Change in the electronic structure of the bismuth chalcogenide superconductor CsBi_{4-x}Pb_xTe₆ by dissociation of the bismuth dimers

Hiroyuki Okazaki, ^{1,2,3} Kensei Terashima, ³ David Billington, ⁴ Keiji Iwata, ² Takanori Wakita, ² Masashi Tanaka, ^{3,5} Yoshihiko Takano, ³ Yuji Muraoka, ² Takayoshi Yokoya ²

- ¹ Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma 370-1292, Japan
- ² Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama 700-3537, Japan
- ³ National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- ⁴ School of Physics and Astronomy, Cardiff University, Queen's Building, The Parade, Cardiff, CF24 3AA, United Kingdom
- ⁵Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, 804-8550, Japan

Abstract

CsBi_{4-x}Pb_xTe₆ is synthesized and the superconductivity associated with the structural transition from Pb substitution is studied. Photoemission spectroscopy measurements are performed in order to elucidate the relationship between the electronic structure and the occurrence of the superconductivity. When Bi is substituted with Pb, an electron doping-like change in the electronic structure is directly observed which is contrary to the naive expectation of hole doping. This observation is consistent with band structure calculations and appears to be a unique characteristic of CsBi_{4-x}Pb_xTe₆ because of the dissociation of Bi dimers upon Pb substitution. These results indicate that it may be possible to control the electron and hole doping via manipulating the Bi dimers through Pb substitution.

Introduction

Many reports of superconductivity in doped Mott and band insulators suggest that carrier doping can provide a platform to explore new superconducting systems. A well-known example is the cuprates which have high superconducting transition temperatures (T_c) and change from a Mott insulating state to a superconductor by carrier doping [1,2]. There are also a variety of systems in which superconductivity emerges by carrier doping parent semiconductors such as diamond [3,4], silicon [5], and so on. Indeed, many chalcogenide semiconductors such as PbTe [6], SnTe [7], Bi₂Se₃ [8], and Bi₂Te₃ [9] also exhibit superconductivity when carrier doped. Recently, it was reported that superconductivity occurs in the layered Bi-chalcogenides LnOBi(S, Se)₂ [10] (Ln: lanthanoid) and ABi₄Te₆ [11-13] (A: alkali metal, Cs or Rb). These Bi-chalcogenide superconductors have provoked much attention since the superconductivity occurs under strong influence of the spin-orbit interaction.

For the LnOBi(S, Se)₂ system, there have been many reports about the superconducting properties [14] and the electronic structure has been experimentally probed by angle-resolved photoemission spectroscopy (ARPES) [15]. The experimental band structure is in good agreement with the predictions of first-principles calculations that include spin-orbit coupling and show that the density-of-states (DOS) near the Fermi level (E_F) comes from Bi.

The ABi₄Te₆ system changes from a narrow-gap semiconductor to the superconductor by inducing either (i) Cs vacancies or (ii) off-stoichiometry in the ratio between Bi and Te, or (iii) partial substitution of Pb for Bi. Among them, the Pb substitution case (CsBi_{4-x}Pb_xTe₆) shows a structural change from monoclinic to orthorhombic by the dissociation of the Bi-dimers, which occurs simultaneously with the change from a semiconductor (filamentary superconductor) to a bulk superconductor [12]. Such an emergence of superconductivity accompanied with a structural transition is reminiscent of the Fe-base superconductor CaFe₂(As_{1-x}P_x)₂, where a first-order structural transition leads to a change of a hole-like Fermi surface and influences the superconductivity due to the existence or non-existence of As-As bonding in that system. Therefore, understanding the correlation between the Bi-dimers and the superconductivity in the CsBi_{4-x}Pb_xTe₆ system via a study

of the electronic states would be worthwhile. However, XANES and XPS studies [16] on CsBi_{4-x}Pb_xTe₆ (x = 0 and 0.5) are scarce, and the valence band structure of the ABi_{4-x}Pb_xTe₆ superconductor has not yet been experimentally determined. It is, therefore, crucial to study the experimental valence band of stoichiometric CsBi₄Te₆ and its evolution with Pb substitution in order to understand the occurrence of bulk superconductivity in CsBi_{4-x}Pb_xTe₆. This study might shed light on the mechanism of Bi-based superconductivity since the Pb substitution affects the crystal and electronic structures, and the superconductivity.

Here we study the relationship between the crystal structure, the valence band, and the superconductivity in the $CsBi_{4-x}Pb_xTe_6$ system. The compounds are synthesized and the emergence of superconductivity associated with a structural transition due to the Pb substitution is observed. We also observed the change in the electronic structures in the valence band of $CsBi_{4-x}Pb_xTe_6$ across the Pb-substitution induced structural transition. From a comparison between the experimental results and band structure calculations, it was found that the valence band near E_F is mainly comprised of Bi and Te orbitals. From the comparison with other Bi-based superconductors, we demonstrate that $CsBi_{4-x}Pb_xTe_6$ has unique doping characteristics among the bismuth-chalcogenide compounds due to the Bi dimers.

Experimental

CsBi₄Te₆ samples were prepared by a reaction between Bi₂Te₃ powder and a small excess (~1 %) of Cs, as explained in ref. [11]. These chemicals were mixed in alumina cells in a glovebox and then the alumina cells were sealed into an evacuated quartz ampoule. The sealed materials were heated at 700 °C for 50 hours and then cooled by air-quenching to room temperature. CsBi_{4-x}Pb_xTe₆ samples were synthesized by reacting Bi₂Te₃, Te, Pb, and a small excess Cs in two steps. In the first step, the mixture is heated at 700 °C for 30 hours, followed by furnace cooling. For the second step, the products are heated at 700 °C for 12 hours and then air-quenched to room temperature.

Powder X-ray diffraction measurements were performed on powdered samples. XRD profiles

were collected at ambient temperature by Rigaku Miniflex with a wavelength of $\lambda = 1.54056$ Å in a glovebox filled with N₂ gas. We also confirmed its T_c from magnetic susceptibility measurements using a superconducting quantum interface device (SQUID, Quantum Design). Photoemission spectroscopy measurements were performed at Okayama University on a spectrometer built with a Scienta Omicron R4000 electron analyzer. The spectra were measured at 20 K under vacuum with pressures below 3×10^{-8} Pa using the He I α (21.2 eV) resonance line. The total energy resolution was set to 30 meV for the valence band spectra and 15 meV for the spectra near E_F , respectively. E_F of the sample was referenced to that of a gold film, which was measured frequently during the experiments. The samples were cleaved under ultra-high vacuum in order to measure a clean surface.

The ground-state electronic structures of monoclinic CsBi₄Te₆ and orthorhombic CsPb_xBi_{4-x}Te₆ (x = 0.3) were calculated from first principles with the ELK code [17], a highly-accurate full-potential augmented plane-wave plus local orbital (FP-APW+lo) method. The experimentally determined crystal structures of Hsu *et al.* (space group C2/m for monoclinic CsBi₄Te₆ and Cmcm for orthorhombic CsPb_xBi_{4-x}Te₆ (x = 0.3)) were used [18]. For monoclinic CsBi₄Te₆, convergence was achieved with a $16 \times 8 \times 4$ k-point grid and a plane-wave cut-off in the interstitial region of $|G + k|_{max} = 8.5/R_{mt}$ (where R_{mt} is the average muffin-tin radius). For orthorhombic CsPb_xBi_{4-x}Te₆ (x = 0.3), convergence was achieved with a $16 \times 16 \times 8$ k-point grid and the same $|G + k|_{max} = 8.5/R_{mt}$. For both monoclinic CsBi₄Te₆ and orthorhombic CsPb_xBi_{4-x}Te₆ (x = 0.3), the muffin-tin radii for Cs, (Pb,Bi) and Te were 2.8, 2.8 and 2.6 a.u., respectively. For the exchange-correlation functional, the Perdew-Burke-Ernzerhof generalised gradient approximation (PBE-GGA) [19] was used. Since Cs, (Pb,Bi) and Te are all heavy atoms, the spin-orbit interaction was included in the calculations by adding a term of the form $\sigma \cdot L$ (where σ is the spin vector and L is the orbital angular momentum vector) to the second variational Hamiltonian.

Results and discussion

We first characterized the crystal structure of our CsBi_{4-x}Pb_xTe₆ samples by X-ray diffraction

measurements. Figure 1(a) shows the experimental diffraction profiles for the samples with nominal compositions of x = 0, and 0.3, respectively. The CsBi₄Te₆ shows a monoclinic structure (C2/m) with a = 51.927(4) Å, b = 4.4561(5) Å, c = 14.4550(9) Å, and $\beta = 101.536(5)^\circ$. These parameters are similar to those reported previously [20]. As seen in Fig. 1, the XRD profiles show the structural transition by Pb-substitution, as shown in a previous report [12], indicating that the crystal structure evidently changes from monoclinic to orthorhombic [18]. Orthorhombic CsBi_{3.7}Pb_{0.3}Te₆ has lattice parameters of a = 6.3685(7) Å, b = 28.438(3) Å, c = 4.3886(7) Å. The illustrations of both structures are shown in Fig. 1(b). The prominent difference between those structures is the existence/disappearance of Bi dimers [20]. Namely, CsBi₄Te₆ has Bi dimers near the center and at both ends of the cell shown in the figure, but CsBi_{3.7}Pb_{0.3}Te₆ does not. The disconnection of the Bi-Bi bonding results in the higher-symmetry structure of CsBi_{4-x}Pb_xTe₆ (which only has Bi-Te bonds) than that of CsBi₄Te₆. We also confirmed the superconductivity in CsBi_{4-x}Pb_xTe₆ from the temperature dependence of magnetic susceptibility in an applied field of 10 Oe. A diamagnetic signal is observed at 2.9 K in CsBi_{3.7}Pb_{0.3}Te₆, as shown in Fig. 2.

Next, we performed photoemission spectroscopy in order to elucidate how the electronic structure changes with Pb substitution. Figure 3 shows the photoemission spectra of $CsBi_{4-x}Pb_xTe_6$. The spectrum of $CsBi_4Te_6$ shows almost no intensity at E_F , indicating that $CsBi_4Te_6$ has a band gap at E_F . This is consistent with the results of the temperature dependence of the resistivity [12,20]. We observed characteristic peak structures in the $CsBi_4Te_6$ spectrum, labelled as A and B in Fig. 3. We compared the spectrum with band structure calculations of $CsBi_4Te_6$ [21]. The calculated density of states (DOS) shows a good correspondence with our spectral shape. Thus, we found that the experimental valence band reflects the bulk electronic structure of $CsBi_4Te_6$. According to the band calculation, the valence band between E_F and binding energies of 5 eV is mainly composed of the hybridized states of Bi 6p and Te 5p.

As shown in Fig. 3(b), the spectral shape of CsBi_{3.7}Pb_{0.3}Te₆ is clearly different from that of CsBi₄Te₆. We observed one main peak D and small peaks C and E. The small peak E stays at the

almost same energy as peak B in CsBi₄Te₆. Additionally, the valence band spectrum of CsBi_{3.7}Pb_{0.3}Te₆ exhibits only one main peak D at 1.8 eV while CsBi₄Te₆ shows a two peaks structure around A between 1 and 2 eV. These results indicate that the valence band structure is modulated by the change of the crystal structure through the Pb substitution. For CsBi_{3.7}Pb_{0.3}Te₆, there are two important points to note about the new feature C with a peak position of around 0.2 eV: (1) The new feature C exhibits a clear Fermi edge, as shown in Fig. 3(c), indicating that this system changes from a semiconducting to a metallic state. (2) Provided that features D and E correspond to features A and B, respectively, the energy positions of D and E are slightly shifted to lower binding energy, as if the Pb substitution leads to electron doping. Thus, the structure C is considered to be the bottom of conduction band in this system. This is an interesting observation because the Pb substitution into Bi site normally results in hole doping.

Here it is essential to compare the experimental results with the density of states derived by band structure calculation in order to discuss the effect of the Pb substitution. For CsBi₄Te₆, the experimental valence band is very similar to that from the band structure calculation, as shown in Fig. 4(a). According to the calculation, the partial density of states (pDOS) of Te dominates the two peaks A in Fig. 3. On the other hand, the peak B in Fig. 3 is characterized by pDOS of both Bi and Te. The top of valence band consists primarily of the Te pDOS with a small contribution from the Bi pDOS. In the bottom of the conduction band, the orbital contributions from Bi and Te are comparable. Focusing on the DOS of the Bi dimers, the contribution of the Bi pDOS to the top of the valence band is large in spite of coming from just two of the eight Bi sites in the unit cell, as shown in Fig. 4(b). Figure 4(c) shows the comparison of the valence band spectrum with the calculation for CsBi_{3.7}Pb_{0.3}Te₆. It is clear from the figure that the overall spectral shape in CsBi_{3.7}Pb_{0.3}Te₆ is also well reproduced by the calculation. Based on the comparison with the calculated results, we identify the main peak in the spectrum of CsBi_{3.7}Pb_{0.3}Te₆ around 1.5 eV (D in Fig. 3) is dominated by the pDOS of Te. We also found that the peak around 4 eV (E in Fig. 3) consists of the pDOS from both Bi and Te. The calculation ensures our previous assignment of the peaks in two compounds, namely the peak

structure A in CsBi₄Te₆ corresponds to D in CsBi_{3.7}Pb_{0.3}Te₆ and peak B in CsBi₄Te₆ corresponds to E in CsBi_{3.7}Pb_{0.3}Te₆. Regarding the calculated DOS of CsBi₄Te₆ and CsBi_{3.7}Pb_{0.3}Te₆, the overall shape is almost the same each other, however, the DOS is rigidly shifted toward higher binding energies in CsBi_{3.7}Pb_{0.3}Te₆, which is indicative of electron doping and is consistent with our experimental observation. Therefore, Pb substitution indeed results in the electron-like doping for this system although one expects the substitution of 82Pb for 83Bi would induce hole doping.

Figure 5 shows illustrates the changes in the crystal and electronic structure caused by Pbsubstitution. For stoichiometric CsBi₄Te₆, the Bi dimer connects the Bi-Te networks in the crystal structure. Since the Bi dimer captures an electron provided by an intercalated Cs atom [15,22], CsBi₄Te₆ has semiconducting character although the electrons from the alkali metals are doped in the parent insulating Bi₄Te₆. For CsBi_{4-x}Pb_xTe₆, the Bi dimer gets disconnected by the Pb substitution and then the doped electrons originating from Cs move into the Bi-Te network. The partial substitution of Pb for Bi generally leads to hole doping, but in CsBi_{4-x}Pb_xTe₆ this results in electron doping of the Bi₄Te₆ network because of the disappearance of the Bi dimer. H. Chen et al. have demonstrated that the carrier type depends on the crystal structure (monoclinic or orthorhombic structure) [23]. Thus, the Bi₄Te₆ system whose carriers can be controlled by the Bi dimer provides a unique playground to study superconductivity in bismuth-chalcogenide compounds. For the case of hole doping into this system (Cs_{1-x}Bi₄Te₆), even though the Bi dimer remains, the system exhibits a superconducting transition around 4 K, although the shielding volume fraction has remained relatively low (~10%) so far [11]. On the other hand, CsBi_{4-x}Pb_xTe₆ system without Bi dimer shows the shielding volume fraction of about 100%. Since the EXAFS research reported that the Bi dimer distorts the Bi₄Te₆ layers [16], destabilized regions could exist at grain boundaries and the CsBi₄Te₆ system might exhibit filamentary superconductivity. On the other hand, CsBi_{4-x}Pb_xTe₆ probably exhibits bulk superconductivity because the Pb-substitution leads to the CsBi_{4-x}Pb_xTe₆ crystal becoming more uniform.

It is also fruitful to compare our results with other Bi-based superconductors. Here we compare

with the LnO_{1-x}F_xBiS₂ superconductor because LnO_{1-x}F_xBiS₂ also has Bi-chalcogen bonds and a layered structure as in CsBi_{4-x}Pb_xTe₆. According to band structure calculations of LnO_{1-x}F_xBiS₂ [24], LaOBiS₂ exhibits an insulating state with a band gap of 0.8 eV. The pDOS due to the Bi orbitals dominates the bottom of the conduction band rather than the S orbitals which dominate the top of the valence band. It has been reported from photoemission spectroscopy that this system shows a rigid shift of the band structure relative to $E_{\rm F}$ by electron doping due to the addition of F [25]. Thus, the conduction electrons from the dominant Bi orbitals contribute to the superconductivity in LnO₁-_xF_xBiS₂ [25]. These features are very different from C₅Bi_{4-x}Pb_xTe₆ system because the C₅Bi_{4-x}Pb_xTe₆ system has a mixed DOS of Bi and Te orbitals in the vicinity of $E_{\rm F}$. In the bismuth chalcogenide superconductors, the comparable pDOS from Bi and Te in the Bi₄Te₆ system is similar to Bi₂Te₃ [26]. It is worth noting that the BiS2 system shows slightly higher transition temperature (maximum of about 5K) than the CsBi_{4-x}Pb_xTe₆ system (about 3 K). Other block layers should be studied in Bi₄Te₆based systems as has been done for LnO_{1-x}F_xBiS₂ because other block layers may result in a higher T_c than that of the BiS₂ system. Indeed, it has been reported that T_c slightly increases for the other block layers of Na and K [25]. Further studies might elucidate the relationship between the contribution of the Bi orbitals and the superconducting T_c for the bismuth-chalcogenide superconductors.

Conclusion

Photoemission spectroscopy was performed on $CsBi_{4-x}Pb_xTe_6$ (x = 0.0 and 0.3). This system exhibits a Pb-substitution induced semiconductor (filamentary superconductive) to metal (bulk superconductive) transition, accompanied with a structural change due to Bi-dimer disconnection. The photoemission spectrum of $CsBi_{3.7}Pb_{0.3}Te_6$ shows new states with a metallic edge near the Fermi level (E_F), consistent with the semiconductor to metal transition, and an energy shift of main valence band structure to higher binding energy compared to those of $CsBi_4Te_6$, and this observation is consistent with band structure calculations. The observed "electron-doping-like" behavior, regardless

of the expected hole doping due to Pb substitution for Bi, can be explained by a scenario in which part of the Cs 6s electrons occupying the bonding state of the Bi dimer in CsBi₄Te₆ instead occupy the conduction band of CsBi_{3.7}Pb_{0.3}Te₆ after the disconnection of Bi dimer due to the Pb-substitution. Therefore, we clearly demonstrate that the charge carriers can be controlled by the Bi dimers in the Bi₄Te₆ system and this provides unique playground to study superconductivity in bismuth-chalcogenide compounds.

Acknowledgements

Calculations were performed using the computational facilities of the Advanced Computing Research Centre, University of Bristol, UK (http://www.bris.ac.uk/acrc/). This work was supported partly by a Grant-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Reference

- [1] J. G. Bednorz and K.A. Müller, Z. Phys. B 64, 189 (1986).
- [2] H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jpn. J. Appl. Phys. 27, L209 (1988).
- [3] Y. Takano, M. Nagao, T. Takenouchi, H. Umezawa, I. Sakaguchi, M. Tachiki, and H. Kawarada, Diamond Relat. Mater. **14**, 1936 (2005).
- [4] H. Okazaki, T. Wakita, T. Muro, T. Nakamura, Y. Muraoka, T. Yokoya, S. Kurihara, H. Kawarada, T. Oguchi, and Y. Takano, Appl. Phys. Lett. 106, 052601 (2015).
- [5] E. Bustarret, C. Marcenat, P. Achatz, J. Kačmarčik, F. Lévy, A. Huxley, L. Ortéga, E. Bourgeois, X. Blase, D. Débarre, and J. Boulmer, Nature 444, 465 (2006).
- [6] B. Lalevic, Phys. Lett. 16, 206 (1965).
- [7] R. A. Hein and P. H. E. Meijer, Phys. Rev. 179, 497 (1969).
- [8] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett. 104, 057001 (2010).

- [9] M. Einaga, Y. Tanabe, A. Nakayama, A. Ohmura, F. Ishikawa, and Y. Yamada, J. Phys. Conference Series **215**, 012036 (2010).
- [10] Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, and O. Miura, J. Phys. Soc. Jpn. **81**, 114725 (2012).
- [11] C. D. Malliakas, D. Y. Chung, H. Claus, and M. G. Kanatzidis, J. Am. Chem. Soc. 135, 14540 (2013).
- [12] R. X. Zhang, H. X. Yang, H. F. Tian, G. F. Chen, S. L. Wu, L. L. Wei, and J. Q. Li, J. Solid State Chem. **232**, 50 (2015).
- [13] C. D. Malliakas, D. Y. Chung, H. Claus, and M. G. Kanatzidis, J. Am. Chem. Soc. 138, 14694 (2016).
- [14] S. Demura, K. Deguchi, Y. Mizuguchi, K. Sato, Ryota Honjyo, A. Yamashita, T. Yamaki, H. Hara, T. Watanabe, S. J. Denholme, M. Fujioka, H. Okazaki, T. Ozaki, O. Miura, T. Yamaguchi, H. Takeya, and Y. Takano, J. Phys. Soc. Jpn. 84, 024709 (2015).
- [15] K. Terashima, J. Sonoyama, T Wakita, M. Sunagawa, K. Ono, H. Kumigashira, T. Muro, M. Nagao, S Watauchi, I. Tanaka, H. Okazaki, Y. Takano, O. Miura, Y. Mizuguchi, H. Usui, K. Suzuki, K. Kuroki, Y. Muraoka, and T. Yokoya, Phys. Rev. B **90**, 220512 (2014).
- [16] T. Wakita, E. Paris, T. Mizokawa, M. Y. Hacisalihoğlu, K. Terashima, H. Okazaki, O. Proux, I. Kieffer, E. Lahera, W. D. Net, L. Olivi, Y. Takano, Y. Muraoka, T. Yokoya, and Na. L. Saini, Phys. Chem. Chem. Phys., **18**, 25136 (2016).
- [17] The ELK FP-LAPW Code, http://elk.sourceforge.net, version 4.3.6.
- [18] K.-F. Hsu, D.-Y. Chung, S. Lal, A. Mrotzek, T. Kyratsi, T. Hogan, and M. G. Kanatzidis, J. Am. Chem. Soc. **124**, 2410 (2002).
- [19] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- [20] D.-Y. Chung, T. Hogan, P. Brazis, M. R.-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, Science **287**, 1024 (2000).
- [21] K.-F. Hsu, D.-Y. Chung, S. Lal, A. Mrotzek, T. Kyratsi, T. Hogan, and M. G. Kanatzidis, J. Am. Chem. Soc. **124**, 2410 (2002).

- [22] D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis1, Science 287, 1024 (2000).
- [23] W. Luo, J. S. Almeida, J. M. Osorio-Guillen, and R. Ahuja, J. Phys. Chem. Solids 69, 2274 (2008).
- [24] P. Larson, S. D. Mahanti, D.-Y. Chung, and M. G. Kanatzidis, Phys. Rev. B 65, 045205 (2002).
- [25] H. Chen, H. Claus, J.-K. Bao, C. C. Stoumpos, D. Y. Chung, W.-K. Kwok, and M. G. Kanatzidis, Chem. Mater. 30, 5293 (2018).
- [26] B. Li, Z. W. Xing, and G. Q. Huang, EPL 101, 47002 (2013).
- [27] S. Nagira, J. Sonoyama, T. Wakita, M. Sunagawa, Y. Izumi, T. Muro, H. Kumigashira, M. Oshima, K. Deguchi, H. Okazaki, Y. Takano, O. Miura, Y. Mizuguchi, K. Suzuki, H. Usui, K. Kuroki, K. Okada, Y. Muraoka, and T. Yokoya, J. Phys. Soc. Jpn. 83, 033703 (2014).
- [28] P. Larson, S. D. Mahanti, and M. G. Kanatzidis, Phys. Rev. B 61, 8162 (2000).

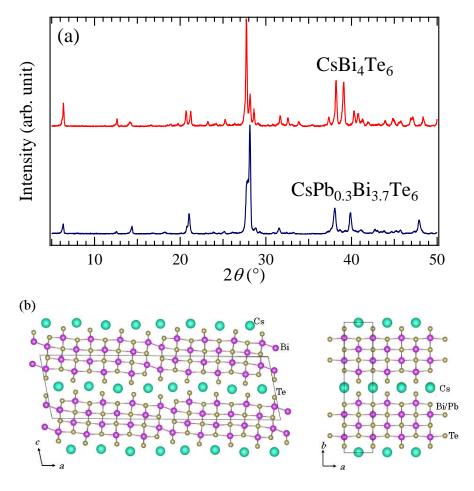


Figure 1 (a) XRD profiles of $CsBi_{4-x}Pb_xTe_6$ measured by $Cu K\alpha$ radiation. The upper and lower profiles are indicated as $CsBi_4Te_6$ and $CsBi_{3.7}Pb_{0.3}Te_6$, respectively. (b) Crystal structure of $CsBi_4Te_6$ (left) and $CsBi_{3.7}Pb_{0.3}Te_6$ (right).

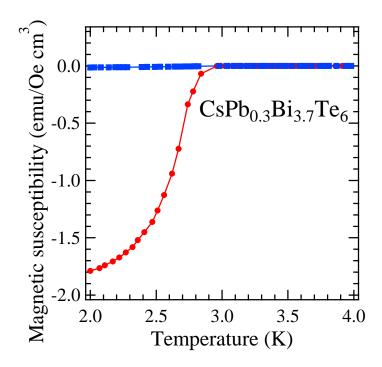


Figure 2 The temperature dependence of magnetic susceptibility for the CsBi_{3.7}Pb_{0.3}Te₆ sample.

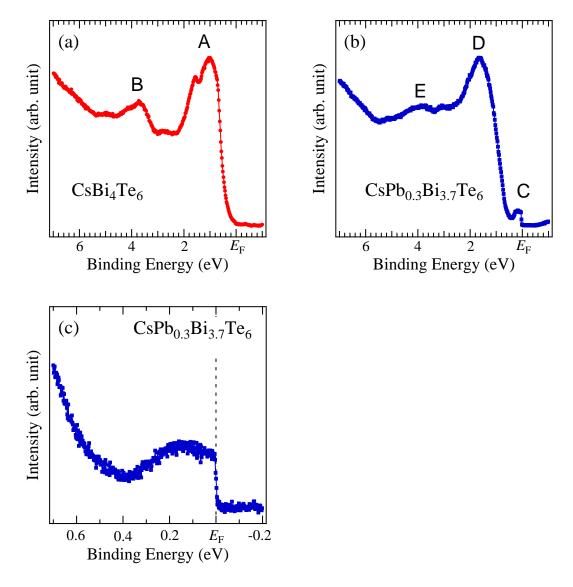


Figure 3 Photoemission spectra of (a) CsBi₄Te₆ and (b) CsBi_{3.7}Pb_{0.3}Te₆. (c) The spectrum near E_F for CsBi_{3.7}Pb_{0.3}Te₆.

Figure 4 (a) Comparison of experimental spectra with the band calculations for CsBi₄Te₆. The colored lines denote as total DOS (black), pDOS of Bi (red), Te (blue), and Cs (green), respectively. (b) Calculated Bi pDOS for CsBi₄Te₆. (c) The comparison of experimental spectra with the band calculations for CsPb_{0.3}Bi_{3.7}Te₆.

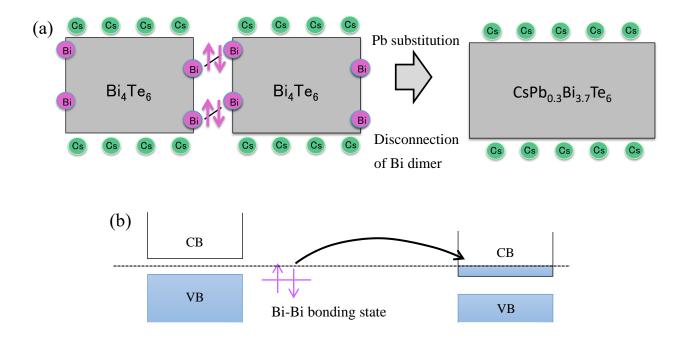


Figure 5 Schematic diagram of (a) crystal structure and (b) electronic structure for CsBi₄Te₆ (left) and CsBi_{3.7}Pb_{0.3}Te₆ (right). For CsBi₄Te₆, the Bi dimer connects the Bi-Te networks (slabs). For CsBi_{3.7}Pb_{0.3}Te₆, there is a (Bi,Pb)-Te network in the structure.