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The upper limit of critical current density by the flux pinning mechanism is theoretically 

investigated with taking account of the influence of kinetic energy. The upper limit is 

estimated to be 67 % of the depairing current density in the London limit, which is about 

23 % higher than the estimation by Tinkham. The reason for the higher value is attributed 

to the enhancement of the order parameter that reduces the kinetic energy caused by the 

current. The possibility of such a strong flux pinning is discussed for nano-rods introduced 

to REBCO coated conductors. 
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Critical current density 𝐽c, which is the maximum nondissipative current density, is the 

most important factor for application of superconductors. Theoretically estimated 

maximum value of 𝐽c  is the depairing current density 𝑗d . It is considered that the 

departing current density can be achieved for a superconducting wire with the transverse 

sizes comparable to or smaller than the coherence length 𝜉 under zero magnetic field. 

Experimental results have been compared with the theoretical estimation.1-5) In this case, 

however, a large superconducting current cannot be obtained due to limited cross-sectional 

area of superconductors, even if a high critical current density is achieved. 

Practical critical current density in a superconductor with a much larger 

cross-sectional area is governed by the flux pinning mechanism. Recently introduction of 

artificial pinning centers to REBCO superconducting films is commonly employed to 

appreciably enhance the 𝐽c-value.6-16) Great interest in this case is how 𝐽c-values can be 

improved and observed 𝐽c-values have been frequently compared with 𝑗d.17) 

However, any theoretical investigation has not been given for the upper limit of the 

critical current density attained by the flux pinning mechanism. The factor that restricts the 

enhancement of the critical current density is the increase in kinetic energy, which is 

similar to the limit of depairing current density. In this paper the critical current density at 

low magnetic fields is theoretically estimated as a function of the flux pinning strength 

using the Ginzburg-Landau theory. It is also investigated how close we can approach this 

limit for the case of flux pinning by nano-rods introduced to REBCO coated conductors. 

     First, we discuss the depairing current density, since it helps to understand the 

difference from the pinning current density. The depairing current density is discussed in 

the absence of external magnetic field for a superconductor with small transverse sizes 

normal to the current direction. The Ginzburg-Landau free energy density is given by 

 

(1) 

 

where 𝑚∗ and −2𝑒(𝑒 > 0) are the mass and electric charge of superconducting electron 

and 𝑨 is the vector potential. In the condition of our interest the magnitude of the order 

parameter |𝛹| in the superconductor is expected to be equal to that in the equilibrium 

condition, |𝛹∞|. Then, we have ∇𝛹 = ∇|𝛹|ei𝜑 = i(∇𝜑)𝛹 with 𝜑 denoting the phase of 

 ℱ = 𝛼|𝛹|2 +
1

2
𝛽|𝛹|4 +

1

2𝑚∗
|(−iℏ∇ + 2𝑒𝑨)𝛹|2, 
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ℱ∞ = 𝛼|𝛹∞|2 +
𝛽

2
|𝛹∞|4 +

𝑚∗𝒋∞
2

8𝑒2|𝛹∞|2
, 

𝑗d = (
4𝜇0𝐻c

2𝑒2|𝛹∞|2

𝑚∗
)

1/2

=
𝐻c

𝜆
, 

𝛹 and the kinetic energy density in the Ginzburg-Landau theory is 

 

(2) 

 

The superconducting current density is 

 

(3) 

 

Then, Eq. (2) is rewritten as 

 

(4) 

 

and the Ginzburg-Landau free energy density is 

 

  (5) 

 

where the magnetic energy is omitted. In this equation, the magnitude of the sum of the 

first and second terms gives the condensation energy density: 

 

(6) 

 

where 𝐻c is the thermodynamic critical field. The critical current density at which the 

transition to the normal state occurs with satisfying ℱ∞ = 0 is obtained as 

 

(7) 

 

where 𝜆 is the penetration depth. This is the depairing current density in the London 

limit.18) The depairing current density is also discussed in a different way as will be shown 

later. 

     The practical critical current density is the maximum non-dissipative current density 

determined by the mechanism of flux pinning interactions in magnetic fields for 

superconductors with much larger cross-sectional area. At magnetic fields sufficiently 

ℱk =
1

2𝑚∗
|(ℏ∇𝜑 + 2𝑒𝑨)𝛹|2 =

1

2𝑚∗
(ℏ∇𝜑 + 2𝑒𝑨)2|𝛹∞|2 ≡ ℱk∞. 

𝒋∞ = −
2𝑒

𝑚∗
(ℏ∇𝜑 + 2𝑒𝑨)|𝛹∞|2. 

ℱk∞ =
𝑚∗𝒋∞

2

8𝑒2|𝛹∞|2
, 

|ℱc∞| = |α|𝛹∞|2 +
𝛽

2
|𝛹∞|4| =

1

2
𝜇0𝐻c

2, 
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higher than the lower critical field 𝐻c1, the penetration depth, a characteristic length of 

spatial distribution of the current, is larger than the spacing of quantized flux lines. Hence, 

it can be regarded that the current flows uniformly with the density 𝑱  in the 

superconductor. As a result, the influence of the increase in kinetic energy appears globally. 

     The equilibrium condition under the flux pinning interactions is obtained by 

minimizing the Gibbs free energy density:19, 20) 

 

(8) 

 

where 𝑈p  is the pinning energy density, 𝑱 × 𝑩  is the Lorentz force and 𝒖  is the 

displacement of flux lines. The minimization of ℊ  with respect to 𝒖  leads to the 

force-balance equation in the critical state model: 

 

(9) 

 

where 𝑭p = − ∂𝑈p/𝜕𝒖 is the pinning force density. Note that this minimization holds in 

the region of reversible flux motion up to the critical state.19) Hence, the principle of 

determination of the maximum pinning current density is essentially different from the 

determination of depairing current density in Eq. (7). The free energy density ℊ should 

also be minimized with respect to |𝛹|. This will be discussed later. 

We treat the flux pinning by nano-rods introduced in REBCO thin films, since the 

flux pinning interaction is considered to be strongest. The pinning mechanism of such 

normal precipitates is the condensation energy interaction. We assume that a low magnetic 

field is applied along the 𝑐-axis and all flux lines are pinned completely by parallel 

nano-rods. The diameter of nano-rods is assumed to be slightly larger than the diameter of 

the normal core of each flux line 2𝜉𝑎𝑏. Then, the elementary pinning force in a unit length 

of the flux line is given by 

 

(9) 

 

where ℱc is the magnitude of the condensation energy density: 

𝑓p =
𝜋𝜉𝑎𝑏

2
ℱc, 

ℊ = ℱ + 𝑈p − (𝑱 × 𝑩) ∙ 𝒖, 

𝑱 × 𝑩 + 𝑭p = 0, 
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(10) 

 

The current density by this pinning mechanism is theoretically estimated as 

 

(11) 

 

where 𝜂 is a constant called the pinning efficiency and 𝜙0 is the flux quantum. Equation 

(11) shows that the critical current density is independent of the magnetic field as observed 

at low magnetic fields. In the ideal case where we can neglect the influence of kinetic 

energy, we can assume |𝛹|2 = |𝛹∞|2 and Eq. (11) leads to 

 

(12) 

 

For simplicity we normalize as 

 

(13) 

 

The corresponding penetration depth is that in the 𝑎-𝑏 plane. Then, the normalized 

current density is written as 

 

(14) 

 

Thus, the free energy density ℱ is given by 

 

(15) 

 

Note that whereas only the expression of 𝑘 changes depending on a kind and size of 

pinning centers, the form of Eq. (14) is unchanged so far as the elementary flux pinning 

mechanism is the condensation energy interaction. Then, we use 𝑘 as a mathematical 

parameter representing the flux pinning strength which can be extended to infinity.  

𝐽 = 𝜂
𝑓p

𝜙0
= 𝜂

𝜋𝜉𝑎𝑏

2𝜙0
ℱc, 

𝐽 = 𝜂
𝜋𝜉𝑎𝑏𝜇0𝐻c

2

4𝜙0
≡ 𝐽c∞. 

𝑥 =
|𝛹|2

|𝛹∞|2
,    𝑦 =

𝜆𝑎𝑏𝐽

𝐻c
=

𝐽

𝑗d
,   

𝐽c∞

𝑗d
=  𝜂

𝜋𝜉𝑎𝑏𝜇0𝐻c𝜆𝑎𝑏

4𝜙0
≡ 𝑘. 

𝑦 = 𝑘(2𝑥 − 𝑥2). 

(
1

2
𝜇0𝐻c

2)
−1

ℱ = −2𝑥 + 𝑥2 + 𝑘2𝑥(2 − 𝑥)2. 

ℱc = |𝛼|𝛹|2 +
1

2
𝛽|𝛹|4| 
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ℊ = 𝛼|𝛹|2 +
1

2
𝛽|𝛹|4 +

𝑚∗

2
𝒗s

2|𝛹|2 +
𝑚∗𝒗s ∙ 𝒋

2𝑒
= 𝛼|𝛹|2 +

1

2
𝛽|𝛹|4 −

𝑚∗𝑗2

8𝑒2|𝛹|2
, 

Exactly speaking, ℱ + 𝑈p  is to be minimized with respect to |𝛹|2 . Since the 

volume fraction of the pinning region is very small, however, the pinning energy can be 

approximately neglected in determination of the equilibrium condition for |𝛹|2. Hence, ℱ 

is minimized with respect to 𝑥. This leads to 

 

(16) 

 

This can be easily solved as 

 

(17) 

 

Substituting Eq. (17) into Eq. (14), we have the critical current density: 

 

(18) 

 

Obtained Eqs. (17) and (18) satisfy the normal results of 𝑥c → 1 and 𝑦c → 𝑘 when 

𝑘 is sufficiently small. That is, when the pinning is not so strong, the critical current 

density can be simply obtained without considering the effect of kinetic energy as is done 

usually. Figure 1 shows the theoretical results on the order parameter and the critical 

current density as a function of the flux pinning strength. The equilibrium value 𝑥c 

increases from 1 with increasing flux pinning strength. That is, |𝛹|2 takes a value larger 

than |𝛹∞|2, which is opposite to the expected behavior of the order parameter in the 

theoretical model of Tinkham.  

On the other hand, Tinkham21) discussed the maximum current density in a pin free 

superconductor in a different way. In this theoretical treatment the current density 𝒋 is one 

of the external variables and the Gibbs free energy density is given by 

 

(19) 

 

where the relationship: 

 

3𝑘2𝑥2 + 2(1 − 4𝑘2)𝑥 − 2 + 4𝑘2 = 0. 

𝑥 =
1

3𝑘2
[−1 + 4𝑘2 + (1 − 2𝑘2 + 4𝑘4)1/2] ≡ 𝑥c. 

𝑦 =
2

9𝑘3
[−1 + 2𝑘2 + 2𝑘4 + (1 − 𝑘2)(1 − 2𝑘2 + 4𝑘4)1/2] ≡ 𝑦c =

𝐽c

𝑗d
. 
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(20) 

 

was used. The free energy is minimized with respect to |𝛹|. This leads to 

 

(21) 

 

The current density 𝑗  is maximum when |𝛹|2 = −2𝛼/(3𝛽) = (2/3)|𝛹∞|2  and the 

maximum value is 

 

(22) 

 

     When the flux pinning interaction becomes strong, the critical current density 𝐽c 

increases and has a maximum 0.6712𝑗d at around 𝑘 = 0.9512 ≡ 𝑘m. It is expected that 

the critical current density can reach 67% of the depairing current density by making the 

flux pinning strong sufficiently. This value is even higher than the theoretically estimated 

value of 𝑗d
′ = (2/3)3/2𝑗d = 0.5443𝑗d by Tinkham. For a current density above 𝐽c, the 

resistive flux flow state occurs as usually understood for 𝑘 < 𝑘m. Hence, this is quite 

different from the condition at the depairing current density. Note that, even at the situation 

where the current with the density above 𝐽c flows, the energy density ℊ is lower than that 

in the normal state and the superconducting state is kept. 

For the case of much stronger flux pinning (𝑘 > 𝑘m ), the above theoretical 

estimation suggests a decrease in 𝐽c value. This decrease is speculated to take place under 

the assumption that flux pinning interactions fully work. If we remember that the pinned 

flux lines tend to self-organize themselves to minimize the energy dissipation as predicted 

by the critical state model,22) however, it is considered that the flux lines select a relatively 

weakly pinned condition to attain a higher 𝐽c value. Note that a similar behavior occurs in 

the formation of flux bundle under the influence of flux creep: It is considered that flux 

lines select a relatively weakly pinned state to enhance the flux bundle size, which is 

effective against the strong flux creep.23) This comes from the principle of irreversible 

thermodynamics to minimize the energy dissipation, which is realized by maximizing the 

𝑚∗

8𝑒2
𝑗2 = −𝛼|𝛹|4 − 𝛽|𝛹|6. 

𝑗d
′ = (

2

3
)

3/2 𝐻c

𝜆
= (

2

3
)

3/2

𝑗d. 

𝒗s = −
𝑚∗𝒋

2𝑒|𝛹|2
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critical current density, and explains various experimental results on the film-thickness 

dependence of irreversibility field, etc.24) Hence, it is expected that 𝐽c keeps the maximum 

𝐽c value even for 𝑘 > 𝑘m. 

     Here we discuss how the order parameter changes under the flux pinning interaction. 

Figure 1 shows that |𝛹|2 increases when the flux pinning strength increases. This is 

caused by the kinetic energy density given by the third term in Eq. (15). The relationship 

between ℱ and |𝛹|2 is shown in Fig. 2 for 𝑘 = 0, 0.5 and 𝑘m = 0.9152. When 𝑘 

becomes large, the minimum free energy density is attained at a larger value of the order 

parameter with the decrease in the condensation energy density. On the other hand, 

Tinkham predicted that |𝛹|2 decreases with increasing current density. Here we discuss 

which behavior is preferable from the viewpoint of energy. The kinetic energy density is 

given by: 

 

(23) 

 

It is preferable to increase the order parameter 𝑥 to reduce the kinetic energy under the 

condition of large normalized current density 𝑦. This is the reason why |𝛹|2 takes a 

larger value than |𝛹∞|2. This may also be effective to reach the limit higher than the 

critical current density predicted by Tinkham. The conditions are compared in more detail 

between the two theoretical approaches in Table 1. The free energy density in our critical 

state is lower than that in the critical state of Tinkham. 

     The above theoretical result suggests that we can hopefully introduce strong pinning 

centers to superconductors to improve the critical current density. Then, our interest is how 

close we can increase the critical current density to the theoretical limit. We assume the 

case of strong flux pinning by nano-rods at 4.2 K and at low magnetic fields along the 

𝑐-axis. Assumed superconducting parameters are 𝜆𝑎𝑏 = 121 nm (𝜉𝑎𝑏 = 1.8 nm and 𝜅𝑎𝑏 =

67)25) and 𝜇0𝐻c = 2.5 T.26) The pinning efficiency is not a constant in a strict sense but 

increases with flux pinning strength.27) Then, we assume 𝜂 = 1 in the limit of strong 

pinning. In this case the parameter 𝑘 is estimated as 0.207, which leads to 𝑦c = 0.207. As 

a result, the depairing current density is 𝑗d = 1.64 × 1013 Am−2 and the critical current 

density is 𝐽c = 3.39 × 1012 Am−2. This value is 30.8% of the theoretical limit. Since the 

(
1

2
𝜇0𝐻c

2)
−1

ℱk ≡ ℱk′ =
𝑦2

𝑥
. 
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optimum situation for flux pinning is treated here, it is speculated to be difficult to attain a 

more strongly pinned case so far as the condensation energy interaction with normal 

precipitates is involved. There is sufficient room for improvement in the future, however, 

since practically obtained critical current densities are fairly lower than the present 

estimation. 
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Figure Captions 

 

Fig. 1. Normalized order parameter (solid symbols) and critical current density (open 

symbols) as a function of flux pinning strength. 

 

Fig. 2. Free energy density as a function of normalized order parameter for 𝑘 =

0, 0.5 and 𝑘m = 0.9152. 

 

 

Table I. Comparison on the conditions in the critical state between the two theoretical 

approaches: 𝑥c  is the order parameter, 𝑦c  is the critical current density, ℱc′  is the 

condensation energy density, ℱk′ is the kinetic energy density and −ℱc
′ + ℱk′ is the total 

free energy density. All quantities are normalized. 

  

 𝑥c 𝑦c ℱc
′ = 2𝑥c − 𝑥c

2 ℱk
′ = 𝑦c

2
/𝑥c −ℱc

′ + ℱk
′ 

Present 1.5163 0.6712 0.7334 0.2971 −0.4363 

Tinkham21) 0.6667 0.5443 0.6667 0.4444 −0.2222 
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