(I_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i		
1.0	14.64	3203.41	45308	14.91		
0.9	14.64	3205.95	45324	15.00		
0.8	14.64	3194.47	45136	15.12		
0.7	14.64	3178.88	44897	15.21		
0.6	14.64	3201.75	45159	15.49		
0.5	14.64	3121.29	44044	15.40		

表 A-8 ϕ_i の比較(画像 Stop)

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	14.64	2556.11	32391	21.85	2477.77	31059	23.34	2392.57	29493	25.46
0.9	14.64	2558.73	32422	21.86	2478.17	31065	23.34	2392.38	29491	25.45
0.8	14.64	2554.77	32376	21.84	2478.40	31070	23.33	2392.87	29498	25.45
0.7	14.64	2557.79	32415	21.84	2478.07	31065	23.34	2393.21	29505	25.44
0.6	14.64	2557.44	32409	21.84	2478.73	31072	23.34	2393.53	29508	25.44
0.5	14.64	2557.90	32415	21.84	2478.89	31081	23.31	2391.94	29486	25.45

(b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 $(T_{FAST} = 40)$

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{Max(l)}{Max(l_0)}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i
1.0	14.64	2452.37	30107	25.95	2987.03	39189	16.06	3074.68	40262	16.43
0.9	14.64	2449.41	30063	25.97	2988.07	39172	16.22	3045.31	39864	16.50
0.8	14.64	2450.39	30062	26.02	2979.73	39048	16.29	3079.78	40315	16.50
0.7	14.64	2450.10	30053	26.05	2966.24	38849	16.40	3036.00	39719	16.61
0.6	14.64	2450.10	30053	26.05	2984.94	39064	16.55	3054.54	39918	16.82
0.5	14.64	2445.04	29977	26.10	2918.90	38208	16.51	3049.44	39860	16.78

		Proposed Method Setting3				
$\frac{Max(I)}{Max(I_0)}$	$\ s_{dsc}\ $	<i> M_{Sal,i}∥</i>	s _{dsc} · M _{Sal,i}	ϕ_i		
1.0	14.64	3014.45	39737	15.08		
0.9	14.64	3016.76	39749	15.18		
0.8	14.64	3007.97	39616	15.27		
0.7	14.64	2991.37	39378	15.38		
0.6	14.64	3016.25	39659	15.62		
0.5	14.64	2940.50	38674	15.56		

図A I_{Max,i}可変時における画像特徴点抽出状況と顕著性マップの変化

図 A-1 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Chair)

(a) $T_{FAST} = 20$

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0					
0.9					
0.8					
0.7	-				
0.6	-				
0.5					

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method		
	Extraction	Setting 1	Setting 2	Setting 3
1.0				
0.9				
0.8				
0.7	÷.			
0.6	÷.			
0.5	-			

図 A-1 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Chair) (b) 画像特徴点と $M_{Sal,i}$ ($T_{FAST} = 40$)

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0					
0.9					
0.8					
0.7					
0.6					
0.5					

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
1.0					
0.9	₹				
0.8					
0.7					
0.6					
0.5					

図 A-2 画像特徴点抽出状況とM _{sal,i} の推移	(画像:Flower)
--	-------------

(a) $T_{FAST} = 20$

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0					
0.9					
0.8					
0.7					
0.6					
0.5					

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
1.0					
0.9					
0.8					
0.7					
0.6					
0.5					

図 A-2	画像特徴点抽出状況とM _{Sal,i} の推移	(画像:Flower)
	(b) $T_{FAST} = 40$	

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0					
0.9					
0.8					
0.7					
0.6					
0.5					

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
1.0					
0.9					
0.8					
0.7					
0.6					
0.5					

図 A-3	画像特徴点抽出状況とM _{Sal,i} の推移	(画像:Lenna)
	(a) $T_{FAST} = 20$	

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0					
0.9					
0.8					
0.7					
0.6					
0.5					

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
1.0					
0.9					
0.8					
0.7					
0.6					
0.5					

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0					
0.9					
0.8					
0.7					
0.6					
0.5					

図 A-3 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像:Lenna) (b) $T_{FAST} = 40$

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
1.0					
0.9					
0.8					
0.7					
0.6					
0.5					

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0			Ĵ.	J. S.	
0.9			Č.	B	
0.8			jes -	J.S.	
0.7			J.	E.	
0.6				J.	
0.5					

図 A-4 画像特徴点抽出状況と $M_{sal,i}$ の推移 (画像: Mandrill) (a) $T_{FAST} = 20$

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method				
	Extraction	Setting 1	Setting 2	Setting 3		
1.0						
0.9						
0.8						
0.7				6		
0.6						
0.5						

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0				J.	
0.9					
0.8				J.	
0.7					
0.6					
0.5					

図 A-4 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Mandrill) (b) $T_{FAST} = 40$

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method				
	Extraction	Setting 1	Setting 2	Setting 3		
1.0						
0.9						
0.8						
0.7						
0.6						
0.5						

図 A-5	画像特徴点抽出状況とM _{Sal,i} の推移	(画像:Things)
	(a) $T_{FAST} = 20$	

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2	VOCUS2		
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0		Chings Hat are still Here Hat are still Here	Chinase Constants		THAT ARE STILL HERE THAT ARE STILL HERE WED WITH LEVE
0.9		Chings Hat are still Heres	Chings,	Alberta State	THAT ARE STILL HERED
0.8		HAT ARE STILL HERE	Chings,	Alberta State	THAT ARE STILL HERE THAT ARE STILL HERE MORE ARTICLE
0.7		Chings Harakestillheres	Chings,	Chinese,	HAT ARE STILL HERE
0.6		Chings NAT ARE STILLHERE MAT ARE STILLHERE	Chings,	Aller A	HAT ARE STILL HERE HAT ARE STILL HERE
0.5		CLEATING S HAT ARE STILL HERE	Chinese,	Chings	HAT ARE STILL HERE)

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
1.0		CERTIFICATION OF CONTROL OF CONTR	TRAINARE STILLHERES	CHARLESTILLIERE HATARESTILLIERE	
0.9		CARLESTIL HERE	THAT ARE STILL HERE	THAT ARE STILL HERE	
0.8		CARLESTIL HERE THAT ARE STILL HERE THAT ARE STILL HERE	TRAINARE STILLHERE THAT ARE STILLHERE THAT ARE STILLHERE	CRATARESTILIHERE THAT ARE STILLHERE CHATARESTILLHERE	
0.7		CARLESTIL HERE HAT ARE STILL HERE HAT ARE STILL HERE	TRAINARE STILLHERE THAT ARE STILLHERE	CRATESTILIHERE INATARESTILIHERE INATARESTILIHERE	
0.6		CARLESTIL HERE THAT ARE STILL HERE THAT ARE STILL HERE	TRAINARE STILLHERE THAT ARE STILLHERE	THAT ARE STILLHERE	
0.5		CERTIFICATION OF THE STATE	TRAIDES HAT ARE STILLHERE HAT ARE STILLHERE	THAT ARE STILLHERE THAT ARE STILLHERE	

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0	The second second	HAT ARE STILLION	Chings		That ARE STILL HERE HAT ARE STILL HERE
0.9	Things That ME STALLER	HAT ARE STILL HERE	Chings,	Chings,	That ARE STILL HERE
0.8	Things	HAT ARE STILL HERE	Chings Constants	Chings,	THAT ARE STILL HERE
0.7	Things, where the second secon	HAT ARE STILL HERE	Chings Constant	Chings,	THAT ARE STILL HERE
0.6	NU AN AND AND AND AND AND AND AND AND AND	HAT ARE STILLARS	Chings	Chings,	That ARE STILL HERE
0.5	THINK AND	HAT ARE STILL HERE	Chings	Chings	HAT ARE STILL HERE

図 A-5 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Things) (b) $T_{FAST} = 40$

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method				
	Extraction	Setting 1	Setting 2	Setting 3		
1.0		CALLER STULLARES	THAT ARE STILL HERE	CRATATION HERE		
0.9		CERTIFICATION OF THE STATE OF T	TRAIDES STILL HERES	THAT ARE STILL HERE		
0.8		CERTIFICATION OF THE STATE OF T	TRAIDES STILL HERE	THAT ARE STILL HERE		
0.7	(Ling)	CARLESTIC HERES	TRAIDES STILL HERE	THAT ARE STILL HERE		
0.6	CERTIFICATION OF THE PROPERTY	CARLESTILL HERES	TRADARE STILLHERE THAT ARE STILLHERE	CARLESTILIARE MATARESTILIARE		
0.5		CARLES STULLIERE HAT ARE STULLIERE HAT ARE STULLIERE	TRADARE STILLHERE THAT ARE STILLHERE	THAT ARE STILL HERE		

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0		0 () 0 ()	0 () 0 ()	0 () 0 ()	(1) (1) (1) (1)
0.9	© © © ©	0 0	0 0	0 0 0 0	(1) (1) (2) (3) (3)
0.8	© ©	0 0 0 0	0 0	0 0 0 0	(1) (1) (2) (3)
0.7	© ©	0 0 0 0	0 0 0 0	0 0 0 0	(1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
0.6	Q Q Q Q	0 (1) 0 (0)	0 () 0 ()	0 0 0 0	() () ()
0.5	() () () () () () () () () () () () () ()	0 () 0 ()	0 () 0 ()	0 () 0 ()	(1) (1) (1) (1)

図 A-6 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Things(Multiple)) (a) $T_{FAST} = 20$

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method	Proposed Method				
	Extraction	Setting 1	Setting 2	Setting 3			
1.0	 	0 0 0 0	() () () ()				
0.9	 <						
0.8	© © © ©						
0.7	© © © ©						
0.6	 • •<	10 10 10 10					
0.5							

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0	()	0 () 0 ()	0 () 0 ()	0 () 0 ()	
0.9	.	0 0	0 () 0 ()	0 () 0 ()	
0.8	()	0 () 0 ()	0 () 0 ()	0 () 0 ()	() () ()
0.7	()	0 () 0 ()	0 () 0 ()	0 () 0 ()	
0.6	 <td>0 () 0 ()</td><td>0 () 0 ()</td><td>0 () 0 ()</td><td></td>	0 () 0 ()	0 () 0 ()	0 () 0 ()	
0.5	 3 3 	0 0 0 0	0 () 0 ()	0 0 0 0	

図 A-6 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Things(Multiple)) (b) $T_{FAST} = 40$

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method		
	Extraction	Setting 1	Setting 2	Setting 3
1.0	 <	10 (1) 10 (1)	() () () ()	
0.9	 			
0.8	e		0 0 0 0	
0.7		03 03 03 03		
0.6	 <	0 0 0 0		
0.5	 3 4 4 5 5 6 6 6 7 			

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0			Contraction of the second	Solution of the second	
0.9			Sal Sal		
0.8			Contraction of the second		
0.7			Solution of the second se		
0.6			Section of the sectio		
0.5			Contraction of the second	State of the second sec	

図 A-7 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Tree)) (a) $T_{FAST} = 20$

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method		
	Extraction	Setting 1	Setting 2	Setting 3
1.0				
0.9				
0.8				
0.7				
0.6				
0.5				

図 A-7	画像特徴点抽出状況とM _{Sal,i} の推移	(画像:	Tree))
	(b) $T_{FAST} = 40$		

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0		Contraction of the second	and the second	Sol and a	
0.9		Contraction of the second	and the second		
0.8		and the second	and the second	Solution of the second se	
0.7			A State	Sol and a sol	
0.6			Solution of the solution of th	Solution of the solution of th	
0.5			and the second	Solution of the second	

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method		
	Extraction	Setting 1	Setting 2	Setting 3
1.0				
0.9				
0.8				
0.7				
0.6				
0.5				

図 A-8 画像特徴点抽出状況とM_{Sal,i}の推移 (画像: Stop))

(a) $T_{FAST} = 20$

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0	STOP	STOP	STOP	STOP	STOP
0.9	STOP	STOP	STOP	STOP	STOP
0.8	STOP	STOP	STOP	STOP	STOP
0.7	STOP	STOP	STOP	STOP	STOP
0.6	STOP	STOP	STOP	STOP	STOP
0.5	STOP	STOP	STOP	STOP	STOP

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method						
	Extraction	Setting 1	Setting 2	Setting 3				
1.0	STOP	STOP	STOP	STOP				
0.9	STOP	STOP	STOP	STOP				
0.8	STOP	STOP	STOP	STOP				
0.7	STOP	STOP	STOP	STOP				
0.6	STOP	STOP	STOP	STOP				
0.5	STOP	STOP	STOP	STOP				

図 A-8 画像特徴点抽出状況とM_{Sal,i}の推移 (画像: Stop))

(b) $T_{FAST} = 40$

$I_{Max,i}/I_{Max,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0	STOP	STOP	STOP	STOP	STOP
0.9	STOP	STOP	STOP	STOP	STOP
0.8	STOP	STOP	STOP	STOP	STOP
0.7	STOP	STOP	STOP	STOP	STOP
0.6	STOP	STOP	STOP	STOP	STOP
0.5	STOP	STOP	STOP	STOP	STOP

$I_{Max,i}/I_{Max,1}$	Feature	Proposed Method	Proposed Method						
	Extraction	Setting 1	Setting 2	Setting 3					
1.0	STOP	STOP	STOP	STOP					
0.9	STOP	STOP	STOP	STOP					
0.8	STOP	STOP	STOP	STOP					
0.7	STOP	STOP	STOP	STOP					
0.6	STOP	STOP	STOP	STOP					
0.5	STOP	STOP	STOP	STOP					

VOCUS2 ($\sigma_c/\sigma_s = 1/10$) VOCU		VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$) VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)				
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	16.30	3535.37	55095	17.04	3900.69	61198	15.73	3649.50	57038	16.49
1.0	16.30	3454.41	53828	17.06	3878.54	60850	15.73	3649.83	57050	16.47
2.0	16.30	3354.23	52253	17.11	3833.33	60114	15.82	3641.99	56898	16.57
3.0	16.30	3251.56	50619	17.23	3792.39	59439	15.93	3643.74	56890	16.68
4.0	16.30	3185.32	49532	17.44	3747.74	58662	16.19	3646.67	56858	16.94
5.0	16.30	3158.91	49025	17.79	3773.32	58995	16.42	3703.28	57694	17.09

表 B-1 ϕ_i の比較 (画像: Chair) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

	Itti			Proposed Method Setting1			Proposed Method Setting2			
	-			-			-			
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i}\right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i
0.0	16.30	2225.62	30223	33.58	3664.05	55613	21.38	3770.43	58183	18.78
1.0	16.30	2048.07	27666	34.03	3531.20	53576	21.43	3634.24	56081	18.78
2.0	16.30	1830.41	24493	34.82	3329.57	50485	21.52	3416.40	52714	18.80
3.0	16.30	1697.50	22544	35.43	3151.69	47728	21.71	3191.81	49203	18.96
4.0	16.30	1498.59	19847	35.66	2983.20	45180	21.69	2992.61	46090	19.11
5.0	16.30	1365.28	18137	35.41	2792.30	42186	22.04	2867.27	44054	19.50

		Proposed Method Setting3								
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i						
0.0	16.30	3985.40	61915	17.61						
1.0	16.30	3868.30	60153	17.44						
2.0	16.30	3681.01	57241	17.44						
3.0	16.30	3495.34	54368	17.39						
4.0	16.30	3314.46	51508	17.55						
5.0	16.30	3211.75	49827	17.86						
			5 aut, t, ,							
---------------------------------------	---------------	------------------------------	---------------------------------------	---------------------------------------	-----------------	---------------------------------------	----------	--	---------------------------------------	----------
VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			1/10)	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2	$\mathrm{S2}\left(\sigma_c/\sigma_s=5/10\right)$		
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	11.07	2579.89	27091	18.42	2839.70	29921	17.82	2650.23	27806	18.56
1.0	11.07	2516.27	26439	18.31	2820.64	29720	17.82	2647.90	27781	18.56
2.0	11.07	2435.14	25598	18.23	2780.16	29276	17.93	2636.24	27640	18.68
3.0	11.07	2344.98	24637	18.32	2736.63	28795	18.07	2627.05	27522	18.81
4.0	11.07	2278.24	23900	18.58	2689.00	28249	18.34	2616.94	27375	19.06
5.0	11.07	2233.28	23357	19.10	2684.09	28154	18.60	2640.03	27588	19.23

表 B-1 ϕ_i の比較 (画像: Chair) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed	Method Sett	ing1	Proposed	Method Sett	ing2
							1			
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i
0.0	11.07	1747.78	16584	30.98	2788.95	28830	20.93	2788.94	29103	19.46
1.0	11.07	1600.85	15212	30.84	2681.52	27777	20.62	2677.96	28010	19.08
2.0	11.07	1443.62	13685	31.07	2525.25	26212	20.30	2506.78	26250	18.89
3.0	11.07	1354.90	12776	31.57	2381.41	24692	20.47	2333.23	24444	18.81
4.0	11.07	1204.94	11300	32.08	2239.40	23166	20.82	2170.67	22687	19.20
5.0	11.07	1091.33	10208	32.31	2074.03	21339	21.63	2056.38	21405	19.86

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
0.0	11.07	2946.82	30966	18.29			
1.0	11.07	2848.72	30033	17.71			
2.0	11.07	2696.29	28435	17.66			
3.0	11.07	2546.28	26897	17.36			
4.0	11.07	2394.45	25225	17.85			
5.0	11.07	2295.78	24118	18.34			

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2	5/10)	
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i
0.0	17.83	3535.37	58375	22.21	3900.69	63956	23.17	3649.50	59280	24.39
1.0	17.83	3454.41	56996	22.31	3878.54	63578	23.20	3649.83	59283	24.39
2.0	17.83	3354.23	55245	22.55	3833.33	62766	23.35	3641.99	59105	24.50
3.0	17.83	3251.56	53439	22.85	3792.39	62023	23.51	3643.74	59076	24.62
4.0	17.83	3185.32	52193	23.26	3747.74	61137	23.84	3646.67	58999	24.88
5.0	17.83	3158.91	51602	23.66	3773.32	61437	24.08	3703.28	59843	25.03

表 B-1 ϕ_i の比較 (Chair) (b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed	Method Sett	ting1	Proposed	Method Sett	ing2
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	17.83	2225.62	32692	34.55	3664.05	59892	23.57	3770.43	62250	22.22
1.0	17.83	2048.07	29847	35.20	3531.20	57509	24.05	3634.24	59840	22.59
2.0	17.83	1830.41	26401	36.03	3329.57	54072	24.41	3416.40	56092	22.99
3.0	17.83	1697.50	24250	36.77	3151.69	51065	24.70	3191.81	52223	23.45
4.0	17.83	1498.59	21357	36.96	2983.20	48284	24.83	2992.61	48807	23.87
5.0	17.83	1365.28	19560	36.55	2792.30	45083	25.14	2867.27	46574	24.39

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i			
0.0	17.83	3985.40	66085	21.60			
1.0	17.83	3868.30	63999	21.93			
2.0	17.83	3681.01	60769	22.23			
3.0	17.83	3495.34	57633	22.40			
4.0	17.83	3314.46	54525	22.72			
5.0	17.83	3211.75	52692	23.09			

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2 ($\sigma_c/\sigma_s = 5/10$		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i
0.0	13.48	2579.89	32847	19.23	2839.70	35931	20.22	2650.23	33279	21.37
1.0	13.48	2516.27	32020	19.32	2820.64	35674	20.29	2647.90	33239	21.42
2.0	13.48	2435.14	30970	19.41	2780.16	35139	20.39	2636.24	33079	21.48
3.0	13.48	2344.98	29783	19.63	2736.63	34577	20.44	2627.05	32947	21.55
4.0	13.48	2278.24	28879	19.94	2689.00	33927	20.66	2616.94	32774	21.75
5.0	13.48	2233.28	28246	20.29	2684.09	33830	20.82	2640.03	33040	21.85

表 B-1 ϕ_i の比較 (Chair) (b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed 1	Method Sett	ing1	Proposed 1	Method Sett	ing2
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	13.48	1747.78	20203	30.99	2788.95	35168	20.75	2788.94	35443	19.53
1.0	13.48	1600.85	18447	31.29	2681.52	33702	21.24	2677.96	33979	19.78
2.0	13.48	1443.62	16461	32.26	2525.25	31699	21.42	2506.78	31764	20.00
3.0	13.48	1354.90	15282	33.23	2381.41	29821	21.77	2333.23	29466	20.52
4.0	13.48	1204.94	13496	33.84	2239.40	28010	21.94	2170.67	27341	20.92
5.0	13.48	1091.33	12221	33.85	2074.03	25859	22.38	2056.38	25825	21.35

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i			
0.0	13.48	2946.82	37602	18.86			
1.0	13.48	2848.72	36309	19.05			
2.0	13.48	2696.29	34342	19.16			
3.0	13.48	2546.28	32401	19.32			
4.0	13.48	2394.45	30427	19.55			
5.0	13.48	2295.78	29138	19.74			

	VOCUS2 ($\sigma_c/\sigma_s = 1/10$) VOCUS2 ($\sigma_c/\sigma_s = 3/10$			3/10)	VOCUS2 ($\sigma_c/\sigma_s = 5/10$)					
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	28.31	2844.75	70635	28.72	2698.77	66732	29.15	2596.19	64009	29.45
1.0	28.31	2813.66	69699	28.97	2670.17	65900	29.35	2575.50	63409	29.59
2.0	28.31	2698.84	66164	30.02	2598.75	63874	29.76	2535.22	62270	29.83
3.0	28.31	2547.84	61589	31.38	2511.84	61378	30.34	2489.84	60990	30.10
4.0	28.31	2420.07	57884	32.35	2426.41	58893	30.99	2438.33	59483	30.50
5.0	28.31	2306.62	54636	33.22	2351.61	56761	31.52	2390.16	58086	30.87

表 B-2 ϕ_i の比較 (画像 : Flower) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed	Method Sett	ing1	Proposed 1	Method Sett	ing2
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i
0.0	28.31	1971.41	40071	44.12	4731.42	125407	20.59	4679.35	123846	20.81
1.0	28.31	2047.30	44958	39.14	4564.56	120818	20.80	4722.06	124800	21.02
2.0	28.31	2014.99	45597	36.94	4251.60	111821	21.73	4500.08	118337	21.76
3.0	28.31	1704.76	37477	39.07	3974.54	103748	22.79	4199.58	109597	22.82
4.0	28.31	1554.50	33528	40.38	3856.49	99983	23.70	4011.78	103993	23.72
5.0	28.31	1448.58	30524	41.91	3590.35	92300	24.77	3761.47	96759	24.70

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
0.0	28.31	4795.03	127757	19.78			
1.0	28.31	4577.84	121845	19.94			
2.0	28.31	4348.10	115257	20.58			
3.0	28.31	4092.83	107932	21.35			
4.0	28.31	3946.00	103540	22.07			
5.0	28.31	3848.15	100413	22.84			

					1 1					
VOCUS2 ($\sigma_c / \sigma_s = 1$)			1/10)	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)			
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	15.27	1869.36	25583	26.35	1723.03	23376	27.33	1623.40	21914	27.88
1.0	15.27	1844.04	25183	26.59	1701.89	23061	27.47	1609.15	21701	27.98
2.0	15.27	1752.91	23695	27.73	1646.73	22222	27.92	1577.10	21227	28.20
3.0	15.27	1635.07	21789	29.24	1578.47	21178	28.54	1540.44	20679	28.47
4.0	15.27	1529.70	20146	30.42	1509.59	20117	29.24	1498.37	20037	28.88
5.0	15.27	1434.91	18695	31.45	1445.95	19158	29.82	1457.13	19412	29.27

表 B-2 ϕ_i の比較 (画像 : Flower) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} · M _{Sal,i}	ϕ_i
0.0	15.27	1615.92	18576	41.17	3228.14	46406	19.73	3170.39	45405	20.32
1.0	15.27	1633.99	19697	37.88	3101.51	44563	19.81	3191.10	45682	20.39
2.0	15.27	1551.58	18992	36.73	2866.50	40878	20.97	3013.05	42859	21.34
3.0	15.27	1319.94	15656	39.04	2648.78	37400	22.40	2775.81	39125	22.64
4.0	15.27	1185.87	13702	40.84	2539.86	35549	23.58	2611.38	36487	23.81
5.0	15.27	1097.36	12296	42.80	2335.83	32347	24.94	2409.98	33404	24.82

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
0.0	15.27	3233.09	46612	19.26			
1.0	15.27	3068.88	44217	19.36			
2.0	15.27	2884.88	41328	20.28			
3.0	15.27	2677.28	38064	21.42			
4.0	15.27	2543.25	35925	22.34			
5.0	15.27	2444.12	34304	23.22			

	(b1) M_{Sal,i,n_q} と s_{dsc,n_q} の相関 ($T_{FAST} = 20$)											
	VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 5/10$)				
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i		
0.0	30.65	2844.75	74582	31.19	2698.77	70429	31.62	2596.19	67609	31.82		
1.0	30.65	2813.66	73591	31.41	2670.17	69552	31.80	2575.50	66975	31.95		
2.0	30.65	2698.84	69901	32.32	2598.75	67432	32.15	2535.22	65788	32.14		
3.0	30.65	2547.84	65125	33.49	2511.84	64834	32.63	2489.84	64444	32.38		
4.0	30.65	2420.07	61277	34.29	2426.41	62246	33.17	2438.33	62885	32.70		
5.0	30.65	2306.62	57921	34.98	2351.61	60023	33.61	2390.16	61423	33.02		

表 B-2 ϕ_i の比較 (画像: Flower)

		Itti			Proposed 1	Method Sett	ing1	Proposed	Method Sett	ing2
σ_{Gi}	$\ S_{dsc}\ \ M_{s_{ali}}\ \ s_{dsc} \cdot M_{s_{ali}}\ $		Φi	$M_{s_{al}} = s_{dsc} \cdot M_{s_{al}} = \phi_{s_{al}}$		$\ M_{sali}\ $	s _{dsc} · M _{Sal,i}	Φi		
0.0	30.65	1971.41	41548	46.55	4731.42	131746	24.69	4679.35	130077	24.90
1.0	30.65	2047.30	46845	41.70	4564.56	126884	24.90	4722.06	131095	25.06
2.0	30.65	2014.99	47746	39.36	4251.60	117420	25.69	4500.08	124299	25.67
3.0	30.65	1704.76	39347	41.14	3974.54	109014	26.50	4199.58	115146	26.54
4.0	30.65	1554.50	35396	42.02	3856.49	105109	27.21	4011.78	109369	27.19
5.0	30.65	1448.58	32368	43.19	3590.35	97188	27.96	3761.47	101834	27.95

		Proposed Method Setting3						
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i				
0.0	30.65	4795.03	134206	24.04				
1.0	30.65	4577.84	127980	24.19				
2.0	30.65	4348.10	120987	24.78				
3.0	30.65	4092.83	113375	25.33				
4.0	30.65	3946.00	108839	25.84				
5.0	30.65	3848.15	105701	26.33				

		VOCUS2	$VOCUS2 (\sigma_c/\sigma_s = 1/10)$			$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2	5/10)	
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i
0.0	19.08	1869.36	31616	27.60	1723.03	28828	28.75	1623.40	27020	29.29
1.0	19.08	1844.04	31096	27.92	1701.89	28431	28.91	1609.15	26759	29.38
2.0	19.08	1752.91	29248	29.04	1646.73	27400	29.32	1577.10	26178	29.57
3.0	19.08	1635.07	26883	30.51	1578.47	26113	29.90	1540.44	25502	29.83
4.0	19.08	1529.70	24862	31.61	1509.59	24807	30.56	1498.37	24718	30.18
5.0	19.08	1434.91	23086	32.53	1445.95	23628	31.10	1457.13	23943	30.57

表 B-2 ϕ_i の比較 (画像 : Flower) (b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed	Method Sett	ing1	Proposed	Method Sett	ing2
	U U Une U ve / /									
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i
0.0	19.08	1615.92	22681	42.65	3228.14	57317	21.51	3170.39	56132	21.91
1.0	19.08	1633.99	24118	39.34	3101.51	54959	21.79	3191.10	56419	22.11
2.0	19.08	1551.58	23159	38.54	2866.50	50337	23.05	3013.05	52830	23.25
3.0	19.08	1319.94	19086	40.74	2648.78	45966	24.59	2775.81	48121	24.72
4.0	19.08	1185.87	16714	42.39	2539.86	43580	25.96	2611.38	44793	26.00
5.0	19.08	1097.36	15066	43.99	2335.83	39668	27.14	2409.98	40965	27.04

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i}\right\ $	s _{dsc} · M _{Sal,i}	ϕ_i			
0.0	19.08	3233.09	57585	21.04			
1.0	19.08	3068.88	54579	21.27			
2.0	19.08	2884.88	50877	22.47			
3.0	19.08	2677.28	46772	23.73			
4.0	19.08	2543.25	44079	24.75			
5.0	19.08	2444.12	42091	25.52			

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2 ($\sigma_c/\sigma_s = 5/1$		
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	11.59	2732.47	29422	21.67	2977.06	31919	22.28	2856.92	30499	22.88
1.0	11.59	2667.11	28719	21.67	2996.75	32113	22.36	2880.51	30737	22.94
2.0	11.59	2572.38	27670	21.82	3019.07	32297	22.59	2895.32	30848	23.14
3.0	11.59	2511.08	26946	22.16	3016.62	32202	22.89	2907.11	30904	23.44
4.0	11.59	2516.45	26899	22.70	3020.84	32155	23.27	2933.78	31091	23.85
5.0	11.59	2575.17	27381	23.42	2989.03	31689	23.80	2916.13	30775	24.38

表 B-3 ϕ_i の比較 (画像 : Lenna) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed 1	Method Sett	ing1	Proposed 1	Method Sett	ing2
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ⋅ M _{Sal,i}	ϕ_i
0.0	11.59	1284.07	12005	36.21	2677.86	28361	23.93	2715.14	28903	23.26
1.0	11.59	1206.61	11092	37.50	2577.52	27355	23.66	2640.19	28134	23.12
2.0	11.59	1132.53	10205	38.95	2404.22	25459	23.95	2536.09	27014	23.17
3.0	11.59	1187.61	10560	39.88	2257.87	23830	24.37	2500.89	26608	23.33
4.0	11.59	1015.88	9023	39.96	2138.14	22490	24.80	2491.23	26446	23.63
5.0	11.59	941.52	8392	39.71	2070.82	21715	25.18	2441.11	25870	23.85

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
0.0	11.59	2822.30	30237	22.39			
1.0	11.59	2785.68	29877	22.24			
2.0	11.59	2621.75	28116	22.25			
3.0	11.59	2502.54	26789	22.50			
4.0	11.59	2367.18	25314	22.65			
5.0	11.59	2386.49	25495	22.78			

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	5/10)
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	6.61	1607.07	10009	19.64	1673.28	10371	20.42	1559.05	9623	21.04
1.0	6.61	1557.57	9711	19.48	1676.85	10391	20.44	1565.91	9662	21.09
2.0	6.61	1481.55	9233	19.54	1673.23	10356	20.62	1564.18	9639	21.28
3.0	6.61	1420.54	8843	19.73	1652.42	10213	20.84	1558.62	9584	21.59
4.0	6.61	1394.17	8672	19.85	1631.69	10066	21.12	1557.77	9553	21.98
5.0	6.61	1393.99	8659	20.08	1590.57	9779	21.61	1530.40	9344	22.59

表 B-3 ϕ_i の比較 (画像 : Lenna) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed	Method Sett	ing1	Proposed	Method Sett	ing2
	I									
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i
0.0	6.61	939.67	5300	31.47	1729.41	10636	21.57	1697.97	10461	21.31
1.0	6.61	897.69	5006	32.52	1660.04	10224	21.36	1649.73	10173	21.19
2.0	6.61	852.79	4659	34.30	1532.57	9385	22.18	1568.91	9648	21.59
3.0	6.61	895.35	4802	35.81	1427.25	8695	22.90	1525.72	9376	21.68
4.0	6.61	756.59	4038	36.19	1331.42	8115	22.83	1487.49	9157	21.44
5.0	6.61	685.67	3643	36.54	1265.54	7735	22.45	1413.28	8715	21.18

		Proposed Method Setting3						
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i				
0.0	6.61	1760.98	10904	20.55				
1.0	6.61	1727.24	10708	20.38				
2.0	6.61	1605.25	9922	20.83				
3.0	6.61	1512.06	9334	21.02				
4.0	6.61	1398.06	8643	20.80				
5.0	6.61	1371.98	8512	20.27				

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	5/10)
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i
0.0	15.88	2732.47	40790	19.89	2977.06	44351	20.21	2856.92	42474	20.53
1.0	15.88	2667.11	39819	19.88	2996.75	44649	20.20	2880.51	42835	20.49
2.0	15.88	2572.38	38379	19.98	3019.07	44936	20.35	2895.32	43017	20.63
3.0	15.88	2511.08	37423	20.15	3016.62	44842	20.55	2907.11	43133	20.83
4.0	15.88	2516.45	37437	20.43	3020.84	44844	20.76	2933.78	43448	21.11
5.0	15.88	2575.17	38217	20.80	2989.03	44280	21.07	2916.13	43070	21.51

表	B-3	ϕ_i の比較	(画像	: Lenna)	1
(b1)	M _{Sal,i,}	$n_q \geq s_{dsc,n_q}$	の相関	$(T_{FAST} =$: 20)

		Itti			Proposed	Method Sett	ing1	Proposed	Method Sett	ing2
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	15.88	1284.07	16601	35.47	2677.86	39260	22.56	2715.14	40156	21.31
1.0	15.88	1206.61	15267	37.15	2577.52	37780	22.59	2640.19	39033	21.36
2.0	15.88	1132.53	13887	39.43	2404.22	35066	23.26	2536.09	37404	21.72
3.0	15.88	1187.61	14241	40.95	2257.87	32782	23.86	2500.89	36798	22.05
4.0	15.88	1015.88	12122	41.27	2138.14	30978	24.13	2491.23	36630	22.15
5.0	15.88	941.52	11287	40.96	2070.82	30012	24.09	2441.11	35928	22.01

		Proposed Method Setting3						
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i				
0.0	15.88	2822.30	41984	20.44				
1.0	15.88	2785.68	41432	20.47				
2.0	15.88	2621.75	38904	20.81				
3.0	15.88	2502.54	37040	21.20				
4.0	15.88	2367.18	35051	21.14				
5.0	15.88	2386.49	35367	21.01				

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	5/10)
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i
0.0	8.81	1607.07	13513	17.38	1673.28	13981	18.50	1559.05	12937	19.65
1.0	8.81	1557.57	13088	17.51	1676.85	14002	18.61	1565.91	12988	19.72
2.0	8.81	1481.55	12425	17.85	1673.23	13951	18.86	1564.18	12954	19.96
3.0	8.81	1420.54	11899	18.07	1652.42	13751	19.19	1558.62	12881	20.29
4.0	8.81	1394.17	11667	18.24	1631.69	13545	19.59	1557.77	12840	20.70
5.0	8.81	1393.99	11644	18.55	1590.57	13159	20.13	1530.40	12566	21.27

表 B-3 ϕ_i の比較 (画像:Lenna) (b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed	Method Sett	ing1	Proposed	Method Sett	ing2
										
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i}\right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i}\right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	8.81	939.67	7154	30.23	1729.41	14302	20.18	1697.97	14075	19.82
1.0	8.81	897.69	6738	31.58	1660.04	13705	20.45	1649.73	13659	20.00
2.0	8.81	852.79	6205	34.33	1532.57	12517	22.04	1568.91	12885	21.23
3.0	8.81	895.35	6308	36.90	1427.25	11535	23.48	1525.72	12475	21.88
4.0	8.81	756.59	5242	38.16	1331.42	10725	23.90	1487.49	12145	22.08
5.0	8.81	685.67	4693	39.02	1265.54	10200	23.84	1413.28	11567	21.74

		Proposed Method Setting3						
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i				
0.0	8.81	1760.98	14647	19.26				
1.0	8.81	1727.24	14345	19.51				
2.0	8.81	1605.25	13227	20.74				
3.0	8.81	1512.06	12392	21.54				
4.0	8.81	1398.06	11458	21.54				
5.0	8.81	1371.98	11269	21.22				

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2	VOCUS2 ($\sigma_c / \sigma_s = 5$ $\ M_{sal,i}\ $ $r_{ftr} \cdot M_{sal,i}$ 2216.76 26808 2197.91 26548 2184.96 26394 2175.84 26293		
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	
0.0	14.20	2192.39	26067	33.11	2234.36	26986	31.70	2216.76	26808	31.58	
1.0	14.20	2142.73	25346	33.56	2206.10	26560	31.99	2197.91	26548	31.69	
2.0	14.20	2078.75	24494	33.89	2178.79	26224	32.02	2184.96	26394	31.68	
3.0	14.20	2018.07	23717	34.11	2155.73	25951	32.00	2175.84	26293	31.65	
4.0	14.20	1975.35	23186	34.22	2137.24	25732	31.99	2170.75	26247	31.59	
5.0	14.20	1945.91	22839	34.23	2125.91	25613	31.93	2168.37	26232	31.54	

表 B-4 ϕ_i の比較 (画像: Mandrill) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed	Method Sett	ing1	Proposed 1	Method Sett	ing2
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i
0.0	14.20	1540.44	17921	34.96	2999.20	38432	25.48	2984.17	38191	25.63
1.0	14.20	1619.22	18510	36.36	2890.85	37010	25.59	2909.18	37190	25.77
2.0	14.20	1698.51	18692	39.17	2772.36	35294	26.25	2754.53	35045	26.33
3.0	14.20	1546.53	16597	40.89	2665.06	33760	26.82	2693.31	34167	26.66
4.0	14.20	1449.57	15485	41.19	2671.39	33773	27.05	2650.50	33536	26.96
5.0	14.20	1443.74	15446	41.09	2809.71	35407	27.41	2595.04	32781	27.14

		Proposed Method Setting3						
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i				
0.0	14.20	3150.19	40460	25.20				
1.0	14.20	3068.98	39363	25.37				
2.0	14.20	2887.75	36913	25.78				
3.0	14.20	2774.61	35313	26.29				
4.0	14.20	2765.57	35154	26.43				
5.0	14.20	2719.65	34512	26.62				

VOCUS2 ($\sigma_c/\sigma_s = 1$		1/10)	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)				
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	4.97	952.18	4307	24.44	906.50	4136	23.30	877.55	3995	23.61
1.0	4.97	931.00	4195	24.91	894.55	4074	23.57	869.56	3954	23.76
2.0	4.97	895.61	4016	25.50	878.49	3993	23.81	861.04	3915	23.76
3.0	4.97	861.02	3839	26.19	862.93	3917	23.99	853.62	3880	23.80
4.0	4.97	833.65	3701	26.68	848.04	3845	24.13	847.70	3853	23.81
5.0	4.97	812.04	3600	26.82	836.36	3792	24.13	841.12	3825	23.75

表 B-4 ϕ_i の比較 (画像: Mandrill) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed	Method Sett	Method Setting1 Proposed		Method Setting2	
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i
0.0	4.97	741.66	3261	27.74	1275.98	5967	19.74	1213.54	5681	19.57
1.0	4.97	793.63	3478	28.11	1215.70	5689	19.62	1174.03	5500	19.45
2.0	4.97	842.75	3611	30.41	1144.51	5349	19.84	1092.48	5106	19.83
3.0	4.97	751.62	3159	32.21	1068.48	4962	20.80	1035.51	4826	20.27
4.0	4.97	688.08	2859	33.26	1047.77	4845	21.46	988.17	4606	20.24
5.0	4.97	660.95	2715	34.23	1057.54	4850	22.63	947.87	4417	20.28

		Proposed Method Setting3						
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i				
0.0	4.97	1253.79	5878	19.32				
1.0	4.97	1208.83	5674	19.14				
2.0	4.97	1113.81	5223	19.29				
3.0	4.97	1037.60	4845	19.97				
4.0	4.97	1004.09	4698	19.66				
5.0	4.97	967.76	4534	19.45				

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	20.86	2192.39	39523	30.20	2234.36	40752	29.02	2216.76	40466	28.93
1.0	20.86	2142.73	38400	30.77	2206.10	40098	29.38	2197.91	40070	29.07
2.0	20.86	2078.75	37087	31.20	2178.79	39585	29.42	2184.96	39834	29.07
3.0	20.86	2018.07	35897	31.48	2155.73	39178	29.39	2175.84	39691	29.01
4.0	20.86	1975.35	35102	31.58	2137.24	38851	29.36	2170.75	39624	28.94
5.0	20.86	1945.91	34582	31.57	2125.91	38675	29.29	2168.37	39599	28.89

表 B-4 ϕ_i の比較 (画像: Mandrill) (b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed	Method Sett	ing1	Proposed 1	Method Sett	ing2
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i}\right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	20.86	1540.44	27527	31.05	2999.20	58577	20.55	2984.17	58282	20.55
1.0	20.86	1619.22	28370	32.86	2890.85	56283	21.03	2909.18	56642	21.02
2.0	20.86	1698.51	28489	36.47	2772.36	53573	22.11	2754.53	53256	22.04
3.0	20.86	1546.53	25239	38.52	2665.06	51191	22.94	2693.31	51835	22.67
4.0	20.86	1449.57	23511	38.96	2671.39	51170	23.32	2650.50	50901	22.97
5.0	20.86	1443.74	23474	38.78	2809.71	53700	23.61	2595.04	49771	23.14

		Proposed Method Setting3						
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i				
0.0	20.86	3150.19	61627	20.30				
1.0	20.86	3068.98	59888	20.68				
2.0	20.86	2887.75	56045	21.49				
3.0	20.86	2774.61	53561	22.26				
4.0	20.86	2765.57	53353	22.35				
5.0	20.86	2719.65	52364	22.62				

r		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	6.83	952.18	5908	24.66	906.50	5639	24.34	877.55	5444	24.69
1.0	6.83	931.00	5754	25.14	894.55	5553	24.60	869.56	5386	24.89
2.0	6.83	895.61	5507	25.76	878.49	5443	24.83	861.04	5331	24.92
3.0	6.83	861.02	5262	26.47	862.93	5339	25.01	853.62	5283	24.97
4.0	6.83	833.65	5073	26.96	848.04	5240	25.19	847.70	5245	25.02
5.0	6.83	812.04	4929	27.25	836.36	5166	25.21	841.12	5205	24.98

表 B-4 ϕ_i の比較 (画像: Mandrill) (b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti	ltti			Proposed Method Setting1			Proposed Method Setting2		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	
0.0	6.83	741.66	4619	24.19	1275.98	8303	17.62	1213.54	7914	17.23	
1.0	6.83	793.63	4910	25.01	1215.70	7896	17.95	1174.03	7657	17.21	
2.0	6.83	842.75	5097	27.64	1144.51	7424	18.19	1092.48	7108	17.64	
3.0	6.83	751.62	4456	29.73	1068.48	6866	19.75	1035.51	6694	18.77	
4.0	6.83	688.08	4021	31.14	1047.77	6681	20.93	988.17	6355	19.62	
5.0	6.83	660.95	3796	32.73	1057.54	6685	22.21	947.87	6079	20.06	

		Proposed Method Setting3						
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i				
0.0	6.83	1253.79	8161	17.57				
1.0	6.83	1208.83	7864	17.66				
2.0	6.83	1113.81	7232	18.01				
3.0	6.83	1037.60	6689	19.24				
4.0	6.83	1004.09	6442	19.99				
5.0	6.83	967.76	6194	20.38				

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	18.28	2694.62	42043	31.40	3074.39	47620	32.07	3188.12	49556	31.75
1.0	18.28	2604.83	40685	31.30	3011.14	46822	31.72	3111.06	48508	31.46
2.0	18.28	2500.15	38833	31.82	2931.32	45490	31.90	3053.65	47523	31.64
3.0	18.28	2388.78	36680	32.86	2863.29	44229	32.32	3027.88	47006	31.87
4.0	18.28	2302.50	34998	33.74	2790.40	42799	32.96	2989.36	46139	32.40
5.0	18.28	2233.26	33529	34.78	2731.02	41658	33.44	2957.68	45573	32.55

表 B-5 ϕ_i の比較 (画像 : Things) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed	Method Sett	ing1	Proposed	Method Sett	ing2
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i}\right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i
0.0	18.28	2529.22	40168	29.68	3864.76	66279	20.25	3814.66	65558	19.92
1.0	18.28	2283.09	36076	30.18	3675.65	63098	20.10	3602.09	62149	19.29
2.0	18.28	1983.79	31019	31.20	3445.57	59018	20.44	3510.47	60631	19.12
3.0	18.28	1769.80	27255	32.60	3248.89	55406	21.10	3309.15	57129	19.19
4.0	18.28	1640.73	24786	34.26	3178.19	53872	21.98	3208.66	55280	19.53
5.0	18.28	1556.12	23214	35.30	3229.01	54371	22.90	3083.33	52995	19.90

		Proposed Method Setting3						
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i				
0.0	18.28	4138.45	71655	18.70				
1.0	18.28	3965.33	68822	18.29				
2.0	18.28	3767.10	65346	18.38				
3.0	18.28	3609.78	62562	18.54				
4.0	18.28	3561.22	61603	18.86				
5.0	18.28	3397.17	58686	19.08				

<u> </u>		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	13.82	2122.60	24945	31.76	2440.66	28377	32.73	2538.91	29614	32.44
1.0	13.82	2046.85	24127	31.48	2390.69	27917	32.34	2477.70	29000	32.13
2.0	13.82	1962.04	23039	31.84	2327.59	27133	32.50	2431.51	28402	32.32
3.0	13.82	1873.36	21764	32.80	2272.93	26370	32.92	2409.99	28077	32.55
4.0	13.82	1807.71	20764	33.79	2214.15	25489	33.60	2377.13	27525	33.10
5.0	13.82	1754.46	19852	35.05	2165.89	24772	34.16	2350.08	27146	33.31

表 B-5 ϕ_i の比較 (画像 : Things) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed	Method Sett	ing1	Proposed	Method Sett	ing2
						-				
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i
0.0	13.82	2098.21	25027	30.35	3138.41	40337	21.58	3098.29	39997	20.93
1.0	13.82	1894.77	22466	30.93	2980.80	38412	21.20	2923.07	37915	20.21
2.0	13.82	1650.86	19441	31.57	2782.99	35770	21.58	2846.31	36975	19.97
3.0	13.82	1477.82	17181	32.74	2613.74	33468	22.12	2677.96	34782	20.00
4.0	13.82	1373.05	15666	34.36	2542.65	32354	22.98	2593.27	33604	20.36
5.0	13.82	1300.34	14655	35.38	2569.92	32470	23.92	2483.06	32076	20.83

		Proposed Method Setting3						
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i				
0.0	13.82	3350.96	43575	19.81				
1.0	13.82	3212.00	41909	19.27				
2.0	13.82	3044.85	39720	19.30				
3.0	13.82	2913.37	37978	19.42				
4.0	13.82	2869.43	37327	19.75				
5.0	13.82	2726.44	35386	20.11				

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i
0.0	20.61	2694.62	47600	31.01	3074.39	53666	32.12	3188.12	55776	31.92
1.0	20.61	2604.83	46052	30.93	3011.14	52766	31.77	3111.06	54581	31.66
2.0	20.61	2500.15	43957	31.46	2931.32	51282	31.92	3053.65	53491	31.80
3.0	20.61	2388.78	41541	32.46	2863.29	49884	32.30	3027.88	52926	32.00
4.0	20.61	2302.50	39648	33.34	2790.40	48293	32.89	2989.36	51970	32.49
5.0	20.61	2233.26	38000	34.36	2731.02	47019	33.35	2957.68	51339	32.63

表 B-5 ϕ_i の比較 (画像: Things) (b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed	Method Sett	ing1	Proposed	Method Sett	ing2
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	20.61	2529.22	45091	30.12	3864.76	73773	22.16	3814.66	73074	21.66
1.0	20.61	2283.09	40532	30.53	3675.65	70196	22.09	3602.09	69214	21.21
2.0	20.61	1983.79	34729	31.86	3445.57	65593	22.54	3510.47	67458	21.20
3.0	20.61	1769.80	30430	33.47	3248.89	61535	23.23	3309.15	63504	21.40
4.0	20.61	1640.73	27613	35.26	3178.19	59799	24.09	3208.66	61347	21.93
5.0	20.61	1556.12	25855	36.28	3229.01	60346	24.94	3083.33	58809	22.27

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i}\right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i			
0.0	20.61	4138.45	79705	20.86			
1.0	20.61	3965.33	76509	20.59			
2.0	20.61	3767.10	72630	20.70			
3.0	20.61	3609.78	69488	20.94			
4.0	20.61	3561.22	68344	21.39			
5.0	20.61	3397.17	65086	21.63			

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	
0.0	17.08	2122.60	30760	31.95	2440.66	34908	33.12	2538.91	36403	32.91	
1.0	17.08	2046.85	29733	31.73	2390.69	34340	32.75	2477.70	35632	32.64	
2.0	17.08	1962.04	28373	32.14	2327.59	33380	32.89	2431.51	34908	32.79	
3.0	17.08	1873.36	26787	33.15	2272.93	32448	33.29	2409.99	34517	33.00	
4.0	17.08	1807.71	25563	34.10	2214.15	31379	33.92	2377.13	33853	33.50	
5.0	17.08	1754.46	24457	35.29	2165.89	30509	34.43	2350.08	33404	33.66	

表 B-5 ϕ_i の比較 (画像: Things) (b2) $M_{Sal,i,n_q} \ge s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed	Proposed Method Setting1			Proposed Method Setting2		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	
0.0	17.08	2098.21	30797	30.74	3138.41	49683	22.04	3098.29	49250	21.45	
1.0	17.08	1894.77	27640	31.33	2980.80	47224	21.93	2923.07	46641	20.88	
2.0	17.08	1650.86	23835	32.29	2782.99	43926	22.45	2846.31	45440	20.81	
3.0	17.08	1477.82	20951	33.89	2613.74	41038	23.17	2677.96	42671	21.09	
4.0	17.08	1373.05	19040	35.71	2542.65	39663	24.02	2593.27	41181	21.59	
5.0	17.08	1300.34	17797	36.73	2569.92	39904	24.61	2483.06	39346	21.90	

		Proposed Method Setting3						
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i				
0.0	17.08	3350.96	53597	20.52				
1.0	17.08	3212.00	51478	20.21				
2.0	17.08	3044.85	48776	20.28				
3.0	17.08	2913.37	46582	20.57				
4.0	17.08	2869.43	45730	21.07				
5.0	17.08	2726.44	43415	21.19				

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	11.90	2738.36	30498	20.66	2902.56	32913	17.70	3042.16	34517	17.59
1.0	11.90	2715.30	30233	20.70	2952.15	33517	17.48	3094.14	35162	17.31
2.0	11.90	2700.21	30131	20.37	2979.89	33831	17.48	3053.77	34689	17.38
3.0	11.90	2719.85	30447	19.87	3013.13	34225	17.39	3051.64	34664	17.39
4.0	11.90	2755.87	30881	19.71	3010.32	34158	17.58	3039.28	34473	17.65
5.0	11.90	2846.09	31974	19.29	3034.04	34434	17.55	3083.74	34976	17.66

表 B-6 $\phi_i \mathcal{O}$ 比較(画像: Things Multiple) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q} \mathcal{O}$ 相関 ($T_{FAST} = 20$)

	Itti			Proposed Method Setting1			Proposed Method Setting2			
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} · M _{Sal,i}	ϕ_i
0.0	11.90	2343.58	24476	28.67	3183.25	35914	18.59	3408.81	38411	18.80
1.0	11.90	2091.86	21101	32.06	3005.86	33710	19.58	3294.94	37063	19.09
2.0	11.90	2083.57	20581	33.92	2833.85	31628	20.34	3145.01	35366	19.14
3.0	11.90	1881.83	18030	36.39	2719.49	30333	20.43	2998.95	33779	18.86
4.0	11.90	1687.19	16216	36.15	2636.89	29285	21.09	2891.26	32600	18.69
5.0	11.90	1536.21	14860	35.64	2602.84	28844	21.41	2802.97	31687	18.24

		Proposed	ting3	
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	11.90	3480.18	39537	17.36
1.0	11.90	3366.17	38136	17.86
2.0	11.90	3195.88	36193	17.93
3.0	11.90	3121.53	35394	17.71
4.0	11.90	2994.35	33957	17.69
5.0	11.90	2928.37	33282	17.28

	VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			1/10)	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	8.94	2276.99	19160	19.70	2360.31	20167	17.07	2452.91	20954	17.10
1.0	8.94	2255.82	18980	19.71	2400.93	20527	16.95	2496.46	21342	16.96
2.0	8.94	2227.24	18785	19.33	2416.12	20654	16.97	2459.01	21009	17.08
3.0	8.94	2228.78	18854	18.84	2435.44	20821	16.95	2453.04	20950	17.15
4.0	8.94	2246.81	19023	18.68	2425.93	20716	17.17	2438.33	20788	17.47
5.0	8.94	2309.92	19584	18.45	2437.91	20804	17.30	2469.30	21035	17.61

表 B-6 ϕ_i の比較(画像: Things Multiple) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed	Method Sett	ting1	Proposed	Method Sett	ing2
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i}\right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i
0.0	8.94	2004.04	15851	27.75	2620.20	22255	18.14	2812.27	23880	18.18
1.0	8.94	1801.13	13925	30.12	2481.38	21033	18.49	2720.59	23110	18.12
2.0	8.94	1800.28	13683	31.75	2326.22	19660	18.99	2590.21	22034	17.87
3.0	8.94	1626.18	12066	33.88	2220.35	18722	19.37	2457.11	20917	17.74
4.0	8.94	1456.33	10830	33.69	2148.50	18028	20.15	2354.57	20031	17.85
5.0	8.94	1325.31	9883	33.45	2113.67	17695	20.50	2271.26	19333	17.76

		Proposed	Method Sett	ting3
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	8.94	2855.48	24398	17.06
1.0	8.94	2763.85	23601	17.17
2.0	8.94	2614.75	22340	17.07
3.0	8.94	2541.79	21730	16.96
4.0	8.94	2429.10	20747	17.13
5.0	8.94	2364.68	20207	17.04

X		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	13.65	2738.36	34495	22.63	2902.56	37097	20.54	3042.16	38867	20.59
1.0	13.65	2715.30	34135	22.91	2952.15	37753	20.45	3094.14	39591	20.36
2.0	13.65	2700.21	33963	22.84	2979.89	38079	20.56	3053.77	39045	20.47
3.0	13.65	2719.85	34291	22.51	3013.13	38513	20.52	3051.64	39020	20.46
4.0	13.65	2755.87	34760	22.46	3010.32	38431	20.71	3039.28	38805	20.69
5.0	13.65	2846.09	36008	22.03	3034.04	38764	20.59	3083.74	39395	20.60

表 B-6 ϕ_i の比較 (画像: Things Multiple)

(b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 $(T_{FAST} = 20)$

		Itti			Proposed	Method Sett	ing1	Proposed	Method Sett	ing2
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	13.65	2343.58	27517	30.65	3183.25	40738	20.33	3408.81	43460	20.91
1.0	13.65	2091.86	23616	34.19	3005.86	38043	21.98	3294.94	41796	21.65
2.0	13.65	2083.57	22990	36.05	2833.85	35543	23.22	3145.01	39780	22.06
3.0	13.65	1881.83	20079	38.57	2719.49	33986	23.70	2998.95	37980	21.88
4.0	13.65	1687.19	18027	38.47	2636.89	32836	24.16	2891.26	36622	21.86
5.0	13.65	1536.21	16549	37.88	2602.84	32404	24.19	2802.97	35583	21.54

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i			
0.0	13.65	3480.18	44678	19.84			
1.0	13.65	3366.17	42968	20.73			
2.0	13.65	3195.88	40715	21.02			
3.0	13.65	3121.53	39810	20.86			
4.0	13.65	2994.35	38185	20.87			
5.0	13.65	2928.37	37433	20.51			

			(b2)	M _{Sal,i,n}	$e_q \geq s_{dsc,n_q}$	の相関	$(T_{FAST} =$	= 40)		
		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i
0.0	11.49	2276.99	24286	21.77	2360.31	25634	18.98	2452.91	26643	18.97
1.0	11.49	2255.82	24018	22.03	2400.93	26068	19.03	2496.46	27129	18.88
2.0	11.49	2227.24	23762	21.73	2416.12	26215	19.15	2459.01	26699	19.03
3.0	11.49	2228.78	23869	21.18	2435.44	26439	19.05	2453.04	26636	19.02
4.0	11.49	2246.81	24101	20.94	2425.93	26312	19.20	2438.33	26439	19.25
5.0	11.49	2309.92	24855	20.47	2437.91	26463	19.07	2469.30	26787	19.17

表 B-6 ϕ_i の比較 (画像: Things (Multiple))

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i
0.0	11.49	2004.04	19934	29.99	2620.20	28492	18.78	2812.27	30440	19.53
1.0	11.49	1801.13	17327	33.11	2481.38	26712	20.40	2720.59	29321	20.22
2.0	11.49	1800.28	16930	35.03	2326.22	24819	21.72	2590.21	27869	20.48
3.0	11.49	1626.18	14799	37.59	2220.35	23586	22.35	2457.11	26461	20.34
4.0	11.49	1456.33	13239	37.67	2148.50	22757	22.75	2354.57	25336	20.47
5.0	11.49	1325.31	12117	37.24	2113.67	22368	22.87	2271.26	24491	20.14

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i			
0.0	11.49	2855.48	31108	18.46			
1.0	11.49	2763.85	29971	19.24			
2.0	11.49	2614.75	28337	19.33			
3.0	11.49	2541.79	27573	19.18			
4.0	11.49	2429.10	26326	19.33			
5.0	11.49	2364.68	25695	18.90			

表 B-7 ϕ_i の比較 (画像 : Tree)

	VOCUS2 ($\sigma_c/\sigma_s = 1/10$)		VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)				
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	21.67	4398.08	89357	20.37	4945.45	99559	21.73	4736.38	94999	22.26
1.0	21.67	4350.01	88294	20.52	4917.53	98918	21.85	4738.86	95011	22.31
2.0	21.67	4238.03	85792	20.92	4856.12	97503	22.11	4712.09	94305	22.56
3.0	21.67	4129.32	83259	21.51	4803.39	96221	22.43	4719.83	94311	22.78
4.0	21.67	4038.25	81054	22.16	4719.38	94188	22.94	4704.51	93731	23.17
5.0	21.67	3958.16	78977	22.97	4668.77	92891	23.36	4784.19	95131	23.44

(a1) M_{Sal,i,n_q} と r_{ftr,n_q} の相関 ($T_{FAST} = 20$)

		Itti			Proposed	Method Sett	ing1	Proposed 1	Method Sett	ing2
						1				
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i
0.0	21.67	2160.21	38247	35.22	3473.85	70180	21.22	4320.46	88004	19.97
1.0	21.67	2169.89	38104	35.88	3340.17	67436	21.32	4224.57	85939	20.17
2.0	21.67	2176.88	37766	36.82	3145.72	63259	21.89	4051.46	82093	20.78
3.0	21.67	2033.50	35064	37.28	2966.46	59339	22.63	3867.32	77957	21.54
4.0	21.67	1910.40	33023	37.10	2775.02	55276	23.20	3671.84	73661	22.23
5.0	21.67	1733.92	30091	36.80	2665.84	52837	23.86	3537.08	70605	22.92

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
0.0	21.67	4343.73	88632	19.69			
1.0	21.67	4234.68	86298	19.89			
2.0	21.67	4091.74	83039	20.54			
3.0	21.67	3937.86	79562	21.21			
4.0	21.67	3790.87	76282	21.80			
5.0	21.67	3777.93	75647	22.49			

VOCUS2 ($\sigma_c/\sigma_s =$		1/10) VOCU		$2 \left(\sigma_c / \sigma_s = 3/10 \right)$		VOCUS2 ($\sigma_c / \sigma_s =$		5/10)		
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	13.89	2558.11	33521	19.41	2824.12	36609	21.09	2690.67	34695	21.86
1.0	13.89	2513.10	32929	19.43	2798.76	36258	21.18	2688.04	34651	21.90
2.0	13.89	2414.99	31596	19.67	2747.27	35532	21.43	2663.03	34266	22.16
3.0	13.89	2313.75	30204	20.02	2695.28	34792	21.71	2654.78	34114	22.35
4.0	13.89	2224.06	28926	20.60	2623.67	33750	22.20	2631.11	33711	22.76
5.0	13.89	2141.40	27707	21.37	2569.89	32978	22.54	2658.71	34016	22.95

表 B-7 ϕ_i の比較 (画像: Tree) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

Itti					Proposed Method Setting1			Proposed Method Setting2		
	1						1			
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i
0.0	13.89	1541.17	17551	34.95	2295.10	29886	20.41	2625.31	34543	18.74
1.0	13.89	1537.03	17353	35.65	2188.50	28424	20.81	2545.02	33427	19.03
2.0	13.89	1529.09	16936	37.14	2033.29	26246	21.71	2404.51	31431	19.81
3.0	13.89	1412.86	15378	38.43	1880.76	24130	22.57	2246.13	29214	20.59
4.0	13.89	1303.01	14048	39.11	1728.19	22059	23.26	2091.97	27092	21.24
5.0	13.89	1147.78	12349	39.25	1626.59	20667	23.86	1969.10	25435	21.61

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i			
0.0	13.89	2583.15	34133	18.00			
1.0	13.89	2492.98	32878	18.34			
2.0	13.89	2370.25	31121	19.09			
3.0	13.89	2239.30	29290	19.71			
4.0	13.89	2121.24	27660	20.20			
5.0	13.89	2076.05	26989	20.67			

	VOCUS2 ($\sigma_c/\sigma_s = 1/10$)		VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)				
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	25.81	4398.08	104400	23.10	4945.45	115861	24.79	4736.38	110461	25.35
1.0	25.81	4350.01	103125	23.27	4917.53	115095	24.91	4738.86	110467	25.41
2.0	25.81	4238.03	100182	23.65	4856.12	113431	25.16	4712.09	109641	25.63
3.0	25.81	4129.32	97201	24.20	4803.39	111942	25.44	4719.83	109648	25.81
4.0	25.81	4038.25	94630	24.76	4719.38	109581	25.88	4704.51	108973	26.16
5.0	25.81	3958.16	92205	25.49	4668.77	108072	26.24	4784.19	110598	26.39

(b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 $(T_{FAST} = 20)$

	Itti		Proposed Method Setting1			Proposed Method Setting2				
-	a	1/7	. M	4	1,1,1	. M	4	1/1	• M	4
$o_{G,i}$	$\ S_{dsc}\ $	^{IVI} Sal,i	S _{dsc} · M _{Sal,i}	φ_i	IVI Sal,i	S _{dsc} · M _{Sal,i}	φ_i	^{IVI} Sal,i	S _{dsc} · M _{Sal,i}	φ_i
0.0	25.81	2160.21	44765	36.58	3473.85	82571	22.92	4320.46	103197	22.25
1.0	25.81	2169.89	44585	37.23	3340.17	79316	23.05	4224.57	100784	22.42
2.0	25.81	2176.88	44144	38.21	3145.72	74406	23.57	4051.46	96332	22.87
3.0	25.81	2033.50	40992	38.64	2966.46	69907	24.05	3867.32	91465	23.59
4.0	25.81	1910.40	38662	38.35	2775.02	65235	24.37	3671.84	86455	24.16
5.0	25.81	1733.92	35346	37.82	2665.84	62463	24.78	3537.08	82869	24.79

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i}\right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i			
0.0	25.81	4343.73	103928	22.01			
1.0	25.81	4234.68	101163	22.23			
2.0	25.81	4091.74	97357	22.78			
3.0	25.81	3937.86	93318	23.32			
4.0	25.81	3790.87	89569	23.71			
5.0	25.81	3777.93	88816	24.36			

	(b2) M_{Sal,i,n_q} と s_{dsc,n_q} の相関 ($T_{FAST} = 40$)										
		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	
0.0	16.69	2558.11	39777	21.30	2824.12	43323	23.20	2690.67	41014	24.03	
1.0	16.69	2513.10	39074	21.32	2798.76	42904	23.29	2688.04	40960	24.08	
2.0	16.69	2414.99	37485	21.56	2747.27	42035	23.54	2663.03	40500	24.32	
3.0	16.69	2313.75	35827	21.91	2695.28	41159	23.80	2654.78	40326	24.47	
4.0	16.69	2224.06	34307	22.45	2623.67	39924	24.25	2631.11	39848	24.85	
5.0	16.69	2141.40	32866	23.13	2569.89	39019	24.53	2658.71	40217	25.00	

表 B-7 ϕ_i の比較 (画像 : Tree)

Ι		Itti	Itti			Proposed Method Setting1			Proposed Method Setting2		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} · M _{Sal,i}	ϕ_i	
0.0	16.69	1541.17	20762	36.18	2295.10	35520	21.98	2625.31	41045	20.49	
1.0	16.69	1537.03	20522	36.87	2188.50	33803	22.26	2545.02	39738	20.68	
2.0	16.69	1529.09	20005	38.38	2033.29	31154	23.36	2404.51	37377	21.35	
3.0	16.69	1412.86	18124	39.77	1880.76	28620	24.25	2246.13	34755	22.01	
4.0	16.69	1303.01	16537	40.50	1728.19	26173	24.85	2091.97	32237	22.59	
5.0	16.69	1147.78	14518	40.72	1626.59	24546	25.29	1969.10	30291	22.82	

		Proposed Method Setting3					
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i}\right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i			
0.0	16.69	2583.15	40532	19.92			
1.0	16.69	2492.98	39057	20.17			
2.0	16.69	2370.25	36965	20.86			
3.0	16.69	2239.30	34811	21.34			
4.0	16.69	2121.24	32903	21.66			
5.0	16.69	2076.05	32143	21.93			

	VOCUS2 ($\sigma_c/\sigma_s = 1/10$)		VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)				
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	7.16	1843.86	11681	27.78	1885.47	12175	25.60	1873.83	12128	25.33
1.0	7.16	1831.29	11605	27.74	1877.35	12107	25.75	1872.97	12105	25.49
2.0	7.16	1792.44	11351	27.82	1864.78	12021	25.80	1855.76	11988	25.55
3.0	7.16	1748.53	11070	27.84	1855.35	11964	25.77	1832.22	11829	25.63
4.0	7.16	1714.72	10870	27.71	1838.82	11870	25.64	1807.48	11675	25.57
5.0	7.16	1697.22	10792	27.37	1796.15	11600	25.58	1781.52	11501	25.63

表 B-8 ϕ_i の比較 (画像 : Stop) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed	Method Sett	ing1	Proposed Method Setting2		
	1						1			
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$r_{ftr} \cdot M_{Sal,i}$	ϕ_i
0.0	7.16	1736.31	10194	34.92	2188.34	14443	22.81	2216.08	14475	24.18
1.0	7.16	1653.25	9650	35.40	2111.20	13883	23.31	2134.41	13894	24.61
2.0	7.16	1551.27	8973	36.11	2023.69	13252	23.86	2004.91	12992	25.18
3.0	7.16	1451.29	8355	36.49	1858.96	12150	24.10	1844.97	11911	25.63
4.0	7.16	1357.56	7844	36.20	1768.47	11538	24.33	1744.26	11249	25.75
5.0	7.16	1311.75	7642	35.55	1621.19	10584	24.25	1639.97	10596	25.54

		Proposed	Method Sett	ting3
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i}\right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	7.16	2195.45	14491	22.81
1.0	7.16	2125.24	13982	23.24
2.0	7.16	2035.19	13356	23.58
3.0	7.16	1874.83	12271	23.92
4.0	7.16	1786.32	11685	24.00
5.0	7.16	1638.02	10723	23.90

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\left\ M_{Sal,i} \right\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	14.22	1600.52	8550	27.63	1671.08	9283	22.89	1671.79	9428	20.72
1.0	14.22	1591.45	8507	27.56	1664.91	9246	22.92	1671.75	9424	20.78
2.0	14.22	1563.35	8355	27.59	1654.70	9194	22.85	1656.76	9341	20.76
3.0	14.22	1531.43	8196	27.42	1646.89	9163	22.67	1635.59	9226	20.69
4.0	14.22	1505.34	8084	27.05	1632.07	9098	22.40	1613.20	9107	20.56
5.0	14.22	1491.26	8054	26.40	1595.06	8909	22.14	1590.77	8987	20.45

表 B-8 ϕ_i の比較 (画像 : Stop) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed 1	Method Sett	ing1	Proposed Method Setting2		
<i>с</i>	n	1/7	r . M	4	1/7	r . M	4	1/7	r . M	4
$o_{G,i}$	$\ \mathbf{I}\mathbf{f}\mathbf{f}\mathbf{r}\ $	^{IVI} Sal,i	ftr ^{- M} Sal,i	φ_i	^{IVI} Sal,i	ftr ^{- M} Sal,i	φ_i	^{IVI} Sal,i	ftr ⁻ Ma Sal,i	φ_i
0.0	14.22	1524.26	7595	34.27	1885.52	10542	21.99	1901.04	10497	23.68
1.0	14.22	1464.98	7283	34.47	1836.43	10230	22.50	1834.00	10083	24.24
2.0	14.22	1391.40	6881	34.89	1770.90	9819	23.14	1729.99	9446	25.10
3.0	14.22	1311.14	6470	35.07	1631.94	9027	23.46	1601.47	8703	25.67
4.0	14.22	1229.90	6100	34.66	1556.75	8599	23.64	1520.07	8253	25.78
5.0	14.22	1186.23	5939	33.86	1423.11	7860	23.64	1430.50	7784	25.52

		Proposed	Method Sett	ing3
$\sigma_{G,i}$	$\ r_{ftr}\ $	$\ M_{Sal,i}\ $	r _{ftr} ∙ M _{Sal,i}	ϕ_i
0.0	14.22	1885.32	10541	21.98
1.0	14.22	1836.68	10229	22.53
2.0	14.22	1765.03	9792	23.05
3.0	14.22	1632.74	9032	23.44
4.0	14.22	1558.44	8614	23.55
5.0	14.22	1427.78	7897	23.46

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i
0.0	9.64	1843.86	15917	26.37	1885.47	16357	25.79	1873.83	16182	26.33
1.0	9.64	1831.29	15802	26.42	1877.35	16261	25.98	1872.97	16150	26.50
2.0	9.64	1792.44	15422	26.75	1864.78	16130	26.14	1855.76	15990	26.59
3.0	9.64	1748.53	14998	27.10	1855.35	16036	26.23	1832.22	15769	26.72
4.0	9.64	1714.72	14688	27.25	1838.82	15889	26.26	1807.48	15554	26.73
5.0	9.64	1697.22	14540	27.23	1796.15	15512	26.32	1781.52	15309	26.89

表 B-8 ϕ_i の比較 (画像:Stop) (b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed	Proposed Method Setting1			Proposed Method Setting2		
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\left\ M_{Sal,i} \right\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	
0.0	9.64	1736.31	14215	31.82	2188.34	19673	21.09	2216.08	19789	22.06	
1.0	9.64	1653.25	13411	32.66	2111.20	18805	22.41	2134.41	18990	22.57	
2.0	9.64	1551.27	12371	34.14	2023.69	17896	23.39	2004.91	17705	23.58	
3.0	9.64	1451.29	11399	35.40	1858.96	16328	24.28	1844.97	16140	24.78	
4.0	9.64	1357.56	10619	35.73	1768.47	15434	25.07	1744.26	15171	25.49	
5.0	9.64	1311.75	10303	35.40	1621.19	14136	25.19	1639.97	14246	25.64	

		Proposed	Method Sett	ting3
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	9.64	2195.45	19801	20.60
1.0	9.64	2125.24	19024	21.71
2.0	9.64	2035.19	18140	22.32
3.0	9.64	1874.83	16594	23.28
4.0	9.64	1786.32	15736	23.89
5.0	9.64	1638.02	14391	24.24

	(b2) $M_{Sal,i,n_q} \ge s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)									
		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)		VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)			
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\left\ M_{Sal,i} \right\ $	s _{dsc} ∙ M _{Sal,i}	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	14.64	1600.52	10734	27.81	1671.08	11593	23.80	1671.79	11764	21.86
1.0	14.64	1591.45	10677	27.77	1664.91	11547	23.83	1671.75	11759	21.91
2.0	14.64	1563.35	10475	27.91	1654.70	11478	23.81	1656.76	11653	21.92
3.0	14.64	1531.43	10263	27.88	1646.89	11437	23.66	1635.59	11511	21.85
4.0	14.64	1505.34	10112	27.63	1632.07	11351	23.47	1613.20	11361	21.75
5.0	14.64	1491.26	10064	27.11	1595.06	11114	23.22	1590.77	11212	21.63

表 B-8	ϕ_i の比較	(画像	:	Stop)
-------	--------------	-----	---	------	---

		Itti			Proposed 1	Proposed Method Setting1			Proposed Method Setting2		
r				[1			[
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i	
0.0	14.64	1524.26	9649	33.39	1885.52	13220	22.37	1901.04	13202	23.66	
1.0	14.64	1464.98	9244	33.68	1836.43	12796	23.22	1834.00	12680	24.23	
2.0	14.64	1391.40	8685	34.59	1770.90	12278	23.88	1729.99	11851	25.38	
3.0	14.64	1311.14	8104	35.40	1631.94	11270	24.38	1601.47	10885	26.30	
4.0	14.64	1229.90	7603	35.39	1556.75	10698	24.99	1520.07	10292	26.75	
5.0	14.64	1186.23	7387	34.78	1423.11	9777	25.03	1430.50	9707	26.49	

		Proposed	Method Sett	ting3
$\sigma_{G,i}$	$\ s_{dsc}\ $	$\ M_{Sal,i}\ $	$s_{dsc} \cdot M_{Sal,i}$	ϕ_i
0.0	14.64	1885.32	13237	22.18
1.0	14.64	1836.68	12803	23.17
2.0	14.64	1765.03	12243	23.82
3.0	14.64	1632.74	11272	24.42
4.0	14.64	1558.44	10722	24.85
5.0	14.64	1427.78	9820	24.89

図 B $\sigma_{G,i}$ 可変時における画像特徴点抽出状況と顕著性マップの変化

図 B-1 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Chair)

$\sigma_{G,i}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
0.0)				
1.0					
2.0					
3.0					
4.0					
5.0					

(a) $T_{FAST} = 20$

$\sigma_{G,i}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
0.0					
1.0					
2.0					
3.0					
4.0				- Alexandre	
5.0		J.	-		

$(0) = \mathbb{E}[\mathbb{E}[X_{1}] + \mathbb{E}[X_{2}] + E$					
$\sigma_{G,i}$	Feature	VOCUS2	Itti		
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
0.0					
1.0					
2.0					
3.0					
4.0					
5.0					

図 B-1 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Chair) (b) 画像特徴点と $M_{Sal,i}$ ($T_{FAST} = 40$)

$\sigma_{G,i}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
0.0					
1.0					
2.0					
3.0					
4.0					
5.0		J. Start	- All	- Aller	

$\sigma_{G,i}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
0.0					
1.0					
2.0					
3.0					
4.0					
5.0					

図 B-2 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Flower) (a) $T_{FAST} = 20$
$\sigma_{G,i}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
0.0					
1.0					
2.0					
3.0					
4.0					
5.0					

図 B-2	画像特徴点抽出状況とM _{Sal,i} の推移	(画像:Flower)
	(b) $T_{FAST} = 40$	

$\sigma_{G,i}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
0.0					
1.0					
2.0					
3.0					
4.0					
5.0					

$\sigma_{G,i}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
0.0					
1.0					
2.0					
3.0					
4.0					
5.0					

$\sigma_{G,i}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
0.0					
1.0					
2.0					
3.0					
4.0					
5.0					

図 B-3 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像:Lenna) (a) $T_{FAST} = 20$

$\sigma_{G,i}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
0.0					
1.0					
2.0					
3.0					
4.0					
5.0					

$\sigma_{G,i}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
0.0					
1.0					
2.0					
3.0					
4.0					
5.0					

図 B-3 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像:Lenna) (b) $T_{FAST} = 40$

$\sigma_{G,i}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
0.0					
1.0					
2.0					
3.0					
4.0					
5.0					

図 B-4	画像特徴点抽出状況とM _{Sal,i} の推移	(画像:Mandrill)
	(a) $T_{FAST} = 20$	

$\sigma_{G,i}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
0.0			je je	Č.	
1.0				J.	
2.0				J.S.	
3.0			J.	B	
4.0			J.	J.	
5.0	U		J.	B	0

$\sigma_{G,i}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
0.0					
1.0					
2.0					
3.0					
4.0					
5.0					

$\sigma_{G,i}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
0.0			je je	J. S.	
1.0			je je	J.	
2.0			je.	J. S.	
3.0					
4.0			J.		Contraction of the second s
5.0	I	J.S.	B	B	Contraction of the second seco

図 B-4 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Mandrill) (b) $T_{FAST} = 40$

$\sigma_{G,i}$	Feature	Proposed Method				
	Extraction	Setting 1	Setting 2	Setting 3		
0.0						
1.0						
2.0						
3.0						
4.0						
5.0						

$\sigma_{G,i}$	Feature	VOCUS2	VOCUS2		
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
0.0		Chinese HAT ARE STULLERS	Chings,		That are still here) That are still here) Medicine was
1.0	HAT ARE STILL MARET	Chings HAT ARE STUDIES	(Lings)		HAT ARE STILL HERE)
2.0	HAT ARE STUL MARY	Chings MAT ARSTILLARTS	Chings,		Chaings Hat Are Still Here)
3.0	Things, where the second secon	Chings And And And And And And And And And And	Chings,		Chings HATARESTILIHERE HATARESTILIHERE
4.0	HAINEYS	(Lings)	Chinese Contraction		FLATARE STUDERE
5.0	Things	Alter a			FLUE STATE

図 B-5 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Things) (a) $T_{FAST} = 20$

$\sigma_{G,i}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
0.0		THAT ARE STILL HERE MATARESTILL HERE	THAT ARE STILLHERE	THAT ARE STILL HERE	
1.0	WAT ACE STRUCTURE	CHATARESTILL HERES	THAT ARE STILLHERES	THAT ARE STILLHERE THAT ARE STILLHERE	
2.0	Charles studies	COMPANY OF THE STATE	Changes Multistics	CALLSON AND AND AND AND AND AND AND AND AND AN	
3.0	Thinks we wanted				
4.0	(Lines)				
5.0	Things				

図 B-5	画像特徴点抽出状況とM _{Sal,i} の推移	(画像:Things)
	(b) $T_{FAST} = 40$	

$\sigma_{G,i}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
0.0		Changes HAT ARE STILLHERE HAT ARE STILLHERE	Alter State		PHAT ARE STILL HERE
1.0	HAT ARE STRUCTURE	Chings Harassilians	Chings,	Chinese,	That are still here
2.0	THAT ARE STUL HORE	Chings Marson	Chings,	Chinese,	HAT ARE STILL HERE
3.0	HAT ALL STALL ORE HAT ALL STALL ORE HAT ALL STALL ORE	Chings Constant			Things Hat ARE STILLHERE
4.0	HAT ARE STRUMERY	(Lings)	Alings,		Things, HATARESTAN
5.0		Chings,			Things Fulles

$\sigma_{G,i}$	Feature	Proposed Method				
	Extraction	Setting 1	Setting 2	Setting 3		
0.0	Things we see	THAT ARE STUD HERE	THAT ARE STILL HERE	CREAT STALLHERE THAT ARE STALLHERE THAT ARE STALLHERE THAT ARE STALLHERE		
1.0	HAT ARE STELL HERE	CHARLESING HERE	TRATARE STILLHERE THAT ARE STILLHERE	THAT ARE STILL HERE THAT ARE STILL HERE		
2.0	THAT ARE STILL HARE	CALL GAS	TRADESS HALARSHING	CALLSON OF CONTRACT OF CONTRACT.		
3.0	HAT ARE STILL WARE	Chings,				
4.0	The interest that Alle Statistics					
5.0						

$\sigma_{G,i}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	-
0.0	6 6 6 6 6	0 0 0 0	0 () 0 ()	0 0 0 0	() () ()
1.0	© © © ©	0 0	0 0 0 0	0 0 0 0	(1) (2) (2) (2)
2.0	 	0 0	0 0 0 0	0 0 0 0	(1) (2) (2) (2)
3.0	© ©	0 0	0 0 0 0	0 0 0 0	0 0 0 0
4.0	© ©	0 0	0 0 0 0	0 0 0 0	0 0 0
5.0	0 0 0 0	00	0 0 0 0	0 0 0 0	(3) (3) (3) (3)

図 B-6 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Things(Multiple)) (a) $T_{FAST} = 20$

$\sigma_{G,i}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
0.0	 <	0 (Q) 0 (Q)	0 0 0		
1.0	 <		0 0 0	0 0	
2.0	 <		0 0	0 0	
3.0	.	0 0 0 0	0 0	0 0	
4.0	 <	0 0	0 0	0 0	
5.0	© © 0 0	0 0	0 0	0 0	

$\sigma_{G,i}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
0.0	 <	0 () 0 ()	0 () 0 ()	0 0 0 0	() () () ()
1.0	 <	0 0 0 0	0 0 0 0	0 0 0 0	
2.0	 <	0 0 0 0	0 0 0 0	0 0 0 0	
3.0	.	0 0 0 0	0 0 0 0	0 0 0 0	(Y) (Y)
4.0	© ©	0 0 0 0	0 0 0 0	0 0 0 0	(3) (3) (3) (3)
5.0	•••	0 0 0 0	0 0 0 0	0 0 0 0	(3) (3) (3) (3)

図 B-6 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Things(Multiple)) (b) $T_{FAST} = 40$

$\sigma_{G,i}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
0.0	 <	0 0 0 0			
1.0	 				
2.0	 		0 0		
3.0		0 0 0	0 0	0 0 0	
4.0	() () () () () () () () () () () () () (0 0	0 0 0 0	0 0	
5.0	8 8 8 0	0 0	0 0	0 0	

図 B-7	画像特徴点抽出状況とM _{Sal,i} の推移	(画像:	Tree))
	(a) $T_{FAST} = 20$		

$\sigma_{G,i}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
0.0		Contraction of the second seco		Sol and a second	
1.0		Contraction of the second	and the second		
2.0		Solo Barton		Sol Barlow	
3.0		Sol and a		Sol and a	
4.0		State State		Sale of the second s	
5.0		A Contraction of the second se		Sale of the second	

$\sigma_{G,i}$	Feature	Proposed Method					
	Extraction	Setting 1	Setting 2	Setting 3			
0.0							
1.0							
2.0							
3.0							
4.0							
5.0		Contraction of the second	Contraction of the second	and the second			

図 B-7	画像特徴点抽出状況とM _{Sal,i} の推移	(画像:	Tree))
	(b) $T_{FAST} = 40$		

$\sigma_{G,i}$	Feature	VOCUS2			Itti	
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$		
0.0		Contraction of the second		Contraction of the second		
1.0			and the second	Solution of the second se		
2.0		Service Services		Sol Bard		
3.0						
4.0	Ż	Contraction of the second				
5.0	Ż	Section of the sectio		Sales and		

$\sigma_{G,i}$	Feature	Proposed Method					
	Extraction	Setting 1	Setting 2	Setting 3			
0.0							
1.0							
2.0							
3.0							
4.0			Contraction of the second seco	Contraction of the second			
5.0	Ż		Solution of the second	and the second			

図 B-8 画像特徴点抽出状況とM_{Sal,i}の推移 (画像: Stop))

$\sigma_{G,i}$	Feature	VOCUS2			Itti	
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$		
0.0	STOP	STOP	STOP	STOP	STOP	
1.0	STOP	STOP	STOP	STOP	STOP	
2.0	STOP	STOP	STOP	STOP	STOP	
3.0	STOP	STOP	STOP	STOP	STOP	
4.0	STOP	STOP	STOP	STOP	STOP	
5.0	STOP	STOP	STOP	STOP	STOP	

(a) $T_{FAST} = 20$

$\sigma_{G,i}$	Feature	Proposed Method						
	Extraction	Setting 1	Setting 2	Setting 3				
0.0	STOP	STOP	STOP	STOP				
1.0	STOP	STOP	STOP	STOP				
2.0	STOP	STOP	STOP	STOP				
3.0	STOP	STOP	STOP	STOP				
4.0	STOP	STOP	STOP	STOP				
5.0	STOP	STOP	STOP	STOP				

図 B-8 画像特徴点抽出状況とM_{Sal,i}の推移 (画像: Stop))

(b) $T_{FAST} = 40$

$\sigma_{G,i}$	Feature	VOCUS2	VOCUS2					
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$				
0.0	STOP	STOP	STOP	STOP	STOP			
1.0	STOP	STOP	STOP	STOP	STOP			
2.0	STOP	STOP	STOP	STOP	STOP			
3.0	STOP	STOP	STOP	STOP	STOP			
4.0	STOP	STOP	STOP	STOP	STOP			
5.0	STOP	STOP	STOP	STOP	STOP			

$\sigma_{G,i}$	Feature	Proposed Method					
	Extraction	Setting 1	Setting 2	Setting 3			
0.0	STOP	STOP	STOP	STOP			
1.0	STOP	STOP	STOP	STOP			
2.0	STOP	STOP	STOP	STOP			
3.0	STOP	STOP	STOP	STOP			
4.0	STOP	STOP	STOP	STOP			
5.0	STOP	STOP	STOP	STOP			

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)		VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)			
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\ r_{ftr}\ $	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	21.54	4691.34	95984	18.22	5037.99	104097	16.41	4653.75	95752	17.21
0.9	21.54	4862.49	100214	16.90	5189.47	107795	15.35	4858.42	100530	16.13
0.8	21.54	4888.01	100538	17.27	5126.43	106230	15.84	4978.77	102810	16.53
0.7	21.54	4937.33	101261	17.80	5067.99	104543	16.73	5112.71	105148	17.29
0.6	21.54	5155.41	106373	16.68	5313.13	109765	16.44	5422.64	111617	17.14
0.5	21.54	5333.89	110536	15.83	5502.42	113643	16.49	5537.06	113778	17.45

表 C-1 ϕ_i の比較 (画像: Chair)

(a1) M _{Sal,i} ,	n_q と r_{ftr,n_q} の相関	$(T_{FAST} =$	= 20)

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\ r_{ftr}\ $	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	21.54	3127.78	55450	34.61	4887.39	97661	21.92	5031.82	102130	19.56
0.9	21.54	3037.51	54112	34.20	4867.61	97608	21.42	5117.15	104689	18.23
0.8	21.54	2911.64	51160	35.34	4738.14	94917	21.56	5064.77	103985	17.60
0.7	21.54	2614.77	45492	36.13	4568.75	91510	21.58	5059.41	103954	17.47
0.6	21.54	2134.71	37476	35.41	4623.63	93367	20.36	5321.69	109909	16.50
0.5	21.54	2538.05	45655	33.37	4851.11	99028	18.61	5684.38	117749	15.91

		Proposed Method Setting3				
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\left\ r_{ftr} \right\ $	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i		
1.0	21.54	5273.23	107886	18.23		
0.9	21.54	5266.71	108503	16.97		
0.8	21.54	5242.09	108332	16.38		
0.7	21.54	5209.48	107668	16.36		
0.6	21.54	5522.49	114622	15.51		
0.5	21.54	5884.99	122342	15.17		

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\left\ r_{ftr} \right\ $	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	
1.0	15.43	3696.22	53759	19.48	3864.25	56654	18.13	3530.21	51508	18.95	
0.9	15.43	3786.65	55463	18.30	3929.13	57928	17.12	3636.28	53366	17.95	
0.8	15.43	3788.83	55312	18.86	3854.94	56680	17.62	3699.20	54200	18.24	
0.7	15.43	3783.51	54971	19.64	3774.44	55238	18.44	3763.25	54919	18.92	
0.6	15.43	3907.17	57170	18.47	3919.80	57448	18.19	3958.27	57804	18.81	
0.5	15.43	3998.07	58784	17.62	4026.73	58956	18.37	4013.60	58479	19.19	

表 C-1 ϕ_i の比較 (画像 : Chair) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed Method Setting1			Proposed Method Setting2		
W _{Obj,i} W _{Obj,1}	$\left\ r_{ftr} \right\ $	<i>M_{Sal}</i>	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	15.43	2691.79	35257	31.89	4000.81	57528	21.24	4050.59	58794	19.80
0.9	15.43	2591.82	34110	31.45	3950.18	57012	20.68	4066.39	59412	18.72
0.8	15.43	2480.36	32132	32.89	3845.10	55376	21.01	3989.50	58269	18.78
0.7	15.43	2219.52	28306	34.24	3682.33	52886	21.41	3927.84	57238	19.16
0.6	15.43	1788.16	22967	33.64	3697.22	53484	20.33	4078.83	59745	18.29
0.5	15.43	2099.35	27506	31.86	3843.06	56045	19.03	4323.42	63585	17.57

		Proposed Method Setting3						
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\left\ r_{ftr} \right\ $	M _{Sal}	r _{ftr} ∙M _{Sal}	ϕ_i				
1.0	15.43	4217.99	61651	18.66				
0.9	15.43	4160.93	61178	17.62				
0.8	15.43	4111.67	60457	17.61				
0.7	15.43	4026.88	59077	18.02				
0.6	15.43	4216.36	62158	17.14				
0.5	15.43	4454.07	65824	16.67				

···· · · · · · · · · · · · · · · · · ·										
		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$(\sigma_c/\sigma_s =$	3/10)	VOCUS2	$c(\sigma_c/\sigma_s =$	5/10)
W _{Obj,i} W _{Obj,1}	s _{dsc}	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	22.90	4691.34	99988	21.44	5037.99	106871	22.11	4653.75	97653	23.59
0.9	22.90	4862.49	104290	20.50	5189.47	110671	21.35	4858.42	102628	22.70
0.8	22.90	4888.01	104208	21.40	5126.43	108741	22.12	4978.77	104754	23.24
0.7	22.90	4937.33	104401	22.56	5067.99	106630	23.24	5112.71	106918	24.03
0.6	22.90	5155.41	109525	21.90	5313.13	111924	23.07	5422.64	113529	23.89
0.5	22.90	5333.89	113674	21.45	5502.42	115863	23.13	5537.06	115710	24.12

表 C-1 **φ**_iの比較 (画像:Chair)

		Itti			Proposed 1	Method Sett	ing1	Proposed	Method Sett	ing2
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	∥M _{Sal} ∥	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	22.90	3127.78	59333	34.06	4887.39	102972	23.05	5031.82	107438	21.17
0.9	22.90	3037.51	57876	33.68	4867.61	102814	22.71	5117.15	110006	20.14
0.8	22.90	2911.64	54630	34.97	4738.14	99677	23.25	5064.77	108683	20.42
0.7	22.90	2614.77	48373	36.10	4568.75	95726	23.79	5059.41	108060	21.13
0.6	22.90	2134.71	39862	35.36	4623.63	97605	22.79	5321.69	113945	20.76
0.5	22.90	2538.05	48546	33.35	4851.11	103518	21.26	5684.38	121979	20.42

		Proposed Method Setting3					
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i			
1.0	22.90	5273.23	112982	20.66			
0.9	22.90	5266.71	113551	19.68			
0.8	22.90	5242.09	112751	20.06			
0.7	22.90	5209.48	111599	20.68			
0.6	22.90	5522.49	118484	20.45			
0.5	22.90	5884.99	126395	20.28			

		VOCUS2	$c(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$(\sigma_c/\sigma_s =$	3/10)	VOCUS2	$c(\sigma_c/\sigma_s =$	5/10)
W _{Obj,i} W _{Obj,1}	s _{dsc}	∥M _{Sal} ∥	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} ∙ M _{Sal}	ϕ_i	M _{Sal}	s _{dsc} ∙ M _{Sal}	ϕ_i
1.0	17.67	3696.22	61355	20.06	3864.25	63471	21.65	3530.21	57265	23.37
0.9	17.67	3786.65	63174	19.25	3929.13	64885	20.86	3636.28	59382	22.47
0.8	17.67	3788.83	62803	20.28	3854.94	63319	21.65	3699.20	60249	22.83
0.7	17.67	3783.51	62142	21.65	3774.44	61514	22.74	3763.25	60965	23.55
0.6	17.67	3907.17	64504	20.90	3919.80	63976	22.54	3958.27	64199	23.39
0.5	17.67	3998.07	66258	20.31	4026.73	65675	22.64	4013.60	64964	23.66

表 C-1 ϕ_i の比較 (画像 : Chair) (b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed 1	Method Sett	ing1	Proposed 1	Method Sett	ing2
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	M _{Sal}	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	17.67	2691.79	40891	30.72	4000.81	66038	20.92	4050.59	67485	19.47
0.9	17.67	2591.82	39421	30.61	3950.18	65445	20.36	4066.39	68169	18.44
0.8	17.67	2480.36	37085	32.21	3845.10	63381	21.13	3989.50	66598	19.16
0.7	17.67	2219.52	32653	33.64	3682.33	60429	21.78	3927.84	65203	20.05
0.6	17.67	1788.16	26436	33.22	3697.22	61041	20.89	4078.83	67906	19.59
0.5	17.67	2099.35	31666	31.40	3843.06	64041	19.44	4323.42	72237	19.00

		Proposed Method Setting3						
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	M _{Sal}	s _{dsc} ∙ M _{Sal}	ϕ_i				
1.0	17.67	4217.99	70487	18.98				
0.9	17.67	4160.93	69975	17.89				
0.8	17.67	4111.67	68813	18.73				
0.7	17.67	4026.88	67030	19.62				
0.6	17.67	4216.36	70305	19.34				
0.5	17.67	4454.07	74405	19.04				

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	3/10)	VOCUS2	$2(\sigma_c/\sigma_s =$	5/10)
W _{Obj,i} W _{Obj,1}	$\left\ r_{ftr} \right\ $	M _{Sal}	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	10.35	3001.04	28419	23.80	2927.21	27525	24.70	2823.27	26224	26.17
0.9	10.35	3108.23	29698	22.61	3038.22	28772	23.80	2931.40	27600	24.54
0.8	10.35	3095.76	29582	22.59	2994.14	28431	23.44	2859.49	26987	24.23
0.7	10.35	3003.81	28636	22.91	2915.98	27740	23.20	2816.92	26597	24.18
0.6	10.35	3089.66	29588	22.29	2962.78	28322	22.54	2937.53	28028	22.80
0.5	10.35	3215.87	30958	21.55	3064.67	29499	21.56	3056.61	29446	21.45

表 C-2 ϕ_i の比較 (画像: Stop) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed 1	Method Sett	ing1	Proposed 1	Method Sett	ing2
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\ r_{ftr}\ $	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	10.35	2820.83	25548	28.95	3469.45	33757	19.93	3552.89	34432	20.55
0.9	10.35	2831.28	25748	28.52	3530.09	34289	20.20	3611.97	35041	20.39
0.8	10.35	2701.25	24409	29.18	3391.32	32887	20.45	3496.44	33873	20.60
0.7	10.35	2292.14	20468	30.37	3194.24	30912	20.77	3314.63	32022	21.03
0.6	10.35	2192.93	19850	29.00	3304.62	31985	20.75	3395.28	32943	20.37
0.5	10.35	2450.79	22296	28.48	3300.48	32063	20.18	3488.04	34182	18.76

		Proposed	Method Sett	ting3
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\left\ r_{ftr} \right\ $	M _{Sal}	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	10.35	3497.48	34124	19.49
0.9	10.35	3563.94	34771	19.50
0.8	10.35	3462.55	33780	19.51
0.7	10.35	3298.05	32109	19.84
0.6	10.35	3429.61	33522	19.20
0.5	10.35	3474.37	34248	17.75

				1	- 1					
		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	$c(\sigma_c/\sigma_s =$	3/10)	VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
W _{Obj,i} W _{Obj,1}	$\ r_{ftr}\ $	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	8.43	2651.55	20214	25.25	2652.94	20430	23.99	2579.12	19884	23.84
0.9	8.43	2741.52	21128	23.89	2742.85	21272	23.06	2661.16	20689	22.73
0.8	8.43	2726.80	21016	23.88	2700.02	20986	22.76	2594.11	20197	22.53
0.7	8.43	2666.12	20581	23.67	2635.49	20561	22.24	2557.43	19938	22.34
0.6	8.43	2741.65	21292	22.87	2669.36	20907	21.69	2653.77	20801	21.57
0.5	8.43	2850.29	22276	21.99	2750.60	21633	21.08	2745.42	21621	20.88

表 C-2 ϕ_i の比較 (画像: Stop) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

	Itti			Proposed	Method Sett	ing1	Proposed Method Setting2			
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\left\ r_{ftr} \right\ $	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	8.43	2523.09	18275	30.76	3035.73	23766	21.75	3093.74	24058	22.69
0.9	8.43	2530.05	18472	29.98	3081.03	24055	22.14	3116.97	24224	22.77
0.8	8.43	2419.31	17515	30.81	2965.45	23115	22.37	3016.95	23407	23.00
0.7	8.43	2067.98	14767	32.09	2813.31	21945	22.26	2883.48	22397	22.85
0.6	8.43	1970.34	14316	30.46	2894.65	22538	22.52	2930.78	22830	22.45
0.5	8.43	2184.59	15977	29.81	2874.13	22430	22.20	3003.95	23683	20.71

		Proposed Method Setting3						
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\left\ r_{ftr} \right\ $	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i				
1.0	8.43	3042.39	23865	21.47				
0.9	8.43	3082.61	24144	21.69				
0.8	8.43	2987.00	23394	21.69				
0.7	8.43	2863.04	22449	21.52				
0.6	8.43	2950.92	23194	21.17				
0.5	8.43	2991.77	23772	19.49				

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	$l(\sigma_c/\sigma_s =$	3/10)	VOCUS2	$l(\sigma_c/\sigma_s =$	5/10)
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	13.09	3001.04	34234	29.35	2927.21	32384	32.29	2823.27	30554	34.21
0.9	13.09	3108.23	35720	28.58	3038.22	33948	31.37	2931.40	32373	32.45
0.8	13.09	3095.76	35600	28.51	2994.14	33541	31.13	2859.49	31685	32.15
0.7	13.09	3003.81	34310	29.22	2915.98	32691	31.06	2816.92	31217	32.14
0.6	13.09	3089.66	35389	28.93	2962.78	33532	30.14	2937.53	33146	30.43
0.5	13.09	3215.87	37082	28.22	3064.67	35115	28.89	3056.61	35111	28.63

表 C-2	ϕ_i の比較	(画像:	Stop)
(b1) <i>M</i> _{Sal}	$i,n_q \geq s_{dsc,n_q}$	の相関	$(T_{FAST}=20)$

	Itti				Proposed 1	Method Sett	ing1	Proposed Method Setting2		
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	∥M _{Sal} ∥	s _{dsc} · M _{Sal}	ϕ_i	M _{Sal}	s _{dsc} · M _{Sal}	ϕ_i	M _{Sal}	s _{dsc} · M _{Sal}	ϕ_i
1.0	13.09	2820.83	30671	33.81	3469.45	40870	25.82	3552.89	41816	25.93
0.9	13.09	2831.28	30923	33.43	3530.09	41626	25.71	3611.97	42831	25.03
0.8	13.09	2701.25	29208	34.29	3391.32	39729	26.47	3496.44	41248	25.65
0.7	13.09	2292.14	24406	35.55	3194.24	37156	27.27	3314.63	38647	27.01
0.6	13.09	2192.93	23854	33.78	3304.62	38653	26.65	3395.28	39986	25.85
0.5	13.09	2450.79	26861	33.12	3300.48	38795	26.08	3488.04	41527	24.53

		Proposed Method Setting3					
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	M _{Sal}	s _{dsc} · M _{Sal}	ϕ_i			
1.0	13.09	3497.48	41504	24.94			
0.9	13.09	3563.94	42446	24.49			
0.8	13.09	3462.55	41153	24.74			
0.7	13.09	3298.05	38860	25.80			
0.6	13.09	3429.61	40792	24.65			
0.5	13.09	3474.37	41766	23.28			

			(b2)	M _{Sal,i,n}	$_{q} \geq S_{dsc,n_{q}}$	の相関	$(T_{FAST} =$	= 40)		
		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			$2(\sigma_c/\sigma_s =$	5/10)
W _{Obj,i} W _{Obj,1}	s _{dsc}	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	10.49	2651.55	24538	28.10	2652.94	24495	28.34	2579.12	23784	28.47
0.9	10.49	2741.52	25561	27.28	2742.85	25486	27.66	2661.16	24767	27.48
0.8	10.49	2726.80	25447	27.18	2700.02	25147	27.40	2594.11	24189	27.27
0.7	10.49	2666.12	24854	27.30	2635.49	24619	27.07	2557.43	23873	27.15
0.6	10.49	2741.65	25654	26.88	2669.36	25092	26.36	2653.77	24981	26.19
0.5	10.49	2850.29	26835	26.17	2750.60	26022	25.60	2745.42	26058	25.21

表 C-2 ϕ_i の比較 (画像:Stop)

Itti				Proposed	Method Sett	ing1	Proposed Method Setting2			
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	M _{Sal}	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	10.49	2523.09	22276	32.69	3035.73	28909	24.80	3093.74	29365	25.20
0.9	10.49	2530.05	22461	32.19	3081.03	29343	24.79	3116.97	29657	24.91
0.8	10.49	2419.31	21304	32.92	2965.45	28050	25.62	3016.95	28546	25.58
0.7	10.49	2067.98	17854	34.61	2813.31	26421	26.46	2883.48	27068	26.51
0.6	10.49	1970.34	17378	32.78	2894.65	27306	25.94	2930.78	27650	25.93
0.5	10.49	2184.59	19365	32.33	2874.13	27126	25.88	3003.95	28628	24.71

 10.49
 1970.34
 17378
 32.78
 2894.65
 273

 10.49
 2184.59
 19365
 32.33
 2874.13
 271

 Proposed Method Setting3

W _{Obj,i} W _{Obj,1}	s _{dsc}	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	10.49	3042.39	29098	24.26
0.9	10.49	3082.61	29517	24.11
0.8	10.49	2987.00	28487	24.62
0.7	10.49	2863.04	27130	25.41
0.6	10.49	2950.92	28082	24.88
0.5	10.49	2991.77	28790	23.47

					9 9 1	1				
		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2	VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			$c(\sigma_c/\sigma_s =$	5/10)
W _{Obj,i} W _{Obj,1}	$\left\ r_{ftr} \right\ $	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	23.72	3612.42	74391	29.75	3960.73	81311	30.07	4046.78	83321	29.77
0.9	23.72	3775.51	78510	28.76	4035.08	83285	29.53	4251.20	89438	27.51
0.8	23.72	3767.32	78301	28.81	4167.17	87622	27.57	4252.10	89686	27.23
0.7	23.72	3739.08	77604	28.96	4254.50	90604	26.13	4457.79	95864	24.96
0.6	23.72	3809.21	79541	28.32	4420.67	95359	24.58	4675.86	101879	23.29
0.5	23.72	3949.72	82835	27.85	4602.96	100108	23.53	4877.46	107120	22.20

表 C-3 ϕ_i の比較 (画像 : Things) (a1) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 20$)

		Itti			Proposed 1	Method Sett	ing1	Proposed	Method Sett	ing2
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\left\ r_{ftr} \right\ $	M _{Sal}	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	23.72	3242.30	66875	29.60	4984.92	111653	19.22	4928.70	110900	18.45
0.9	23.72	3206.37	66499	29.03	5009.77	112692	18.50	5298.51	119763	17.66
0.8	23.72	3160.97	64618	30.48	4871.20	109101	19.23	5385.52	121227	18.39
0.7	23.72	3120.92	63797	30.49	4742.79	106018	19.55	5318.26	119365	18.88
0.6	23.72	2971.46	61358	29.48	4798.70	107696	18.89	5429.80	122107	18.55
0.5	23.72	3329.59	69573	28.25	4953.79	111513	18.38	5450.65	122448	18.73

		Proposed Method Setting3								
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\ r_{ftr}\ $	M _{Sal}	r _{ftr} ∙M _{Sal}	ϕ_i						
1.0	23.72	5346.61	120942	17.52						
0.9	23.72	5435.47	123369	16.89						
0.8	23.72	5386.87	121838	17.54						
0.7	23.72	5340.62	120393	18.13						
0.6	23.72	5318.66	120064	17.89						
0.5	23.72	5353.27	120699	18.10						
					1 1					
--	----------------------------	------------------	------------------------------------	----------	---------------	------------------------------------	----------	---------------	------------------------------------	----------
		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$c(\sigma_c/\sigma_s =$	3/10)	VOCUS2	$c(\sigma_c/\sigma_s =$	5/10)
W _{Obj,i} W _{Obj,1}	$\left\ r_{ftr} \right\ $	M _{Sal}	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	19.22	2890.85	48094	30.03	3216.61	52972	31.01	3299.20	54450	30.81
0.9	19.22	3000.99	50394	29.08	3267.87	54070	30.56	3463.95	58471	28.54
0.8	19.22	3007.71	50542	29.01	3378.39	57066	28.47	3468.82	58768	28.15
0.7	19.22	3000.24	50325	29.20	3460.08	59254	26.97	3641.50	63030	25.74
0.6	19.22	3053.87	51443	28.76	3589.69	62271	25.47	3810.87	66839	24.11
0.5	19.22	3164.60	53417	28.54	3735.24	65359	24.41	3973.51	70315	22.94

表 C-3 ϕ_i の比較 (画像 : Things) (a2) $M_{Sal,i,n_q} \geq r_{ftr,n_q}$ の相関 ($T_{FAST} = 40$)

	Itti			Proposed Method Setting1			Proposed Method Setting2			
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\ r_{ftr}\ $	M _{Sal}	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	19.22	2787.34	46852	28.98	4097.76	74367	19.18	4030.07	73497	18.36
0.9	19.22	2724.43	45898	28.75	4113.36	74971	18.46	4327.94	79345	17.43
0.8	19.22	2687.76	44583	30.32	3995.04	72580	19.01	4395.83	80464	17.71
0.7	19.22	2639.22	43729	30.43	3878.09	70430	19.07	4330.53	79135	18.01
0.6	19.22	2478.83	41340	29.78	3905.99	71223	18.39	4408.65	80608	17.91
0.5	19.22	2739.90	46325	28.37	4025.98	73712	17.67	4415.18	80586	18.22

		Proposed 1	Method Sett	ting3
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\left\ r_{ftr} \right\ $	M _{Sal}	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	19.22	4364.04	80043	17.35
0.9	19.22	4430.30	81620	16.51
0.8	19.22	4397.18	80908	16.75
0.7	19.22	4353.60	79890	17.26
0.6	19.22	4323.16	79330	17.26
0.5	19.22	4343.66	79564	17.59

		VOCUS2	$2(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$c(\sigma_c/\sigma_s =$	3/10)	VOCUS2	$l(\sigma_c/\sigma_s =$	5/10)
W _{Obj,i} W _{Obj,1}	s _{dsc}	M _{Sal}	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	24.64	3612.42	77849	28.99	3960.73	84422	30.10	4046.78	86206	30.16
0.9	24.64	3775.51	82072	28.08	4035.08	86434	29.61	4251.20	92258	28.26
0.8	24.64	3767.32	81801	28.20	4167.17	90687	27.96	4252.10	92349	28.17
0.7	24.64	3739.08	80876	28.61	4254.50	93390	27.01	4457.79	98346	26.43
0.6	24.64	3809.21	82762	28.13	4420.67	98104	25.75	4675.86	104336	25.09
0.5	24.64	3949.72	86075	27.81	4602.96	102808	24.97	4877.46	109576	24.24

表 C-3 ϕ_i の比較 (画像: Things) (b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 20$)

	Itti			Proposed Method Setting1			Proposed Method Setting2			
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	24.64	3242.30	69540	29.48	4984.92	114339	21.41	4928.70	113812	20.41
0.9	24.64	3206.37	69154	28.91	5009.77	115173	21.08	5298.51	122799	19.83
0.8	24.64	3160.97	67147	30.44	4871.20	111481	21.74	5385.52	124404	20.35
0.7	24.64	3120.92	66065	30.77	4742.79	108151	22.25	5318.26	122457	20.84
0.6	24.64	2971.46	63342	30.09	4798.70	109938	21.59	5429.80	125306	20.50
0.5	24.64	3329.59	71913	28.76	4953.79	113917	21.04	5450.65	125839	20.44

		Proposed 1	Method Sett	ting3
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	24.64	5346.61	123694	20.12
0.9	24.64	5435.47	126120	19.65
0.8	24.64	5386.87	124691	20.03
0.7	24.64	5340.62	123207	20.55
0.6	24.64	5318.66	123008	20.16
0.5	24.64	5353.27	123895	20.05

		VOCUS2	$l(\sigma_c/\sigma_s =$	1/10)	VOCUS2	$\sigma_c/\sigma_s =$	3/10)	VOCUS2	$l(\sigma_c/\sigma_s =$	5/10)
W _{Obj,i} W _{Obj,1}	s _{dsc}	∥M _{Sal} ∥	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	19.51	2890.85	48773	30.13	3216.61	53351	31.76	3299.20	54610	31.95
0.9	19.51	3000.99	51004	29.39	3267.87	54381	31.45	3463.95	58451	30.11
0.8	19.51	3007.71	51135	29.36	3378.39	57252	29.68	3468.82	58656	29.90
0.7	19.51	3000.24	50862	29.65	3460.08	59258	28.60	3641.50	62705	28.02
0.6	19.51	3053.87	51857	29.48	3589.69	62108	27.50	3810.87	66358	26.79
0.5	19.51	3164.60	53740	29.48	3735.24	65052	26.77	3973.51	69688	25.96

表 C-3 ϕ_i の比較 (画像: Things) (b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)

	Itti			Proposed Method Setting1			Proposed Method Setting2			
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	M _{Sal}	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	19.51	2787.34	47350	29.44	4097.76	73984	22.25	4030.07	73052	21.68
0.9	19.51	2724.43	46499	28.96	4113.36	74541	21.72	4327.94	78902	20.84
0.8	19.51	2687.76	45171	30.51	3995.04	72036	22.43	4395.83	79890	21.30
0.7	19.51	2639.22	44309	30.61	3878.09	69697	22.88	4330.53	78530	21.62
0.6	19.51	2478.83	41752	30.29	3905.99	70552	22.18	4408.65	80105	21.33
0.5	19.51	2739.90	46535	29.46	4025.98	72903	21.83	4415.18	80154	21.46

		Proposed 1	Method Sett	ting3
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	19.51	4364.04	79330	21.27
0.9	19.51	4430.30	80899	20.59
0.8	19.51	4397.18	80070	21.01
0.7	19.51	4353.60	79082	21.38
0.6	19.51	4323.16	78651	21.15
0.5	19.51	4343.66	79033	21.13

VOCUS		VOCUS2	$2 (\sigma_c/\sigma_s = 1/10)$		VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\left\ r_{ftr} \right\ $	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	26.33	5522.13	135104	21.67	6115.29	147756	23.40	5806.94	139586	24.07
0.9	26.33	5623.70	137587	21.67	6204.48	150518	22.86	5991.74	144331	23.80
0.8	26.33	5671.86	138147	22.31	6214.83	150749	22.87	6181.81	149261	23.49
0.7	26.33	5700.05	137905	23.22	6241.43	151094	23.14	6308.84	152565	23.28
0.6	26.33	5880.26	142132	23.35	6332.79	153693	22.80	6461.71	157066	22.59
0.5	26.33	6076.70	146707	23.50	6479.97	157637	22.48	6562.69	160095	22.09

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\left\ r_{ftr} \right\ $	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	26.33	2685.66	58115	34.72	4384.46	107638	21.17	5435.34	134206	20.30
0.9	26.33	2807.39	61174	34.14	4460.36	109541	21.12	5414.87	133074	21.01
0.8	26.33	2704.28	58792	34.33	4463.37	109307	21.53	5349.25	130443	22.14
0.7	26.33	2411.96	52137	34.81	4362.28	106253	22.30	5341.42	129019	23.44
0.6	26.33	2705.50	59436	33.44	4618.92	112448	22.37	5521.71	133174	23.64
0.5	26.33	2808.49	62063	32.92	4918.76	119443	22.72	5548.06	133648	23.79

表 C-4	ϕ_i の比較	(画像:Tree)
(a1) M _{Sal}	$_{i,n_q} \geq r_{ftr,n_q}$	の相関 (T _{FAST} = 20)

		Proposed Method Setting3				
W _{Obj,i} W _{Obj,1}	$\left\ r_{ftr} \right\ $	M _{Sal}	r _{ftr} ∙M _{Sal}	ϕ_i		
1.0	26.33	5453.83	134904	20.02		
0.9	26.33	5559.22	136725	20.90		
0.8	26.33	5425.95	132313	22.14		
0.7	26.33	5288.45	127881	23.29		
0.6	26.33	5410.88	130768	23.37		
0.5	26.33	5493.40	132878	23.25		

	(a2) M_{Sal,i,n_q} と r_{ftr,n_q} の相関 ($T_{FAST} = 40$)									
	VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)			
W _{Obj,i} W _{Obj,1}	$\left\ r_{ftr} \right\ $	M _{Sal}	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	<i>M_{Sal}</i>	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	17.58	3321.42	54877	19.98	3600.30	58732	21.89	3399.83	55090	22.82
0.9	17.58	3349.70	55385	19.86	3637.28	59633	21.16	3495.30	56817	22.38
0.8	17.58	3342.49	55086	20.37	3627.27	59479	21.13	3595.63	58640	21.92
0.7	17.58	3322.02	54437	21.23	3625.31	59340	21.40	3659.17	59820	21.58
0.6	17.58	3397.17	55665	21.24	3667.48	60208	20.96	3739.85	61473	20.77
0.5	17.58	3484.85	57071	21.32	3744.77	61628	20.59	3796.64	62651	20.17

表 C-4 ϕ_i の比較 (画像: Tree)

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\left\ r_{ftr} \right\ $	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i	$\ M_{Sal}\ $	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	17.58	1928.20	27929	34.52	2921.52	48242	20.07	3367.80	56160	18.46
0.9	17.58	1976.31	28715	34.26	2936.56	48461	20.16	3298.63	54832	19.00
0.8	17.58	1874.02	27052	34.80	2866.58	47269	20.28	3178.52	52619	19.67
0.7	17.58	1640.53	23477	35.51	2708.81	44513	20.81	3102.61	50911	21.03
0.6	17.58	1786.03	25825	34.66	2797.09	46091	20.39	3175.18	52019	21.27
0.5	17.58	1728.36	25323	33.55	2903.30	47812	20.49	3173.08	51846	21.65

$\frac{W_{Obj,i}}{W_{Obj,1}}$	$\left\ r_{ftr} \right\ $	M _{Sal}	r _{ftr} ∙M _{Sal}	ϕ_i
1.0	17.58	3316.02	55525	17.74
0.9	17.58	3318.50	55328	18.49
0.8	17.58	3170.63	52574	19.40
0.7	17.58	3030.88	49833	20.73
0.6	17.58	3081.17	50587	20.95
0.5	17.58	3132.28	51315	21.27

Proposed Method Setting3

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
W _{Obj,i} W _{Obj,1}	s _{dsc}	∥M _{Sal} ∥	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	30.62	5522.13	154919	23.60	6115.29	168909	25.55	5806.94	159389	26.29
0.9	30.62	5623.70	157795	23.58	6204.48	172282	24.91	5991.74	164955	25.94
0.8	30.62	5671.86	158290	24.28	6214.83	172473	24.98	6181.81	170625	25.64
0.7	30.62	5700.05	157886	25.21	6241.43	172810	25.26	6308.84	174459	25.41
0.6	30.62	5880.26	162780	25.29	6332.79	175853	24.90	6461.71	179705	24.72
0.5	30.62	6076.70	168002	25.44	6479.97	180403	24.59	6562.69	183271	24.20

表 C-4 ϕ_i の比較 (画像: Tree) (b1) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 20$)

Ι		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	M _{Sal}	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	30.62	2685.66	66447	36.09	4384.46	123854	22.68	5435.34	154459	21.84
0.9	30.62	2807.39	70089	35.37	4460.36	126129	22.54	5414.87	153049	22.60
0.8	30.62	2704.28	67207	35.73	4463.37	125816	22.97	5349.25	149881	23.77
0.7	30.62	2411.96	59780	35.95	4362.28	122394	23.59	5341.42	148044	25.14
0.6	30.62	2705.50	68211	34.56	4618.92	129582	23.60	5521.71	152822	25.31
0.5	30.62	2808.49	71197	34.10	4918.76	137530	24.04	5548.06	153223	25.57

		Proposed 1	Method Sett	ting3
W _{Obj,i} W _{Obj,1}	s _{dsc}	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	30.62	5453.83	155296	21.55
0.9	30.62	5559.22	157209	22.53
0.8	30.62	5425.95	151940	23.85
0.7	30.62	5288.45	146672	25.06
0.6	30.62	5410.88	149971	25.14
0.5	30.62	5493.40	152275	25.12

		VOCUS2 ($\sigma_c/\sigma_s = 1/10$)			VOCUS2 ($\sigma_c/\sigma_s = 3/10$)			VOCUS2 ($\sigma_c/\sigma_s = 5/10$)		
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} ∙ M _{Sal}	ϕ_i
1.0	19.12	3321.42	57683	24.71	3600.30	61438	26.79	3399.83	57498	27.79
0.9	19.12	3349.70	58189	24.67	3637.28	62441	26.10	3495.30	59369	27.31
0.8	19.12	3342.49	57820	25.19	3627.27	62293	26.06	3595.63	61339	26.83
0.7	19.12	3322.02	57074	26.01	3625.31	62142	26.28	3659.17	62632	26.45
0.6	19.12	3397.17	58337	26.07	3667.48	63080	25.88	3739.85	64444	25.66
0.5	19.12	3484.85	59819	26.11	3744.77	64629	25.47	3796.64	65782	25.00

表 C-4 ϕ_i の比較 (画像: Tree) (b2) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ($T_{FAST} = 40$)

		Itti			Proposed Method Setting1			Proposed Method Setting2		
$\frac{W_{Obj,i}}{W_{Obj,1}}$	s _{dsc}	M _{Sal}	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i
1.0	19.12	1928.20	29205	37.60	2921.52	50939	24.21	3367.80	59302	22.91
0.9	19.12	1976.31	30059	37.29	2936.56	51166	24.30	3298.63	57814	23.54
0.8	19.12	1874.02	28273	37.89	2866.58	49874	24.48	3178.52	55466	24.10
0.7	19.12	1640.53	24545	38.50	2708.81	46983	24.87	3102.61	53575	25.41
0.6	19.12	1786.03	27048	37.61	2797.09	48635	24.56	3175.18	54761	25.56
0.5	19.12	1728.36	26516	36.63	2903.30	50442	24.66	3173.08	54490	26.07

		Proposed Method Setting3				
W _{Obj,i} W _{Obj,1}	s _{dsc}	$\ M_{Sal}\ $	s _{dsc} · M _{Sal}	ϕ_i		
1.0	19.12	3316.02	58611	22.39		
0.9	19.12	3318.50	58320	23.18		
0.8	19.12	3170.63	55360	24.03		
0.7	19.12	3030.88	52383	25.30		
0.6	19.12	3081.17	53234	25.34		
0.5	19.12	3132.28	53910	25.80		

図 C Wobj,i可変時における画像特徴点抽出状況と顕著性マップの変化

図 C-1 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Chair)

(a) $T_{FAST} = 20$

$W_{Obj,i}/W_{Obj,1}$	Feature	VOCUS2		Itti	
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0					
0.9					
0.8					
0.7	₹				C
0.6	X				
0.5	X				Civit-

$W_{Obj,i}/W_{Obj,1}$	Feature	Proposed Method		
	Extraction	Setting 1	Setting 2	Setting 3
1.0				
0.9				
0.8	₹.			
0.7	₹			A REAL
0.6		- Maria		
0.5	X) and

図 C-1	画像特徴点抽出状況とM _{sal,i} の推移	(画像: Chair)
	(b) 画像特徴点とM _{Sal,i} (T _{FAST} = 40))

$W_{Obj,i}/W_{Obj,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0					
0.9	₹.			No.	
0.8	₹				
0.7	×				
0.6	¥				
0.5	¥				Civit-

$W_{Obj,i}/W_{Obj,1}$	Feature	Proposed Method	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3		
1.0						
0.9						
0.8						
0.7	×.			Caller Contraction		
0.6	X	- Martin				
0.5	×	Notes -				

図 C-2 画像特徴点抽出状況とM_{Sal,i}の推移 (画像: Stop))

$W_{Obj,i}/W_{Obj,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0	STOP	STOP	STOP	STOP	STOP
0.9	STOP	STOP	STOP	STOP	STOP
0.8	STOP	STOP	STOP	STOP	STOP
0.7	STOP	STOP	STOP	STOP	STOP
0.6	STOP	STOP	STOP	STOP	STOP
0.5	STOP	STOP	STOP	STOP	STOP

(a) $T_{FAST} = 20$

$W_{Obj,i}/W_{Obj,1}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
1.0	STOP	STOP	STOP	STOP	
0.9	STOP	STOP	STOP	STOP	
0.8	STOP	STOP	STOP	STOP	
0.7	STOP	STOP	STOP	STOP	
0.6	STOP	STOP	STOP	STOP	
0.5	STOP	STOP	STOP	STOP	

図 C-2 画像特徴点抽出状況とMsal,iの推移 (画像: Stop))

(b) $T_{FAST} = 40$

$W_{Obj,i}/W_{Obj,1}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
1.0	STOP	STOP	STOP	STOP	
0.9	STOP	STOP	STOP	STOP	
0.8	STOP	STOP	STOP	STOP	
0.7	STOP	STOP	STOP	STOP	
0.6	STOP	STOP	STOP	STOP	
0.5	STOP	STOP	STOP	STOP	

$W_{Obj,i}/W_{Obj,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0		HATARSTILLINGS	Chings,	Chinese,	CHATARE STILL HERE HAT ARE STILL HERE HAT ARE STILL HERE
0.9		HAT ARSTRUMERY	Chings,	A Contraction of the second se	HAT ARE STILL HERE
0.8		CERT LARSTILL HARD	Chings,	Chings,	HAT ARE STILL HERE WIDDING
0.7		Things,	Cathrane and the second s		Chings Hat are still heres Hat are still heres
0.6		(Things)			HAT ARE SINU HERE
0.5		(Thing)			HAT MAR SHALL HERE

図 C-3 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Things) (a) $T_{FAST} = 20$

$W_{Obj,i}/W_{Obj,1}$	Feature	Proposed Method		
	Extraction	Setting 1	Setting 2	Setting 3
1.0		CALLER STUDIES	CREAT ARE STILL HERE	CRATESTILIHERE HAT ARE STULIHERE HAT ARE STULIHERE
0.9		CONTRACTOR OF THE STREET	CONTRACTOR STILL HERE	CONTRACTOR OF CO
0.8		CARLES ON A MERICINA	TREEstings HAT ARE STILL HERE HAT ARE STILL HERE	CONTRACTOR OF CO
0.7		ALL	TATI ARE STILL HEARS	CARLES STUDIES
0.6			THE STUDIES	
0.5			Thingson and the second	

図 C-3	画像特徴点抽出状況とM _{Sal,i} の推移	(画像:Things)
	(b) $T_{FAST} = 40$	

$W_{Obj,i}/W_{Obj,1}$	Feature	VOCUS2	VOCUS2		
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0	The set of the set	RATAR STULIES			HAT ARE STILL HERE WEDNING
0.9	HAT ARE STULL OF REAL	HAT ARE STILLING		Calingas Antimas	Chaings Hai are still Here Hai are still Here
0.8	HAT HE STUDIE	Chings HALLSINARS	Chings,		HAT ARE STILL HERE
0.7		HAT ME STUDIO			THAT ARE STILL HERED
0.6		Chinese,			HAT ARE STILL HERE
0.5		(Thissee)			Chings And And Small And

$W_{Obj,i}/W_{Obj,1}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
1.0		CHARACTER STILL HERE THAT ARE STILL HERE THAT ARE STILL HERE	THAT ARE STILL HERE	THAT ARE STILLHERE THAT ARE STILLHERE	
0.9	HAT ARE STUDIED AT	THAT ARE STILLING	THAT ARE STILL HERE	CHARLESTILIHERE MATARESTILIHERE CONTRACTOR	
0.8	HALLEN STREET	THAT ARESTUTIES	TRACARE STILL HERE	TRACESTICIAL CONTRACTOR	
0.7		Contractors of the second seco	Chings HAT AR STUMPED	Contraction of the second seco	
0.6		Chinese Marine	Chings Har all structures	Contrasts Indianse	
0.5			Thisse		

$W_{Obj,i}/W_{Obj,1}$	Feature	VOCUS2	VOCUS2		
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0		Contraction of the second	A State	and the second	
0.9		A CONTRACTOR	Solution of the second	Sol and	
0.8		State State	State of the state	Sal and	
0.7					
0.6			State of the second sec	Charles of the	
0.5		Charles of the second s	(The second sec	Carles a	

図 C-4 画像特徴点抽出状況と $M_{sal,i}$ の推移 (画像: Tree)) (a) $T_{FAST} = 20$

$W_{Obj,i}/W_{Obj,1}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
1.0					
0.9					
0.8					
0.7					
0.6					
0.5			S S S S S S S S S S S S S S S S S S S		

$W_{Obj,i}/W_{Obj,1}$	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
1.0		A Contraction of the second se		Contraction of the second	
0.9			San All		
0.8				Sol and	
0.7		Contraction of the second	Contraction of the second	Contraction of the second	
0.6				(Series)	
0.5	Ż	CLARK CONTRACT	(The second	Control of the second s	

図 C-4 画像特徴点抽出状況と $M_{Sal,i}$ の推移 (画像: Tree)) (b) $T_{FAST} = 40$

$W_{Obj,i}/W_{Obj,1}$	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
1.0					
0.9					
0.8					
0.7					
0.6					
0.5					

表 D-1	ϕ_i の比較	(画像:	Chair)
-------	--------------	------	--------

	$\ r_{ftr}\ $	$\ M_{Sal}\ $	$r_{ftr} \cdot M_{Sal}$	ϕ_i
VOCUS2	26.45	4735.83	119546	17.40
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	26.45	5113.19	129426	16.89
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	26.45	4739.10	119208	18.03
$(\sigma_c/\sigma_s = 5/10)$				
Itti	26.45	3012.14	67422	32.20
Proposed Method	26.45	4898.56	121675	20.12
Setting1				
Proposed Method	26.45	5071.58	127511	18.11
Setting2				
Proposed Method	26.45	5319.27	134749	16.74
Setting3				

(a) M_{Sal,i,n_q} と r_{ftr,n_q} の相関 ϕ_i

(b) M_{Sal,i,n_q} と s_{dsc,n_q} の相関 ϕ_i

	$\ s_{dsc}\ $	$\ M_{Sal}\ $	$s_{dsc} \cdot M_{Sal}$	ϕ_i
VOCUS2	33.08	4735.83	150483	16.15
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	33.08	5113.19	164090	14.05
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	33.08	4739.10	151561	14.81
$(\sigma_c/\sigma_s = 5/10)$				
Itti	33.08	3012.14	82261	34.36
Proposed Method	33.08	4898.56	151423	20.86
Setting1				
Proposed Method	33.08	5071.58	159683	17.86
Setting2				
Proposed Method	33.08	5319.27	168913	16.27
Setting3				

表 D-2	ϕ_i の比較	(画像	: Flower)
-------	--------------	-----	----------	---

	$\ r_{ftr}\ $	$\ M_{Sal}\ $	$r_{ftr} \cdot M_{Sal}$	ϕ_i
VOCUS2	40.61	3898.50	137628	29.63
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	40.61	3682.40	129402	30.09
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	40.61	3552.02	124644	30.22
$(\sigma_c/\sigma_s = 5/10)$				
Itti	40.61	2636.91	79815	41.81
Proposed Method	40.61	6311.71	240138	20.47
Setting1				
Proposed Method	40.61	6315.29	240085	20.59
Setting2				
Proposed Method	40.61	6450.24	246761	19.61
Setting3				

(a) $M_{Sal,i,n_q} \ge r_{ftr,n_q}$ の相関 ϕ_i

(b) M_{Sal,i,n_q} と s_{dsc,n_q} の相関 ϕ_i

	$\ s_{dsc}\ $	$\ M_{Sal}\ $	$s_{dsc} \cdot M_{Sal}$	ϕ_i
VOCUS2	54.90	3898.50	186899	29.16
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	54.90	3682.40	176045	29.44
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	54.90	3552.02	169912	29.38
$(\sigma_c/\sigma_s = 5/10)$				
Itti	54.90	2636.91	105852	43.01
Proposed Method	54.90	6311.71	326260	19.68
Setting1				
Proposed Method	54.90	6315.29	326340	19.73
Setting2				
Proposed Method	54.90	6450.24	335596	18.61
Setting3				

表 D-3 ϕ_i の比較 (画像:Lenna)

	$\ r_{ftr}\ $	$\ M_{Sal}\ $	$r_{ftr} \cdot M_{Sal}$	ϕ_i
VOCUS2	16.24	3190.51	49025	18.89
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	16.24	3496.06	53301	20.15
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	16.24	3377.70	51130	21.24
$(\sigma_c/\sigma_s=5/10)$				
Itti	16.24	1413.52	19526	31.72
Proposed Method	16.24	3065.75	46750	20.12
Setting1				
Proposed Method	16.24	3130.33	47947	19.42
Setting2				
Proposed Method	16.24	3258.96	50223	18.39
Setting3				

(a) M_{Sal,i,n_q} と r_{ftr,n_q} の相関 ϕ_i

(b) M_{Sal,i,n_q} と s_{dsc,n_q} の相関 ϕ_i

	$\ s_{dsc}\ $	$\ M_{Sal}\ $	$s_{dsc} \cdot M_{Sal}$	ϕ_i
VOCUS2	22.85	3190.51	70263	15.45
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	22.85	3496.06	76857	15.81
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	22.85	3377.70	74060	16.33
$(\sigma_c/\sigma_s = 5/10)$				
Itti	22.85	1413.52	27134	32.84
Proposed Method	22.85	3065.75	66100	19.32
Setting1				
Proposed Method	22.85	3130.33	68231	17.45
Setting2				
Proposed Method	22.85	3258.96	71445	16.36
Setting3				

表 D-4 ϕ_i の比較 (画像: Mandrill)

	$\ r_{ftr}\ $	$\ M_{Sal}\ $	$r_{ftr} \cdot M_{Sal}$	ϕ_i
VOCUS2	21.33	2617.88	46914	32.86
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	21.33	2676.17	48599	31.65
$(\sigma_c/\sigma_s = 3/10)$				
VOCUS2	21.33	2663.92	48441	31.53
$(\sigma_c/\sigma_s = 5/10)$				
Itti	21.33	1814.94	32261	33.57
Proposed Method	21.33	3677.82	72309	22.84
Setting1				
Proposed Method	21.33	3692.46	72317	23.36
Setting2				
Proposed Method	21.33	3904.88	76652	23.05
Setting3				

(a) $M_{Sal,i,n_q} \ge r_{ftr,n_q}$ の相関 ϕ_i

(b) M_{Sal,i,n_q} と s_{dsc,n_q} の相関 ϕ_i

	$\ s_{dsc}\ $	$\ M_{Sal}\ $	$s_{dsc} \cdot M_{Sal}$	ϕ_i
VOCUS2	31.62	2617.88	70752	31.27
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	31.62	2676.17	73542	29.64
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	31.62	2663.92	73421	29.34
$(\sigma_c/\sigma_s = 5/10)$				
Itti	31.62	1814.94	48756	31.83
Proposed Method	31.62	3677.82	109388	19.83
Setting1				
Proposed Method	31.62	3692.46	109606	20.15
Setting2				
Proposed Method	31.62	3904.88	116198	19.76
Setting3				

表 D-5 ϕ_i の比較 (画像: Things)

	$\ r_{ftr}\ $	$\ M_{Sal}\ $	$r_{ftr} \cdot M_{Sal}$	ϕ_i
VOCUS2	29.73	3783.07	97256	30.14
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	29.73	4025.08	104587	29.07
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	29.73	4096.62	107228	28.30
$(\sigma_c/\sigma_s = 5/10)$				
Itti	29.73	3300.93	87204	27.30
Proposed Method	29.73	5207.89	146632	18.72
Setting1				
Proposed Method	29.73	5189.97	146650	18.10
Setting2				
Proposed Method	29.73	5633.25	159600	17.63
Setting3				

(a) M_{Sal,i,n_q} と r_{ftr,n_q} の相関 ϕ_i

(b) M_{Sal,i,n_q} と s_{dsc,n_q} の相関 ϕ_i

	$\ s_{dsc}\ $	$\ M_{Sal}\ $	$s_{dsc} \cdot M_{Sal}$	ϕ_i
VOCUS2	38.01	3783.07	126039	28.78
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	38.01	4025.08	134782	28.25
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	38.01	4096.62	138167	27.47
$(\sigma_c/\sigma_s=5/10)$				
Itti	38.01	3300.93	112149	26.64
Proposed Method	38.01	5207.89	190904	15.34
Setting1				
Proposed Method	38.01	5189.97	191455	13.96
Setting2				
Proposed Method	38.01	5633.25	208543	13.11
Setting3				

表 D-6 ϕ_i の比較 (画像: Things (Multiple))

	$\ r_{ftr}\ $	$\ M_{Sal}\ $	$r_{ftr} \cdot M_{Sal}$	ϕ_i
VOCUS2	18.87	3376.57	57873	24.74
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	18.87	3489.85	61218	21.64
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	18.87	3623.95	63752	21.22
$(\sigma_c/\sigma_s = 5/10)$				
Itti	18.87	2812.99	45244	31.54
Proposed Method	18.87	3779.10	66610	20.94
Setting1				
Proposed Method	18.87	4082.31	71479	21.90
Setting2				
Proposed Method	18.87	4162.26	73592	20.46
Setting3				

(a) M_{Sal,i,n_q} と r_{ftr,n_q} の相関 ϕ_i

(b) M_{Sal,i,n_q} と s_{dsc,n_q} の相関 ϕ_i

	$ s_{dsc} $	$\ M_{Sal}\ $	$s_{dsc} \cdot M_{Sal}$	ϕ_i
VOCUS2	22.38	3376.57	71635	18.58
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	22.38	3489.85	75610	14.53
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	22.38	3623.95	78664	14.11
$(\sigma_c/\sigma_s=5/10)$				
Itti	22.38	2812.99	55234	28.68
Proposed Method	22.38	3779.10	81664	15.10
Setting1				
Proposed Method	22.38	4082.31	87852	15.95
Setting2				
Proposed Method	22.38	4162.26	90368	14.06
Setting3				

表 D-7 ϕ_i の比較 (画像: Tree)

	$\ r_{ftr}\ $	$\ M_{Sal}\ $	$r_{ftr} \cdot M_{Sal}$	ϕ_i
VOCUS2	29.43	5590.88	152256	22.28
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	29.43	6219.86	167391	23.87
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	29.43	5930.60	158788	24.53
$(\sigma_c/\sigma_s=5/10)$				
Itti	29.43	2715.40	66526	33.65
Proposed Method	29.43	4432.37	121636	21.17
Setting1				
Proposed Method	29.43	5494.23	151096	20.86
Setting2				
Proposed Method	29.43	5516.82	151679	20.90
Setting3				

(a) $M_{Sal,i,n_q} \ge r_{ftr,n_q}$ の相関 ϕ_i

(b) M_{Sal,i,n_q} と s_{dsc,n_q} の相関 ϕ_i

	$\ s_{dsc}\ $	$\ M_{Sal}\ $	$s_{dsc} \cdot M_{Sal}$	ϕ_i
VOCUS2	40.60	5590.88	215790	18.06
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	40.60	6219.86	237820	19.64
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	40.60	5930.60	225908	20.23
$(\sigma_c/\sigma_s = 5/10)$				
Itti	40.60	2715.40	91569	33.83
Proposed Method	40.60	4432.37	170110	19.03
Setting1				
Proposed Method	40.60	5494.23	213235	17.06
Setting2				
Proposed Method	40.60	5516.82	214563	16.66
Setting3				

表 D-8	ø ;の比較	(画像:	Stop)
AD0	Ψl^{*}		Dtop/

	$\ r_{ftr}\ $	$\ M_{Sal}\ $	$r_{ftr} \cdot M_{Sal}$	ϕ_i	
VOCUS2	14.22	2675.85	36123	21.80	
$(\sigma_c/\sigma_s = 1/10)$					
VOCUS2	14.22	2564.62	34614	21.83	
$(\sigma_c/\sigma_s=3/10)$					
VOCUS2	14.22	2462.38	32814	23.58	
$(\sigma_c/\sigma_s=5/10)$					
Itti	14.22	2536.15	33389	25.11	
Proposed Method	14.22	3142.12	43528	17.68	
Setting1					
Proposed Method	14.22	3238.09	44790	17.95	
Setting2					
Proposed Method	14.22	3178.50	44154	17.17	
Setting3					

(a) M_{Sal,i,n_q} と r_{ftr,n_q} の相関 ϕ_i

(b) $M_{Sal,i,n_q} \geq s_{dsc,n_q}$ の相関 ϕ_i

	$\ s_{dsc}\ $	$\ M_{Sal}\ $	$s_{dsc} \cdot M_{Sal}$	ϕ_i
VOCUS2	14.64	2675.85	43414	18.59
$(\sigma_c/\sigma_s=1/10)$				
VOCUS2	14.64	2564.62	40981	21.01
$(\sigma_c/\sigma_s=3/10)$				
VOCUS2	14.64	2462.38	38497	24.03
$(\sigma_c/\sigma_s = 5/10)$				
Itti	14.64	2536.15	39906	23.18
Proposed Method	14.64	3142.12	52403	13.01
Setting1				
Proposed Method	14.64	3238.09	53967	13.18
Setting2				
Proposed Method	14.64	3178.50	53263	11.77
Setting3				

T _{FAST,i}	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
10					
20					
30					
40)				
50					
60					

図 D-1 画像特徴点抽出状況の推移と $M_{Sal,i}$ (画像: Chair)

T _{FAST,i}	Feature	Proposed Method		
	Extraction	Setting 1	Setting 2	Setting 3
10				
20				
30				
40				
50				
60				

T _{FAST,i}	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
10					
20					
30					
40					
50					
60					

図 D-2	画像特徴点抽出状況の推移とM _{sali}	(画像:Flower)
<u> </u>		(

T _{FAST,i}	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
10					
20					
30					
40					
50					
60					

T _{FAST,i}	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
10					
20					
30					
40					
50					
60					

図 D-3 画像特徴点抽出状況の推移と $M_{Sal,i}$ (画像:Lenna)
T _{FAST,i}	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
10					
20					
30					
40					
50					
60					

T _{FAST,i}	Feature	VOCUS2	VOCUS2		
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
10				J.	
20			is.	ÖS	
30				J.C.	
40			je je	J.	
50				J. J.	
60					

図 D-4 画像特徴点抽出状況の推移と $M_{Sal,i}$ (画像: Mandrill)

T _{FAST,i}	Feature	Proposed Method				
	Extraction	Setting 1	Setting 2	Setting 3		
10						
20						
30						
40						
50						
60						

T _{FAST,i}	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
10		Chings Marassitutes	Chings,	Albings, Constant	THAT ARE STILL HERE
20		Things HAT ARE STILLING	Chings,	Aller and a second	THAT ARE STILL HEREI
30		MAT ARE STILLARD	Chings,	Albangas Antonio	THAT ARE STILL HERE
40	Chings Har All Southers	Things HAT ARE STUDIED	Chings,	A Children of the second secon	THAT ARE STILL HEREI
50	HAT ARE STOL HERE	CLEATING STULL HERES	Chings,	Chings,	That ARE STILL HERE
60	HAT ARE STRUMER	Chings Mat Are STUINERS	Changes -	Chings,	THAT ARE STILL HEREI

図 D-5 画像特徴点抽出状況の推移と $M_{Sal,i}$ (画像: Things)

T _{FAST,i}	Feature	Proposed Method				
	Extraction	Setting 1	Setting 2	Setting 3		
10	HAT ALL STRUCTURE	THAT ARE STILL HERE THAT ARE STILL HERE	THAT ARE STILL HERE THAT ARE STILL HERE THAT ARE STILL HERE	CREAT STRUCTURE AND A STRUCTUR		
20		CARESTINIA HERES	TRAINESTILIHERES	CARESTILLIERS THAT ARE STILLIERS		
30		CHARLESTILLHERE HATARESTILLHERE HATARESTILLHERE	TRATARE STILLHERE THAT ARE STILLHERE THAT ARE STILLHERE	CARESTILLIERE MATARESTILLIERE CONSIGNED		
40	HAT ART SHE I STATE	CARESTILLHERE HAT ARE STILLHERE HAT ARE STILLHERE	TRATARE STILLHERE THAT ARE STILLHERE	TRATARE STILLHERE THAT ARE STILLHERE THAT ARE STILLHERE		
50	HAT ARY STRUMENT	CHATARESTILLHERES HATARESTILLHERES	TRATARE STILLHERE THAT ARE STILLHERE	CARLESTILLIERES, HARTARE STILLIERES, HARTARE STILLIERES		
60		CARLESTICHERE MAIL ARESTICHERES MAIL ARESTICHERES	THAT ARE STILL HERE	CREAT BY SOLUTION		

T _{FAST,i}	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
10	 4 4<	0 () 0 ()	0 () 0 ()	0 0 0 0	(1) (1) (1) (1)
20		0 () 0 ()	0 (l) 0 (l)	0 0 0 0	0 0 0
30	 	0 () 0 ()	0 () 0 ()	0 0 0 0	(1) (1) (1) (2)
40	 <	0 0) 0 0)	0 0 0 0	0 0 0 0	(1) (1) (2) (2)
50	 S S<	0 0 0 0	0 0 0 0	0 0 0 0	
60	 	0 0	0 0 0 0	0 0 0 0	() () ()

図 D-6 画像特徴点抽出状況の推移と $M_{Sal,i}$ (画像: Things(Multiple))

T _{FAST,i}	Feature	Proposed Method				
	Extraction	Setting 1	Setting 2	Setting 3		
10	 <	10 (10) 10 (10)	0 0 0 0			
20	 <		0 0 0 0			
30	 		0 0 0 0			
40	() () ()					
50	 <	0 0 0 0	0 0 0 0			
60	 		0 0 0 0			

T _{FAST,i}	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
10		Contraction of the second	A Contraction of the second	A Contraction of the second	
20			and the second		
30					
40					
50			Carl Solar	Contraction of the second seco	
60		Contraction of the second	A State of the second	and the second	

図 D-7 画像特徴点抽出状況の推移とM_{sal,i} (画像: Tree)

T _{FAST,i}	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
10	A Show				
20					
30					
40	A Second				
50					
60					

T _{FAST,i}	Feature	VOCUS2			Itti
	Extraction	$\sigma_c/\sigma_s=1/10$	$\sigma_c/\sigma_s=3/10$	$\sigma_c/\sigma_s=5/10$	
10	STOP	STOP	STOP	STOP	STOP
20	STOP	STOP	STOP	STOP	STOP
30	STOP	STOP	STOP	STOP	STOP
40	STOP	STOP	STOP	STOP	STOP
50	STOP	STOP	STOP	STOP	STOP
60	STOP	STOP	STOP	STOP	STOP

図 D-8 画像特徴点抽出状況の推移とM_{Sal,i} (画像:Stop)

T _{FAST,i}	Feature	Proposed Method			
	Extraction	Setting 1	Setting 2	Setting 3	
10	STOP	STOP	STOP	STOP	
20	STOP	STOP	STOP	STOP	
30	STOP	STOP	STOP	STOP	
40	STOP	STOP	STOP	STOP	
50	STOP	STOP	STOP	STOP	
60	STOP	STOP	STOP	STOP	