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ABSTRACT 
Beamforming has been one of the important issues in the field of multi-channel signal processing including 
acoustic signal processing. A wide variety of beamformers have been proposed for each application. In 
general, acoustic beamforming deals with broadband signals such as speech signals compared to 
narrowband beamforming for antenna array and radar applications. Recently, neural network-based 
non-linear beamformers become popular but have a problem that causes an annoying non-linear distortion 
on the output signal. In the case of speech enhancement, it is a serious problem because our auditory 
system is highly sensitive to artificial non-linear distortion on speech signals. This paper proposes to solve 
the problem with the relaxed dual cost functions in the neural network-based beamformer for speech 
enhancement. The primary cost function aims at sharpening the beam-pattern, and the second cost function 
is introduced to achieve decreasing speech distortion. Those cost functions are alternatively used for 
optimizing the beam-pattern in the frequency range of speech signals. The feasibility of the proposed 
method is confirmed by carrying out a listening test. 
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1. INTRODUCTION 
Beamforming is a representative means for noise reduction and signal enhancement [1]. It enables 

to detect and enhance target signals in adverse conditions. A wide variety of beamformers have 
proposed for several decades. The traditional beamformers have been designed analytically and 
adaptively [1]. A neural network can be an alternative approach to optimizing the beamformers. 
Kobatake et al. proposed a pioneering super-directive beamformer with the three-layered neural 
network (NN) structure [2]. The NN-based beamformers became popular for narrow-band antenna 
applications [3-5]. It is, however, difficult for those beamformers to deal with wide-band acoustical 
signals, although various non-linear beamformers with learning schemes based on NNs have been 
investigated for acoustical applications [6-9]. 

Non-linear beamformers could achieve sharp beampatterns using the proposer training data, but 
cause annoying distortion on the output target signals. It is difficult to decrease the distortion on the 
target signal due to non-linear activation functions in each layer of the NN. The author proposed a 
deep neural network(DNN)-based beamformer with relaxed cost functions, which aim at decreasing 
the non-linear distortion [10]. The sub-band neural networks are individually trained using 
band-limited training data when the microphone arrangement is optimized for the frequency range of 
speech [11]. The discontinuity in the frequency domain causes another type of non-linear distortion. 
Bonafonte et al. proposed an end-to-end speech enhancement scheme with a generative adversarial 
network [12]. It succeeds in neural network-based speech enhancement with less distortion. However, 
it requires a huge amount of training data due to its higher degree of freedom. Koizumi et al. 
proposed a DNN-based source enhancement scheme, where the DNN is trained to increase objective 
sound quality assessment scores such as the perceptual evaluation of speech quality (PESQ). 

In this paper, a NN/DNN-based beamformer with the relaxed dual cost functions is proposed for 
speech enhancement. The proposed beamformer employs the different cost functions based on the 
directivity and spectral distortion in the spatial and spectral domains, respectively. The primary cost 
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function based on the spatial features used in end-to-end NN-based beamformer achieves sharpening 
the beam-pattern, and the second cost function in the spectral domain is introduced to achieve 
decreasing speech distortion. Those cost functions are alternatively used for optimizing the 
beam-pattern in the frequency range of speech signals. The feasibility of the proposed method is 
confirmed by computer simulation with a small amount of training data, which include sinusoidal 
signals, random noises, and speech signals. The feasibility of the proposed beamformer is evaluated 
by carrying out a listening test. 

2. NON-LINEAR NEURAL NETWORK-BASED BEAMFORMER 
Beamforming can be achieved by linear signal processing, where multiple observed signals are 

phase-adjusted and summed up such as the delay and sum beamformer [1]. The target signal coming 
from the desired direction is not distorted by the linear beamforming. On the other hands, 
interference signals coming from the undesired directions are weakened by phase interference. 
However, the delay-and-sum beamformer is not superior in controlling the directivity pattern 
compared with the state-of-the-art beamformers. The delay-and-sum beamformer needs a number of 
microphones to form the sharp main lobe, especially in the low-frequency range and does not turn 
attention to the directions except the look direction.  

Kobatake et al. proposed a novel framework of non-linear beamforming, where a three-layered 
NN was employed to achieve superdirectivity [2]. The NN is trained as an end-to-end autoencoder. 
The NN is allowed to output the input signal as it is, only when the signal comes from the target 
direction. When signals come from non-target directions, the NN is trained not to output any signal 
in the training phase. It can achieve superdirectivity for the narrowband signal such as sinusoidal 
signals. However, the non-linear activation functions used in the NN-based beamformers cause the 
non-linear distortion on the target signal. Non-linear distortion should be reduced for wide-band 
acoustic applications. 

3.  NEURAL NETWORK-BASED BEAMFORMER WITH LESS DISTORTION 
The conventional NN-based beamformers merely aimed at forming the sharp main lobes using the 

directivity-based cost functions. NN is a flexible framework for system optimization. Then, another 
cost function is additionally introduced based on spectral distortion, which can optimize the 
beam-pattern in minimizing the spectral distortion of the target signal. Those cost functions based on 
directivity and spectral distortion enable to reduce interfering signals and decrease the spectral 
distortion of the target signal, respectively. The dual cost functions are alternatively used in the 
training process. 

The proposed beamformer is trained using a sinusoidal signal of 1.7 kHz and speech database, 
which consists of 27 English speakers [14], for the cost functions based on directivity and spectral 
distortion, respectively. In this paper, the target signals are speech signals so that the frequency range 
is limited from 300 Hz to 3.4 kHz. 

 For speech data set uttered by each speaker, the proposed beamformer is trained with the cost 
function based on spectral distortion after the pre-training is completed with the directivity-based 
cost function. In the pre-training phase, the sinusoidal signal is given to the neural network-based 
beamformer sample by sample with the sampling frequency of 44.1 kHz with 16 bits in the accuracy. 
In the later training phase, the amplitude spectra obtained by the short-term Fourier transform with 
256 samples with the sift of 20 samples are prepared as the training data. The resultant parameter sets 
are used as the initial values for the training with another speech dataset by the different speaker. 

4. PERFORMANCE EVALUATION 

4.1 Experimental Conditions 
The experimental conditions are summarized in Table 1. The target male speech signal came from 

the front (0 degrees), and either pink noise or urban noise, which was recorded in a pinball parlor 
[15], come from 45 degrees. Both the target and interference signals were band-limited in 300 Hz to 
8 kHz. Noisy observation data were prepared by the phase adjustment in a computer at -10 dB in the 
target-to-interference ratio. Noisy signals were obtained using an 8-ch linear microphone array, of 
which neighboring microphone spacing was 10 cm, in the far field condition. 

2761



 

 

Table 1 – Experimental conditions   

Target signal Male utterance (300 Hz to 8 kHz) 

Interference signal Pink noise and urban noise (300 Hz to 8 kHz) 

Arrival direction of target signal 0 degrees 

Arrival direction of interference signal 45 degrees 

Target-to-interference ratio -10 dB 

Signal accuracy 44100 Hz / 16 bits 

Number of microphone 8 

Microphone spacing 10 cm 

 
In this paper, three kinds of the proposed methods were prepared as the three-layered NN-based 

beamformer with spatial and spectral cost functions in order, the same beamformer with the dual cost 
functions in the inversed order, and the five-layered DNN-based beamformer with dual cost function 
in the normal order. In addition, the conventional delay-and-sum beamformer, five-layered 
DNN-based end-to-end beamformer [9], and the distortion-less DNN-based beamformer [10] were 
prepared as references. 

4.2 Procedure 
In the listening test, Thurstone’s paired comparison was carried out to subjectively confirm the 

feasibility of the proposed method. 20 undergraduates and graduate students with normal hearing 
participated in the listening test. They were required to choose the better speech sample in between 
two noise-reduced speech samples in terms of the noisiness of the interference noise, clearness of the 
target speech, and easiness in speech perception. 

The noise-reduced samples were presented through the headphone amplifier with USB-DAC 
(Marantz HD-DAC1) and headphone (Sennheiser HD650). Each speech sample was played at 81 dB 
on an average in A-weighted sound pressure level. The sound pressure level was measured using the 
ear simulator (B&K Type 4153) and the handheld analyzer (Aco Type 6240). 

4.3 Results 
The results of the listening test are given in Figs. 1 and 2 for the pink noise and urban noise, 

respectively. In each panel, six speech samples are plotted including three proposed methods: 
Proposed-BF (3-layered), Proposed-BF (5-layered), and Proposed-BF (inversed CF).  

The statistical difference between the two speech samples was confirmed by the binomial test at a 
significant level of 5 %. The pair of speech samples with the significant differences are overplotted 
in each panel. 

4.4 Discussion 
In Fig. 1 in the pink noise condition, the proposed methods are evaluated with higher scores 

compared with the five-layered DNN-based beamformer. However, the distortion-less DNN-based 
beamformer [10] obtains the best score in terms of the clearness of the target speech. The 
delay-and-sum beamformer is also evaluated better than the proposed methods. The proposed 
methods need to be improved to decrease the distortion of the target signal under wide-band noise 
conditions. 

In Fig. 2 in the urban noise condition, the three proposed methods are prior to the other method. 
Among the proposed methods, the three-layered NN beamformer is better than the five-layered DNN 
beamformer There are significant differences against five-layered DNN-based end-to-end 
beamformer [9] or the distortion-less DNN-based beamformer [10]. The urban noise has the 
dominant power in the lower frequency range below 1 kHz. The resultant noise component of the 
NN/DNN beamformer output might be distorted, but does not affect the speech perception. 
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Figure 1 – Results of listening test in pink noise condition. 

 

 

Figure 2 – Results of listening test in urban noise condition. 

 
 

5. CONCLUSIONS 
In this paper, a neural network-based beamformer with dual cost functions is proposed aiming at 

improving the nonlinear distortion of the beamformer output. The cost functions consist of the spatial 
and spectral cost functions for sharpening the main lobe and decreasing the spectral distortion within 
the speech band. The cost functions are alternatively used in the training process with the network 
structure of three and five layers. The feasibilities of the proposed methods are confirmed by 
carrying out a listening test. The proposed three-layered neural network-based beamformer is 
superior to conventional beamformers. Future works include the further investigation of decreasing 
the distortion on the target signal under wide-band noise conditions. 
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