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Abstract 

Autonomous robot’s search strategy is the set of rules that it employs while 
looking for targets in its environment. In this study, the stochastic movement of 
robots in unknown environments is statistically studied, using a Lévy walk method. 
Biological systems (e.g., foraging animals) provide useful models for designing 
optimal stochastic search algorithms. Observations of biological systems, ranging 
from large animals to immune cells, have inspired the design of efficient search 
strategies that incorporate stochastic movement. In this study, we seek to identify 
the optimal stochastic strategies for autonomous robots. Given the complexity of 
interaction between the robot and its environment, optimization must be performed 
in high-dimensional parameter space. The effect of the explanatory variable on the 
forger robot movement with the minimum required energy was also studied using 
experiments done by the response surface methodology (RSM). We analyzed the 
extent to which search efficiency requires these characteristics, using RSM. 
Correlation between the involved parameters via a Lévy walk process was 
examined through designing a setup for the experiments to determine the 
interaction of the involved variables and the robot movement. The extracted 
statistical model represents the priority influence of those variables on the robot by 
developing the statistical model of the mentioned unknown area. The efficiency of 
a simple strategy was investigated based on Lévy walk search in two-dimensional 
landscapes with clumped resource distributions. We show how RSM techniques 
can be used to identify optimal parameter values as well as to describe how 
sensitive efficiency reacts to the changes in these values. Here, we identified 
optimal parameter for designing robot by using stochastic search pattern and 
applying mood-switching criteria on a mixture of speed and sensor and µ to 
determine how many robots are needed for a solution. Fractal criterion-based robot 
strategies were more efficient than those based on the resource encounter criterion, 
and the former was found to be more robust to changes in resource distribution as 
well.  

 

Keywords: Lévy Walk, Autonomous Robots, Biomimetic, Individual Motion, 
Biomimetic, Biologically-Inspired Robotics, Stochastic Search, Optimal Foraging, 
Swarm Robot, Individual Motion, Design Of Experiments. 
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1 Introduction  

Many organisms, ranging from bacteria to primates, make use of stochastic 

movement patterns in order to find food, which is vital for their survival[1]. Such 

movement patterns, known as search strategies, have recently caught the attention 

of many ecologists interested in shedding light on the universal features of optimal 

foraging behavior[2]. Accordingly, three contributions to this field are discussed 

below. The main question : 

How should robots behave in environments with a small knowledge and unknown 

factors to find targets?  

In Section 2, A literature review is presented, with the aim of understanding the 

history of studies on organism’s forage as a central goal of behavioral ecology. 

Reviewing and discussing the factors that impact levy walk and foraging behavior, 

this study can shed light on the interactions between organisms and their 

environments, predicting organisms' reactions to changing environmental 

conditions. A foraging organism usually has no idea of the location of food 

resources. Consequently, it must make use of search strategies to find them. A 

review of empirical studies reveals a variety of species using random movement 

patterns to locate food resources[2]. Some of these stochastic search strategies 

include the following movement patterns: 
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Brownian motion, Lévy walks, Straight-line (ballistic) motion.  

The extent to which different stochastic movement patterns are effective in finding 

resources largely depends on the spatial distribution of resources. Thus, a forager’s 

evolutionary fitness depends, by large, on the interaction between its movement 

strategy and the kind of landscape it is exploring. foraging is a fascinating and 

highly multidisciplinary field of research with implications far beyond the confines 

of biology. Foraging has been a canonical setting for the study of search, reward-

seeking, and information processing. These and related themes have a wide impact 

on fields such as biology, economics, robotics, and computer science. The 

definition of foraging as a repeated sequence of actions: search, encounter, decide. 

Search can encompass a strategy of waiting in place as well as an active traversal 

of the environment in an effort to find resources. An encounter occurs when a food 

item is located, and the organism must then decide whether to attempt to 

appropriate the resource. Following this, a foraging strategy can be broadly 

considered as a strategy for searching for an environment in order to encounter and 

appropriate food resources. Hence, a complete strategy will cover the 

operationalization of a search process, encounter behaviors, and choices as to 

which items are considered as prey. 

 



3 

 

3 

 

In Section 3,4, As a collection of statistical and mathematical techniques, design of 

experiment (DOE) and response surface methodology (RSM) has proved to be 

very useful in the development, improvement, and optimization of processes. RSM 

also has significant applications for the design, development, and formulation of 

new products. It can improve existing product designs as well. RSMs are widely 

used in the industrial sector, especially in situations in which multiple input 

variables potentially affect performance measures or quality properties of a product 

or process. These performance measures or quality characteristics are called the 

response. They are typically measured on a continuous scale, while attribute 

responses, ranks, and sensory responses are not unusual. The majority of real-

world applications of RSM include more than one response. The input variables 

have come to be called independent variables as well, and they are controlled by 

the engineer or scientist, at least when it comes to a test or an experiment.  

1.1 Biologically-inspired strategies 

Biologically inspired robotics is a field of study that examines how the behaviors 

of living cells and organisms can be used as a basis for programming robots[3]. 

These behaviors are assumed to be well-honed to their purpose by natural 

selection. In the case of stochastic search strategies, one can look into the foraging 

behavior of animals, including seabirds, sharks, fruit flies, fish, bacteria, large 
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mammals, etc. One can even look at the behavior of cells in the human immune 

system, which can be thought of as “foraging” for disease cells[2]. 

Many of these organisms appear to move via a Lévy Walk while foraging for food, 

and so can be thought of as executing stochastic search strategies[4]. There are 

many different types of random walk and Lévy Walk and stochastic movement[5]. 

In a simple random walk a searcher moves a fixed distance (the step length) in a 

randomly chosen direction, stops, randomly chooses another direction, and moves 

a distance equal to the step-length in that new direction, and so on. In a Gaussian 

random walk, step-lengths are chosen from a Gaussian distribution (a simple 

random walk can be viewed as a Gaussian random walk with variance zero)[2]. At 

the sufficiently large time and distance scales, all Gaussian random walks converge 

to Brownian motion. Random walk with this property is called diffusion. When the 

step directions are selected from a non-uniform distribution, the result is a biased 

random walk. The random walk has the probability distribution of each step 

direction concentrated around the direction of the previous step direction. 

Searchers that move via correlated random walks are said to display directional 

persistence. A random walk can be both biased and correlated[6]. 

Ballistic motion is the term for straight-line movement. It can be viewed as a 

random walk with infinite step-length. In the ballistic motion, a searcher selects a 

direction at random and travels in that direction indefinitely the mean-squared 
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displacement of ballistic motion scales with the square of time. The movement 

pattern is superdiffusive if its mean-square displacement scales with time at a 

faster-than-linear rate; hence, ballistic motion is superdiffusive[3, 7, 8]. 

Lévy walks a particularly important class of superdiffusive random walks. In 

natural systems, food resources (targets) are often distributed in clumps. If a 

forager encounters a food item, likely, other food is nearby. Hence it makes sense 

to carefully search the nearby area, using a movement pattern such as Brownian 

motion. Search strategy like Brownian motion is inefficient because it involves 

revisiting previously explored areas[2, 9]. On the other extreme, a forager 

employing ballistic motion DOEs not revisit previously explored terrain but might 

be unlucky and move in a direction away from a clump of food resources. Lévy 

walk is a trade-off between these two phenomena. Lévy walk foragers are likely to 

take small steps (similar to Brownian motion), but will occasionally take very long 

steps, preventing them from wasting time intensively searching a barren region[8, 

10, 11]. 

The Lévy foraging hypothesis has been very controversial; nonetheless, it serves as 

excellent motivation for programming autonomous robotic search. In this thesis, 

we seek to answer a fundamental question: When designing a robot for stochastic 

movement, what are the optimal parameter values for a Lévy Walk stochastic 

search strategy and what are optimal parameters for the robot itself.  The answer 



6 

 

6 

 

depends on many characteristics of the system and the robot, including the 

detection radius of the searcher and speed of the robot and the general spatial 

distribution of targets on the landscape[12, 13]. The contribution of the dissertation 

can be explained as follows: Unknown Environment, Stochastic Movement, 

Forager Robotic, Design of Robot, Statistical Analysis, Design of Experiment, 

Optimization of Parameter[1, 9]. Random search; optimal foraging; Brownian 

motion; random walk; animal movement; spatial point process; Behavior and 

Ethology; Numerical Analysis and Computation; Other Applied Mathematics; 

Other Ecology and Evolutionary Biology; Other Mathematics; Probability[7, 14]. 

 

Figure 1-1. Road map  
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2 Lévy Walk 

Foraging can be investigated in some biological systems. In this section, some of 

the biologically originated features are discussed[15]. 

 

Figure 2-1Hypothesis of Forager 

 

In a Lévy walk, step-lengths are selected from a Power-law distribution p(l) ~l ^ μ, 

where l is the step-length, p(l) is the associated probability distribution, μ is a 

parameter, 1<μ≤3[2]. Random walks with step-lengths drawn from power-law 

distributions with μ>3 converge to Brownian motion as Gaussian random walks do 

(Figure 2-2). Lévy walks essentially represent a spectrum of random walks, with 

ballistic motion on one extreme (μ →1) and Brownian motion (μ ≥ 3) on the other. 
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Increasing μ decreases the mean-square displacement, and makes the walk “less 

super diffusive.”  

Some researchers use the name Lévy walk for the particular case μ=2, but for 

convenience in this thesis, we use this term to represent the entire family 

corresponding to 1< μ ≤3 [6]. Lévy walks differs from Lévy flights; in the former, 

searchers move along step-lengths at speed, while in the latter, searchers hop from 

the beginning of the step-length to the end[16].  

Steps of a Lévy walk can be truncated if the searcher encounters a target. Many 

studies show that a wide variety of foraging organisms use μ=2 Lévy walks to 

search for food. These empirical observations, as well as the theoretical arguments 

that μ=2 Lévy walk is an optimally efficient stochastic search strategy, have led to 

the development of the Lévy Foraging Hypothesis, according to which Lévy walks 

are ubiquitous because they are an adaptive trait[4]. 
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Figure 2-2 Hypothesis of Forager 

 

Lévy flights are not to be confused with Lévy Walk. The robot moves continuously 

along each step length; Robot hops instantly from the start to the end of each step 

length[2]. Lévy Walks model cruise movement, while Lévy flights model 

salutatory movement. Most Lévy Walk models, including those considered in this 

study, are technically truncated Lévy Walks: step lengths are terminated when a 

resource diagnosis is reached, or when the maximum time of the simulation 

elapses. Fortunately, many of the essential features of Lévy Walks, including 

general properties of the mean-square displacement, are retained by truncated Lévy 

Walks[3, 5, 17].  

Our model deals with stochastic movement robots. The correlated random walk 

provides another approach to modeling movement on the Brownian to ballistic 
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spectrum. The Lévy Walk and correlated random walk approaches are compatible 

and mathematically linked. We draw on  Lévy Walks to develop our models[2].  

2.1 Movement 

Naturally, animals need to move to eat and they need to keep away from their 

predators, with their movement depending on various factors including climate, 

temperature, concentrations of other organisms in a local area (including 

humans)[3]. Although such factors may affect the sinuosity, velocity, or specific 

trajectory taken, they do not change the primary reasons underlying the movement: 

the biological necessity of interactions or “encounters” with other organisms. 

Given the ubiquity of moving organisms, some essential questions arise 

naturally[3]. For instance, as of now, the priorities order of driving factors 

motivating the animal movement is not yet well understood[18, 19]. It may be the 

case that such a movement is driven by the specific activity an organism performs 

at a given time[20, 21]. However, some new insights have been gained on how 

organisms move, that is, what patterns the trajectories follow. Another relevant 

question is, " What factor or factors determine(s) the shape and the statistical 

properties of such trajectories?" Knowing the answers to these questions, we are 

able to go beyond the phenomenological descriptions and contemplation about 

causation: As for a specific species of organism, one question may be posed as 
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follows: "why do the organisms move as they do?" that is, what advantages or 

benefits do a specific species reap from such behavior? 

Lengths with power-law distribution and angle with uniform distribution 

reconstruct Lévy Walk behavior[22, 23]. 

 

Figure 2-3 Reconstruction of Lévy Walk behavior with lengths and angle 

Furthermore, another question can be asked as to “how did the specific biological 

mechanisms used for generating the behavior evolve?" These questions have led to 

studies on the new interdisciplinary subfield, which has come to be known as 

movement ecology[14, 24, 25]. Given that these questions have to do with such 
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research areas as random walk theory, stochastic processes, and anomalous 

diffusion, they have also been the focus of the attention of physicists[25-27].  

2.2 Robot Movement 

In the proposed model, a robot starts moving by choosing a heading and a step 

length, with the heading randomly selected based on a uniform distribution on 

[0,360]. The step length is selected from a Power-law distribution with 

parameter μ (for a non-composite robot). The method for simulating ballistic 

motion was an exception. In the case of non-ballistic motion, the selected heading 

and step length in combination, determine a random walk step. The robot moves 

along a random walk step at a speed of between 1 to 10 per time [2, 5]. The robot's 

speed determines how finely its movement is discretized, and 1 was the lowest 

speed for functional simulation. It takes a robot many time steps to complete a 

typical random walk step[5]. When the robot comes up with a resource while 

moving along a random walk step, it first truncates the random walk step, moves to 

the resource, and consumes the resource[2, 6]. Consumed pollutions are not 

replaced; hence, our simulations represent a destructive robot (resource pollution 

depletion). If a robot reaches a landscape boundary before completing a random 

walk step, it truncates the random walk [2, 4]. Ending a random walk step (whether 

truncated or not), the robot randomly selects another heading and step length, and 

the same procedure is repeated[4]. Here, Power-law distributions are not used by 
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simulations of ballistic motion (μ → 1) to generate step lengths. A robot using 

ballistic motion selects a heading and moves in that direction until it encounters a 

resource or landscape boundary[28-30]. 

Figure 2-4 Robot movement 

The robot moves at cruise speed but changes parameter for another test[30]. When 

a resource falls within its detection radius, the robot moves in a straight line to the 

resource and detects and saves it; otherwise, the robot performs a random search 

strategy[30, 31]. Random search strategies are comprised of a set of probabilistic 

movement rules. Although the resulting movement patterns are stochastic, the 

probability distributions that yield the movement offers a search structure. Like 

many theoretical studies conducted on optimal random search behavior, the 
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proposed model in this study is very general, with parameters not being specific to 

any particular species. The distance and time units in our simulation set the 

distance and time scales of the system[31]. These units could be quantified in 

terms of meters and seconds to represent a specific system. Our simulations use a 

square landscape of 100 units in length and width, and robots have a detection 

radius of between 1 to 10 [31]. 

2.3  Landscape Characteristics 

The source was distributed across landscapes. We selected this clan of point 

processes because it allowed us to adjust both the intensity and aggregation of the 

distributions. The source distributions were specified by two parameters: the radius 

of the clusters of sources and the total initial number of resources. We used 100 out 

of 1000 as our premier resource levels, and cluster radius of 4 out of 64[2]. The 

algorithm started with the DOE method by drawing the number of source 

aggregations, or clusters from a Poisson distribution with an expected value of 15 

(Table 1). This was followed by randomly assigning a point in the landscape to the 

center of each cluster (i.e., parent point). Then sources were sequentially assigned 

to a random parent and randomly placed within a specified radius (i.e., cluster 

radius) of the parent point. This continued until all resources were distributed 

among the parents[2]. Therefore, in each simulation, the algorithm randomly 

determined the number of clusters and the number of resources per cluster, though 

http://www.sciencedirect.com/science/article/pii/S1476945X15000355#tbl0010
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the premier total resource density and the cluster radius were fixed. Changing a 

single parameter (i.e., cluster radius), we could vary the degree of aggregation of 

resources, ranging from tightly clumped (cluster radius = 4) to dispersed (cluster 

radius = 64)[2, 5]. 

According to a common misunderstanding, the negative binomial distribution is 

the best tool for modeling clusters, describing the probability of finding a specific 

number of points within a sample area; yet, it DOEs not directly identify the 

positions of points. No fixed spatial point process yields a negative binomial 

distribution of points in all possible sample areas. The selection of boundary 

conditions for the landscape was aimed at minimizing the effect of boundary 

artifacts [2]. The aim was to ensure that no resources were too close to the 

landscape boundary (which would protect them from approaching from one or 

more sides). Reaching a boundary, the forager was relocated to a random position 

in the landscape, and it starts over its search (starting by drawing a new step 

length). The schematic of the environment the cluster Radius should be larger than 

the detection radius[2, 16, 31]. 

 

 

 



16 

 

16 

 

 

Table 1 Independent variables and their coded and actual values 

Parameter for Robot   

Robot Number 1 to 10 
Robots to the landscape preliminary tests 
indicate that, for example, one forager searching 
for 1000-time steps is the same as ten robots 
searching for 100-time steps. 

Source 
100 to 

1000 

Type of resource parent or offspring; used in 
distributing resources according to the Neyman-
Scott process (constrained by the total number 
of resources). 

Cluster Number 1 to 20 The max extent of the area occupied by parent 
resources. 

Radius of Cluster 4 to 64 
Creates a local variable with the distance from 
the forager to the nearest resource within its 
perceptual radius. 

µ 1 <µ≤ 3 
Limit of µ to 1, the Power-law distribution 
approaches an infinite uniform distribution; In 
the limit of µ to 3, the Power-law distribution 
approaches a normal distribution. 

Speed Robot 1 to 10 

Speed is set to a value that is a fraction of the 
perceptual radius to ensure that the forager 
never steps over any resources (i.e., cruise 
forager) Perceptual radius where forager knows 
the exact location of the resource. 

Radius for Search 1 to 10 

Several of these variables are state variables for 
the forager but were treated as global because 
they are the same for all foragers and static 
throughout the simulation (should be changed 
for increased flexibility). 
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Recently, some algorithms have been developed for a probabilistic search for 

static and moving targets, including the approach (based on the foraging theory 

that hypothesizes optimality of the search by animals and mimicking such 

behavior)[2, 32].Also, the report presents a brief account of the history of mobile 

robots and multi-robot systems, stressing their essential properties and the 

problems associated with the search by mobile robot teams. It presents recently 

developed algorithms of universal search[33, 34]. 

The probabilistic algorithms of the search were developed by Prof. Irad Ben-Gal, 

and the methods of foraging and agent-based techniques have been studied[16]. 

The problem of search for a hidden object, chasing prey and catching a target is 

one of the oldest mathematical problems. It requires knowing how best to search 

for an object when the amount of searching effort is limited, and only probabilities 

of the object’s possible positions are given[34]. 

A general overview of the main existing methods of probabilistic search for static 

and moving targets yields recently developed algorithms of search by autonomous 

mobile agents. The algorithms implement a probabilistic version of local search 

with estimated global distances, resulting in the agents’ paths over a domain. It 

requires developing autonomous mobile agents, which demonstrate the same 

behavior. The report overviews the main algorithms and models of search applied 
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in the foraging theory and presents some recently developed methods of control of 

autonomous mobile agents, which follow the ants’ foraging activity. The presented 

probabilistic algorithms of the search were developed. The methods of foraging 

and agent-based techniques are studied[16]. 

Lévy Walk movement pattern as a type of search strategies has caught the attention 

of ecologists who are eager to identify universal properties of optimal foraging 

behavior. The robot contribution to this field is discussed. First, a way is proposed 

to extend the Lévy Walk used for robotics Value Theorem to the spatially explicit 

framework of stochastic search strategies[29, 30, 35]. Next, simulations are 

described, with a focus on comparing the efficiencies of the design of robotics 

sensor and speed search strategies. Different parameters are used in making 

robotics. Finally, the design of the experiment is analyzed to identify the factors 

that contribute to foraging[16].Experimentation plays an essential role in the 

industry, robotics, engineering, and science.  

2.4 Biological Encounters as Reaction-Diffusion Process 

Based on the research findings, biological encounters naturally include two main 

components: diffusive, transport, and reactive, i.e., interaction, such as eating or 

mating. Therefore, they serve as a particular case of reaction-diffusion processes. 

Normally, the diffusion processes are linear in that the probability density 

functions of the random walkers follow the superposition principle[35].  
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The superposition principle guarantees that the probability of finding one of many 

random walkers at a specified position will equal the sum of the probabilities of 

finding each of them individually at that position[17, 28]. In more technical terms, 

the superposition principle guarantees the existence of random walk 

propagators[3]. However, should the superposition principle hold, the random 

walkers must avoid engaging in interaction with each other since such interactions 

will usually result in nonlinear effects[28]. Noninteracting random walkers should 

constantly follow linear Fokker-Planck equations associated with the probability 

density function for the walkers[4, 28]. Research findings show that such a                  

one-dimensional approach to diffusion is of great use. For example, the study 

carried out by Sparrevohn et al. has found that thousands of fish released at a single 

point diffuse as random walkers given the movement of the water (i.e., advection). 

In contrast, the reaction process necessarily involves one “particle” interacting with 

another, resulting in the emergence of nonlinear phenomena[4]. Take, for instance, 

the “reactions” represented by a predator intent on eating its prey. Though two 

meals of prey are likely, in principle, to be approximately twice as beneficial as a 

single meal, 100 meals do not necessarily mean that it is 100 times more 

beneficial[21, 36]. Therefore, it follows that the reactions between predator and 

prey inherently deviate from linear behavior. Eating, mating, and pollination are 

distinct reactions[26]. By large, such biological interactions are divided into two 

main general categories. The first category includes interspecific interactions, 
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typically, a trophic interaction between a consumer and consumable, which can 

take on the form of predation, parasites fiction, or mutual rewarding (e.g., flowers 

and pollinators)[2]. The second category represents the interactions between 

members of the same species, that is, mating or territorial competition. Therefore, 

one can use two-species reaction-diffusion models, i.e. those with two reacting 

species to describe various ecological systems[3]. Most importantly, the diffusion, 

i.e., movement emerging out of such diverse reactions remains the same, at least in 

a first approximation[26]. To be more specific, the randomness in the movements 

is not expected to rely strongly on the organism's foraging for food or searching for 

a mate (for something else) as long as relevant search cues including the density of 

organisms are comparable[2]. Being valid, this premise justifies the examination of 

the diffusive properties of biological encounter processes regardless of the nature 

of the reactive processes[16]. This study focuses largely on the "not encounter" 

rates between organisms, i.e., the diffusive aspects of the underlying reaction-

diffusion process is only considered. Such an approach can be tailored to consider 

new kinds of behaviors as search for food may not necessarily be dominant. 

Avoiding predators may also be important[15, 20]. A predating organism may 

benefit from increased encounters with its prey, while simultaneously is net 

benefitting from lower encounter rates with its predators. It is claimed that 

conditioning encounter rates between organisms have an important role in the 

ecological constraints, contributing greatly to the life evolution[27]. Multiple 



21 

 

21 

 

potential factors, as well as many ecological adaptive pathways, are involved in 

such interactions. The importance of movement is indisputable. For instance, there 

is coordination between locomotion and its detection.  Therefore, it is hypothesized 

that the sudden spike in spatial complex, as well as the patchiness of the marine 

odor landscape during the Ediacaran-Cambrian interval about five hundred million 

years ago, resulted in the gradual evolution of external bilateral sensory organs 

(e.g., nose and ears). Foraging and search strategies are considered as one of the 

crucial factors influencing encounter rates[15, 21]. Consequently, a question can be 

posed as to whether they might have contributed to the evolution of the sensory 

apparatus indirectly. In this study, encounter rates are examined in a framework 

that makes a distinction between two types of interacting organisms[22, 23]. The 

organism is categorized either as a searcher, e.g., forager, predator, parasite, 

pollinator, or the actual gender in the search activity engaged the mating process, 

or it is a target, e.g., prey, food, or the passive gender in the mating activity[14]. 

Statistical models of foraging do not need to take into consideration the 

“microscopic” details of the process they are essentially irrelevant to the averages. 

recognizing the limitations and applicability of such models is important[3]. 

Despite this “coarse-graining” perspective, these models yield statistically robust 

results since they do not rely on a specific type of biological implementation of the 

search mechanisms[24, 25]. They have a long tradition in statistical physics in 

which simple models lead to a remarkably good agreement with experiment (e.g., 
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the Is in model ferromagnetic phase transitions). The framework chosen in this 

study makes it possible to have considerable variation, easily generalizing to new 

cases. For example, the search can be guided almost completely via external cues, 

using either the searcher's cognitive (memory) skill or its detection (olfaction, 

vision, etc.) skill[2]. Alternatively, the searches might not be oriented, hence 

effectively stochastic processes. Even when the actual process is thoroughly 

deterministic, a statistical approach can be of great use, or perhaps even necessary 

when the environment is considered as a disordered medium[5]. Deterministic 

walks (e.g., the traveling seller problem and the traveling tourist problem) in the 

context of random environments can be clear made distinct from (genuinely 

stochastic) random walk[23, 37]. 

2.5 Group Testing 

Two classic versions of the problem in the form of a search for a hidden object 

were developed during World War II. The first one was formulated in 1942 as a 

problem of search for all fault units in a given pool. Initially, it required finding an 

optimal procedure for testing blood samples for the presence of an antigen[14]. A 

set of units were tested simultaneously, and if the test indicated a presence of 

antigen, then the set was partitioned into subsets, and each subset was tested 

separately. The procedure of partitioning and testing continued up to finding a unit 

or units with the antigen. Sterrett (1957) extended the Dorfman procedure to the 
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search with multiple targets, with the number of targets being unknown. Later, the 

online procedure of multiple-target search for a known number of targets was 

suggested by Hwang[14]. A group-testing approach addresses mainly the problem 

of statistical decisions, which include the selection of the best action under 

uncertainty conditions. It involves certain payoffs and a determination of the size 

of the test samples concerning the results of the previous tests. An implementation 

of this approach to the search problem results in the following procedure. The 

searcher acts on a set of possible locations of the target[14, 37]. At each step, the 

searcher chooses a subset of the locations and checks whether the target is 

somewhere in this subset or not. The procedure continues recursively on the 

subsets where the target is detected. The search terminates when the searcher 

detects the target in a single-point set. In this procedure, the main problem is 

concerned with the determination of the size and the location of the subsets, based 

on a given constant or varying detection function[24, 37]. An optimal solution to 

this problem with perfect detection was developed by Zimmerman in 1959. Later, 

it was found that the Zimmerman procedure is equivalent to the Huffman's optimal 

coding procedure (Huffman, 1952), and the length of the testing procedure up to 

the identification of the faulty unit is analogous to the length of the binary code. 

Abrahams (1994) generalized this procedure to the search by multiple searchers. In 

2005, this procedure was distributed on the group-testing search with coalitional 

and no coalitional decision making, and an online algorithm of the search was 
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suggested; A detailed description of this model and an overview of the other group 

testing search algorithms are presented by Kagan and Ben-Gal (2013b). 

2.6 Search and Screening 

 This problem was named by Koopman as "search and screening problem" and was 

widely accepted. Nowadays, this problem is integrated into the theory of search 

and screening, which according to Frost and Stone is the study of how to employ 

limited resources most effectively while trying to find a target whose location is 

not precisely known. The goal is to use the search assets, intending to maximize 

the probability of locating the search object given the resources available[25, 26]. 

Sometimes this target is stated in terms of minimizing the time to find the search 

object. 

It is assumed that the searcher acts under uncertain conditions, accumulating 

information about the target location during the search. The amount of available 

information is specified by a detection function, which defines the probability of 

detecting the target given the search efforts made. The most popular detection 

function is a Koopman function that has an exponential form related to search 

efforts and is concave in time. Originally, the theory of search dealt with offline 

search planning, and the solution of the problem was specified in the form of the 

optimal distribution of search efforts[26, 38]. This solution assumes that a group of 

search agents conducts the search, and an overall search effort is large enough as it 
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starts from the initial task. The primary cause of the search planning problem for 

the static target was solved for different distributions of the target, using the 

Koopman detection function[27, 33]. Detailed consideration of analytical results 

and algorithms was published in 1975 by Stone (1975) and then in 1992 by Iida 

(1992). Recent results obtained in the theory and military applications were 

presented in the reports by Frost and Stone (2001) and by Cooper, Frost, and Robe 

(2003), and by Washburn and Kress (2009). Stone, in particular, presented the 

algorithm of building an optimal search plan for the search in discrete space and 

time. Drawing on the Stone's algorithm and using  Koopman detection function, 

Brown (1980), Washburn (1980, 1983), and Eagle (1984) developed algorithms of 

optimal search planning for a Markovian target moving in the discrete domain at 

the beginning of the 1980s. Recently, Singh and Krishnamurthy (2003) generalized 

this approach and reported about the algorithm, which is applicable both for non-

Koopman detection function as well as for a search planning in the case of an 

infinite horizon[33, 39]. 

In parallel to the search for a moving target in discrete space and time, the search 

planning problem was considered in continuous time and space. In particular, 

Hellman (1972) formulated a general equation of the target’s movement and found 

necessary conditions for the search optimality given a given finite period of search. 

Lukka (1977) mitigated this problem by drawing on certain assumptions regarding 
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the motion abilities of the searcher and the target. Using these assumptions, he 

derived necessary conditions for the optimality of search paths. Later, in 1981, 

more general models were studied by Mangel (1981). A detailed description of the 

models and results in search planning in continuous space and time was published 

in 1985; An introductory presentation with examples of applications was presented 

by Washburn (1989). Later, Ohsumi (1991) performed a search for a target moving 

according to a diffusion process and found optimal search paths, using smoothness 

and concavity of the Koopman detection function. The optimal paths provide a 

maximum probability of detecting the target in a finite fixed period for some 

individual cases of search[39]. 

The ideas of informational group-testing search and the search in the nonfixed 

period with different termination time were studied, resulting in the development 

of heuristic near-optimal algorithms. In particular, Kagan (2010), Goren, and Ben-

gal (2010) suggested an online algorithm of the search for static and moving 

targets in discrete time and space. The algorithm required perfect detection 

function without Koopman function. Two years later, this algorithm was modified 

for the search with imperfect detection, including the application of the Koopman 

detection function. In the same year, Israel, Khmelnitsky, and Kagan (2012) 

applied a discrete variant of the ohsumi model for the search over terrain with 

shadowing and suggested an online search algorithm for a static target and the 
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target governed by not necessarily fair diffusion process. All these algorithms act 

online and yield a near-optimal path of the searcher[34, 39]. 

2.7 Foraging Robotics 

Foraging robotics is a benchmark problem, especially for the multi-robot system. It 

is the primary benchmark problem for several reasons[24]:  

1. Complex foraging involved in many social animal and fish and insects provides 

both inspiration and system-level models artificial systems, provided the processes 

are well understood. 

 2. Forager robots perform a collection task involving the coordination of each of 

multiple problematic tasks, including useful detection and identification 

(searching) of target or food. Physical collection (harvesting) of target or food 

almost certainly requires physical manipulation, transporting the food or target, 

homing or navigating while carrying the prey or food back to a home site and 

saving the food item at home before returning to the forager. 

 3.  Foraging movement requires cooperation between individuals involving either 

communication to signal to others where food or prey may be found (e.g., 

pheromone trails or direction, giving) or cooperative transport of food items to 

home and saving items for a single individual to transport[24]. 
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Some types of foraging robots have been successfully used in practical 

applications. Most foraging robots are found in research laboratories and 

simulation method in a computer. If these robots are intended for practical 

applications, they are at the stage of proof of concept or prototype. Forager 

robotics is a complex field which requires a range of competencies tightly 

integrated within the practical robotics[31, 37]. Although the principles of robotics 

forager are now becoming recognized, many of the sub-system technologies 

necessary for forager robots remain very challenging. In particular, situational 

awareness and sense; energy and power actuation, locomotion, autonomy; and safe 

navigation in unknown environments and proof of dependability and safety all 

remain difficult problems in robotics[24]. 

Therefore, it is important to describe and define the principles of the robotic 

forager. The majority of samples will necessarily be laboratory samples and 

simulations by computer systems, which are not aimed at solving real-world 

applications. They are designed to be used in the simulation model, illuminating 

and demonstrating those principles[37]. Then, it is necessary to develop a 

classification of robotic forager, encompassing important design features.Such a 

classification is a requirement for any forager robotic, whether operating singly or 

in a multi-robot team, and some technologies are currently available to implement 

those features; single robot foraging, including commercially available 
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robotics[37]. Elaborates on the recent developments in multi-robot (collective) 

foraging; strategies employed for cooperation, such as cooperative transport, 

information sharing, and labor division (task allocation), approaches to the 

mathematical modeling of multi-robot foraging[37].In forager robotics, self-

determination conventionally discusses the degree to which a robot can make its 

own decisions based on which next actions will take place. Thus, a full 

autonomous forger robot would be capable of carrying out its entire mission or 

purpose without human control or intervention. Semiautonomous forger robot 

would have a degree of autonomy but needs  some human supervision[37, 40].  

Behavior-based control describes a class of forger robot control systems 

characterized by a set of conceptually independent task achieving modules, or 

behaviors. All tasks achieving modules can access the robot’s sensors, and when a 

particular module becomes active, it can temporarily take control of the robot’s 

actuators. Braitenberg vehicle: In robotics, a Braitenberg vehicle is a theoretical 

autonomous robot in which easy sensors are connected directly to wheels. 

Therefore if, for instance, a front right side sensor is connected to the left side drive 

wheels and vice-versa; if the sensors are light-sensitive, the robot will 

automatically steer towards a light source[37]. 
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Figure 2-5 Forager Robot 

Each state represents a particular set of behaviors or actions. The forger robot can 

be in only one of these statements at any given instant in time and transitions 

between states may be caused by either internal or external events[20, 37]. 

Odometry refers to the technique of self-localization in which a robot measures 

how far it has traveled by, for instance, counting the revolution of its wheel. One of 

the problems with Odometry is that since omnidirectional wheel leads to full 

errors, odometric localization estimates are generally false and of limited value 

unless combined with other localization techniques. In turn, mobile robot and robot 
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are used interchangeably. A mobile robot is a vehicle or human-made device 

capable of sensing its environment and purposefully moving through and acting 

within that environment. The robot may be teleoperated, semi-autonomous, or fully 

autonomous[20, 24].  

2.8 Proposed Method 

Despite different techniques and methods, the above approaches to the search 

problem are led by the common idea, namely, to define a behavior of the robots to 

develop them further or specify their activity. In contrast, foraging theory 

addresses the process of search from the opposite point of view. It starts, observing 

search activity of the living Organisms followed by a concentration on formal 

modeling of their behavior. Moreover, as indicated by Pyke in his critical review of 

the theory (Pyke, 1984), proponents of optimal foraging theory seek to predict the 

behavior of animals while they are foraging[20]. 

In general, the foraging theory deals with two different problems:  

1- a problem of search for prey or food. 

2- a problem of deciding to hunt or not to hunt the found prey. This discourse is 

restricted by considering the search activity. 
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The first attempts to informally consider foraging behavior were made at the end of 

the 1950s. These studies were published in 1966 in the papers by MacArthur and 

Pianka (1966) and by Emlen (1966). They ushered in the main directions of further 

studies in foraging theory. In particular, regarding the specification of a forager 

behavior, MacArthur and Pianka (1966) suggested taking into account its 

movement in a patchy environment using specific optimization techniques. 

In his famous paper, Charnov (1976) formulated a model of optimal foraging by 

patches and derived a condition under certain assumptions regarding predator’s 

behavior and energy depot. This condition governs whether searcher has to stay in 

the current patch or leave it for search in the other patch. This result is widely 

known as marginal value theorem and forms a basis for classical optimal foraging 

theory[20]. In 1977, Oaten applied the Charnov approach to the foraging in a 

stochastic environment while Green (1980) suggested a simple model of such 

foraging, elaborating on its application. During the subsequent years, similar 

optimization techniques were applied to the analysis of foraging processes in 

different conditions; the resulting models were developed, for example, in the 

papers by McNamara (1982), by Stephens and Charnov (1982), and by Mangel and 

Clark (1986). A summary of the methods and results obtained during these 20 

years of the development of optimal foraging theory was presented by Stephens 

and Krebs in their book (Stephens & Krebs, 1986). A detailed contemporary 
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review of the mathematical methods and optimization techniques used in classical 

optimal foraging theory was given in a book by Pirolli (2007). 

The optimal foraging theory has been mainly formulated from the biological 

perspective. The models mentioned above are based on several assumptions 

regarding the foraging process itself as well as a link between evolution and 

foraging. Pyke lists a summary of these assumptions in his already mentioned 

critical review (Pyke, 1984). Analysis of these assumptions and a historical 

overview of the theory appear in the first section of the recent book (Stephens et 

al., 2007). In parallel to the studies explicitly dealing with the foraging behavior, 

several models of animals’ movement were suggested based on scientific random 

walk processes[20]. Probably, the first results regarding trajectories were reported 

by Wilkinson (1952) who investigated the possibility of a random search in the 

birds’ wandering. Following the Wilkinson results and based on the work 

published in 1951 by Skellam (1951), Patlak (1953) developed mathematical 

techniques for modeling animals’ migration via Brownian random walks. 

These models formed a basis for a new perspective on foraging, using a 

methodology different from the optimization techniques, which are used in 

classical foraging theory[20, 22]. In particular, Hoffman (1983) studied the 

optimality of Brownian search or foraging via a Brownian random walk, based on 

search theory and stochastic processes. Five years later, Bovet and Benhamou 
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(1988) applied a correlated Brownian motion for modeling of foraging in the 

stochastic environment, indicating a good correspondence between the modeled 

trajectories and the observed trajectories of foraging ants. Details of such models 

and underlying theories were published in the book by Turchin (1998). A group led 

by Viswanathan suggested another approach to the studies of forager motion[31, 

33]. A study conducted in 1996 found that the trajectories of albatrosses are better 

described by Lévy flights rather than by Brownian walks. This finding initiated 

intensive research on Lévy flights, and accordingly, Lévy walks applied to animal 

motion as well as the modeling of individual trajectories of the foragers. In 1999, 

the same research group considered optimality of search via Lévy flights, and then 

this behavior was studied in a broad context of foraging activity in particular, in 

comparison with the Brownian walks’ search[31]. A review of the results in this 

regard up to the recent time has been presented (Viswanathan, da Luz, Raposo& 

Stanley, 2011). Despite the successful application of Lévy flights and Lévy walks 

to the models of animals foraging, during the last years, there have been several 

studies which do not meet the results provided by these models[16, 30]. A 

summary of the main critics of Lévy flights models has been presented in a series 

of papers published by Plank and colleagues (Codling, Plank, & Benhamou, 2008; 

James, Plank, & Edwards, 2011). Such inconsistencies gave rise to a 

reconsideration of biased Lévy walks (Marthaler, Bertozzi, & Schwartz, 2004) and 

Lévy flights in a random environment. In the same vein, another alternative to the 
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Lévy models was put forth by Bénichou and colleagues in 2005–2007. This 

approach deals with the alternate search strategies, which combine the strategies of 

optimal search and screening with the strategies specified by optimal foraging by 

patches. The resulting walks consist of the movements with low and high velocities 

and can model the motion in different environments[29]. 

2.9 Search and Forager  

The studies of living organisms inspire foraging drawn from the pioneering ideas 

of von Neumann and Wiener, the progress made in the development of computers 

and intelligent machines. Logical schemes, perceptron, neural networks, and 

storage modification machines and fields of cybernetics follow biology. What is a 

living organism? How can we recognize intelligent behavior? 

That a system is intelligent implies that we cannot produce sufficient evidence for 

determining its behavior in certain “problem solving” situations. Note how many 

computers drop in I.Q. We must know in full deterministic detail what we are 

doing to build a complex machine; Should a machine be called an intelligent 

machine, it requires that we forget or ignore our knowledge of just how it DOEs 

what it DOEs[29, 35]. 

Probably, an intuitive awareness of this problem was a driving factor in turning to 

the mathematical description of morphogenesis, a method which is entirely 
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deterministic and allows for complex, unpredictable behavior. At the time, this 

crucial paper was considered as a kind of nonsense. However, the Turing system 

became one of the basic models in the studies of self-organization and nonlinear 

dynamics, determining the essence of mathematical biology research. Being able to 

observe a working brain, we can derive various characteristics, indicating its 

functionality[17]. However, we cannot directly observe the working mind or 

human intelligence. All we can do is to build a mathematical model and hopefully 

implement it on a device which demonstrates an activity similar to that of 

intelligence. Even if such a device passes the Turing test and if we consider the 

activity of living organisms to be different from humans, we even do not know 

what we are going to formalize and what the test is. Introducing the Tsetlin works 

in mathematical biology, Israel Gelfand (1969) wrote as follows: What should the 

degree of formalization be in biology in a study on living systems? Given quantum 

mechanics, one can distinguish two stages in its formation. At the time, the 

formulas did not make sense yet, and even if they did, they were not entirely as 

they should be[17, 28]. They were sometimes utterly wrong. The second stage was 

a period of quantum mechanics, and rapid growth became an exact branch of 

physics with a vast number of precise formulas. However, this stage was possible 

only after the first stage had taken place. By comparison, in biology, the first stage 

has not occurred yet[4, 36]. 
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Unfortunately, this opinion dating back to more than 40 years ago is still 

considered correct. We have various mathematical models of different activities of 

humans and animals, but we still cannot present a testable device that implements 

the Kurzweil optimistic predictions, or, at least, can be compared with the living 

organism in its most fundamental activity. The theory of foraging provides a 

fortunate exception[2, 6]. 

The theory of foraging addresses the behavior of individual animals and their 

swarms while seeking for food. We do not understand whether their behavior is 

optimal from an abstract mathematical point of view, but like any natural behavior, 

it is certainly optimal from an evolutionary point of view. Viswanathan and his 

colleagues initiated the mathematical modeling of the forager trajectories, using 

Lévy flights. Commenting on the findings of this group, Mark Buchanan noted as 

follows: They show to be on the track of a new domain of ecology, demonstrating 

that this way of moving is, under some conditions, theoretically the best way for 

insect and animal to discover scarce prey[2, 5]. 

Probably it is the first model of the external directly observable behavior of living 

organisms that are built without any specific knowledge about the internal activity 

of its brain and intelligence. There is a highly developed theory of search and 

screening, which was initiated in 1942 in response to the German submarine threat 

in the Atlantic. How best to search for an object when the amount of searching 
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effort is limited, and when probabilities of the object’s possible positions are only 

given. Here the search robots are equipped with artificial intelligence, so their 

abilities and structure are known, and internal activity can be planned and 

programmed. In the case of search in the stable unvarying environment, optimal 

search plans can be obtained, using standard optimization techniques. However, if 

the environment is changing during the search, then a globally optimal solution 

cannot be found, and the search plans have to be optimally corrected online for the 

task that is above the abilities of modern computers, but living foragers naturally 

solve that[6]. 

Hence, if we can build and program artificial search robots in such a way that they 

will demonstrate the same behavior as that predicted by the foraging theory for 

living organisms, we will achieve two goals. For cybernetics, we will obtain the 

techniques suitable for the best online search planning in varying environments. 

For biology, we will get reasonable insights regarding the internal activity of living 

organisms performing foraging tasks[2, 4].  

Foraging and search and screening theories are considered in the same 

mathematical and algorithmic framework. The following section overviews the 

main ideas and methods of foraging and search theories; considers Lévy flight 

models of individual foraging and corresponding diffusion models and algorithms 

of search and foraging in the random environment both by single and by multiple 



39 

 

39 

 

robots. The results of laboratory verifications and the active Brownian motion 

model for swarm dynamics with corresponding Fokker-Planck equations are also 

presented[28].  

2.10 Robot Foraging 

Statistical models of random searches do not assume any particular implementation 

of searchers and targets. The searcher is usually taken to be a biological organism 

or, in the case of DNA searches, a natural enzyme or macromolecule and 

biological, but the searcher could also be robotic. Because the behavior of random 

searches is independent of implementation details, successful robotic searches 

closely resemble natural and biological searches. Robot foraging and evolutionary 

robotics, in particular, is an expanding field of scientific research. Although robot 

behavior has traditionally been studied via the microscopic analysis of systems 

composed of a single or only multi-robot, more recently swarms of robots have been 

studied.In contrast, macroscopic robot analysis focuses on averaged quantities[3, 

28]. In a study, a model of robot foraging was analyzed, with results showing that 

successful robots forage like Lévy walk foraging. Another attractive phenomenon 

is micro-movements. A movement is a quick, simultaneous movement of both 

eyes that occurs when, e.g., the viewer wants to remain focused on a single spot 

(visual fixation) or to engage in a rapid eye movement. Micro-movements are 
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involuntary, smaller versions of fixation movements and their role has been a topic 

of much debate[18]. 

Foraging by robotics and animals involves the movement of searching mainly for 

collecting or capturing food for consumption or storage. Robot foraging is a 

broader definition of searching for and collecting any objects, then returning it to 

the point of objects collection. Of course, when the robot forger engages in 

searching and discovering to reach energy resources, both robot foraging and 

animal/ human foraging will have the same meaning.  Based on cooperative, 

mobile robotics,  “In foraging, a group of robots must pick up objects scattered in 

the environment[3]. 

2.11 Swarm Robotics  

The term "swarm robotics intelligence" describes the purposeful collective 

behaviors in nature found mainly in social animals, fish, and insects. Swarm 

intelligence is the discovery of those collective behaviors, in both artificial and 

natural systems of multiple robots as well as how they emerge from the local 

action and interaction of the robots with each other and their environment. 

 ‘Search’ and ‘search problem’ arises in some problems in many fields of applied 

mathematics and robotics[7, 19]. Explain the meaning or the notion of a search 

problem which corresponds to the class of situations in which an agent or robot is 
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looking for a target by screening a certain defined unknown environment.  Search, 

and movement problem has been formulated under various restrictions with respect 

to search implementation and the target and the robot functionalities. To illustrate 

the potential complexity that might be considered in a search problem, let us start 

with a simple search example and gradually add to it various assumptions and 

conditions. The figure below presents a simple schematic view of a search problem 

where the target (a robot) is located at some point in a given environment, and the 

robot or robot’s aircraft robot is looking for it. An initial classification of the 

problem depends on the definition, which can be either discrete or continuous. We 

mainly consider the former case, which implies that the target and the robot move 

to well-defined points in the environment. These discrete positions can also be 

modeled in a graph. This type of presentation is popular in the artificial intelligence 

(AI) literature where cost parameters or weights are often added to the edges of the 

graph so that the overall cost of the search is obtained by accumulating these costs 

along the search path over the edges[19]. 

If the weights are distributed unevenly, the search procedure can account for 

different considerations, such as non-homogeneous search distances or search 

efforts. We consider some of these cases second critical feature of the problem is 

related to the ability of the target to move in the environment[19]. In the case of a 

moving target, several versions exist for representing its type and path. Some of the 
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most popular schemes are random moves, Markovian moves, and Brownian 

moves. In general, optimal solutions exist for static search problems, but there is 

often no optimal solution for dynamic search problems with a moving target. We 

consider both approaches, and in particular, we propose a general search scheme 

that applies to both cases. A third feature of the search is related to the information 

available to the robot. If the location of the target is known, then a complete-

information search problem can be mapped to a relatively more straightforward 

path planning or chase planning problem. These types of problems often appear in 

the literature on operations research. The origin of these deterministic search 

problems for a moving target was the pursuit problem formulated in the eighteenth 

century. This class of problem is computationally tractable and often focuses on 

capturing the target with a minimal number of search moves[8, 41].  

 We focus almost entirely on the robotics search, where the exact location of the 

target is generally an unknown environment to the robot. Note that there are 

several methodological concepts for addressing the incomplete-information search 

(e.g., rough-set theory, fuzzy logic, or on probability theory). However, response 

surface methodology is used in this thesis. We follow the probabilistic search 

approach and model the incomplete information on the target location using a 

function that quantifies the probability of the target to be located at any point in the 

environment. The search then becomes a probabilistic search and, in many cases an 



43 

 

43 

 

adaptive one, where the results of the search up to a particular time are used to 

update the location probability distribution over the environment, often by using a 

Bayesian statistics approach as we do here. The problem is probabilistic not only in 

terms of the location of the target but also with respect to the distribution of the 

search efforts that are applied continuously by the robot to the search 

environment[41]. 

 

Figure 2-6 Animal forager  

This approach is followed in this study, although we do not use the notion of 

distributed efforts. Instead, it is assumed that the search can be applied to discrete 

points in the search environment. An essential extension of the distributed search 

efforts in a discrete search environment is the group-testing search. In group 

testing, the robot can look for the target in a sub-environment of the search 

environment, obtaining an indication of whether the target is located somewhere in 
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this sub-environment. The allowed size of the sub-environment is treated as an 

input parameter. The search terminates if the sub-environment contains only a 

single point, thus representing complete information on the target location. We 

explicitly consider the methods of group testing. If the target is static, the search 

can be modeled by a coding theory process (where the code DOEs not represent 

the location of the target in the environment), while the coding procedures can be 

easily mapped to obtain the optimal search policy. These cases are often 

represented by decision trees that have become extremely popular in data-mining 

applications. In dynamic search, when the target is moving, such isomorphism 

between coding theory and search is no longer valid, so we propose a methodology 

that can also extend to these cases. There are several variants of the incomplete-

information search[42]. We often assume that the target is unaware of the search 

robot. When this DOEs not hold, the search process turns in a search game and 

relies on some game theory concepts. We will shortly address these search games. 

Another conventional and realistic assumption is that the robot’s observations are 

prone to some observation errors. In these cases, two types of statistical errors have 

to be considered – either missing the target even though the robot has searched the 

right point (a false harmful error), or falsely indicating that the target has found at a 

certain point (a false positive error). Of these two errors, the false-negative one is 

much more popular. 
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Another version of the incomplete-information search also addresses the situation 

of side information, where the robot obtains some (incomplete)indication during 

the search of the target location A natural extension to all of the above methods 

obtained when assuming that there is more than one target or robot in the search 

environment. In such a case, a question arises regarding the amount of cooperation 

among the targets or search robots. A simple example of such cooperation is an 

information sharing between the robots in order to better estimate the location 

probability distribution and to better utilize the joint search efforts[42]. 

We must stress the fact that the general formulation of the search problem as 

presented DOEs not distinguish between a search for existing physical objects. 

such as cell (mobile) phones, people, and devices or a search for abstract entities, 

such as records in a database. An e-commerce customer on the Internet, a targeted 

customer type, or a search for feasible solutions of a given problem within a 

predefined solution environment. Some favorite tools for such search procedures 

can be found in the data-mining and statistics literature. We draw clear lines of 

similarities between search procedures for physical entities and those found in 

problem-solving procedures, typically in stochastic local search methods that are 

used to obtain feasible solutions to a given schematic problem[42]. 

Even from the above simple example, it can be understood that the search problem 

in its general form can be very complicated, highly variant, calling for different 
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solution schemes, which are partially covered. It is worth noting that despite the 

similar properties of the variants mentioned above of the search problem, no 

formal and unified search theory captures all these points. Instead, one can find 

different search procedures and considerations in various research areas, such as 

operations research, coding theory, information theory, graph theory, computer 

science, data mining, machine learning, statistics, and AI. It is not to say that the 

proposed theory is a unified search theory. However, we try to bridge some of 

these gaps by formalizing the main properties, procedures, and assumptions that 

are related to many of these search problems and their variants[42, 43]. 

2.12 Foraging Model of Robot Foraging 

Foraging robots are a type of mobile robots which can search and transport objects 

to one or more collection target. Foraging robots may be a single robot operating 

exclusively or multiple robots operating collectively. The Single foraging robot 

may be remotely teleoperated or semi-autonomous; multiple foraging robots are 

more likely to be fully autonomous systems. Robotics foraging is essential for 

several reasons: 

It is a simile for a broad class of problems integrating exploration Navigation, and 

object identification, manipulation, and transport in multi-robot systems, foraging 

is a canonical problem for the study of robot forager cooperation.  The actual real-

world or many potential applications for robotics are instances of foraging robots, 
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for cleaning, instance harvesting, search for rescue robot, land-mine clearance or 

planetary exploration[15, 20]. 

 

Figure 2-7 Algorithm of robot behavior 
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Figure 2-8. The condition of the all system. 
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2.13 Single Robot Foraging 

A review of the literature shows that the design of any foraging robot, whether 

functioning alone or operating as a member of a multi-robot team, will necessarily 

follow a pattern[4]. The robot will need one or more sensors, with which it can 

both sense its environment for safe navigation and detect the food or objects items 

it is seeking. Actuators for locomotion through the environment and for physically 

collecting, holding and putting down its prey[37].  A control system is at the 

disposal of the robot, allowing for at least a set of basic reflex or movement 

behaviors. Since robots are machines that perform work and need energy, power 

management is of great importance. The robot is foraging for its energy. Then a 

balance should be made between its energy needs and the energy cost of foraging. 

Therefore, a complex set of interconnected subsystems is needed and although its 

system-level structure is likely to use a standard pattern, the shape, and the form of 

the robot will vary significantly based on its intended environment and application. 

We will present techniques for sensing, actuation, communications, and control, 

within the context of robot foraging. Moreover, given that the current research 

focuses on enhancing specific capabilities within each of these domains of interest, 

some examples of single robot foraging are presented, including real-world 

applications[20, 37]. 
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2.13.1 Obstacle Avoidance and Path Planning: 

There are many sensors to food and comprehensive search robot designers for 

robotics. Foraging robot will typically need short or medium range closeness 

sensors for obstacle avoidance, such as infrared return signal intensity or ultrasonic 

or laser or another crucial sensor time for systems[44]. The most versatile and 

widely used 2D or 3D  laser scanning machine can provide the robot with a set of 

radial distance measure and hence allow the bot to plan a safe route through the 

obstacles. Localization, foraging robots require sensors for localization. They 

make it possible for the robot to estimate its position in the environment[20, 37]. 

The availability of external reference signals including fixed beacons through 

which a robot can use radio trilateration to fix its position relative to those 

beacons, or the capability of satellite navigation such as the Global Positioning 

System (GPS) paves the way for straightforward Localization. When there is no 

external infrastructure, then a robot will typically resort to multiple sensors 

including odometry, an inertial measurement unit (IMU) and a magnetic 

compass, often integrating the data from all of these sensors, such as laser 

scanning data, to reach an estimate of its position. As a well-known stochastic 

approach,  Concurrent Mapping and Localization (SLAM) typically makes use of 

Kalman filters to allow a robots (or a team of robots) to both fix their position 
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relative to observed landmarks and at the same time to map those landmarks so 

that the confidence will increase as the robot(s) move(s) by the environment[32]. 

2.13.2 Object Detection 

  Vision is often one of the sensors required for object detection by foraging robots 

in laboratory experiments.  If, for example, the object in question has a distinct 

color which makes it outstanding in the environment, then the robot can use 

standard image processing techniques to detect,  then steering towards the object. 

However, when the environment is visually vague, unknown, or poorly 

illuminated, vision is problematic. Different approach to object detection is 

artificial odor sensors: Hayes et al. developed a multi-robot approach to localizing 

an odor source. An artificial whisker modeled on the Rat my special vibrissae has 

recently been demonstrated. Such a sensor can be of particular value in dusty or 

smoky environments[20]. 

The means for physical locomotion o f  a foraging robot can come in different 

forms, depending on the environment where the robot is supposed to operate. 

Wheels, tracks or legs are typically used in ground robots. 

2.13.3 Communications 

Communication plays an essential role in robot foraging. Even in the simplest case 

of a single foraging robot, communication is unnecessary. As for single robot 
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teleoperation, radio communication between operator and robot is a  necessity. 

More importantly, in multi-robot foraging robot, communication is used 

continuously to enhance multi-robot performance; all six axes of strategy in the 

classification of Table 3(search, grabbing, transport, homing, recruitment, and 

coordination) need some form of robot-robot communication. Arai et al. refer to 

the critical difference between explicit and implicit communication required by 

robots to exchange information directly. Radio is the physical medium of 

communication (but not necessarily). Wireless local area network (WLAN) 

technology is highly fit for terrestrial multi-robot systems. This is partly because a 

spatially distributed team of wirelessly networked robots makes an ad-hoc 

network, providing the team with sufficient connectivity[9, 45]. Thanks to this 

connectivity, any robot can communicate with any other via multiple hops. 

Situated communication comes into play when “both the physical properties of the 

signal that carries  the message and the content of the message contribute to its 

meaning.” 

2.13.4 Implicit Communication    

Implicit communication is used when robots engage not in direct communication 

but indirectly via the environment, also known as stigmergic communications. 

Therefore,  one robot makes some changes to the environment, and another robot 

senses the change, altering its behavior accordingly. Beckers et al. demonstrate that 
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stigmergic communication alone can bring about the desired overall group 

behavior. In their investigation on multi-robot communication, Balch and Arkin 

indicate that while stigmergy may be adequate for the completion of the task, 

direct communication can enhance efficiency. Trail following, through which a 

robot follows a short trail left by other(s), is an instance of implicit 

communication[9]. 

2.14 Multi-Robot Foraging 

Foraging is a task that lends itself to multi-robot systems and, even if a single robot 

can accomplish the task, foraging should be done with careful design of strategies 

aimed at enhancing cooperation among the multiple robots. Swarm intelligence has 

to do with the investigation of natural and artificial systems of multiple robots. In 

this system, there is no centralized or hierarchical command or control. Rather, 

global swarm behaviors result from local interactions among the robots, and 

interaction between robots and the environment as well. Swarm robotics is related 

to the design of artificial robot swarms by drawing on the principles of swarm 

intelligence. Therefore, control is wholly distributed, with robots typically having 

to select actions based only on local sensing and communications. Consequently, 

swarm robotics is a subset of multi-robot systems[1, 6]. 
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Figure 2-9 Foraging Robots (Slugbot) 

The Slugbot: a proof-of-concept robot predator foraging is, therefore, a 

benchmark problem within swarm robotics, not least because of the active 

crossover between the study of self-organization in social insects and their artificial 

counterparts within swarm intelligence. This section presents some examples of 

multi-robot foraging, taken from the field of swarm robotics. Below, three 

cooperation  strategies will be discussed: 

information sharing, environmental cooperation, labor division[40]. 

2.14.1 Swarm Robotic Systems for Search and Foraging  

Collective behavior of robots is a basis for any automated system, especially, of 

computer-integrated manufacturing systems, which require the synchronized 

activity of a large number of controlled manipulators. However, when the 

autonomous mobile robots are considered, the main questions concentrate on 

swarming itself and self-organization of the swarm regarding the robots’ abilities 
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and the task to be solved[40]. Food search criteria AI problem, especially for 

multiple robots system. It is an essential problem for several reasons:  

sophisticated foraging observed in social insect inspires artificial system-level 

model. 

Foraging is a complex work that is related to the coordination of multiple tasks, 

each of them being tricky. 

Efficient multi-robot foraging requires cooperation between individuals involving 

either communication to signal to others where the objects may be found or 

cooperative transport of objects too large for a single individual to transport[40]. 

Because of the complexity of the problem of search and foraging by the robot 

swarms, a variety of methods and techniques are often considered under a distinct 

theory of social foraging (Andrews, Passino, & Waite, 2007a, b). For a very brief 

overview of mathematical models used in this theory and swarm robotics in 

general, see the report by Muniganti and Pujol (2010) and a survey by Chung, 

Hollinger, and Isler (2011). The most popular taxonomy of the multi-robot systems 

was suggested in 2001 by Iocchi, Nardi, and Salerno (2001)Notice that if the 

robots are not aware of the other group members, then the actions of each robot 

can be considered separately and the group behavior is a result of parallel 

independent activities of the members. If the robots are not coordinated, they 
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execute their tasks in parallel, but the actions of one robot can depend on the 

results of the actions of the other robot (e.g., in the production lines)[40]. 

Due to weak coordination, the robots do not apply the coordination protocol, acting 

in parallel. In this context, they undertake certain corrections of the behavior about 

the other robots, for example, for collision avoidance[24]. In contrast, strong 

coordination implies that the robots support the coordination protocol and consider 

their actions and their influence on the behavior of the other robots. In the strongly 

centralized systems, the decision making is conducted by a single leading robot, 

which obtains information about the other robots and accordingly prescribes their 

behavior. This leading status remains during the mission. Weak centralization also 

assumes that the leading robot controls the activity of the group but allows for 

changing the leader during the mission. Finally, in the distributed systems, the 

robots make their decisions autonomously according to the activities of the other 

robots[24]. 

2.14.2 Mathematical Modeling 

  Multi-robot foraging is typically a stochastic nonlinear dynamical process and 

therefore challenging to mathematical. Experiments in a computer simulation or 

with real robots (which provide in effect an embodied simulation) show that 

limited environment exploration permit parameter which at best is only a weak 

inductive proof of accuracy. A mathematical model of the other parameter 
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complements space analysis and optimation parameters identification. Finally, in real-

world applications,  foraging robot systems are credited for safety and reliability, using 

a wide range of formal methods such as mathematical modeling[24]. 

Martinoli, Lerman, and coworkers proposed a microscopic approach to studying 

the collective behavior of a swarm of robots engaged. In cluster aggregation and 

collaborative stick-pulling, in which a robot’s interactions with other robots and 

the environment are modeled as a collection of stochastic movement with simple 

geometrical considerations and the possibilities of regular experiment are 

determined with one or two real robots[24]. 

Martinoli, Lerman, and coworkers have also put forth a practical approach widely 

employed in physics, chemistry, biology, and social sciences. This approach 

directly demonstrates the collective behavior of the robotic swarm. A group of 

macroscopic models has been applied to examine the impact of interference in a 

swarm of foraging robots and collaborative stick-pulling. More recently, 

macroscopic models are given in  Lerman et al. 's study on the probability model 

of success with macroscopic dynamic allocation. In the band, the robots at work 

will need to decide whether to pick up red or green puck based on local 

information. Methods of Optimal Foraging assume that a predator is hunting for 

prey[24]. The hunting consists of three main processes:  
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The process is a search for prey. 

Deciding whether to terminate a search and start a chase for prey or to omit the 

chase and continue searching.  

The process would be a pursuit for the prey if such a decision were made. The 

theory of optimal foraging for a robotic system In contrast to the theory of search, 

where the studies start with the formulation of the optimization problem subject to 

the given characteristics of search robotic system and yield the solution (which 

prescribes the robot’s behavior), in the foraging theory, the consideration follows 

an opposite direction. It starts with the observed or expected behavior of the 

forager and then, based on certain meaningful assumptions regarding forager’s 

goals and abilities, attempts to formulate an optimization problem so that its 

solution corresponds to the observed motion of the forager. Basic model of the 

forager’s behavior, which represents an observed movement and a decision-

making process, is based on the assumption that the prey items are distributed 

differently in different regions, or patches in the environment and the predators 

hunt in the patch during a specified period and then pass it for the other patch 

(MacArthur & Pianka, 1966). Such a model is known as a model of foraging in a 

patchy environment[24]. 
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Regarding the patches, it is assumed that each patch is characterized by the 

availability of the prey items or, in the simplest case, by the number of items, 

which is known for the forager. The optimization problem regarding the forager’s 

behavior follows the general assumption that the forager acts as economically as 

possible. Usually, the problem is formulated either as a problem of minimization of 

the time spent for capturing the prey item, including the time of the search for a 

patch and the time of hunting in the patch (MacArthur & Pianka, 1966), or as a 

problem of maximization of the utilized energy per prey item (Charnov, 1976). 

Then, the prey model deals with making a decision as to whether to stay in the 

patch or to continue search, while the patch model addresses a question: how long 

should the forager stay and hunt in a particular patch, or when should the forager 

leave the current patch and continue searching (Stephens & Krebs, 1986). In the 

deterministic setup, the solution of the patch problem was found in the form of 

the marginal value theorem (Charnov, 1976). It assumed that the resources in 

the patches are not renewed and that the times of movements between the 

patches are proportional to the distances. Then, given the requirement that the 

forager maximizes the net rate of the energy intake, the theorem states that the 

forager should leave the patch if the marginal rate of gain in the patch becomes 

equivalent to the long-term average rate of energy intake in the habitat 

(Charnov, 1976). Notice that according to the model, since the overall energy rate 
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depends on the rates in the patches, the forager will return to the already-

explored patches up to their complete depletion (Stephens & Krebs, 1986). 

All requirements of the deterministic setup of the problem cannot be satisfied in 

practice: the forager cannot know an exact rate of the energy intake in the patch 

and certainly cannot know the long-term rate of energy intake over the habitat. To 

overcome these difficulties; the problem should be formulated in a more realistic 

probabilistic setup (Oaten, 1977). In such setup, it is assumed that the captures of 

the prey in the patches are random events and that the forager is not informed of 

the number of prey items in the patches. However, the forager keeps a distribution 

of the prey items over the patches such that it defines the probability that the patch 

includes a certain amount of prey. Then, the strategy of the forage are specified 

regarding probabilities of gain and energy rates, but the resulting solution is not 

necessarily optimal (Oaten,1977), and the forager may terminate hunting and 

leaves a patch before reaching the threshold value of the energy rate. Such 

forager’s behavior can be represented by patch sampling and assessing t h e  

potential gain in this patch (Stephens & Krebs, 1986) implying specific predictive 

abilities of the forager[24]. Regarding foraging in random environment, such 

abilities are represented by the potential function (McNamara, 1982), which 

specifies relative advantages of continuing hunting in the patch given that the 

future behavior of the forager is optimal[24]. An optimal policy is also defined, 
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using the potential function and it prescribes staying in the patch as long as the 

value of potential is positive and leave the patch when it drops to zero[24]. 

The trajectories of the robots and foragers are obtained as a solution to the specific 

optimization problem, depending on the implemented constraints and assumptions. 

The search and foraging in the opposite direction: it start with the class of 

trajectories, which are postulated as optimal. Then, it considers feasible models 

and algorithms, resulting in such trajectories. It has been successfully applied in 

biological and ecological studies and is used in this approach, given their 

relationship with the probabilistic algorithms of search and screening. The 

trajectories of the searching and foraging robots were considered as direct results 

of the algorithms of search and path planning, serving as traces of the robot 

foraging in the patchy environment[24]. According to the task, the obtained 

trajectories satisfy the following specific optimality criteria: the maximal 

probability of detection of the target or minimal search time up to the specific 

detection of the target in the case of search and screening problems or maximal 

expected intake energy rate in the case of foraging. The other approach to the 

search and foraging problems follows the opposite direction. The consideration 

starts with the observed trajectories of the foraging animals, birds, or insects, 

which given their abilities and habitat are postulated as optimal evolutionary 

foragers (Pyke, 1984. This is followed by the development and analysis of a simple 
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formal model, which allows for the detection of such trajectories. Indeed, different 

living organisms follow different paths, which are described by different stochastic 

processes. The random Brownian motion of the robot is walking, that fits within 

the framework of the theory of search and random search formula. The movements 

of the foraging ants usually are modeled by the corresponding Brownian motion, 

which demonstrates a right consistency with experimental results. The relevance of 

Lévy flights is possibly right for flying insects. The trajectories resulted in the 

indicated processes[2, 24]. For illustrative purposes, all shown trajectories (both 

simulated and observed) include 1000 Points with the coordinates normalized for 

the square arena 100 × 100 units. In Brownian motion, the step length is three 

units. In the Lévy flight, parameter μ = 1.6, minimum step length is1 unit, and 

maximal step length is 100 units that are a rounded value of the arena diagonal. In 

the corresponding Brownian motion, the correlation coefficient between the 

following directions of the steps. Notice that by large, the trajectory specified by 

the Lévy flight looks similar to the trajectories generated by the algorithms of 

foraging in the patchy environment considered[2]. However, in a more close 

resolution, it is seen that the Lévy flight trajectory is scaled invariantly, while in 

the trajectory of foraging in the patchy environment it is not the case, and its long-

distance jumps are defined by the location of the patches. The Lévy flights 

demonstrate good correspondence with the long-distance wanderings. Also, in the 

models which consider the short distance movements and, mainly, the movements 
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of the animals and insects, the dependence on the environment is defined. Also,  

mixed models are used to combine different strategies of search and foraging. The 

indicated methods are developed at most in the framework of contemporary 

foraging theory and are aimed at providing formal models for the observed 

movements of living organisms. At the same time, similar trajectories of the search 

robots are specified by the methods of the real-time probabilistic search and path 

planning, developed in the framework of search and screening theory. The 

following section describes the temporary cost methods used in the foraging theory 

and search theory. Moreover,  the search and foraging algorithms used for 

implementing these methods are discussed. For a detailed overview of general 

methods, used for modeling spatial trajectories, see a recent publication by 

Brillinger[2]. 
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3 Design of Experiment (DOE)  

 

Figure 3-1Design Of Experiment 

Design of Experiment methodology was proposed by a British statistician, Sir 

Ronald A Fisher, as early as 1926. The pioneer work on statistical methods was 

used in the field, and the concepts and procedures are still in use today. In 

particular, Fisher and colleagues found that experimental design involves multiple 

measurements to the level of fluctuation in the measurements. During World War 

II, DOE was beyond its roots in agricultural experimentation, as it was a way to 

evaluate and improve the performance of weapons systems. Immediately after 

World War II, the first industrial period marked the boom of DOE. Quality 
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management is a comprehensive and continuous improvement of management 

techniques, which was later used by the US military industry. Bowes and Kitsch 

simultaneously developed some effective plans for estimating several significant 

impacts in 1940. In 1944 Plecote Berman plans were presented, which are still 

unclear[38, 40]. At the time, Rao introduced the concepts of orthogonal arrays as 

experimental designs. Today, this theory is based on advanced topics in linear and 

hybrid algebra[46]. 

 

Figure 3-2 History of design of experiment 
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 Design of the experiment is one of the most powerful techniques used to improve 

quality and increase productivity. In this way, some changes are made to the 

processor system by doing some tests, and the influence of those tests on 

performance characteristics or process response to them are considered. The design 

of experiments means to systematically manipulate some variables to assess the 

impact of these manipulations. This proposed processor system can be identified, 

using the model shown in the following[46, 47]. 

3.1 Traditional Experimental Design Versus DOE 

DOE is not an alternative approach to experimental research. DOE is instead a 

methodology that provides stringency to the classical approach for doing research. 

DOE can be used to assist with the statistical section of the research process, as 

shown briefly. Before identifying the private parts of a DOE methodology, it is 

worthwhile looking the defects of the traditional(one factore at the time) 

optimization approach briefly. In the most straightforward traditional approach to 

optimizing experiments, one parameter is varied while all others are defined. The 

experiments performed traditionally are out of range, leading to conclusions, and 

sometimes even worse, wrong conclusions. Further, the traditional setup DOEs not 

take into account that experimental parameters, which can be dependent on each 

other (parameter interaction). In ion-exchange chromatography, optimum will 

change when conductivity is changed[12]. 
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So, with the one factor at the time(OFAT) experimental setup, there is a substantial 

danger that the exact optimum for the studied process is not recognized. At last, a 

study with the wrong setup cannot be saved or evaluated by even the most 

advanced statistical programs and approach. On the contrary; process parameters 

are allowed to vary simultaneously, allowing for the effect of each parameter, 

particularly in combination[13]. 

3.2 Why DOE? 

The design of experiments is one of these sophisticated, specialized tools. Explore 

the relationship between several explanatory variables and one or more response 

variables. Unlike the usual methods, the interaction between process variables can 

be determined using statistical techniques. Inferential statistics are used in the 

processing of raw data in order to achieve optimal rather than emotional planning 

and decisions. This knowledge is continually increasing all over the world. The use 

of this knowledge is for the following applications, among others: statistical 

quality control, the design of experiments, data mining, and prediction[13, 32]. 

Given the modern technical approaches, products and processes are becoming 

extremely complicated. As the price of experimentation goes up rapidly, it is 

getting more and more unmanageable for the psychoanalysts, who are already 

restricted by resources and time, to investigate numerous ingredients that bear 

upon these complex processes using trial and error methods. Preferably, a 

https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Response_variable
https://en.wikipedia.org/wiki/Response_variable
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technique is needed to identify the "critical few" factors most efficiently, and then 

to guide the process to its best setting to match the ever-increasing need for 

improved tone and increased productivity[32]. DOE techniques provide powerful 

and effective methods to accomplish these aims. This procedure is a technique for 

optimization of any process or product but is better, faster and cheaper than other 

engineering methods, such as A/B tests (which are known as OFAT or any agent) 

and “expert guess.” When studying the effect of two or more factors on a process, 

the control and arrangement of the DOE experimental setup allow for the 

collection of sufficient information with fewer experiments, compared to the 

traditional approach[32]. 

 

Figure 3-3 schematic comparison of the number of experiments required to 
reach an acceptable level of information in an experimental study[47]. 
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Designed experiments are, by far, more effective than single-factor-at-a-time 

experiments, which involve converting a single component at a time to examine 

the upshot of the ingredient on the product or procedure. While 

(OFAT)experiments are easy to read, they do not permit the investigation of how a 

gene affects a product or process in the presence of other elements[48]. An 

interaction is a relationship whereby the result that a factor has on the product or 

process is changed due to the presence of ace or more other elements. Often 

interaction effects are more significant than the outcome of individual ingredients. 

This is because the product or process software environment involves the presence 

of many factors together instead of events separate from one of the factors at 

different times[47, 49]. Traditional Experimentation studies one factor at a time 

(OFAT), holding all other factors constant. Serial experimentation is uneconomical 

in terms of time, money, and energy. Moreover, unfavorable & unpredictable 

complete fulfillment of the correct optimal product or robust process can never be 

guaranteed due to the presence of multiplication/ interactions of factors. impact of 

one or multiple factors on others, which OFAT and Design of Experiments (DOE) 

can not deal with as they study multiple factors at once as a systematic series of 

parallel experiments simultaneously. In contrast,  parallel experiments are 

considered economical in terms of time, money and efforts, yielding maximal 

information with minimum runs.  Input factors sometimes undergo some changes 

in order to identify causes for significant changes in the output responses. In this 
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way,  the relationship between factors is determined, and an optimized product/ 

robust process is found. Accounts for interactions between factors estimate the 

effect of each factor regardless of another factor effect, using multiplication[48]. 

An interaction is supposed to continue between the two factors regarding the 

robotic. The central concepts in inferential statistics deal with the development of 

the variance index, expected value, random variable, probability distributions, and 

all of the Concepts of probability. The extent of inferential statistics should be 

introduced or reviewed in all studies of the sciences so that all scientific 

experiments should be taken into account. DOE can be defined as a systematic 

means of changing experimental parameters (components) to create solutions that 

can be methodically analyzed, providing useful information about the process 

studied[50, 51].  

The DOE methodology ensures that all agents and their interactions are 

systematically investigated. Thus, the data received from a DOE analysis is, by far, 

more authentic and complete than the results from (OFAT)experiments that ignore 

interactions and hence may lead to wrong conclusions. 

This led to the emergence of disciplines such as operations research, ergonomics, 

and design of the experiments. These three sciences helped the Allied to make 

significant gains. During the war, a form of experimental design called “operating 
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plan” was considered a significant weapon to speed up the development of the 

industry. These projects consisted of two levels of each factor and only a fraction 

of all compounds. After the war, a statistician in Imperial Chemical Industries, 

named George Box explained how has created response surfaces for optimization. 

Later design of experiments was applied in simulation processes resources such as 

time, speed, radius detection, forager number, and mixing that were easily 

manipulated. It was also used in the fields of science, including biology, 

agriculture[52, 53]. Later Mr. Fisher expanded the concept of experimental design. 

He was responsible for analyzing the data in an experimental agricultural center in 

London. The chemical industry in the United States, the UK, and many developed 

countries still make the best use of the design of experiments. In recent years this 

science has been used in many fields of engineering and computer science. 

Moreover, it was known as a competitive tool in the industrialized world. Now that 

we are somewhat familiar with the history of science, we will refer to its position 

in the academic fields[53]. 

Undoubtedly, the industry has realized the importance of quality. Today, quality is 

considered as a business strategy to increase market share, with organizations 

using designed experiments to achieve global quality. The design of experiments 

has been developed as Quality science and statistical quality control in England 

and the United States, respectively[48].  
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The first step includes defining the objective of the study and the factors that 

should be systematically varied. The range of variation is also defined in this step. 

The second step involves defining relevant responses (a type of analytical methods 

and data)[48]. 

A DOE experiment is set up rationally to cover the intended experimental space. 

The axes of the cube represent the different factors (X1, X2, and X3…., represent 

three different factors, e.g., Using DOE, multiple factors dealt with in a single 

series of experiments can be viewed in arrangements called hypercube as the setup 

becomes multidimensional. Different types of designs are available, depending on 

the study to be performed[48]. 

After performing the experiments according to the selected design, step 5 in the 

workflow involves using  DOE software for deriving a mathematical model that 

describes the investigated process or system. A relevant model tells us, for 

example, which factors have a significant impact on the response and which factors 

do not. It is essential to evaluate the model to determine its relevance, using DOE 

software. The model is often visualized as a response surface plot and is used for 

evaluation of other parameter settings or process outputs within the experimental 

space. While performing the DOE study, it should always be carefully verified that 

the model is relevant. Verification of the model is preferably done through 

verification experiments within the experimental space[54]. The existence of a 
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relationship between a factor and the response is a  critical requirement for the 

relevancy of the model. 

 

Figure 3-4 Parameter estimation to provide the best efficiency 

3.3 Modeling the search 

In this study, we model a two-dimensional environment that contains targets. Each 

target is a point (i.e., it has radius zero). A robot is modeled as a point that moves 

across the environment.  The robot DOEs not have a fixed detection radius, 

because when designing a robot, it is essential to select the sensor detection range 

within which it can detect resources. This detection radius is assumed small 

relative to the size of the environment. When a robot detects a target, it stops its 

current movement, moves directly to the target, and the target is removed from the 

environment. This model is the "destructive search," which is appropriate for 

situations where targets are objects to be consumed, collected, or otherwise 

eliminated. Depending on the application, targets may be more appropriately 

modeled as discs, rather than points. Fortunately, this is equivalent to the model 
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where the targets are points, and the target radius is added to the robot's detection 

radius. 

A natural metric for search efficiency is the number of targets encountered divided 

by the total time spent on searching, and this is the metric we use in this study. We 

assume that a robot moves with a  speed while performing search and that its 

movement pattern is continuous (i.e., the robot never jumps from one location to 

another). Finally, we assume that the robot has no a priori information about the 

location of targets. 

Suppose you belong to a hunter-gatherer tribe whose habitat is located in a remote 

part of the sprawling African plains, and you are hungry. How do you proceed with 

searching for something to eat? 

Based on a new study, we are likely to make use of the same food-scouring 

technique as that used by animals and cells, and organisms. How can the behaviors 

of living cells and organisms serve as a basis for programming robots? These 

behaviors are assumed to be well-honed to their purpose by natural selection. In 

the case of stochastic search strategies, one can look to the foraging behavior of 

animals, including seabirds, sharks, fruit flies, fish, bacteria, large mammals, etc. 

One can even look at the behavior of cells in the human immune system, which 

can be thought of as “foraging” for disease cells[7, 40]. 
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The studies conducted by scientists have shown that a diverse number of species 

(e.g., organisms) seem to use a mathematical pattern of movement to move via a 

random walk while foraging for food. Consequently, they can be interpreted as 

implementing stochastic search strategies.Each successive move in a random walk 

is chosen randomly, uninfluenced by any previous move. Take a drunk stumbling 

along, where a step may be taken either to the right or left, with no memory of the 

route he/she has taken. 

 In a simple random walk, a searcher moves a fixed distance (the step-length) in a 

randomly chosen direction, stops, randomly chooses another direction, and moves 

a distance equal to the step-length in that new direction, and so on. In a Gaussian 

random walk, step-lengths are chosen from a Gaussian distribution (a simple 

random walk can be viewed as a Gaussian random walk with variance zero). At the 

sufficiently large time and distance scales, all Gaussian random walks converge to 

Brownian motion. The mean-square displacement of Gaussian random walks and 

Brownian motion both scale linearly with time. Random walks with this property 

are called diffusive. When the step directions are selected from a non-uniform 

distribution, the result is a biased random walk. In a correlated random walk, the 

probability distribution of each step direction is concentrated around the direction 

of the previous step direction. Searchers that move via correlated random walks are 
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said to display directional persistence. A random walk can be both biased and 

correlated[2]. 

An investigation (published in the Proceedings of the National Academy of 

Sciences) made use of GPS-tracking devices attached to the belts or arms of forty-

four members of the Hadza, a group of hunter-gatherers living in the northern 

region in Tanzania. These hunters wore these devices from dawn to dusk, who 

walked several kilometers per day to find food[61]. Most of the Hadza foraging 

treks can be best characterized by Lévy Walk, as opposed to alternative statistical 

models of motion.In recent decades, scientists have observed this Lévy-like 

behavior in various creatures ranging from bacteria to penguin in their search to 

find a meal. These observations have been made across the natural world among 

the animals with varying degrees of complexity. This same pattern was seen 

among all of them[21, 22]. 

Lévy Walk is associated with many small moves integrated with a few longer 

trajectories, with most of the steps being made within a small area and longer 

routes took on occasion. 

Observations have been made of the Lévy-like pattern in insects, sea predators 

such as sharks and tuna, terrestrial mammals. More interestingly, evidence of Lévy 
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Walks has even been gathered of people's wandering through university campuses 

and urban areas[21]. 

Specialists of human locomotion evolution studied hunter-gatherers to find clues 

on how ancient man moved. Human foragers are likely to use a different search 

methodology, which is different from animals since human enjoys high cognitive 

ability to use memory and environmental cues. Humans may use the same 

technique as other species. In this study, we use the robot to find the object or 

food[61]. 

An extensive investigation conducted on sea predators such as sharks and tuna 

showed that Lévy Walks alternated with another kind of movement called 

Brownian motion, keeping searcher within a smaller area without the longer 

trajectories. Here, food distribution is a likely factor. In the case of prey 

abundance, it seems that Brownian is the right choice for picking through a closed 

area at random, collecting the bounty[61]. 

In contrast, in the case of food scarcity, Levy patterns do the job better. “It 

facilitates searching for widely and randomly distributed food without returning to 

the same patches, compared to something like a Brownian walk.” In the case of the 

Hadza, food is distributed in patches, with the subjects having a set plan for the 

day. The women forage in groups, engaging in hot debates beforehand about where 
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to go. They are eager to proceed with more detailed data collection (e.g., chatting 

with the subjects to figure out their intentions, following them on treks and taking 

note of what they bring back). Ballistic motion is the term for straight-line 

movement, involving a random walk with infinite step-length. In the ballistic 

motion, a searcher selects a direction at random and travels in that direction 

indefinitely the mean-squared displacement of ballistic motion scales with the 

square of time. Such a movement pattern emerges if its mean-square displacement 

scales with time at a faster-than-linear rate; hence ballistic motion is 

superdiffusive. 

In natural systems, food resources (targets) are often distributed in clumps. If a 

forager encounters a food item, likely, another food source is nearby. Hence it 

makes sense to carefully search the nearby area, using a movement pattern such as 

Brownian motion. On the other hand, a search strategy like Brownian motion is 

inefficient, because it involves revisiting previously explored areas. On the other 

extreme, a forager employing ballistic motion DOEs not revisit previously 

explored terrain but might be unlucky, moving in a direction away from a clump of 

food resources. Lévy walks a trade-off between these two phenomena. Lévy walk 

foragers are likely to take small steps (similar to Brownian motion), but will 

occasionally take very long steps, preventing them from wasting time intensively 

searching a barren region. 
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 In ecology, the Lévy foraging hypothesis has been extremely controversial; 

nonetheless, it serves as an excellent motivation for programming autonomous 

robotic search. In the current study, an attempt is made to find an answer to the 

following critical question: what are the optimal parameter values for a random 

walk stochastic search strategy? The reply to this question hinges on many 

characteristics of the system, such as the detection radius and the speed at which 

the searcher moves as well as the overall spatial distribution of targets on the 

landscape. Here, the coupling between move length and time is discussed. We start 

with the formal dynamical coupling of the particle position and current time via a 

constant velocity of the particle. There are two closely related models which 

incorporate finite velocity of random walkers. Lévy Walks use stochastic processes 

that provide a versatile tool for modeling robot movement.  

f(x)=Cx-μ 

A Lévy Walk with parameter µ is a random walk with step lengths x drawn from a 

Power-law distribution, p (ɭ) ~ɭ type equation here 1<µ<3 and C between 0 

degrees and 360 degrees selected, using random method. Different values of µ 

yield different types of random walks.Given that µ→1, the resulting random walk 

approaches ballistic (i.e., straight-line) motion. A random walk whose step lengths 

are drawn from a Power-law distribution with µ → 3 acts like Brownian motion. 
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Consequently, Lévy Walk can be characterized as a spectrum of movement 

behavior, ranging from ballistic motion (µ →1) on one extreme to Brownian-like 

motion (µ = 3) on the other. A reason for using Lévy Walks to model robot 

movement is that they are ‘‘superdiffusive’’.  

3.4 Design of Experiment  

Variations occur in nature be it the distribution of a particular grade of food in the 

unknown environment, robot content in the large environment or the distance 

traveled by the vehicle. Mutations are also picked up in the observations recorded 

during multiple executions of a process, even when all elements are strictly kept at 

their respective levels, and all the executions are run as identically as possible. 

Fundamental changes that occur in the process are often called noise when all 

conditions are maintained at the same point. Some statistical methods are available 

to achieve this. The presumption of the normal distribution is widely used in the 

analysis of experiments design. Design of experiments is a technique for planning 

experiments and studying the information received. The technique permits us to 

employ a minimum number of experiments, in which we systematically vary 

several experimental parameters simultaneously to get sufficient data. The example 

can be applied to see the influence of the experimental parameters on the outcome 

and to recover an optimum for the process. Modern software is applied to produce 

the experimental designs, to obtain a model, and to visualize the generated data. 
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DOE approach can significantly improve the efficiency in screening for suitable 

experimental conditions (for simulation of robotic movement, optimization of a 

process)[54]. 

The focus is on DOE for simulation and robotic, but the theory can be applied in 

many other applications. This theory is essential to gain a clear understanding of 

hypothesis testing because this concept is directly applied in the analysis of designs 

experiments, determining whether or not a particular factor is significant . A lot of 

our knowledge about the processes and products in the scientific and engineering 

disciplines emanates from the experiment. A test was conducted in a series of tests 

systematically to increase knowledge of an existing processor to be explored. 

Then, the design of experiments is considered a tool to develop an experimental 

strategy that maximizes learning using a minimum of resources, data, and 

experiment. DOE  is widely used in many fields with broad applications across all 

the natural and computer sciences. It was in widespread use by engineers and 

scientists involved in the improvement of processes to maximize performance and 

reduce production variability[54]. Most engineers are also working on products or 

processes to which scientific theories or principles are applied directly. The 

experimental method plays an essential role in studies on the cost-effective and 

confident development of new products and processes. Those designs that are 

based on inferential statistic methods are called classic designs. Classic designs 
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include designs such as balanced and unbalanced ANOVA designs block designs, 

factorial designs, fractional factorial designs, Latin square design, and nested 

designs, and so on. Also, the RSM designs can be made out of the factorial 

designs[48, 55].  

Most applications of classic design are in industries such as electronics, mechanics, 

and engineering materials and robotic. Moreover, fractional factorial designs are 

also used in the robotics, petrochemical industry, and airspace. The design and 

analysis of experiments revolve around the understanding of the effects of different 

variables on another. The aim is to demonstrate a cause and effect relationship 

between some independent variables and a dependent variable of interest. The 

subject variable in the context of DOE is called the response, and the independent 

variables are called genes. The treatments of an experiment are limited by the 

number of factor levels being investigated. For instance, if an experiment with two 

elements is to be executed, it can be understood that the size of an experiment 

expands rapidly as the number of factors (or the number of the stories of the 

factors) increases[48, 54].  

3.4.1 Examples Of Application Of DOE & Its Advantages 

Most of the valid companies are using the design of experiments methods, 

benefitting from the annual profit of many economic savings brought about by 

these methods. Some companies that continually take advantage of these 

http://progisdoe.com/en/%d8%af%d8%b3%d8%aa%d9%87-%d8%a8%d9%86%d8%af%db%8c/%d9%85%d8%ab%d8%a7%d9%84-%d9%87%d8%a7%db%8c%db%8c-%d8%a7%d8%b2-%da%a9%d8%a7%d8%b1%d8%a8%d8%b1%d8%af%d9%87%d8%a7%db%8c-doe-%d9%88-%d8%b3%d9%88%d8%af-%d8%a2%d9%88%d8%b1%db%8c-%d9%87%d8%a7%db%8c-%d8%a2
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techniques(e.g., BMW, Audi, Samsung, Sony, Henkel, and popular airlines such as 

Boeing and Airbus and especially organizations like NASA) are some examples. 

All of these firms act as a pioneer in the work field, seeking creative innovations in 

their industry. Currently, advanced courses of 2 to 6 DOE which is called MDOE 

are held in NASA[48, 52].  

So in this way,  the volume of used resources is reduced, and the quality of their 

products increase. Application of DOE such as the parameter design and tolerance 

design has helped the Samsung company to capture the first place in terms of  

Plasma TV (PDP) manufacturing all over the world, enjoying a mass production 

line of this product. New concepts for small size LCD has given rise to TV panels 

called UFS (Ultra Find and High Speed) with the highest resolution in the 

world[53].  
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Table 2. Several of projects using  DOE methods in different companies. 

 

Company Name Project conducted by the 
DOE Results 

 

Design of experiments for 
identification of nonlinear 

dynamic systems 

Reduce emissions and fuel 
consumption 

 

The optimization of the airbag 
for knee Make Optimization  Airbag 

 

Design of Experiments 
optimization for the NBR 
composites 

Increase the performance of 
NBR 

 Improvement of Compressor 
performance 
(International conference of 
Compressor Engineers) 

Increase performance and 
noise reduction 
Suction Muffler 

 

Reduce variability cars OSU Find Significant and affected 
parameter on variability 

 

DOE method reduces the number of performers dramatically, allowing for 

reviewing the primary effect of the interaction between agents as well. Another 

example has to do with a 250 passenger airplane wing design. Design engineers 

often use numerical optimization techniques to evaluate and compare the use of a 

new configuration plane. Though the application of numerical optimization has 

been very successful, the existence of irregularities in the optimization of real 

engineering problems often precludes the use of optimization techniques based on 

the gradient. Irregularities caused wrong chaos gradient calculation, slowing or 
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stopping the convergence of the optimization process to an optimal solution. This 

problem is particularly acute when a structural analysis of the actual configuration 

of the aircraft aerodynamic aircraft design may require thousands of hours of CPU 

time on a supercomputer. The method was developed to make two kinds of the 

mathematical model, consisting of irregularities factors in the use of optimization 

to build aircraft wings[53]. 

3.4.2 Simulation Software  

Since the simulation software yields the results for reality simulation, the correct 

use of simulation software, like Taylor and Arena, can be helpful in the recognition 

process. The correct choice of the DOE profit rate depends on organization 

definition of the word Profitability that defines Profitability as optimization of the 

product (reducing waste and using cheaper materials) or innovations (design 

engineering) or quality Enhancement (better performance). Each of the points of 

view will undoubtedly bring about much profitability. DOE can help achieve all 

these outcomes. Energy has been extensively covered in Engineering, with many 

many ways to save energy being proposed. Today the world is using clean energy, 

and every country is seeking to achieve it. One application of design of 

experiments is in reducing variability in processes as well as waste. Design of 

experiments is a useful tool to determine the specific factors that affect the product. 

DOE can reduce the time required for the development of the product[53, 56]. 
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The pharmaceutical companies use DOE for the development of the formulation, 

which allows the evaluation of all potential risk factors simultaneously, quickly 

and systematically. DOE can identify any of the formulas on the response 

(probability of interaction between the two factors), helping to evaluate the 

statistical analysis of the critical factors.  After the identification of the critical 

factors, the formula can be improved, using the DOE to optimize all critical 

factors. The manufacturing process can also be developed and optimized in the 

same way[56]. 

3.4.3 Mechanical Engineering 

 Mechanical engineering needs to design all pieces at first. Most designs are very 

complicated, and issues such as the strength of materials statics, and applied 

mathematics are considered. Ski Company has produced K2 in Washington, using 

a complex design for its product ( a top rate of 30% waste was produced). DOE 

found the cause and solution and downtime pressing (skate producer) from the 

250-hour workweeks to 2.5 hours. In this field of engineering, Taguchi methods 

and classical DOE methods are widely used[56]. 

3.4.4 Petroleum & Gas Industry 

Given the rising oil prices and demand for oil, many companies in the oil and gas 

industry are seeking to improve control process and data analysis in order to 

optimize their operations and gain a competitive edge. DOE experiments are used 

http://progisdoe.com/en/blog/379
http://progisdoe.com/en/blog/393
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to minimize the expensive trial and error test.  The experimental design methods 

are widely used in the exploration extraction and refining of crude oil. (e.g., 

maximization  of light olefins from ethanol). Useful parameters such as the amount 

of water, entry of water, catalyst type and WHSE speed, the reactor shape, 

temperature, and many other parameters that affect the system can identify and 

determine the levels. There are many irregularities in the oil and gas industry. 

Therefore it is not easy to find the optimal control parameters.  Most of the data 

types used in the oil and gas industry( especially when the project is related to the 

area of operations ) include a series of interconnected data, both input variables, 

and output variables. If there is no description of data, a tool such as regression or 

combination of regression methods, including stepwise regression can be used[48]. 

3.4.5 Mining & Material Engineering 

DOE Techniques are an integral part of Materials and Mining Engineering. Several 

projects have been done, using these techniques. For example, temperature and the 

type of material are determining factors in building a battery, i.e., Whether two 

factors interact to influence the manufacturing of batteries together or not, and to 

what extent is it useful in the useful life of the battery or the impact of each factor 

on the response. To be linear or nonlinear as well as the useful life of the battery 

are justified by the two factors, or other factors affecting the battery life. These are 

questions which can be answered accurately only with the accurate design of 

http://progisdoe.com/en/blog/382
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experiments. The design of experiments technique has many applications in mining 

engineering such as determining the optimum operating conditions of Copper ore 

flotation. Irregularities in determining the optimum operating conditions can have a 

significant effect on experimental design in minimizing these irregularities. In this 

industry, more RSM and mixture designs for response experiment design are 

used[48]. 

3.4.6 Agriculture 

Since its beginnings in agriculture, DOE has been very useful across many sectors 

of the robotics and industry. Six Sigma is a technique that uses various tools, 

including DOE, to derive statistics-based quality improvements. One of the first 

applications of DOE methods was in the agricultural industry. Just two simple 

examples of the application of this method have been documented in the 

agriculture industry. For example, we can use these methods to maximize the size 

of basil leaf (factors such as the sprinkling of Irrigation, temperature, ambient 

noise, and fertilizer use can be useful in the growth and size of basil leaves)[54]. 

3.4.7 Would Be a Case of Button Mushrooms 

Making compost takes a long time, and utilization of mushrooms compost per 

square meter (the compost) in a country like Iran is 15% to 17% and in advanced 

countries such as the Netherlands (one of the leading exporters of this product in 

the world) is 30%. However, why is this the case? It is quite evident that they have 

http://progisdoe.com/en/blog/359
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found critical parameters in the production process and achieved high performance 

in production. Also, they have reduced the time required for the production of 

compost by one third lower than the required time. It has provided many benefits, 

such as the lower cost of production and the reduced Portion of their time. Many 

factors are involved in making the compost, which can be produced in various 

ways. However, since compost can be produced with some slightly different 

formulation, DOE methods can be used for this purpose and different sectors. 

Classical DOE methods and RSM are widely used in this industry[54]. 

3.4.8 Design for Computer Experiments  

The choice of design for a computer simulation experiment presents some exciting 

alternatives if the experimenter is considering a polynomial model to describe the 

underlying relationship. In this way, an optimal design such as a design for the 

specified model is a possibility to choose. Various types of space-filling design 

have been suggested for computer experiments. There are several reasons why 

space-filling designs are thought to be particularly appropriate for deterministic 

computer models:  

1. Recall that the estimation codes methods are often used for developing models 

based on computer experiments from deterministic codes, having the characteristic 

of no uncertainty at an input location. However, uncertainty increases as we move 

farther away from any observation. Hence, space-filling designs are desirable 
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since, in general, they spread the design points out nearly evenly or uniformly 

throughout the region of experimentation[57].  

2. Most space-filling designs do not contain any replicate runs, even when the 

design is projected into lower-dimensional spaces. This is desirable for a definite 

computer model since a single computer model at the design point provides all the 

information about the response at that point. If the design were to contain 

replicates when projected into lower dimensions and some of the factors were not 

active, this could result in the same response value being obtained for multiple 

runs. Since it is unknown a priori which factors are active, this could be costly 

duplication if obtaining those runs requires a great deal of computational effort. 

3. Region of the design space may be known to be unacceptable based on 

underlying science or engineering knowledge. Space-filling designs can be easily 

adapted to fit into nonstandard shaped regions[57]. 
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4 Response Surface Methodology 

 

Figure 4-1 Response Surface Methodology (RSM) 

In the 21st century, engineers are now taking on projects of unprecedented complexity. 

For example, consider the state of the art aircraft now versus the plane made by 

Wright brothers about 100 years ago. They did many experiments on the wing 

design, the configuration of the propeller, and so on. After all these pioneering 

works, experiments and mistakes, Wright finally landed. Today, much of the 

development of airplanes and other advanced equipment is done through 

experiments on high-power computer simulations[10, 55]. The approach is to 
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sample some number of times within the experimental space randomly. Following 

a  more systematic array of points requires first segmenting the region into a given 

number of rows and columns. It is possible to do sampling in such a way that 1 

point appears in each row and each column(no more, no less)[58].  

 

Figure 4-2. Sample for Response Surface Methodology 

Response Surface Methodology is a classification of statistical and mathematical 

parameters used in the development and optimization of an adequate functional 

relationship between a response of interest, y=efficiency, and the number of 

associated control (or input) variables denoted by x1, x2, xk. In general, such a 

relationship is unknown but can be approximated by a technique which comprises 

a body of methods for exploring optimum operating conditions through 

experimental methods. central-composite and Box-Behnken designs are useful for 

building empirical models and Functions. The aim of these designs is optimizing 
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the response (output variable) that is affected by several independent variables 

(input variables). One experiment is a series of tests called the Implementation. In 

each experiment, changes are made to input variables to determine the causes of 

variations in the response variable. For analysis of the resulting data, the response-

surface methods provide an estimate of the response surface, testing its lack of fit, 

displaying an ensemble of contour plots of the surface, and doing follow-up 

analyses such as steepest ascent, ridge analysis, and legal analysis. The design of 

functions is hoped to provide an intuitive and useful user interface relationship 

between multiple explanatory variables and one or more response variables. 

Response Surface Methodology makes use of a sequence of designed experiments 

to obtain an optimal response. It uses statistical models. Therefore, practitioners 

need to be aware that even the best statistical model is an approximation of 

reality[58, 59].   

RSM was developed initially for Experimental responses model (Box & Draper, 

1987). Later it was extended to model the numerical experiments. The error on 

physical examinations can occur in different shapes(e.g., evaluating errors when 

irregularities or error are caused by incorrect convergence ). RSM assumes that the 

errors are random. Application of RSM for design optimization leads to a decrease 

in the cost of expensive analysis methods and numerical irregularities connected 

with them.  The RSM convergence is made toward the optimal element because 
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they reduce the effects of irregularities. Constructing response surface models in 

response to surface designs is an iterative process. Once an approximate model is  

obtained, it is tested whether the answer is satisfactory or not, using the goodness 

of fit method. If not approved, estimating of the process starts again and further 

tests are done.  

Different grades or values of the operating conditions comprise the ingredients 

in each experiment. Some may be more or less categorical, and others may be 

quantitative (speed, radius detection, and mu). In practice, categorical variables 

must be managed on an individual basis by comparing our best-operating 

conditions for the quantitative variables across different combinations of certain 

singles. The basic methods for quantitative variables require fitting first-order 

(linear) or second-order (quadratic) functions of the predictors to single or multiple 

response variables. This is followed by analyzing the characteristics of the fitted 

surface to determine what activity is appropriate[59, 60]. 

Since it may seem like a response-surface analysis, it is considered merely a 

fixation problem.  However, there are some intricacies in this analysis as well as in 

how it is commonly used and given its difference from routine regression 

problems, some special help is warranted. These intricacies have to do with the 

everyday function and importance of coded predictor variables; the assessment of 

the fit; the different follow-up analysis that is used depending on what type of 
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model is fitted as the result of the psychoanalysis. Visualizing the response 

surface methods also involve some unique experimental design issues. Given 

the emphasis put on iterative experimentation and the need for relatively 

sparse designs that can be built up piece by piece according to the 

developing demands of the experimenter, these designs cover only the most 

standard first-and second-order methods. Although they are aimed for one 

response variable, they cover those variables reasonably well. Foremost, it 

provides functions and data types that bring home the bacon for the coding and 

decoding of factor levels, given that appropriate coding is considered as an 

indispensable factor of response-surface analysis. Second, it provides parts for 

generating standard designs and building blocks thereof, as well as examining their 

variance function. Standard response-surface models provide appropriate 

summaries. They provide a means of visualizing a fitted response surface. It 

guides further experimentation, e.g., along with the path of steepest ascent. 

Most RSM functions take advantage of formula capabilities to provide intuitive 

and transparent ways of obtaining the needed result[48, 60]. 

There is commercial software on the market, facilitating the design and analysis of 

RSM, with JMP (SAS Institute, Inc. 2009) as the most popular software. This 

study makes use of JMP. This makes it possible to visualize them. These programs 

generally go beyond RSM capabilities (for instance, more types of designs, 
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provisions for mixture experiments, and so on); but RSM makes the most 

important methods available. RSM may go beyond the capacities of these 

plans in the generality of central-composite designs that it can produce. The 

destination of this overview of RSM and how its parts may be used to plan and 

analyze response-surface experiments are discussed[60].   

The mechanism of some scientific phenomena is understood sufficiently as they 

use mathematical models that flow from the physical mechanism. Although some 

essential statistical problems arise in the building and study of such models, our 

discussion will be appropriate for the phenomena that are not sufficiently well 

understood to permit the mechanistic approach. Response surface methodology 

comprises a group of statistical and mathematical techniques for empirical model 

building and model exploitation, which are useful for developing, improving, and 

optimizing processes. The careful design and analysis of the tests reveal that they 

are concerned with the following: responding or output variables, the levels of 

some predictors or input variables affecting it, essential applications in design, 

development, and formulation, new robot design, as well as upgrading existing 

robotic design. RSM  is widely used in the industrialized world, especially in 

situations where multiple input variables potentially affect performance or 

qualitative product or process characteristics. These performance measures or 

quality characteristics are called the response[48, 60]. They are usually measured 
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on a continuous scale, although correct answers, ratings, and sensory responses are 

not abnormal. Most real RSM applications include more than one answer. Input 

variables are sometimes referred to as independent variables, and they are under 

the control of an engineer or scientist, at least for testing. The field response 

methodology involves practical strategies for exploring the space of the processor 

independent variables[48]. 

The conduct of an experimental investigation seems to be a highly arbitrary and 

uncertain process. In this thesis, it is supposed that six parameters of experimenters 

competent in a particular field of robotics are collected, each parameter is locked, 

all experimenters are presented with the same general robotics problem, and each 

parameter is asked to submit a plan that could lead to a solution for the problem. 

For sure, no two parameters would present the same plan[50].  

4.1 Which Input Variables Should Be Studied? 

A robotic movement reaction was studied. Most investigators would regard six 

parameters as being essential, but there might be a diversity of opinion about 

which should be included among other input variables, e.g., the initial rate of 

addition of the reactant, the ratio of certain parameters, the agitation rate mu, and 

so on. The similar and perhaps even stronger disagreement might occur in a 

psychological experiment[44]. 
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When an input variable, such as energy increases, the robot may increase its linear 

response, such as perceived loudness of noise(when it is varied on a regular scale 

or, equivalently, when ln is varied on a linear scale). It is simpler to express such a 

relationship; therefore by first transforming the input into its logarithm. Another 

input might be related to the response by an inverse square law, suggesting an 

inverse square transformation, the inverse square root examples can lead to 

transformations such as the square root, and the reciprocal. A choice of a 

transformation for a single variable is often called a choice of metric for that 

variable. More generally, a transformation on the input variables can involve two 

or more of the original inputs. Suppose, for example, that the amounts and Greek 

zeta of 12 two nitrogenous fertilizers were being investigated[44]. Rather than 

employing themselves as the input variables, their sum, the total amount of 

nitrogenous fertilizer, and their ratio might be used if it were likely that the 

response relationship could be more simply expressed. In some instances, the 

theory of dimensionless groups can be used to indicate appropriate transformations 

of this kind, but usually the best choice of metrics and transformations is not clear-

cut and, initially at least, will be subject to conflicting opinion. 

4.2 Approximating Response Functions 

Good response surface designs have been constructed to perform well based on a 

particular assumed model. They have also been structured to evaluate the 
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assumptions of the model being analyzed in order to determine if the 

experimenter’s initial impressions of the robotic system under study match the 

right underlying relationship which produced the data to be analyzed. Hence the 

experimenter should think carefully about the goals of a particular experiment and 

what the anticipated analysis will involve before selecting the design for data 

collection[44].  

Most applications are sequential. It means that at first some ideas are created to 

figure out which factors or variables are probably important in the response surface 

study. This usually results in an experiment developed to examine these factors, 

with a view toward verifying the contribution of the factors to the response as well 

as to eliminating the unimportant ones[50, 56].  

4.3 Objectives and Typical Applications of RSM 

Response surface methodology is useful in the solution of many types of robotics. 

 In general, these problems can be  divided into three categories, as follows: 

1. Mapping a Response Surface over a Particular Region of Interest. This process 

would be typically performed at a specific set of reaction mu and reaction 

efficiency and another parameter used in a robot. However, it may sometimes be 

necessary to make some changes to these normal operating levels,.That is, to 

design a manufacturing robot that meets the criteria. The approximation of the 
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correct unknown response function over a region around the current operating 

conditions having a suitable fitted response surface (second-order surface) provides 

the process engineer with a chance to predict in advance the changes in yield that 

will emanate from any readjustments to the input variables, namely, time and 

speed. 

2. Optimization of the Response. In the industrial sector, a fundamental problem is 

determining the conditions that optimize the process. This requires determining the 

levels of time as well as the speed that lead to maximum efficiency. Then, a 

second-order model can be employed to approximate the effective response in the 

context of a narrow region around point B. Based on this approximating response 

surface, the optimum levels or condition for time and speed could be selected. 

3. Choosing  Operating Conditions for the  Achievement of  Specifications or 

Customer Requirements. In the case of most response surface problems, multiple 

responses should be simultaneously taken into account[59].  

4.4 RSM and the Philosophy of Quality Improvement 

During the last few decades, robotics system has become most interested in quality 

and process improvement. Statistical methods, including statistical process control 

and design of experiments, play a vital role in this activity. Quality improvement is 

considered as the most effective when it is obtained early in the product and 



101 

 

101 

 

process development cycle. It is very difficult, costly, and it is considered 

inefficient to manufacture a poorly designed robot such as control and electronics, 

mechanic automotive, and hardware devices, software, robotics. Processes are 

some examples where experimental design methodology has resulted in shorter 

design and development time for new products. Also, a robot which is easier to 

produce has higher reliability, enjoys enhanced field performance, and satisfies or 

goes beyond goal point and optimization efficiency. In this respect, RSM is 

considered as an essential branch of experimental design as well as a critical 

technology in the development of new processes, allowing for the optimization of 

their performance as well as the improvement of the design and formulation of a 

new robot. It is frequently an essential concurrent engineering tool, in that product 

design, process development, quality, manufacturing technology, and operations 

personnel often work together in a team-work environment to apply RSM. The 

targets of quality improvement, including a decrease of variability and improved 

product and operation performance, can often be achieved directly using RSM[59]. 

4.5  Iterative Nature of the Experimental Learning Process 

Faced with so many indeterminacies and uncertainties, one can easily be 

disappointed in finding a successful outcome of any kind. However, he should 

keep high morale. Fortunately, practical experimentation is frequently successful. 

How is DOE involved with a robot? The position seems more promising when we 
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remember that experimental runs are usually only one part of an iterative sequence 

and that an investigation strategy should be directed at the overall furthering of 

knowledge rather than just the success of any single group of tests. Our problem is 

to organize such matters to reach the right conclusions even though our initial 

choices of the area of interest, the metrics, the transformations, and stages of the 

input variables may not all be right. Our strategy must allow any poor initial 

choices to be  rectified as we proceed. The way to success is not unique, although 

it may seem so.to the first investigator in a study. Thus, it is not the uniqueness of 

the path that we should try to accomplish, but instead, the probable and rapid 

convergence of an iterative sequence to the correct conclusions should be the 

priority. This iterative process of learning by experience can roughly be 

formalized. It consists mainly of the continuous and repeated use of the 

sequence[56]. 

It often happens at the beginning of an investigation that there is preferably a long 

list of variables..., which could be of importance in terms of their effect. One way 

to reduce the list to a manageable size is to sit down with the investigator the 

biologist, robotics, psychologist, etc. and ask him/her to pick out the variables 

he/she believes to be the most important. To press this too far, however, is 

dangerous because, not infrequently, a variable initially believed unimportant turns 

out to have a significant effect. A good compromise is to employ a preliminary 
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screening design such as a two-level  Fractional factorial to pick out worthy 

variables. In one investigation, for instance, the original list of variables that might 

have affected the response contained many candidates. Three of these were, after 

careful thought, eliminated as they turned out to be unimportant. Therefore, they 

were safely ignored. A 16 run two-level fractional factorial design was run on the 

remaining eight variables, and four of the eight were designated as probably 

influential over the ranges studied. Three of these four had already been selected 

by the investigator as likely to be critical, confirming his judgment. The fourth was 

unexpected and turned out to be of great importance. Screening designs are often 

carried out sequentially in small blocks and are very useful when performed in this 

way[56].  

4.6 Empirical Model-Building HOW Stage 

When input variables are quantitative, and the experimental error is not too large. It 

may be more beneficial to attempt to estimate the response function within some 

area of immediate interest rather than the range covered by the observed responses. 

In many problems, the form of the real response function is strange and cannot 

economically be obtained, but may be capable of being locally approximated by a 

polynomial or some other type of graduating function. Suitable experimental 

designs for this purpose have been modernized. The fundamentally iterative nature 

of response surface methodology RSM would ensure that as the investigation 
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proceeds, it would be possible to learn about the amount of replication needed to 

achieve sufficient precision. Locating the experimental region of most interest, one 

can use appropriate scaling and transformations for the input and output variables, 

and the degree of complexity of an approximating function, and hence of the 

designs are needed at various stages[56].  

Ideally,  we like to use the right function to represent the response instead of 

approximating it by a graduating function. In some problems, we can be sure to 

achieve useful working mechanistic models which, at least, take account of the 

main characteristics of the mechanism. These examples are often most naturally 

expressed via differential equations or other no explicit forms, but modern 

developments in working out facilities and the theory of nonlinear design and 

estimation have made it possible to make out with the ensuing problems. A 

mechanistic model has the following advantages: 

It leads to our scientific understanding of the phenomenon under study. 

It commonly offers a sounder basis for extrapolation of at least two conditions 

worthy of further experimental investigation (if the entire ranges of all input 

variables are not considered). 

It is considered to be parsimonious, i.e., frugal in the use of parameters, providing 

better estimates of the response[59]. 
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Results from fitting mechanistic models have sometimes been disappointing 

because not enough care has been paid to finding out what an appropriate model 

form is. It is easy to accumulate data that never ‘‘place the postulated model in 

jeopardy,’’ and so it is common, e.g., in chemical engineering to finding different 

research groups, each advocating a different model for the same phenomenon and 

each proffering datum that ‘‘prove’’ their claim. In such instances, methods that 

discriminate between the various candidate models must be used[59]. 

It sometimes finds, e.g., in investigations of industrial plant processes that a large 

amount of past operational data is usable. It may then be tempting to think that no 

experimentation is needed because it ought to be possible to extract information 

related to the response of interest to changes that have occurred naturally in the 

input variables. Such investigations are often valued as preliminary studies, but the 

existence of such data rarely eliminates the need for further planned 

experimentation. There are several reasons for this[59].  

1. Significant input variables affecting the response are not altered. 

2. Dealings between the response variable and several input variables may be 

induced by unrecorded ‘‘lurking’’ variables that involve both the reaction and the 

input variables. These can give a lift to ‘‘nonsense correlations.’’ 
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3. Historical operating data often contain gaps and omit important ancillary 

information. 

4.7 Desirable Properties of Response Surface Designs 

A review of the literature reveals many experiments design classifications as well 

as many criteria against which designs have been developed. Indeed, many 

computer packages offer optimal designs based on particular criteria and input 

from the user. Particular design criteria and critical issues associated with the 

computer-generated design of experiments have been discussed[56]. However, it is 

essential for the reader first to review a set of properties that should be taken into 

account while choosing a response surface design. Some of the essential 

characteristics are as follows: 

yielding an acceptable fit of the model to the data. 

Providing reasonable model parameter estimates. 

Providing a proper distribution of prediction variance of the response, Variance 

throughout the region of interest. 

Providing an estimate of “pure” experimental error. 

Giving sufficient information to allow for running a fit test. 
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Checking the homogeneous variance assumption being insensitive (robust) to the 

existing outliers in the data. 

Being robust to errors associated with the control of design levels. 

Allowing for the models of increasing order to be  constructed sequentially. 

Allowing for experiments to be done in blocks. 

Being cost-effective. 

To help organize our thinking about the characteristics on this list, we can divide 

the list into several categories[56]. The assumption of items 1– 4 is that the 

practitioner makes the right assumptions regarding the nature of the underlying 

relationship between the inputs and the response. It assumes that given the correct 

model, the goal is to obtain an estimation of model parameters as well as a 

prediction of new observations, using the model. The reader has been exposed to 

the notion of prediction variance. Now the importance of stability of prediction 

variance is discussed[59]. This is often the most common category on which 

emphasis is placed when selecting a designed experiment. Items 5 and 6 seek to 

provide ways in which the assumptions of the model can be evaluated. All models 

are based on some assumptions.  The data collected in the experiment are very 

helpful in that they allow for the evaluation of feedback about the suitability of 
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these assumptions moreover, items 7 and 8 focus on how the experiment will be 

affected if something goes wrong[56]. 

The goal is to design an experiment that can withstand some less-than-ideal 

outcome and still generate useful results. Item 7 is particularly important given the 

possible existence of outliers. Items 9 and 10 are aimed at the flexible 

implementation of the experiment and leveraging of the results as a part of the 

sequential nature of many experiential learning cycles. Finally, item 11 is a 

reminder concerning the existence of cost constraints for experiments. More 

extensive experiments can often lead to the improved characteristics of the first ten 

items though they increase the total cost of the experiment, preventing those 

resources from being used for other purposes. The introduction of the eleven-

characteristic list at this point is aimed at achieving multiple goals. The reader 

needs to be reminded that designing an experiment is not necessarily secure, given 

that it is a complex undertaking. The design of the experiment should involve 

striking a balance among the multiple objectives, not just focusing on a single 

characteristic. If the optimization of a product or process involves taking int 

account multiple aspects, designing an experiment usually involves balancing 

multiple objectives. Indeed, some of  11 items may be important, and yet the 

researcher may not be completely aware of the relative importance of those items. 

Some items do conflict with each other. As a result, there are trade-offs that almost 
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always exist when one chooses an appropriate design. For example, good choices 

of where to allocate are based on the assumption that the model selected is correct. 

The selection is of enormous importance when we are trying to evaluate the 

correctness of the model[59]. 

Similarly, assuming that the model is correct, protecting against model 

misspecification would lead to different choices of designs. Another potential 

trade-off has to do with whether we think that the implementation of the 

experiment will run smoothly or whether there might be some complications. 

Finally, there must be cost trade-off with most of the other categories: A more 

massive experiment can help improve the results for most of the first four 

categories, yet at the cost of using additional resources[59].  

4.8 Experiment With Computer Model 

We usually think of applying RSM to a physical process, such as a chemical 

process in manufacturing and machining. However, RSM can be  also successfully 

applied to computer simulation models of physical systems. Computer models are 

becoming increasingly common, and they can be used as proxies for many 

complex processes that are difficult or expensive to manipulate. In some 

applications, there are restrictions on what conditions can be explored with a 

physical experiment because of cost, safety, or regulations. In other cases, having a 

computer model (or code) allows for much more rapid exploration of alternatives, 



110 

 

110 

 

development of prototypes and new products, bringing increasing competitive 

advantage and speed to market. Computer models can often yield a large number 

of inputs and result in multiple responses, which can be either scalar (a single 

value) or functional (a collection of values connected over time or space). Hence 

the design of experiments has a vital role to play in the selection of a preferred set 

of input combinations to be explored. In such computer modeling applications, the 

role of RSM is different, as the data obtained from runs of the computer model can 

be used to build a model of the system being modeled by the computer simulation, 

which is called a metamodel or emulator. Given that for some computer models, 

obtaining one observation from the code may take considerable computer runtime, 

the characteristics of the system can be understood from exploring the estimated 

model,with optimization carried out on the metamodel. It is presumed that if the 

computer simulation model is deemed as a faithful representation of the real 

system, it follows that the RSM optimization will determine the optimal conditions 

for the actual organization[59]. Simulation models can be divided into two 

categories: stochastic and deterministic. In the former, the output responses are 

random variables. Examples are systems simulations including the factory 

planning and scheduling models employed in the semiconductor industry as well as 

traffic flow simulators used by civil engineers. Another example is Monte Carlo 

simulations, sampling from probability distributions to study complex 

mathematical phenomena that lack direct analytical solutions. In deterministic 
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simulation models, the output responses are not random variables; they are entirely 

deterministic quantities whose values are determined by the (often extremely 

complex) mathematical models upon which the computer model is established. 

Today, deterministic simulation models are used by many engineers and scientists 

as computer-based design tools[59]. Typical examples are circuit simulators used 

for designing electronic circuits and semiconductor devices, finite element analysis 

models employed for mechanical and structural invention, and computational 

models for physical phenomena including the robotics system. Before discussing 

what designs and analysis to use when studying computer models, it is helpful to 

compare data obtained from physical experiments versus those obtained from 

computer models. Information from both types of experiments can be expensive: 

for physical experiments, the cost emanates from the frame-up and running the 

experiment as well as from the quantification of the response values. For computer 

experiments, the development of the codes takes intensive labor and time, often 

requiring subject matter expertise. However, in this study it is assumed that the 

computer model is already available, and we use it to explore the underlying 

relationship of interest. Obtaining the data itself is also often expensive, and due to 

the code complexity, it may need enormous amounts of computer power and 

runtime to gain results even for a moderate number of input combinations. Hence, 

for both types of experiments, the ability to obtain a reasonable estimate of the 

relationship from small to moderate amounts of data is essential[59]. A key 
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difference between physical and computer experiments is the range over which 

experimentation may take place. For physical experiments, the goal is often to 

restrict the region of interest to a local region where a low-order polynomial well 

characterizes the relationship between inputs and response. However, for computer 

experiments, an experiment might be sought to characterize the relationship over 

much larger regions of the input space, since the place where possible values may 

be obtained in the region of operability s not subject to any limitation. The 

boundaries for where observations can be obtained from a computer code are often 

dictated by changing science or engineering mechanisms that have been built into 

the code[59]. Data from physical experiments represent observations from the 

actual process and typically are thought to be unbiased, relying a good 

measurement device for measuring the response. However, due to imperfect 

measurement devices as well as the natural variability of the process, we typically 

do not expect to observe identical values for replicate runs of the experiment. 

Accordingly, our statistical models for physical processing are defined with an 

error term to capture and estimate these differences. On the other hand, data from 

computer models are the result of a human's characterization of the relationship, 

based on the best available science and engineering of the mechanisms driving the 

process. Depending on the maturity of the code and the depth of underlying 

knowledge, these codes can range from very accurate to just coarse representations 

of the main mechanisms. Consequently, the user should know that the results of an 
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experiment used to explore a computer model are only as good as the underlying 

knowledge available to build the code. Hence, bias or systematic differences 

between the code and the exact process that it is intended to represent are possible. 

If the computer model is deterministic, then repeated runs with the same inputs 

will result in identical values, making this feature undesirable for this type of 

computer experiments. It is helpful to have an estimated model or emulator for the 

code interpolation between observed points. This makes sense since we believe 

that the results from the code represent the best available knowledge of the 

underlying process, and we use this information directly. The emulator is aimed at 

allowing for the estimation of other locations in the input space that have not been 

directly evaluated. If the computer model is stochastic, then it may be of value to 

obtain replicates to understand the natural variability[50]. Another key aspect to 

consider when comparing physical experiments and computer models is the nature 

of the underlying relationship being characterized. As already mentioned 

throughout previous chapters, RSM is predicated on the assumption that many 

physical systems are smooth and continuous and can be well approximated, at least 

in the region of interest, by low-order polynomials. This assumption might not be 

appropriate for many complex computer codes[52]. For example, sometimes 

polynomials of higher-order than the usual quadratic response surface models are 

used. Johnson et al. (2010) compare the performance of different designs when an 

analysis uses higher-order polynomials. Because different options are sometimes 
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needed to describe the underlying relationship, strategies for designed experiments 

based on different models may require some specialized techniques. Since we have 

an exact value for the computer code results at that location, the uncertainty for the 

emulator is zero at that point, and the uncertainty bands around the function shrink 

to zero. Note that the uncertainty for the estimated curve increases as we move 

away from any observation. As a result, a strategy to minimize the worst-case 

prediction variance of a deterministic computer code anywhere in the design space 

is to try to have points as spread out as possible throughout the design space. This 

will minimize the distance between any new location where we wish to predict and 

an observed observation[52]. Using computer experiments, this assumption of 

sparsity may be more local: Namely, in some region of the design space, only a 

small number of factors are actively influencing the response. However, in a 

computer experiment, as we move throughout the design space, different subsets of 

the input factors play a role in influencing the response. This is different from the 

physical experiment, in which it is often reasonable to assume that the same subset 

of factors is active[56].  

4.9 Iterative Nature of The Experimental Learning Process 

We used Lévy Walk method for stochastic movement since many organisms such 

as bacteria, animals, and human search in practically observable in an unknown 

environment via Lévy Walk. The response surface methodology is a practical 
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modeling method that defines the relation between various useful parameters and 

their respective responses with multiple favored criteria while determining the 

importance of useful parameters upon the Coupled responses. The experimental 

costs and the variability around the target are minimized when replacing the target 

value with the performance value is decreased, using the response surface 

methodology[56].  

The cases where resources do not occur in well-defined patches, these models are 

not directly applicable, taking on more common spatial distributions. Random 

search theory is more appropriately used in the optimal robot on unique landscapes 

have given that robot' last data encounter relies more strongly on visual or 

vibratory clues than the elapsed time when deciding when to quit a searching area. 

Some animals use sensory cues to determine search mode. It should be noted that 

one difficult problem is to detect discrete behavioral status from useful movement 

data. Fortunately, considerable progress has been made in this area[53, 54]. 

The satisfaction of the self-similarity condition yields provided fractal dimension 

(D); it is possible to assemble mathematical objects. It presents an intimate 

connection between such the fractal dimensionality and classified behavior in 

space or time of these processes. A robot hops instantly from the start to the end of 

each step length, continually moving along each step length respectively. While 

Lévy flights model movement of the salutatory, Lévy Walk, simulate cruise 
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movement. Most models of the Lévy Walk(those considered in this literature) are 

technically truncated Lévy Walks: Achieving a resource diagnosis or when the 

maximum time of the simulation elapses, Step lengths are terminated. Fortunately, 

truncated Lévy Walks retain many significant features of the Lévy Walks, 

including general properties of the mean-square displacement. The criticisms 

against the Lévy Walk concept are addressed in our model[58]. 
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5 Results and Discussions   

5.1 Simulated environment characteristics 

 

 

Figure 5-1  Condition of parameters in the target environment 

In this study, simulations are used to assess the relative efficiencies of different 

Lévy walk stochastic search strategies in a range of environments. These 

simulations helped to identify the optimal parameters for a searcher in a given type 

of environment. Such information will be useful for future studies, which will use 
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real robots (as opposed to simulating ones). All of the simulations in the case study 

were performed in NetLogo simulation[2, 5]. 

In our simulations, an environment is a rectangular region, 100 units width and 100 

units height (units are arbitrary). The spatial coordinates of targets and robots are 

recorded as floating real point numbers, and hence location is substantially 

continuous. Targets are distributed across the environment according to a Neyman-

Scott spatial point process. This is a useful model for targets that occur in clumps. 

There are two parameters for the Neyman-Scott process: the total number of 

targets in the environment and the radius of each cluster. High cluster radius 

corresponds to the relatively homogeneous distribution of targets, while a low 

cluster radius corresponds to highly aggregated targets[5]. The technical details for 

the simulated environments are the same as those already described where 

boundary conditions, how edge effects are controlled for, and how the Neyman-

Scott process is used to generate locations for targets are explained. 

Our simulations model is destructive search, which means that targets are 

eliminated when a robot finds them. This is an appropriate model for applications 

like contaminant clean-up or resource harvesting. An environment in our 

simulations can adequately be described by two parameters the total number of 

resources and the cluster radius. These two parameters allowed for examining a 

variety of different situations that a robot could encounter, (e.g., a highly clumped, 
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target-rich environment, or a highly clumped, poor target environment, or a very 

homogeneous, target-rich environment, etc.). Note that a new environment was 

generated for each run of the simulation. The stochastic is so even if these 

parameters are held constant, the generated environment will not be the same[5]. 

The simulated robot moves through the environment via a Lévy walk. The 

parameter μ determines the correct type of Lévy walk. The robot travels at speed. It 

has no memory and no information about targets outside of their detection radius. 

If a target falls within its detection radius, it truncates the current step of the 

random walk, moves directly to the target, and removes it. A robot is mainly 

characterized by four parameters: its detection radius, and its Lévy walk parameter 

μ and speed and number of robot. The general procedure for the RSM is explained 

in detail. In particular, it is made clear if RSM is used to hone-in on optional 

parameter combinations or if it is just used for the pre-determined parameter 

values. Value stream mapping, as well as Full Factorial Design rotatable design, 

are explained. In this study, the functional optimal procedure setup that optimizes 

the parameters of the design is the quadratic model of RSM incorporating the Full 

Factorial Designs. This design is employed by considering three levels and six 

factors[5].                    

 

 

https://www.sciencedirect.com/science/article/pii/B9780080994178000067
https://www.sciencedirect.com/science/article/pii/B9780080994178000067
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Table 3 parameters in the target environment 

 Variable Distribution/ 
Experiment 

Environment 

Field size  100*100 Unit  

#Resources 100 1000 DOE*  
Cluster 

Radius 4 64  DOE 

#Clusters             GD*( =5) 

Robot 

µ (Lévy 

Walk) 1.3  2.9 DOE 

Perceptual 

Radius 1 10 DOE 

Speed 1 10 DOE 

 #Robots  1 11 DOE 

 

The regressive analysis improves the relevant mathematical models, and then these 

models are used to measure its similar accuracy, followed by an examination 

through analysis of variance (ANOVA)[48]. The quadratic model is usually 

sufficient for industrial applications. For n-factors, the complete quadratic model is 

shown in the following equation: 

Equation 1 

*GD: Gaussian Distribution 

*DOE: Design Of Experiment  
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Where Y is the predicted response and Xi are the coded form of the input variables, 

which in this study represent the search efficiency and six search parameters (as 

reported respectively. The term ß0 is the intercept term, ßi are the long terms, ßii are 

the squared terms, and ßij are the interaction terms between the input variables. The 

Full Factorial Design rotatable design was used to evaluate the six factors above.  

Three levels of points being were analyzed, with the range being determined based 

on extensive screening experiments. 

According to the proposed model, six factors were used, each at the predefined 

level and range, as shown in table-3. Thus, two dimensions of the surface will be 

as follows: Resource number, Cluster radius, µ(Lévy Walk), Robot perception 

radius, Robot speed, and number robot, and the response y represents the search 

efficiency. The total number of experimental combinations to be conducted is 

based on the concept of Full Factorial Design. Given the use of Full Factorial 

Design, a central point had to be considered and measured for each factor. So, each 

factor is divided into three levels: a min, a max, and a central point. Therefore, we 

have 36=729 cells for full factorial design. Deciding the central point can be either 

a mathematical process, or it can be a predefined number set by a specialist.  

The predefined number should be approximately in the center of the numerical 

range of each factor levels so that the best results are obtained[54]. The response 

variable is continuous, and so are our factors in the real world. As a correction for 
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this categorization of continuous variables (in which we know may reduce the 

hypothesis tests power) and given the ability of simulation of Lévy Walk with the 

computer, replication for each cell was selected way above the ordinal sample size 

and set it to 10. Thus, the data set has 7290 rows and six measures at the start of 

the analysis. The linkage function is the polynomial function of all factors and their 

squares. The FFD analysis was done using  SAS JMP; analysis steps are 

discussed[54].  

     The response studied from the experiments was the stochastic movement. The 

qualitative result obtained from analysis indicates the complete design matrix of 

the experiments, performed together with the obtained results. The responses were 

used to develop an empirical model for the stochastic movement robot via the Lévy 

Walk method. After executing the experimental design, analyses of the 

experimental data were performed using ANOVA at a 5% level of significance and 

the P-value. The P-value a simple arithmetical method that sorts the components of 

variation in a given set of data and provides the test for significance. 

Where Y is the predictable reaction or dependent variable, Xi and Xj are the 

independent variables, while bi and bj are constants. In this situation, the quantity 

of independent factors is four, and therefore, k=6: Eq. (1) becomes Eq. (2):  
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Yu=β0+β1x1+β2x2+β3x3+β4x4+β5x5+β12x1x2+β13x1x3+β14x1x4+β15x1x5+β23x2x3+β24x2

x4+β25x2x5+β34x3x4+β35x3x5+β45x4x5+β11x11+β22x22+β33x33+β44x44+β66x66                                                        

(Eq. 2) 

Where  Y is the predictable reaction, and X1, X2, X3, X4, and X6 are the coded type 

of the input variables. The term β0 is the intercept term; β1, β2, β3, and β6 are the 

linear terms; β11, β22, β33 and β66 are the squared terms; β12, β13, β14, β15, β21, β23, β24 

β25 and β56 are the interaction terms between the eight variables. The focal 

composite rotatable design was utilized to assess the previously stated eight 

components. Their levels of points were investigated, with the range being 

resolved using huge screening analyses and writing survey. 

 

Figure 5-2 Flow chart of statistical 
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The first step selects the input parameter. 

Table 4 Independent variables and their coded and actual values and α=1. 

Parameter to be studied Independent Variable Symbol Actual Levels 
−1 0 +1 

Environment 
#Resource Nr 100 550 1000 

Cluster Radius Rc 4 34 64 

Robot 

µ (Lévy Walk) µ 1.3  2.1 2.9 

Perceptual Radius Rp 1 5.5 11 

Speed V 1 6 11 

 #Robot  Nf 1 5 11 

 

The second step selects the out-put parameter. 

 

Table 5 Responses to Be Measured. 

Responses (Effects) Goals for Individual Responses 

Y1 Count Source To Achieve Maximum Recounter 

Y2 Distance To Achieve Minimum Distance 
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The third step replication experiment and make a table for experiment. 

The aggregate number of test combination ought to be determined, taking into 

account the comparable idea by applying Eq. (2) Six components in full factorial 

with three levels brought about 729 exploratory runs, where k spoke to the number 

of independent variables or elements chosen. Six focus point tests were used to 

assess the unadulterated mistake enlargement, using eight hubs and 729 factorial 

trial runs.  

Number of experiments= level factor 

Number of experiments = 36=729 

In this thesis use stochastic movement and need replication for the experiment. 

Replication experiment = 10 

Number of experiments = 36=729*10=7290 

The reaction was investigated through the stochastic movement. The outcome was 

obtained subjectively. Table 4 shows the complete outline network of the 

investigations, performed together with the achieved results. The reactions were 

utilized to build up an observational model for the stochastic development of robot 

by the toll walk technique. After testing out the configuration, elucidations, and 

examination of the test information was resolved to utilize ANOVA at a 5% level 

of centrality, using the P-value. The P-value is an arithmetical technique that 

breaks down the variance parts in a given arrangement of information, giving the 
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test for significance. Stochastically Optimization of efficiency using response 

surface methodology Examinations of the best variation of the medium of response 

resource, span for search, and addition µ in the combined states of stochastic was 

performed to expand the essential vitality of separation amid the development 

robot technique. Eq. 1 shows an observational relationship, depicted as a numerical 

model for the measurement fractal (µ) and the test variables in a coding unit. 

Indeed, the exact model was created in Eq. 1 by applying the various relapse 

strategy which was fitted to the exploratory results. Dimension fractal (µ) model 

concurred with the empirical results. 

5.2 Screening 

Testing many responses to the effects of factors can be challenging. Response 

Screening automates the process of conducting tests across. Test results and 

summary statistics are presented in data tables, rather than reports, to enable data 

exploration. Rate approach guards against incorrect declarations of significance. 

Plots of p-values are scaled, making them easily interpretable. Because large scale 

data sets are often Response Screening presents methods that address irregularly 

distributed and missing data.When having many observations, even differences 

that are of no practical interest can be statistically significant. Response Screening 

presents tests of practical difference, where specify the difference that is interested 

in detecting. For this purpose, Response Screening presents equivalence tests. 
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Table 6. Screening for Ef 

Term Contrast Lenth  
t-Ratio Individual p-Value Simultaneous p-Value 

Nr 0.100638 87.26 <.0001* <.0001* 
Pr 0.061825 53.61 <.0001* <.0001* 
Cr 0.046995 40.75 <.0001* <.0001* 
Nf 0.043091 37.36 <.0001* <.0001* 
V 0.039568 34.31 <.0001* <.0001* 
μ -0.010449 -9.06 <.0001* <.0001* 

Nr*Nr -0.019633 -17.02 <.0001* <.0001* 
Nr*Pr 0.034162 29.62 <.0001* <.0001* 
Pr*Pr -0.051359 -44.53 <.0001* <.0001* 
Nr*Cr 0.032986 28.60 <.0001* <.0001* 
Pr*Cr 0.029460 25.54 <.0001* <.0001* 
Cr*Cr -0.001147 -0.99 0.3246 1.0000 
Nr*Nf 0.020723 17.97 <.0001* <.0001* 
Pr*Nf 0.022284 19.32 <.0001* <.0001* 
Cr*Nf 0.000414 0.36 0.7274 1.0000 
Nf*Nf -0.014011 -12.15 <.0001* <.0001* 
Nr*V 0.033088 28.69 <.0001* <.0001* 
Pr*V 0.039605 34.34 <.0001* <.0001* 
Cr*V -0.012301 -10.67 <.0001* <.0001* 
Nf*V -0.003580 -3.10 0.0022* 1.0000 
V*V -0.014413 -12.50 <.0001* <.0001* 
Nr*μ -0.004463 -3.87 0.0002* 0.5701 
Pr*μ 0.000186 0.16 0.8751 1.0000 
Cr*μ 0.001481 1.28 0.2014 1.0000 
Nf*μ 0.000120 0.10 0.9172 1.0000 
V*μ -0.007227 -6.27 <.0001* <.0001* 
μ*μ -0.085621 -74.24 <.0001* <.0001* 

Nr*Pr*Cr 0.003662 3.18 0.0018* 1.0000 
Nr*Pr*Nf 0.003522 3.05 0.0027* 1.0000 
Nr*Cr*Nf 0.000878 0.76 0.4516 1.0000 
Pr*Cr*Nf 0.001050 0.91 0.3703 1.0000 
Nr*Pr*V 0.004656 4.04 <.0001* 0.3416 
Nr*Cr*V -0.002169 -1.88 0.0593 1.0000 
Pr*Cr*V -0.001167 -1.01 0.3157 1.0000 
Nr*Nf*V 0.002140 1.86 0.0624 1.0000 
Pr*Nf*V 0.000913 0.79 0.4325 1.0000 
Cr*Nf*V -0.000874 -0.76 0.4530 1.0000 
Nr*Pr*μ 0.000299 0.26 0.8010 1.0000 
Nr*Cr*μ 0.001462 1.27 0.2078 1.0000 
Pr*Cr*μ -0.001871 -1.62 0.1009 1.0000 
Nr*Nf*μ -0.000685 -0.59 0.5591 1.0000 
Pr*Nf*μ 0.000171 0.15 0.8839 1.0000 
Cr*Nf*μ -0.000621 -0.54 0.6012 1.0000 
Nr*V*μ 0.000696 0.60 0.5529 1.0000 
Pr*V*μ 0.000306 0.27 0.7962 1.0000 
Cr*V*μ 0.001367 1.19 0.2385 1.0000 
Nf*V*μ -0.002154 -1.87 0.0611 1.0000 
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Table 7. Select P-value Screening for Ef 
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Table 8. Sorted Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| 

Intercept 0.2128461 0.006702 31.76 <.0001* 
Nr 0.0002739 3.217e-6 85.14 <.0001* 
Pr 0.0168267 0.000322 52.30 <.0001* 
Cr 0.0019186 4.826e-5 39.76 <.0001* 
Nf 0.010555 0.00029 36.45 <.0001* 
V 0.0107691 0.000322 33.47 <.0001* 
μ -0.015996 0.00181 -8.84 <.0001* 

(Nr)*(Nr) -2.057e-7 1.238e-8 -16.61 <.0001* 
(Nr)*(Pr) 0.0000253 8.756e-7 28.90 <.0001* 
(Pr)*(Pr) -0.00538 0.000124 -43.45 <.0001* 
(Nr)*(Cr) 3.6651e-6 1.313e-7 27.90 <.0001* 
(Pr)*(Cr) 0.0003273 1.313e-5 24.92 <.0001* 
(Nr)*(Nf) 1.3815e-5 7.881e-7 17.53 <.0001* 
(Pr)*(Nf) 0.0014856 7.881e-5 18.85 <.0001* 
(Nf)*(Nf) -0.001189 0.0001 -11.85 <.0001* 
(Nr)*(V) 0.0000245 8.756e-7 27.99 <.0001* 
(Pr)*(V) 0.0029337 8.756e-5 33.50 <.0001* 
(Cr)*(V) -0.000137 1.313e-5 -10.41 <.0001* 
(Nf)*(V) -0.000239 7.881e-5 -3.03 0.0025* 
(V)*(V) -0.00151 0.000124 -12.19 <.0001* 
(Nr)*(μ) -1.859e-5 4.925e-6 -3.78 0.0002* 
(V)*(μ) -0.003011 0.000493 -6.11 <.0001* 
(μ)*(μ) -0.283797 0.003918 -72.43 <.0001* 
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Make the mathematic model: 

Y=0.21+Nr (0.00027) +Pr (0.016) +Cr (0.0019) +………. +ɛ  

5.3 Analysis of Variance 

 

Figure 5-3 Analysis data calculation of sum of square error. 
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 Often an experimenter is interested in whether individual factors or interactions 

among factors have a significant effect on a response. The most widely-used 

analytic method is the analysis of variance (ANOVA), which can be used to 

analyze data collected from many types of experimental designs, including those 

previously described. Analysis of variance is used to analyze experimentally 

collected data to test the differences between the group means for more than two 

groups. ANOVA works by partitioning the observed variance into that which can 

be explained (based on the data and an associated regression model) and that which 

cannot be explained. Using sum-of-squares decomposition and statistical tests 

comparing the explained and unexplained variance, one can determine the 

significance of model terms (whether they are single main effects or interaction 

effects). ANOVA is based on the following three assumptions: the response 

variable is normally distributed, each group has equal variance (i.e., 

homoscedasticity) and observations are independent. 

Table 9 Analysis of Variance 

Source DF Sum of 
Squares Mean Square F Ratio 

Model 22 272.62725 12.3921 1216.512 
Error 7267 74.02620 0.0102 Prob > F 

C. Total 7289 346.65345  <.0001* 
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Table 10 Summary of Fit 
R Square 0.786455 

R Square Adj 0.785808 
Root Mean Square Error 0.100929 

Mean of Response 0.348557 
Observations (or Sum Wgts) 7290 

 

 

 

It should be noted that truly customarily distributed data are rarely seen in practice, 

and that ANOVA can still provide useful information with deviations from the 

normality assumption. Additionally, the most straightforward use of ANOVA 

requires equal numbers of observations at each factor-level, using Type I sum-of-

squares. Type II and III sum-of-squares can be used with unequal numbers of 

factor-level observations. While ANOVA is relatively independent of the 
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experimental design, alternative design of experiment techniques, such as the 

response surface methodology (RSM) use experimental designs that are 

complementary to the analysis methods. 

 

Figure 5-4 Surface Plot  Between Ef and V and Nf. 
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Figure 5-5  Surface Plot  Between Ef and µ and Pr. 

 

A surface plot is a three-dimensional plot with efficiency and dependent variables 

represented by a smooth surface. The initial Surface Plot report shows the surface 

plot, the Independent Variables controls, the appearance controls, and the 

Dependent Variables controls. The Surface Plot platform creates a stand-alone 

report that contains a surface plot for formulas. The formulas can be formula 

columns in a data table or mathematical formulas that do not involve any data 

points. The Surface Profiler option in RSM fitting platforms produces a surface 

plot for the fitted model in the existing platform report. 
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5.4 Comparison between the Design Of Experiment (DOF) and One 

Factor At the Time (OFAT). 

DOE: number of the experiment: 7290 

Nr Rc µ V Nf Rp Ef 

1000 64 2.05 9.66 11 8.04 0.88 

 

 

 

OFAT: number of the experiment: ~107 

Nr Rc µ V Nf Rp Ef 

1000 64 2.04 10.00 11 10.00 0.94 

 

 

 

If used DOE minimum experiment and cost. 

 

V µ Rp Nf Rc Nr 

V µ Rp Nf Rc Nr 
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5.5 Optimization 

Table 11. Optimization 

 

 

 

 

R C F PR MU S Efficiency 
1000 64 11 8.04 2.05 9.66 0.88 
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5.6 Cost function 

 

Figure 5-6 

 

Figure 5-7 
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6 Conclusion  

In this study, we showed how mathematical models of stochastic movement could 

be used to analyze foraging behavior in multi-robot systems. This study helps a 

robot designer or programmer to decide proper design variables. A large number of 

possible combinations of different types of environments and robot's parameters 

necessitate a systematic statistical approach. Therefore, we employed Full Factor 

Design (FFD) and Response Surface Methodology (RSM) to analyze the 

relationship between these parameters and search efficiency. Our study was limited 

to the dependency of search efficiency on the robot sensor perception radius and 

robot speed. However, it can extend to other parameters. Experimental perceptions 

indicate that an assortment of species uses stochastic movement models to locate 

resources. In this study, we used mathematical models of stochastic movement to 

analyze foraging behavior to study how the stochastic processes of robot 

movement and resource distribution combine to influence search success. We 

showed how search efficiency depends on the robot sensor perception radius and 

robot speed, parameters that a designer need for robot design. We also investigated 

the best variant of speed, perceptual radius, µ (Lévy walk), resource number, and 

cluster radius of robot movement in the environment to increase the efficiency of 

robot movement during the stochastic approach method. It is worth mentioning 

that the determination coefficient R2= 0.78 is relatively lower than the µ (Lévy 
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walk) of the stochastic approach model. Thus, the model exhibits a better fit than 

the movement activity model. The primary use of this modeling is for prediction, 

optimization, or model tuning. The effects of the explanatory variables on the 

movement with minimum required energy were also studied using the response 

surface methodology (RSM). 
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