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Abstract

Attitude determination, along with attitude control, is a critical component for many

Earth-observation small satellites. However, most of the small satellites operate with-

out redundant attitude sensors due to the satellite’s small form factor, so that there

is a significant risk of mission failure. Moreover, the range of possible applications for

small satellites is limited due to their low available volume, weight, power, and other

constraints. The majority of these limitations affect Earth-observation CubeSat-class

spacecraft due to the lack of high-performing attitude determination and control sys-

tems. Achieving accurate and robust attitude determination and control system in small

form factor is challenging and complete attitude knowledge in inertial space requires a

combination of multisensors in order to maintain robust attitude estimation in different

cases.

Our objective in this dissertation is to improve attitude estimation of Earth-observation

satellites using visual and inertial sensors with Unscented Kalman filter. CMOS (Comple-

mentary Metal-Oxide Semiconductor) camera is common sensor for CubeSats to carry

as its primary payload. Besides, Earth’s surface features in an imager’s field of view

provides an important prior feature for attitude estimation. These observations moti-

vate us to use a CMOS camera as sensor for small satellite’s attitude determination

system. Our goal is to improve the accuracy of attitude estimation capabilities of the

resource-constrained small satellite by using a sensor fusion approach with vision-based

and inertial sensors. This improvement increases the possibility of applications that re-

quire accurate attitude determination and control system such as laser communications,

target tracking and Earth imaging missions for CubeSats.

In this dissertation, we study the issues of vision-based and inertial-aided attitude de-

termination approaches and sensor fusion techniques. The vision-based attitude esti-

mation method is usually achieved by Earth’s surface features tracking and feature-

correspondences matching techniques with different outlier rejection methods and then

provides absolute attitude information in 3 degrees of freedom. Experimental and sim-

ulation tests were carried out to qualify the proposed approach’s performance. For the

validation of the vision-based method’s performance, we used raw imagery data of High

Definition Earth Viewing (HDEV) payload of the International Space Station (ISS). The

performance of the visual-inertial approach is assessed through the realistic Earth-surface

scene simulations and results are compared with ground truth data. All the methodol-

ogy details of the proposed approach have been explained and the test results have been

analyzed.



Acknowledgements

It has been an honor and a great privilege to be a doctoral student at Kyushu Institute

of Technology (KIT), in the SEIC community, for the last four years. There are many

people I would like to acknowledge for making my graduate student life such a great

experience.

First of all, I would like to thank my supervisor Professor Kenichi Asami for having

offered me the possibility of doing a PhD study under his supervision. He provided

me a highly inspiring environment and all the necessary resources to achieve the present

work. I thank him for encouraging my research and for allowing me to grow as a research

scientist. Without his guidance and constant feedback to reach this point would not have

been achievable.

Also, I would like to thank Professor Mengu Cho for his great guidance and helpful

advice. I had participated in the BIRDS-1 project, as a member of Camera Subsystem

team under his leading. I got a great experience and I have learned a lot from him.

I thanks for Assistant Professor Masui Hirokazu and BIRDS-1 team members for the

helping and encouraging me when things not work. Also, thanks to their friendly and

fun atmosphere in the laboratory and during conferences abroad.

I thank to all my colleagues; Rafael Rodriguez Leon, Mohamed Elhady Keshk, U.Tuguldur,

Shota Ogawa, R.Uezu and all other members with whom I have shared the same labo-

ratory in KIT for three years.

Also I would like to acknowledge the Japanese Government (MEXT) and The United

Nations Office for Outer Space Affairs’ PNST fellowship program for the financial support

throughout my researches in Japan.

I thank to my closest friends; Dr D.Erdenebaatar (teacher), T.Turtogtokh, B.Battuvshin,

U.Tuguldur, B.Bolortuya, S.Purevdorj who supported me in every difficult and fun sit-

uations.

Also, I would like to thank Professor Tsolmon Renchin for her guidance and helpful

advice during my master degree study at National University of Mongolia.

Lastly, I am deeply grateful to my parents, younger brother and sister, who have been

always with me despite the long distance between us and all the support they gave me

to reach this point.

ii



Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Inertial Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Vectors Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Current State of Research . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Camera as Attitude Sensor . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Sensor Fusion and Filtering . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Structure of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 12
2.1 Satellite Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Attitude Representations . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Sensors Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.4 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Attitude Determination and Control System . . . . . . . . . . . . . . . . . 28
2.2.1 Attitude Determination Algorithms . . . . . . . . . . . . . . . . . . 29

3 Earth-horizon based Approach 31
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Earth-horizon based attitude determination method . . . . . . . . . . . . 32
3.3 Attitude from Earth Horizon Curvature . . . . . . . . . . . . . . . . . . . 32
3.4 Earth horizon detection algorithm . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Least square circle fitting method . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Circle fitting algorithm test . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.8 Experimental Results and Performance Evaluation . . . . . . . . . . . . . 47

iii



Contents iv

4 Visual-Inertial Attitude Propagation Approach 52
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Visual-Inertial methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Vision-Based Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Perspective projection . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Total Shift Correction Method . . . . . . . . . . . . . . . . . . . . 58
4.3.3 Oriented FAST and Rotated BRIEF (ORB) . . . . . . . . . . . . . 60
4.3.4 The planar homography estimation . . . . . . . . . . . . . . . . . . 65
4.3.5 Attitude estimation from the planar Homography . . . . . . . . . . 67

4.4 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Sensor Fusion Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1 The Unscented Transformation . . . . . . . . . . . . . . . . . . . . 73
4.5.2 The Unscented Kalman Filter for attitude estimation . . . . . . . . 75

4.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7 Experimental Results and Performance Evaluation . . . . . . . . . . . . . 81

5 Map-based Approach 88
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Image Representation with a visual words . . . . . . . . . . . . . . . . . . 89
5.3 Inverted file indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Attitude determination from a global map . . . . . . . . . . . . . . 91
5.3.2 Simulation and experimental results . . . . . . . . . . . . . . . . . 92

6 Conclusions 94
6.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Discussions and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Abbreviations 98

Bibliography 99

Publication List 104

About Author 105



List of Figures

1.1 The Birds satellite (JGMNB project) is an example of a 1U CubeSat . . . 2
1.2 Yearly launched and planned CubeSats as of January 2019. . . . . . . . . 3
1.3 Combination of inertial and vision sensing modeled as human vision and

vestibular system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Venn diagram of relevant literature . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Definition of coordinate systems. . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Definition of coordinate systems. . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 The Pinhole Camera Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 A generic attitude determination and control system block diagram. . . . 28

3.1 Definition of coordinate systems. . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Illustration of the relationship between image plane and satellite attitude. 33
3.3 Portion of the Earth viewed and seen by spacecraft [x . . . . . . . . . . . 34
3.4 Ratio of candidate image plane area in imager’s field of view and area of

full-sized Earth in image plane as function of satellite altitude. . . . . . . 35
3.5 Ratio of radius of Earth horizon in imager’s field of view and actual radius

of Earth as function of satellite altitude. . . . . . . . . . . . . . . . . . . . 35
3.6 Apollo 17 Hasselblad image 148/NN - Earth, LM Inspection. . . . . . . . 36
3.7 Flowchart of the proposed image processing algorithm for the Earth hori-

zon detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 Isometric view of the image intersecting the Earth disk. . . . . . . . . . . 38
3.9 Simple Earth shape model - generated images. . . . . . . . . . . . . . . . . 41
3.10 Resulting image of horizon line and center of shape model detected. . . . . 42
3.11 Resulting image of horizon line and center of shape model detected. . . . . 42
3.12 Resulting image of horizon line of shape model detected. . . . . . . . . . . 42
3.13 The illustration of mathematical relationships of Pitch angle, horizon cur-

vature and principal point. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.14 The illustration of mathematical relationships of Roll angle, horizon cur-

vature and principal point. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.15 Assembled hardware of prototype of Vision-based attitude sensor. . . . . . 45
3.16 Laboratory setup as assembled and used for functional tests - Pitch angle

estimation setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.17 Laboratory setup as assembled and used for functional tests - Roll angle

estimation setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.18 Image processing steps of the horizon curvature detection algorithm. . . . 47
3.19 Horizon curvature detected by the proposed image processing algorithm. . 48
3.20 Horizon curvature detected by the proposed image processing algorithm. . 48

v



List of Figures vi

3.21 Earth-horizon based approach and MEMS gyro measurement comparison
for the Pitch measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.22 The measurement error comparison of Earth-horizon based approach and
MEMS gyro for the Pitch measurements. . . . . . . . . . . . . . . . . . . . 49

3.23 Earth-horizon based approach and MEMS gyro measurement comparison
for the Roll measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.24 The measurement error comparison of Earth-horizon based approach and
MEMS gyro for the Roll measurements. . . . . . . . . . . . . . . . . . . . 50

4.1 Framework of the proposed approach for attitude propagation. . . . . . . 54
4.2 The block diagram of the proposed vision-based method. . . . . . . . . . . 55
4.3 Previous and current camera frames with the relationship between world

points and image points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Feature points location shift due to satellite translation and Earth’s rotation. 58
4.5 Average detection time of feature detectors. . . . . . . . . . . . . . . . . . 61
4.6 Average number of detected features of detectors. . . . . . . . . . . . . . . 62
4.7 Simulated images matched with observation image after cloud changes and

shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.8 Simulated images matched with observation image after various transfor-

mations and noise applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.9 Corresponding of feature points detected by ORB detector and matched

in two successive images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.10 The relationship of a planar surface and two corresponding image planes. . 65
4.11 Distorted image with the curvature of the top row of the squares and

undistorted image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.12 Images of the calibration checkerboard. . . . . . . . . . . . . . . . . . . . . 70
4.13 Computed extrinsic parameters. . . . . . . . . . . . . . . . . . . . . . . . . 71
4.14 The calculated complete distortion model of radial and tangential. . . . . 71
4.15 Sensor fusion approach using Unscented Kalman Filter. . . . . . . . . . . 72
4.16 Basic principle behind the unscented transformation [28 . . . . . . . . . . 73
4.17 Structure of the proposed sensor fusion approach. . . . . . . . . . . . . . . 77
4.18 Laboratory test environment and experimental setup. . . . . . . . . . . . . 78
4.19 Prototype hardware design for the visual-inertial approach. . . . . . . . . 79
4.20 Transformation of visual and inertial sensor after the calibration. . . . . . 79
4.21 Experimental results of Vision-based method compared with ground truth

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.22 Result 1 obtained by the proposed image processing algorithm. . . . . . . 82
4.23 Result 2 obtained by the proposed image processing algorithm. . . . . . . 82
4.24 Result 3 obtained by the proposed image processing algorithm. . . . . . . 82
4.25 Comparison between pitch angle estimated by visual-inertial and different

approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.26 Comparison between roll angle estimated by visual-inertial and different

approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.27 Comparison between yaw angle estimated by visual-inertial and different

approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.28 Gyro biases estimated by Unscented Kalman Filter. . . . . . . . . . . . . . 85
4.29 Comparison between the laboratory computer and equivalent single board

computers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



List of Figures vii

5.1 Visual words are extracted from images and indexed into an inverted file. 89
5.2 Inverted file is a structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 The block diagram of the proposed map-based method. . . . . . . . . . . . 91
5.4 Cesium web-based simulation platform. . . . . . . . . . . . . . . . . . . . . 92
5.5 Stitching and Reconstruction of database images. . . . . . . . . . . . . . . 93
5.6 Simulation results using Sentinel-2 satellite imagery. . . . . . . . . . . . . 93
5.7 Simulation results using Sentinel-2 satellite imagery. . . . . . . . . . . . . 93



List of Tables

1.1 List of CubeSat missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Generic CubeSat characteristics . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Examples of two different grade IMUs . . . . . . . . . . . . . . . . . . . . 6
1.4 Examples of attitude sensors suitable for CubeSat missions . . . . . . . . 7

2.1 Characteristics of attitude representations of Euler angles and quater-
nions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Parameters of simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Measurement errors of test result graphs. . . . . . . . . . . . . . . . . . . . 51
3.3 Average process time comparison between the proposed image processing

algorithm and without image processing . . . . . . . . . . . . . . . . . . . 51
3.4 Average power consumption comparison between the during processing

algorithm and idle mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Specifications of sensors and simulation model. . . . . . . . . . . . . . . . 83
4.2 Measurement errors of only vision-based approach. . . . . . . . . . . . . . 86
4.3 Average process time the proposed image processing algorithm. . . . . . . 87
4.4 Comparison of root mean square error for the measurement of two ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Average process time the proposed visual-inertial approach. . . . . . . . . 87

viii



Chapter 1

Introduction

This chapter provides background and related concepts to motivate the research work

about Visual-Inertial attitude determination. Regarding the satellite miniaturization and

the challenges related to attitude determination and control system arises the motivation

of this research at the time of the writing the dissertation.

Research Vision is to contribute for demanding of increase of nanosatellite’s attitude

determination and control system’s accuracy and reliability in the future small satellites.

Purpose of research is to develop an vision-based and inertial-aided attitude determi-

nation approach for small satellites.

Goal of thesis research is to demonstrate that proposed approach can give reliable

and accurate measurements of satellite attitude changes.

1.1 Research motivation

Over the last two decades, the CubeSat category of spacecrafts have become increasingly

popular in small satellite industry [1]. This miniature-sized spacecraft technology has en-

abled institutions to send these small satellites into space and demonstrate sophisticated

missions and scientific experiments [2][3]. The CubeSats are a subclass of nanosatellites

(less than 10 kg) having a mass of 1.33 kg per unit (U) and a volume of a cube with 10 cm

on a side. The first conceptual proposal of CubeSat and new launch standard developed

by California Polytechnic State University (CalPoly) and Stanford University. With the

rapid development of the semiconductor industry, micro electromechanical systems and

integrated circuit (IC) technologies, the miniaturization of satellite technology is speed-

ing up. Figure 1.1 shows an example of 1U CubeSat developed in Kyushu Institute of

Technology.

1
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Figure 1.1: The Birds satellite (JGMNB project) is an example of a 1U CubeSat.

Compared with traditional Earth-observation and communication satellites, the Cube-

Sats are more suitable for high-risk and short-term missions, and these small satellites

have lower development and launch costs and shorter system development periods. These

relatively inexpensive ways of launching and operating satellites has led the wide adop-

tion of the CubeSat standard and increased the availability of small satellite launches

and opened space exploration to smaller organizations, in particular university student

teams. Furthermore, enabling commercial of the shell (COTS) technology in space and

the significant reduced mass and less complexity are other advantages of Cubesats. Since

the total required cost to build Cubesat is inexpensive than traditional satellites, the in-

stitutions and organizations may take the risk of using their own developed hardware and

software for the mission and the satellite can be developed from scratch. The number

of launched nanosatellites is increasing day by day and more than 1180 nanosatellites

have been launched as of June 2019. Figure 1.2 shows the number of nanosatellites

that are known to have launched since 1998, and nanosatellites currently in development

with expected future launch dates and with future forecasts. Plot is from the Nanosats

database [4].

The CubeSats has conducted a wide range of experiments and tests, including tests and

qualifications of mobile phone cameras, studies of the Radiation effect on the electronic

devices and Earth-observation studies. Table 1.1 summarizes examples of recent Cube-

Sat missions. It is apparent that a low available volume and limited weight constraints
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are major challenges that limit the range of possible missions that can be done using a

nanosatellite. These size and weight restrictions limit the available payload for batteries

and external solar panels, which limits the CubeSat’s power consumption. Majority of

these limitations effect on attitude determination and control system (ADCS) of these

satellites. Unlike the traditional satellites, high accuracy high-performance attitude de-

termination sensors and actuators such as star-trackers and reaction wheels cannot be

easily used for nanosatellite missions considering they are heavy, big and do use high

power consumption.

Figure 1.2: Yearly launched and planned CubeSats as of January 2019.

Satellite Name Launch date Mass (kg) Mission

Phonesat 1.0 April 2013 1 Scientific research

Dove 1 April 2013 5.5 Earth imaging

ArduSat August 2013 1 Education

BRITE-PL November 2013 7 Astronomy

GOMX-3 August 2015 2 Technology demonstration

MinXSS December 2015 3.5 Scientific research

Horyu-4 February 2016 10 Scientific research

Aalto-1 June 2017 3.9 Technology demonstration

Birds-1 July 2017 1.3 Technology demonstration

1-KUNS-PF April 2018 1 Technology demonstration

Table 1.1: List of CubeSat missions
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Small satellites often use miniaturized sun sensors, magnetometers, and Micro-Electro-

Mechanical Systems (MEMS) based rate gyros to achieve the required attitude knowl-

edge. However, these sensors have several limitations. On the other hand, miniaturized

Star Trackers can provide precise attitude knowledge with a low rate in the long term.

However, the star trackers increase the mission cost and the system complexity because

of the requirement for a baffle. Meanwhile, 2D image sensors or cameras are cheap,

lightweight, and passive, and can be a useful supplement for attitude sensors for ob-

taining accurate attitude measurements. The camera provides vast external information

like an eye of humans and animals. Furthermore, the vestibular system of humans and

animals gives inertial information for their navigation and body stabilization systems.

Moreover, this information is important for several visual tasks such as gaze holding and

tracking. Vision system combined with vestibular system is successful navigation and

localization system that used by nature. From these humans and animals perception

systems, it is apparent that such complementary sensing system can be used in small

satellite’s attitude determination system to combining vision sensor and tri-axial MEMS

gyroscope. In our work we explore some aspects of integration of visual and inertial

sensing. These complementary sensing system motivated our research to develop an ap-

proach for increased accuracy and robustness of attitude estimation. Figure 1.3 shows a

possible combination framework of visual and inertial sensing modeled as human vision

and vestibular system.

Figure 1.3: Combination of inertial and vision sensing modeled as human vision and
vestibular system.
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1.2 Literature Review

CubeSat attitude determination system’s capability usually depends on the pointing re-

quirements, the operating environment, and desired pointing accuracy among other fac-

tors. Achieving accurate and robust attitude determination and control systems in small

form factor is challenging and complete attitude knowledge in inertial space requires a

combination of multisensors in order to maintain robust attitude estimation in different

cases. Furthermore, the spacecraft’s size, weight, and power constraints are significantly

limit the number of sensors that can be used in CubeSat’s attitude determination subsys-

tem. The general characteristics of CubeSats are summarized in Table 1.2. It is apparent

that a low available volume and limited weight constraints are the major challenges of

attitude determination systems on CubeSats. These size and weight restrictions limit

the available payload for batteries and external solar panels, which limits the CubeSat’s

power consumption. For CubeSats in low-earth orbit, the need for power generation

capabilities depends on orbital parameters, solar panel configurations and orientation

all affect the anticipated power generation levels for solar panel systems. Also, attitude

determination algorithms place additional constraints that depending on whether the

algorithm is in real-time or with some latency. The real-time attitude determination

algorithms are computationally intensive and require a powerful processors.

Parameters 1U CubeSat 3U CubeSat

Orbits Low Earth Orbit Low Eart Orbit

Mission length 90-365 days 90-365 days

Volume 10x10x10 cm 10x10x30 cm

Typical mass 1.33 kg 3.9 kg

Maximum allowable power 1-2.5 W 7-20 W

Table 1.2: Generic CubeSat characteristics.

With the rapid development of the semiconductor industry and the miniaturization of

integrated circuit technologies, recently large number of compact and low-power sensors

have become available. These range from micro-sized magnetometers that are simple,

surface-mount circuit board components, to more specialized infrared devices using ther-

mopiles that can measure the Earth’s limb relative to cold space, and even miniature

sized star trackers for high accurate attitude determination. We briefly introduce two

broad classes of sensors. The first class is inertial sensors that are used to measure

kinematics states of a satellite. The kinematic states they measure are angular velocity

and specific forces. These measurements can be processed to yield an estimate of the

CubeSat’s attitude. The second class of sensors is referred to as vector sensors.
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1.2.1 Inertial Sensors

Inertial sensors used to determine a subset of the kinematic state of the body to which

they attached. The sensors are gyroscopes and accelerometers. Accelerometers mea-

sure specific force, the algebraic sum of linear acceleration and gravitational acceleration

normalized by mass. A triad of accelerometers arranged orthogonally will measure the

specific force vector of the body to which they attached. Rate gyroscopes are generally

used in CubeSat attitude determination subsystem. These gyroscopes based on Micro-

Electro-Mechanical Systems (MEMS) and provide angular rate measurements. Normally

triad gyroscopes are packaged with triad accelerometers together to form called an in-

ertial measurement unit (IMU). When using rate gyroscopes, satellite’s attitude can be

estimated by numerically integrating the following equation. This Equation 1.1 is for the

Euler angles of the ZYX rotation.
φ̇

θ̇

ψ̇

 =
1

cos θ


cos θ sinφ sin θ cosφ sin θ

0 cosφ cos θ − sinφ cos θ

0 sinφ cosφ



ωx

ωy

ωz

 (1.1)

But, low-cost MEMS gyroscopes tend to have large output errors due to its high biases,

scale factor variations, drifts, and noise characteristics [10]. Accurate gyroscopes tends

to be large and requires more power to operate. Therefore, gyroscopes for attitude

determination in CubeSats will have to be fused with external sensors that compensate

attitude drift resulting from gyroscopes output errors. Vector sensors are usually used

for this purpose. Examples of two different grade IMUs are provided in Table 1.3.

Grade Gyro output error Example IMU Power (W)

Consumer Bias stability >10◦/h QRS-11 0.4

- Output noise 0.01◦
√
Hz AD-16405 0.6

Tactical Bias stability <1◦/h LN-200 12.0

- Angle random walk 0.13◦
√
Hz HG-1700 5.0

Table 1.3: Examples of two different grade IMUs.

1.2.2 Vectors Sensors

There are several attitude sensors commercially available in small form that can collec-

tively be classified as vector sensors. These sensors provide measurements of some the

components of a vector that describes some physical quantity, such as magnetometers,

Earth sensors, sun sensors and star trackers. These sensors are common attitude sensors
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for CubeSat missions. They are cheap, light, and available as commercial of-the-shelf

(COTS) equipment [5]. However, the overall achievable attitude determination accuracy

is limited with these sensors, mainly because of their inherent limitations and operational

cases in different space environment. On the other hand, miniaturized Star Trackers can

provide precise attitude knowledge with a low rate in the long term. Here we briefly

introduce Earth horizon sensors, sun sensors, magnetometers and star trackers. Also,

examples of vector sensors suitable for CubeSat missions are provided in Table 1.4.

Sensor name Type Mass (g) Accuracy Power (W)

Nano-SSOC-D60 Sun Sensor 6.5 <0.5◦ 0.08

MAI-SES IR Earth horizon 33 <1.0◦ 0.26

Honeywell HMC 1001 Magnetometer 0.14 ≈ 1− 2◦ 0.05

MIST Star tracker 500 <0.008◦ 5.0

Table 1.4: Examples of attitude sensors suitable for CubeSat missions.

Sun sensors: These sensors are widely used in spacecraft altitude determination systems

and provide a measurement of the line of sight vector from a CubeSat to the center of the

Sun. For a given time of year and location of the satellite, this vector will be known in

the inertial coordinate frame. The sun sensor’s measurement’s can be used to determine

two of three attitude angles that describe the satellite’s orientation.

Magnetometers: Most CubeSat missions have operated in Low Earth Orbit (LEO).

These sensors measure the intensity of Earth’s magnetic field vector. The Earth’s mag-

netic field can be measured using on-board sensors to give a coarse sense of what the

instantaneous field direction and intensity are. Using these measurements in combination

with the Earth magnetic field model, satellite attitude can be determined.

Earth horizon sensors: These sensors can be used to provide the nadir vector. Based

on infrared thermopile detectors, the Earth’s limb sensed via the relatively warm infrared

radiation that the Earth’s limb emits, in contrast to the cold background of space. This

measurement is used to build an estimate of the location and direction of Earth’s limb

and using that, provide a nadir vector estimate.

Star trackers: These sensors image visible stars in imagery’s field of view (FOV) and

provide complete attitude knowledge of the satellite. Star trackers used for measuring

the line of sight vector to celestial objects that can be seen by the sensor. Given the line

of sight vector to two stars are known in both inertial and body coordinate frames, the

attitude can be determined via Wahba’s problem.
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1.2.3 Current State of Research

Many methods were proposed for satellite attitude estimation based on vision sensors,

such as CMOS (complementary metal-oxide-semiconductor) Earth horizon sensors, Stel-

lar gyroscopes and Image-based attitude estimation and control methods. CMOS Earth

horizon sensor (EHS) tracks Earth’s horizon curvature in imager’s field of view (FOV)

and provides roll and pitch angle measurements [6][7]. These sensors use a CMOS cam-

era to capture Earth in visible spectrum, then use computer vision algorithms to detect

the Earth horizon in the image that can provide two axis attitude knowledge respect to

the Earth. The Earth horizon curvature based methods provides an absolute attitude

knowledge when the horizon is visible in imager’s field of view. EHSs determine the

nadir vector which corresponds to a pitch and roll angle measurement of the satellite

with respect to the Earth. Regarding to COTS CMOS EHS, The CubeSense sensor

manufactured by CubeSpace (2016), which employed a wide FOV CMOS camera and

can provide attitude knowledge with an accuracy of 0.2 degrees at 1Hz sample rate. A

paper [8] that related with EHS states, the algorithm utilized a Sobel edge detection al-

gorithm with a subsequent circle fit. Meller et al., (2000) introduced EHS with multiple

CMOS cameras with 512x512 pixels sensitive to the visible spectrum. Proposed approach

utilized a Threshold filter applied to scan lines which determine the horizon points then

fed into a Least-Square circle fit [9]. Rensburg et al., (2008) proposed a sensor sensitive

to the IR spectrum of 6.5m-20m wavelength. Proposed approach employed 32x31 pixels

image sensor which can provide attitude knowledge with accuracy of 0.24 degrees (pitch)

and 0.59 degrees (roll) within an FOV of 35 degrees. This approach used a sub-pixel

Canny edge detection algorithm with subsequent line fit using the Least-Square method

[10].

The image-based attitude estimation and control methods usually based on Earth’s sur-

face features tracking and feature-correspondences matching techniques with different

outlier rejection methods and provide nominal attitude in 3 degrees of freedom (3DOF).

Alessandro et al., (2009 and 2013) introduced a Vision-based method for high accuracy

assessment of satellite attitude using 320x240 pixels CCD image sensor directed toward

the Earth [11][12]. The authors proposed frame-to-frame registration approach which

utilized Shi and Tomasi features descriptors, Phase correlation algorithm, Lukas-Kanade

tracker and RANSAC outlier rejection method. Klančar et al., (2012, 2013) proposed

an Image-based satellite attitude control algorithm for remote sensing satellite’s atti-

tude determination and control system [13]. The image-based control algorithm used

a Scale Invariant Feature Transform (SIFT) image features to extract and match cur-

rent and previous images in order to derive attitude knowledge and PD control method.
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Rawashdeh et al., (2014) presented an Image-based attitude propagation for small satel-

lites using RANSAC method [14]. The stellar gyroscope concept based on motion of

stars in imager’s field of view. By detecting stars in captured current image, the algo-

rithm solves the relative attitude problem and provides satellite attitude in 3 degrees

of freedom, as long as the camera is viewing the sky. This approach utilized RANSAC

method on rotational kinematics to find a rotation estimate with consensus and reject

the false data. Kouyama et al., (2017) proposed a Satellite attitude determination and

map projection based on robust image matching approach [15]. This approach derives

the satellite attitude by extracting feature points from base map and satellite captured

images, matching these feature points based on SURF descriptors and removing the

outliers using RANSAC method. The proposed method applied to UNIFORM-1 small

satellite observations and satellite attitude was determined with accuracy of 0.02 degrees.

However, a major problem with using pure vision-based approaches is that they suffer

from blurred images induced by high-rate rotational motion and low update rates. On

the other hand, the integration of vision-based and inertial-based approaches provides

a more robust and accurate attitude estimation solution due to their complementary

properties. Integration of visual and inertial sensors is inspired by human vestibular and

visual systems [16]. In unmanned aerial vehicle (UAV) navigation studies, sensor fusion

of visual and inertial sensors has been widely investigated [17][18]. However, regarding

a small satellite’s attitude determination system, most existing works related to the in-

tegration of visual and inertial sensors used the star trackers and inertial sensors [19].

There are few results to the integration of image-based attitude estimation approach

and inertial sensors in the literature. Venn diagram of relevant literature topics shown

in Figure 1.4.

Figure 1.4: Venn diagram of relevant literature.
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1.3 Contributions

This dissertation investigates in methods for vision-based and inertial-aided attitude de-

termination system for small satellite. The main goal is an approach which is accurate,

robust, efficient and able to provide long-term navigation of the spacecraft in different

cases. This long-term goal requires intensive research in a variety of fields.This disserta-

tion presents the following core contributions:

• Development of vision-based attitude determination and propagation algorithms

that use a single camera as a sensor and provide attitude information in 3 DOF.

• Development of a multi-sensor fusion framework capable to accurately estimate

satellite’s attitude changes.

• Implementation and testing of the framework on realistic Earth-surface scene sim-

ulations.

With these three key-points in focus, several side-paths are explored and discussed. While

the hardware design of the system, size and power requirements of Cubesats evidently

plays a major role to achieve our goals, in this dissertation, we focus on the algorithmic

side of the problem statement.

1.3.1 Camera as Attitude Sensor

Regarding sensors, the focus of this dissertation is on using a camera as an on-board

sensor for attitude determination of small satellite. In particular, we aim at obtaining

complete 3DOF attitude measurements from this sensor mounted on-board the platform.

1.3.2 Sensor Fusion and Filtering

The main contribution of this dissertation is the development, implementation and test-

ing of a sensor fusion framework for small satellites. We focus on vision and tri-axial

MEMS gyroscope as main sensors for accurate attitude measurements since these sensors

are both, lightweight and low on power consumption. Although, they provide sucient

information to achieve the task. Drift in attitude measurements of the satellite’s state

estimate would cause the satellite to abnormal operation. Therefore, it is very impor-

tant to recognize and compensate for such drifts. Here, we analyze our sensor fusion

framework in order to eliminate dierent drift sources.
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1.4 Structure of this Dissertation

This introduction is followed in Chapter 2 by a discussion of theoretical background

relevant to this dissertation and includes the review of related attitude determination

algorithms and approaches. Furthermore, attitude reference frames and attitude repre-

sentation forms used in the algorithm development, analysis, and illustrations are de-

scribed. Chapter 3 addresses the our Earth horizon based approach implemented in this

work. The used hardware, image processing methods, results of the experiments of this

approach and simulations are described. In Chapter 4 we present vision based and visual-

inertial approaches. This chapter first gives the description of image processing methods

which are used in the vision based approach. Also, we present our sensor fusion frame-

work that integrates visual and inertial sensors measurement information to improve the

accuracy of attitude estimation. As a basis for building the sensor fusion framework, the

Unscented Kalman Filter (UKF) and its implementation method for attitude estimation

are given. Moreover, we test our previously theoretically analyzed visual-inertial method

on realistic Earth-surface scene simulations and precise rotary table. The experimental

setup for the visual-inertial based attitude estimation approach is given. A comparison

of performance evaluation for the only vision-based and visual-inertial based attitude

estimation approaches is also included. The dissertation itself is concluded in Chapter

5, where conclusions and the discussions of the experimental results of our proposed ap-

proach presented. The results are evaluated regarding the main aim of this dissertation

and analyzed. Finally, the concluding remarks and recommendations for the future work

are given.



Chapter 2

Background

2.1 Satellite Mathematical Models

2.1.1 Coordinate Systems

The coordinate systems used in this thesis are the satellite body frame, which matches

with the principal axes of inertia of the satellite, orbit reference frame and inertial ref-

erence frame which is Earth centered. The definitions of these coordinate systems are

given below.

Earth-Centered Earth-Fixed Frame (ECEF)

This reference frame is earth-centered, having a z-axis that lines up with the earth spin

axis pointing towards the celestial north pole. The x-axis extends to the zero latitude

and longitude point, i.e. the intersection of the Equator and the prime meridian passing

through Greenwich, UK. The y-axis is such that it completes the right hand rule. The

ECEF frame is convenient to describe phenomena that are earth-fixed, such as ground

stations, earth targets, and the geomagnetic field.

Earth-Centered Inertial Frame (ECI)

This reference frame is earth-centered, with the z-axis towards the celestial north pole.

The x-axis points towards the Vernal Equinox, which is the intersection of the ecliptic

plane with the equatorial plane at the ascending node. The y-axis completes the right

hand rule.

Satellite Body Frame

The origin of the frame is located at the centre of mass of the satellite. The axes are

directed towards the principal inertial axes of the spacecraft. Three parameters named

as Euler angles set the condition of the body frame related to the orbital coordinate

system. When the direction cosine matrix is identity matrix the satellite body frame

matches with the orbital frame.

12
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Camera Reference Frame

The origin of the frame is at the mass centre of the spacecraft. The z axis is in nadir

direction (towards the centre of the Earth) and the y axis is tangential to the orbit (aligns

with velocity vector of the spacecraft in case of circular orbit). The x axis completes to

the orthogonal right hand system.

Figure 2.1: Definition of coordinate systems.

The coordinate systems used in the proposed approach include the Earth-Centered In-

ertial (ECI) coordinate system, the Earth-Centered, Earth-Fixed (ECEF) coordinate

system, Camera coordinate system referred as C, and Body coordinate system referred

as B. The Camera coordinate system is fixed with the camera and a center of the image

detector acts as a center of the camera coordinate system. The camera is rigidly attached

to mechanical structures and the line of sight of the camera is oriented to the Earth’s

surface. The Z, X, and Y axes of the Camera coordinate system satisfy the right-hand

rule. Figure 2.1 shows a definition of the coordinate systems. World point Xi is the

intersection of the Earth’s surface and the camera’s line-of-sight unit vector in the ECI

coordinate system. The line-of-sight unit vector of the camera can be defined from the

current satellite position, camera transformation matrix Rcb and attitude matrix Rbi as

follows:

L = (RcbR
b
i )
−1


0

0

1


cam

(2.1)

XECI = PECI − ZsL (2.2)
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where L is a line-of-sight unit vector, Zs a factor that denes the length of the line-of-

sight and the zC is is always pointed along the line-of-sight, and PECI defines the current

position of satellite obtained from GPS. The relative position of the world point Xi in

the ECEF coordinate system can obtained as:

XECEF =


cosωEt sinωEt 0

− sinωEt cosωEt 0

0 0 1

XECI (2.3)

where t is the Greenwich Sidereal Time.

2.1.2 Attitude Representations

Attitude is the orientation the satellite has relative to a frame of reference. Three terms

commonly used describe the satellite’s attitude: pitch, yaw, and roll :

- Moving the nose up and down is referred to as pitch.

- Moving the nose left and right is referred to as yaw.

- Rotating the nose clockwise or counterclockwise is referred to as roll.

Figure 2.2: Definition of coordinate systems.



Chapter 2. Literature Review and Motivation 15

Mathematicians have developed many ways to represent rotation, two of commonly used

techniques are Euler angles and Quaternions. In this dissertation, one of these two

representation methods have been preferred for the construction of the mathematical

model of the satellite, depending to the estimation algorithm. Related to their application

area, Euler angles and quaternions may be more convenient than each other. Following

table represents a brief comparison between them [5].

Representation Number

of Param-

eters

Advantages Disadvantages

Euler Angles 3 No redundant parame-

ters

Trigonometric functions

in both rotation matrix

and kinematic relations

Clear physical interpre-

tation

Singular for specific ro-

tations

Minimal set No convenient product

rule

Quaternions 4 Convenient product rule No clear physical inter-

pretation

Simple kinematic rela-

tion

One redundant parame-

ter

No singularities

Table 2.1: Characteristics of attitude representations of Euler angles and quaternions.

Euler Angles

A transformation from one coordinate frame to another can be carried out by three

consecutive rotations about different axes. While describing the rotation of the axis with

respect to another one, rotation matrixes formed by Euler angles are used. The direction

cosine matrix of transformation will be the product of these three matrices. According

to [5] there are 12 possible Euler angle representations and so direction cosine matrixes

for transformation. They are categorized in two as:

- Case where three successive rotations take place around three different axes.

- In this case first and third rotations are performed around same axis and the second

one takes place about one of the other two axes.
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Euler angles for vector transformation

Suppose that ψ → θ → φ rotation order about z, y and x axes, which may be also

referred as 3-2-1 Euler angle rotation is followed. That means;

- a rotation ψ about z axis and a rotation matrix of,

A3 =


cos (ψ) sin (ψ) 0

− sin (ψ) cos (ψ) 0

0 0 1

 (2.4)

- a rotation θ about y axis and a rotation matrix of,

A2 =


cos (θ) 0 − sin (ψ)

0 1 0

sin (θ) 0 cos (θ)

 (2.5)

- a rotation ϕ about x axis and a rotation matrix of,

A1 =


1 0 0

0 cos (ϕ) sin (ϕ)

0 − sin (ϕ) cos (ϕ)

 (2.6)

Then the direction cosine matrix (DCM) that is used for transformation from reference

to body frame can be obtained as the product of these three matrices.

A321 = [A1][A2][A3] =


c(θ)c(ψ) c(θ)c(ψ) −s(θ)

−c(ϕ)s(ψ) + s(ϕ)s(θ)c(ψ) c(ϕ)c(ψ) + s(ϕ)s(θ)s(ψ) s(ϕ)c(θ)

s(ϕ)s(ψ) + c(ϕ)s(θ)c(ψ) −s(ϕ)c(ϕ) + c(ϕ)s(θ)s(ψ) c(ϕ)c(θ)


(2.7)

Here c(·) and s(·) represent the cosines and sinus functions. Per contra, matrix, which

transforms a vector from body to reference frame, is simply the transpose of this matrix

as AT321 = [A3]T [A2]T [A1]T . Besides, for the small angle rotations, the sinus functions

become sin (ψ)→ ψ, sin (θ)→ θ, sin (ϕ)→ ϕ as well as the cosines functions approaches

to the unity. When these approximations are used and the products of angles, which

become insignificant, are ignored as ψθ = ϕθ = · · · = 0, then the skew symmetric

direction cosine matrix for small angles can be gained.
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A321 =


1 ψ −θ
−ψ 1 ϕ

θ −ϕ 1

 (2.8)

Propagation of Euler angles by time

In order to find kinematic equations, which relate the Euler angles with the angular

velocities in body frame, first, derivatives of the Euler angles must be transformed to the

body angular rates.
p

q

r

 = [A1][A2][A3]


0

0

ψ̇

+ [A1][A2]


0

θ̇

0

+ [A1]


ϕ̇

0

0

 (2.9)

After the matrix multiplications;

p = ϕ̇− ψ̇ sin (θ) (2.10)

q = θ̇ cos (ϕ) + ψ̇ cos (θ) sin (ϕ) (2.11)

r = ψ̇ cos (θ) cos (ϕ)− θ̇ sinϕ (2.12)

If these equations are solved for ϕ̇, θ̇ and ψ̇, then the kinematic equation via Euler angles

can be determined.

ϕ̇ = p+ sin (ϕ) tan (θ)q + cos (ϕ) tan (θ)r (2.13)

θ̇ = cos (ϕ)p− sin (ϕ)q (2.14)

ψ̇ = sin (ϕ)/ cos (θ)q + cos (ϕ)/ cos (θ)r (2.15)

Quaternions

The quaternion attitude representation is a technique based on the idea that a trans-

formation from one coordinate frame to another may be performed by a single rotation

about a vector ~e defined with respect to the reference frame. The quaternion, denoted

here by the symbol ~q, is a four element vector, the elements of which are functions of

vector and the magnitude of the rotation,Φ:

q1 = e1 sin (
Φ

2
) (2.16)
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q2 = e2 sin (
Φ

2
) (2.17)

q3 = e3 sin (
Φ

2
) (2.18)

q4 = cos (
Φ

2
) (2.19)

Here e1, e2, e3 are the components of the vector ~e which is to be rotated around with

an angle of Φ. As a result by the use of quaternions a transfer from reference frame to

body frame can be denoted by a single rotation around a vector defined in the reference

frame.

A quaternion with components q1, q2, q3 and q4 may also be expressed as a four parameter

complex number with a real component q4 and theree imaginary components q1, q2 and

q3 as follows:

~q = q4 + iq1 + jq2 + kq3 (2.20)

where i, j, k are hyper-imaginary numbers with characteristics of;

i2 = j2 = k2 = −1 (2.21)

ij = −ji = k (2.22)

jk = −kj = i (2.23)

ki = −ik = j (2.24)

Also, redundancy of quaternions must be noted as

q2
1 + q2

2 + q2
3 + q2

4 = 1 (2.25)

Quaternions for vector transformation

A vector quantity defined in body axes, rB may be expressed in reference axes as rR using

the quaternion directly. First define a quaternion, rqB, in which the complex components

are set equal to the components of rB, and with a zero scalar component, that is, if:

rB = ix+ jy + kz (2.26)

rqB = 0 + ix+ jy + kz (2.27)
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This is expressed in reference axes as rqR using:

rqR = ~qrqB~q
∗ (2.28)

where ~q∗ = q4 − iq1 − jq2 − kq3, the complex conjugate of ~q.

Hence,

rqR = (q4 + iq1 + jq2 + kq3)(0 + ix+ jy + kz)(q4 − iq1 − jq2 − kq3) =

= 0 + (q2
4 + q2

1 − q2
2 + q2

3)x+ 2(q1q2 − q4q3)y + 2(q1q3 − q4q2)zi+

+2(q1q2 + q4q3)x+ (q2
4 − q2

1 + q2
2 − q2

3)y + 2(q2q3 − q4q1)zj+

+2(q1q3 − q4q2)x+ 2(q2q3 + q4q1)y + (q2
4 − q2

1 + q2
2 − q2

3)zk

Alternatively, rqR may be expressed in matrix form as follows

rqR = A′rqB (2.29)

where A′ =

[
0 0

0 A

]
, rqR =

[
0 rB

]
and

A=


q2

1 − q2
2 − q2

3 + q2
4 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) −q2
1 + q2

2 − q2
3 + q2

4 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 (2.30)

which is equivalent to writing:

rqR = ArB (2.31)

Here A is the same direction cosine matrix that is used for transformation from body to

reference frame.

Propagation of quaternions by time

While defining the kinematic equations of motion with quaternions, time dependence of

them must be used and that can be derived from the product relation [4]. Multiplication

of quaternion is performed in a way not too different from complex number multiplica-

tions. However the order of the process must be regarded. By using characteristic of
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hyper-imaginary numbers:

~q′′ = ~q~q′ = (q4 + iq1 + jq2 + kq3)(q′4 + iq′1 + jq′2 + kq′3) (2.32)

~q′′ = −q1q
′
1 − q2q

′
2 − q3q

′
3 + q4q

′
4

i(q1q
′
4 + q2q

′
3 − q3q

′
2 + q4q1+

+j(−q1q
′
3 + q2q

′
4 + q3q

′
1 + q4q

′
2)+

+k(q1q
′
2 − q2q

′
1 + q3q

′
4 + q4q

′
3)

If it is written in matrix form,
q′′1

q′′2

q′′3

q′′4

 =


q′4 q′3 −q′2 q′1

−q′3 q′4 q′1 q′2

q′2 −q′1 q′4 q′3

−q′1 −q′2 −q′3 q′4




q1

q2

q3

q4

 (2.33)

Now assume that, ~q and ~q′′ correspond to the orientation of the body at t and t + ∆t,

respectively. Also ~q′ is for the representation of position at t + ∆t in a relative way to

the position that has been occupied at t.

q′1 ≡ e1 sin (
∆Φ

2
) (2.34)

q′2 ≡ e2 sin (
∆Φ

2
) (2.35)

q′3 ≡ e3 sin (
∆Φ

2
) (2.36)

q′4 ≡ cos (
∆Φ

2
) (2.37)

When the necessary multiplication is done it is obvious that

~q(t+ ∆t) =

{
cos (

∆Φ

2
)I + sin (

∆Φ

2
)


0 e3 −e2 e1

−e3 0 e1 e2

e2 −e1 0 e3

−e1 −e2 −e3 0


}
~q(t) (2.38)

where e1, e2, e3 are the components of rotation axis unit vector and I is the 4x4 identity

matrix. After that by small angle approximation
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cos (
∆Φ

2
) ≈ 1 (2.39)

sin (
∆Φ

2
) ≈ 1

2
~ωBR∆t (2.40)

It is possible to show that

~q(t+ ∆t) =

{
I +

1

2


0 r −q p

−r 0 p q

q −p 0 r

−p −q −r 0

∆t

}
~q(t) (2.41)

here p, q, r are components of ~ωBR and they indicate angular velocity of the rigid body

with respect to the reference frame. Hence if a skew-symmetric matrix is defined as

Ω(~ωBR) =


0 r −q p

−r 0 p q

q −p 0 r

−p −q −r 0

 (2.42)

equation becomes

~q(t+ ∆t) ≈
{
I +

1

2
Ω(~ωBR)∆t

}
~q(t) (2.43)

Finally it is known that

d~q(t)

dt
∼=
~q(t+ ∆t)− ~q(t)

∆t
=

1

2
Ω~q(t) (2.44)

Euler angles and quaternions relationship

Quaternions can be expressed in terms of Euler angles as well as angles can be used to

define quaternions. Formulas used for transformation are simple and given below:

- Euler Angle to Quaternion:
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
q1

q2

q3

q4

 =


cos θ2 cos ψ2 sin ϕ

2 − sin θ
2 sin ψ

2 cos ϕ2

sin θ
2 cos ψ2 sin ϕ

2 + cos θ2 sin ψ
2 cos ϕ2

sin θ
2 cos ψ2 cos ϕ2 + cos θ2 sin ψ

2 sin ϕ
2

cos θ2 cos ψ2 cos ϕ2 − sin θ
2 sin ψ

2 sin ϕ
2

 (2.45)

- Quaternion to Euler Angle:

ϕ = sin−1 (2(q2q3 + q1q4)) (2.46)

θ = tan−1 q3 + q2

q4 + q1
+ tan−1 q3 − q2

q4 − q1
(2.47)

ψ = tan−1 q3 + q2

q4 + q1
− tan−1 q3 − q2

q4 − q1
(2.48)
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2.1.3 Sensors Models

The Measurement Model for Gyroscopes

The on-board triad rate gyros measure the angular velocity of the body frame with

respect to the inertial frame. Widely used model [20][21] for the gyro measurement is

given as

ωmea = ω + ε+ η1 (2.49)

where ωmea is the measured angular velocity of the satellite, ε is a bias of the gyro and

η1 represents a zero-mean Gaussian white noise characteristic of

E[η1kη
T
1j ] = I3×3σ

2
vδkj (2.50)

where σv is the standard deviation of each gyro random error, δkj is the Kronecker symbol

and I3×3 is the identity matrix with the dimension of 3× 3. Furthermore, the dynamics

of the non-static bias of the gyro is modelled as a random walk process

ε̇ = η2 (2.51)

where η2 represents a zero-mean Gaussian white noise characteristic of

E[η2kη
T
2j ] = I3×3σ

2
uδkj (2.52)

Here, σu is the standard deviation of gyro biases. Moreover, the estimated angular

velocity is given by

ω̂ = ωmea + ε̂ (2.53)

here, the circumflexˆmeans estimated value for a variable.

The Camera Model

The basic pinhole camera model is selected in this chapter to infer the mapping between

a 2D point in image coordinates and a 3D point in camera coordinates, which is based

on triangle similarity as given in Equation 2.54 and Equation 2.55.

x = fX/Z (2.54)

y = fY/Z (2.55)
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Figure 2.3: The Pinhole Camera Model.

By introducing homogeneous coordinates, previous equations can be written as a matrix

multiplication denoted in Equation 2.56.


x

y

1

 = s×


fX/Z

fY/Z

1

 = s×


f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1

 (2.56)

where s is introduced as nonzero scale. The coordinates of a digital image are typically

specified in pixels indexed from the top left corner. In order to describe a projected point

in the pixel coordinate system p, the camera’s intrinsic parameters have to be accounted

for [22]. Therefore, Equation 2.54 and Equation 2.55 can be rewritten as

u = kxx+ cx (2.57)

v = kyy + cy (2.58)

where kx and ky denote the number of pixels per unit of length (pixel/length) in x and

y direction. Based on previous equations, the relationship between (x, y)T and (u, v)T
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can be easily described in Equation 2.59.


u

v

1

 =


kx 0 cx

0 ky cy

0 0 1



X

Y

Z

1

 (2.59)

Combining Equation Equation 2.56 and Equation 2.59, the mapping from the 3D point

in camera coordinates to its corresponding 2D point in pixel coordinates can be easily

expressed as follows using the camera’s intrinsic calibration matrix K [37].


u

v

1

 =


kx 0 cx

0 ky cy

0 0 1



X

Y

Z

1

 = s×


fx 0 cx 0

0 fy cy 0

0 0 1 0



X

Y

Z

1

 = s×K×


X

Y

Z

1

 (2.60)

where fx and fy are the so-called focal distances, which are derived from the focal length f

multiplied by kx and ky respectively. After camera modeling and calibration, the baseline

b between two consecutive images can be obtained for position estimation.

Measurement Models of the Vision-Based Method

The vision-based method provides direct measurements for the UKF framework. The

measurement equations for the vision-based sensor is given as follows:

ϕmea = ϕ0 + ϕ+ vϕ (2.61)

θmea = θ0 + θ + vθ (2.62)

ψmea = ψ0 + ψ + vψ (2.63)

where ϕ0, θ0 and ψ0 represent roll, pitch and yaw angle measurements of the space-

craft estimated by the absolute attitude sensor which used in the vision-based method

as initial attitude measurements and vϕ, vθ, and vψ represent the Gaussian white noise

that containing all the remaining unmodeled effects. In order to fuse visual and inertial

measurements into the UKF framework, the sensor measurements have to be synchro-

nized. The proposed approach utilized time synchronized image acquisitions and inertial

measurements. In addition, visual and inertial sensors are rigidly attached to the pro-

totype’s mechanical structure and relative rotation remains constant. After determining

the relative rotation, the vision-based method’s measurements were transformed and

fused within the UKF framework with the triad rate gyro’s measurements.
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2.1.4 Equations of Motion

The kinematics equation of motion of the satellite via the quaternion attitude represen-

tation can be given as [5],

q̇(t) =
1

2
Ω(ωBR(t))q(t) (2.64)

Here, q is the quaternion formed of four attitude parameters, q = [q1q2q3q4]T . First

three of the terms represent the vector part and the last one is the scalar term, so we

can rewrite the quaternion as q = [gT q4]T and g = [q1q2q3]T . Moreover in Equation 2.64,

Ω(ωBR) is the skew-symmetric matrix as

Ω(ωBR) =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 (2.65)

where, ω1, ω2 and ω3 are the components of BR vector, which indicates the angular

velocity of the body frame with respect to the reference frame. On the other hand,

the body angular rate vector with respect to the inertial axis frame should be stated

separately as ωBR = [ωxωyωz]
T . ωBI and ωBR can be related via

ωBR = ωBI −A
[
0 −ωo 0

]T
(2.66)

Here, ωo denotes the angular velocity of the orbit with respect to the inertial frame,

found as ωo = (µ/r3)1/2) for a circular orbit using µ , the gravitational constant and r,

the distance between the centre of mass of the satellite and the Earth. In Equation 2.66,

A is the attitude matrix that is related to the quaternions by

A = (q2
4 − g2)I3×3 + 2ggT − 2q4[g×] (2.67)

I3×3 is the identity matrix with the dimension of 3× 3 and [g×] is the skew-symmetric

matrix given as,

[g×] =


0 −g3 g2

g3 0 −g1

−g2 g1 0

 (2.68)

In case of using quaternions for the kinematic modeling of the satellite’s motion, the

attitude filtering algorithms cannot be implemented straightforwardly. The reason of
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such drawback is the constraint of quaternion unity given by qT q = 1. If the kinematics

Equation 2.64 is used in the filter directly, then there is no guarantee that the predicted

quaternion mean of the filter will satisfy this constraint.

Moreover, the dynamic equations of the satellite can be derived based on the Euler’s

equations

J
ωBI
dt

= Nt − ωBI × (JωBI) (2.69)

where J is the inertia matrix consists of principal moments of inertia as J = diag(Jx, Jy, Jz)

and Nd is the vector of environmental disturbance torques affecting the satellite which

can be given as a sum of

Nd = Ngg +Nad +Nsp +Nmd (2.70)

where:

Ngg is the gravity gradient torque,

Nad is the aerodynamic disturbance torque,

Nsp is the solar pressure disturbance torque,

Nmd is the residual magnetic torque that is caused by the interaction of the satellite’s

residual dipole and the Earth’s magnetic field.
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2.2 Attitude Determination and Control System

The ADCS subsystem includes both the components used for attitude determination and

attitude control. This subsystem is primarily used for guidance, navigation, and control

applications. With limited the volume and power requirements of small satellites, ADCS

subsystem has to occupy less space and consume low power. Earlier launched CubeSats

used simple ADCS, which requires a low pointing accuracy. However, due to the increas-

ing complexity of small satellite missions, ADCS has become more and more critical for

mission success. In recent years, the usage of relatively high-performance hardware for

ADCS of small satellite increasing due to miniaturization of satellite technology compo-

nents and availability of advanced technologies [23]. In case of achieving a more precise

pointing and stabilization, the attitude knowledge would be determined by employing a

good combination of attitude sensors, proper attitude determination algorithms, attitude

actuators and proper control schemes. Figure 2.4 shows a typical attitude determination

and control system block diagram for a satellite equipped with the sensors and actuators.

Here, the yellow shaded block for attitude determination system in the ADCS subsys-

tem. The attitude determination system processes sensor data and form an estimate of

the vehicle’s attitude. The control system compares this estimate to the desired attitude

estimate. If there is a discrepancy between the two attitude estimates, the control sys-

tem applies torques to change the attitude of the satellite. Torques are applied until the

desired and estimated are close so that the measurement error is minimized.

Figure 2.4: A generic attitude determination and control system block diagram.
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2.2.1 Attitude Determination Algorithms

It is common for small satellites to obtain more accurate attitude estimation by combining

the low-cost COTS attitude sensors. In order to handle this rough information, ADCS

has to utilize the proper attitude determination algorithms. Here we briefly introduce

Batch Estimation approaches and Advanced attitude filters that widely used in CubeSat

attitude determination system. Following algorithms most common used and solves the

relevant attitude determination problems:

Batch Estimation approaches

- TRIAD algorithm

- Q-method

- QUEST algorithm

Advanced attitude filters

- Complementary Filters

- Extended Kalman Filter

- Unscented Kalman Filter

The TRIaxial Attitude Determination algorithm (TRIAD) has been widely used in small

satellites to determine attitude from set of 2 nonparallel vector measurements [15]. The

two vectors are typically the unit vector to the Sun and the Earth’s magnetic field vector

for coarse “Sun-Mag” attitude determination. By utilizing TRIAD algorithm, combina-

tion of the Sun and the Earth’s magnetic field vectors yields coarse attitude knowledge.

However, when the two vector measurements are not accurate enough, TRIAD algorithm

cannot provide accurate attitude knowledge to meet the requirements of payloads. In

order to overcome this limitation, Kalman Filter would be used to improve the output

attitude. The sensor fusion capability of Kalman filter, which makes a more accurate

sensor out of a combination of various sensors [21]. The main purposes of the Kalman fil-

ter are the estimation of state variables and noise removal in measurement. The Kalman

filter has been developed as an algorithm for a linear system, hence it cannot be ap-

plied to a nonlinear system. However, most of the systems are inherently nonlinear in

nature. Extended Kalman Filter (EKF) is a representative algorithm for a Kalman filter

being expanded and applied to a nonlinear system [24]. By utilizing Jacobian, EKF

linearizes the nonlinear model. This process allows EKF to apply on nonlinear systems.

Furthermore, another popular substitute for EKF is an Unscented Kalman filter (UKF).

UKF is mainly based on Unscented Transformation (UT) and free from the problem of

divergence which is caused by linear model obtained through Jacobian. The UT takes a

unique approach which eliminates the linearization process [25][26]. UKF is widely used

for larger satellite attitude estimation and recently proposed for small satellite attitude
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determination. Kasper et al., (2011) proposed the approach that implemented quater-

nion representation of UKF for 3U CubeSat attitude determination [27]. The proposed

UKF approach used measurements of a sun vector, magnetic field vector and angular ve-

locity. Li et al., (2013), presented Adaptive UKF (AUKF) for a 3U CubeSat. The AUKF

approach used the measurements of three axis magnetometer and three axis MEMS gy-

roscopes. This approach showed a good convergence time and estimation accuracy [28].

Vlad et al., (2015) introduced the implementation of UKF on a 3U CubeSat. The pro-

posed UKF approach used low-rate attitude motion star trackers and achieved accuracy

of 1 arcminute [29].



Chapter 3

Earth-horizon based Approach

3.1 Overview

This chapter describes our Earth-horizon based approach that estimates the small satel-

lite’s attitude based on the Earth’s horizon image using low-cost vision sensor. An Earth

horizon-based method - we highlight our image processing algorithm that tracks Earth’s

horizon curvature in the imager’s field of view (FOV) and provides roll and pitch angle

measurements. The first part of this chapter discusses theoretical background relevant

to this work and includes the literature review of related works. In the next part, the

implementation of the proposed image processing algorithm and least square circle fit-

ting method explained in detail. The last part will present the experimental setup,

results of vision-based approach’s experiments on different scenarios and discussions of

the proposed approach’s performance.

31



Chapter 3. Earth-horizon based approach 32

3.2 Earth-horizon based attitude determination method

In this research, we propose Earth-horizon based attitude determination method that

provides accurate roll and pitch angles estimation from Earth horizon curvature using

image processing algorithm. Using the advantages of Earth horizon curvature, the roll

and pitch angles are estimated by horizontal and vertical movement of Earth center

in relation to the centre of imagery sensor. Moreover, we focused on pitch and roll

estimation based on Earth horizon curvature and aim at developing robust and accurate

vision-based attitude estimation algorithm.

Research on Earth horizon based attitude determination system using CMOS camera is

not a new idea [8][9]. Using the advantage of Earth horizon curvature in imager’s field

of view to estimate spacecraft’s nadir vector parameter has been one main focus. Other

related research is using CMOS camera as Star tracker sensor to estimate spacecraft’s

relative motion in 3 degrees of freedom [23]. In [13] the authors propose an image-based

method for remote sensing satellite’s attitude determination and control system in order

to derive attitude knowledge from tracked features in imager’s field of view.

In Earth horizon curvature based methods, when the horizon is visible in imager’s field

of view, it can provide an absolute attitude knowledge from captured images [5]. Main

advantage of using CMOS camera as motion sensor is efficient, fuse with other sensors to

refine the attitude accuracy and relatively inexpensive approach in terms of achieve more

accurate attitude determination system for small satellites. Our approach in this research

is also based on Earth horizon curvature detection using image processing algorithm to

estimate satellite’s critical roll, pitch and nadir parameters.

3.3 Attitude from Earth Horizon Curvature

This section presents a geometric relationship between orientation of vision sensor and

Earth horizon curvature as viewed from satellite. Attitude of the spacecraft is the rotation

from Earth Centered Inertial frame to the satellite body-fixed coordinate frame. In this

work, we assume that vision sensor is rigidly attached to the spacecraft structure and

z-axis of satellite body-fixed coordinate frame is defined to be the optical axes of the

vision sensor and lies in same plane as the z-axis of camera frame. Figure 3.1 shows a

certain area of the earth is in the line of sight of the satellite. Moreover, the relationship

between geometry as viewed from space and horizon curvature in image plane shown in

Figure 3.2.
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Figure 3.1: Definition of coordinate systems.

Figure 3.2: Illustration of the relationship between image plane and satellite attitude.
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Earth’s portion viewed from space in imager’s field of view depends on vision sensor’s

parameters and altitude of spacecraft. Most small satellites launched in LEO, often used

small and low-cost CMOS camera for its defined mission. These vision sensors have fixed

lenses, focal length and field of view.

Figure 3.3: .

] Portion of the Earth viewed and seen by spacecraft [4]

In LEO, an Earth-pointing attitude of the camera system would lead to a FOV completely

covered by the camera. It is important to note that the higher altitude, the most of

Earth’s portion appears in the imager’s field view and most of its radius. In order to

design accurate Earth-horizon detection algorithm, knowledge of Earth’s portion appears

in FOV is necessary. For this reason, we carried out the simulation of camera with fixed

FOV parameters and at different altitudes. Following table represents a parameters

camera that used in simulation to calculate the relationship between altitude, FOV and

focal length.

Parameters Value

Focal length 4.63mm

Resolution (LxH) 640x480 (pixels)

Sensor size (LxH) 3.984x2.952 (mm)

Earth radius 6371 km

Table 3.1: Parameters of simulation.

According to simulation of camera with fixed FOV illustrated in Figure 3.4 shows a plot

of the ratio of candidate image plane area in imager’s field of view and area of full-sized

Earth in image plane as function of satellite altitude.
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Figure 3.4: Ratio of candidate image plane area in imager’s field of view and area of
full-sized Earth in image plane as function of satellite altitude.

Moreover, Figure 3.5 shows a plot of the ratio of radius of Earth horizon disk in imager’s

field of view and actual Earth radius as a function of altitude in range of interest according

to simulation of camera with fixed FOV.

Figure 3.5: Ratio of radius of Earth horizon in imager’s field of view and actual radius
of Earth as function of satellite altitude.
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3.4 Earth horizon detection algorithm

When looking at a picture like the one in Figure 3.6 it is easy for the human mind to

identify the earth’s horizon, the empty space and even landmarks. We can tell where

the center of the earth must be at rst glance. That is because our brain can recognize

objects and is able to compare them with familiar objects from the memory.

Figure 3.6: Apollo 17 Hasselblad image 148/NN - Earth, LM Inspection.

However, to make it possible for computers to acquire the earth’s horizon and find

the center of the earth needs an image processing algorithms. The usefulness of image

processing algorithms is apparent in many different fields covering medicine through

remote sensing.

In order accurately measure the orientation angles of satellite based on earth-horizon

image, first the algorithm needs to detect the earth’s horizon then calculate center of

the earth in image plane. Our approach attempts to solve this problem illustrated in

following Figure 3.7.
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The first step of the algorithm is the reads images from vision sensor and apply low pass

filter in order to minimize noise in measurements. Morphological smoothing filter and

thresholding is then performed on image. Edge estimation algorithm scans the entire

image to detect the position of Earth horizon curvature edge. Once contour search algo-

rithm performed, the Least-square circle fitting algorithm is used to estimate candidate

radius and position of Earth center in image plane. The relationship between image

plane and Earth horizon parameters from an isometric view shown in Figure 3.8.

Figure 3.7: Flowchart of the proposed image processing algorithm for the Earth
horizon detection.

The open source cross-platform library OpenCV [30] is used in our image processing

approach which has a lot of dierent lters and functions built-in. OpenCV was built to

provide a common infrastructure for computer vision applications and to accelerate the

use of machine perception in the commercial products. The library has more than 2500

optimized algorithms, which includes a comprehensive set of both classic and state-of-

the-art computer vision and machine learning algorithms.
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Figure 3.8: Isometric view of the image intersecting the Earth disk.

3.5 Least square circle fitting method

Our approach used a Least Square Method to calculate the center of Earth from detected

horizon curvature in image plane. It takes the horizon line H, which must contain at

least γ points, as input and calculates the best tting circle to these data points. Not

only the center is calculated but also the radius of the earth in the image plane. This

allows to check if the calculation returned a valid result by comparing the radius with

the expected radius given by the height above ground.

The Least Square method minimizes the error e(λ1,2 , λ3, ...) = fd(λ1,2 , λ3, ...) of a func-

tion f to its desired value fd by finding the optimal parameters λi.

λ2
1 = (x− λ2)2 + (y − λ3)2 (3.1)

where p = (x, y) ∈ H is a data point, λ1 is the radius and (λ2, λ3) are the center of the

circle. The error e is then:

e(λ1, λ2, λ3) = (x− λ2)2 + (y − λ3)2 − λ2
1 (3.2)

The non-linear Equation 3.1 can be linearized by the substitutions

A := 2λ2 (3.3)

B := 2λ3 (3.4)

C := λ2
1 − λ2

2 − λ2
3 (3.5)
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Ax+By + C = x2 + y2 (3.6)

To minimize the error of the complete data set the sum of every error square

E(λ1, λ2, λ3) =

|H|∑
i=1

e2
i (λ1, λ2, λ3) (3.7)

E(λ1, λ2, λ3) =

|H|∑
i=1

[(xi − λ2)2 + (yi − λ3)2 − λ2
1]2 (3.8)

E(λ1, λ2, λ3) =

|H|∑
i=1

[Axi +Byi + C − x2
i − y2

i ]
2 (3.9)

must be minimized. This is done by solving the system

(
δE

δλ1

δE

δλ2

δE

δλ3

)
= (0 0 0) (3.10)

All following sums in this section without indicated limits are
|H|∑
i=1

. The solution Equation

3.10 is the following system:


∑
x2
i

∑
xiyi

∑
xi∑

xiyi
∑
y2
i

∑
yi∑

xi
∑
yi |H|




A

B

C

 =


∑
xi(x

2
i + y2

i )∑
yi(x

2
i + y2

i )

x2
i + y2

i

 (3.11)

The substitutions Equation 3.12 and Equation 3.13 are done to simplify the view:


K L M

L P O

M O N

 :=


∑
x2
i

∑
xiyi

∑
xi∑

xiyi
∑
y2
i

∑
yi∑

xi
∑
yi |H|

 (3.12)


Q

R

S

 :=


∑
xi(x

2
i + y2

i )∑
yi(x

2
i + y2

i )

x2
i + y2

i

 (3.13)

The equation Equation 3.11 can be solved for A, B and C as follows:
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A =
O2Q−NPQ+ LNR−MOR− LOS +MPS

L2N − 2LMO +KO2 +M2P −KNP
(3.14)

B =
LNQ−MOQ+M2R−KNR− LMS +KOS

L2N − 2LMO +KO2 +M2P −KNP
(3.15)

C =
MPQ− LOQ− LMR+KOR+ L2S −KPS

L2N − 2LMO +KO2 +M2P −KNP
(3.16)

The desired values reveal then as:

(radius) λ1 =

√
4C +A2 +B2

2
(3.17)

(centerx − coordinate) λ2 =
A

2
(3.18)

(centery − coordinate) λ3 =
B

2
(3.19)
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3.6 Circle fitting algorithm test

In order to validate the performance of the proposed approach first we tested the al-

gorithm on simple Earth shape model image as shown in following image. A set of

experiments were undertaken using different parameters each test images.

Figure 3.9: Simple Earth shape model - generated images.

Regarding very simple Earth shape model images, the proposed image processing al-

gorithm performed well on finding the horizon of the shape model. After detection of

horizon line from the test images, we applied least square circle fitting algorithm on

acquired horizon line points. Following Figure 3.10, Figure 3.11 and Figure 3.12 show

the results of the least square circle fitting algorithm. A center of the shape model is

presented as blue cross symbol and horizon line is presented as red line.
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Figure 3.10: Resulting image of horizon line and center of shape model detected.

Figure 3.11: Resulting image of horizon line and center of shape model detected.

Figure 3.12: Resulting image of horizon line of shape model detected.
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Calculating Roll and Pitch angles

The Roll and Pitch angles are calculated from the center coordinate of the horizon circle

and principal point of image plane. The mathematical relationships of Pitch angle and

horizon curvature in image plane are shown in following images.

Figure 3.13: The illustration of mathematical relationships of Pitch angle, horizon
curvature and principal point.

After calculation of the radius of horizon curvature and coordinates of the center in

image plane using least square circle fitting algorithm, the pitch angle can be estimated

as follows:

θ = tan (
L−Re
f

) (3.20)

In this equation:

f - Focus length

Re - Computed radius of Earth horizon

L - Length from center point to principal point
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Moreover, the Roll is the angle between the image plane’s Y axis and the vector from

the center of the image plane to center of Earth. The mathematical relationships of Roll

angle is shown in following image.

Figure 3.14: The illustration of mathematical relationships of Roll angle, horizon
curvature and principal point.

From these computed values of the radius of horizon curvature and coordinates of the

center in image plane, the algorithm estimates the roll angle as follows:

ϕ = tan−1 (
Cx
Cy

) (3.21)

In this equation:

Cx - x-coordinate of center of horizon circle

Cy - y-coordinate of center of horizon circle
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3.7 Experimental Setup

We decided to use a Raspberry Pi 3 model B which features a Broadcom BCM2837 ARM

Cortex-A53 quad core CPU running at 1200 MHz and 1 Gb of RAM. Furthermore, an

inexpensive 5 mega pixel Omnivision 5647 camera module (version 2) is used which can

record up to 90 FPS at 640× 480 pixels. Furthermore in order to compare performance

of vision-based method with inertial sensor, we used MPU6050 inertial sensor which

consists of a 3-axis Accelerometer and 3-axis Gyroscope. Figure 4.19. shows a picture

of the assembled hardware.

Figure 3.15: Assembled hardware of prototype of Vision-based attitude sensor.

Laboratory experiment test environment and experimental setup for a vision-based sensor

approach are shown in following images. The main purpose of the laboratory experiment

is the functional test of the system and image processing algorithms developed in the

scope of this thesis. In order to generate a realistic simulated Earth horizon, we used real

satellite captured images data and computer generated images. By capturing imagery

data from the front scene, we estimated the attitude of the prototype setup by the

proposed approach.
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Figure 3.16: Laboratory setup as assembled and used for functional tests - Pitch
angle estimation setup.

Figure 3.17: Laboratory setup as assembled and used for functional tests - Roll angle
estimation setup.
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3.8 Experimental Results and Performance Evaluation

The purpose of the experimental part is to test the performance of the proposed Earth-

horizon based attitude determination sensor that combination with the developed algo-

rithms concerning the image processing. In order to verify the robustness of proposed

approach, we applied our algorithm to satellite captured images with actual roll and

pitch changes. Furthermore, because of lacking the attitude data information of the

corresponding satellite captured images data, we made the experiment by using realistic

computer generated earth horizon curvature images and a high-precision one axis rate

table. An image as taken by the Raspberry Pi single board computer’s camera module

is shown in first image of Figure 3.18. Here the each steps of proposed image processing

algorithm’s output images are presented in order to visualize the approach.

Figure 3.18: Image processing steps of the horizon curvature detection algorithm.

The results as obtained by the proposed approach using actual satellite (Horyu-4, KIT)

captured images [31], can be seen in following Figure 3.19 and Figure 3.20.
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Figure 3.19: Horizon curvature detected by the proposed image processing algorithm.

Figure 3.20: Horizon curvature detected by the proposed image processing algorithm.
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The following results as obtained by the proposed approach using realistic computer

generated earth horizon curvature images and a high-precision one axis rate table, can

be seen in following figures.

Figure 3.21: Earth-horizon based approach and MEMS gyro measurement compari-
son for the Pitch measurements.

Figure 3.22: The measurement error comparison of Earth-horizon based approach
and MEMS gyro for the Pitch measurements.
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Figure 3.23: Earth-horizon based approach and MEMS gyro measurement compari-
son for the Roll measurements.

Figure 3.24: The measurement error comparison of Earth-horizon based approach
and MEMS gyro for the Roll measurements.

The pitch angle accuracy measurement was tested first. The pitch angle was measured

at 5.0◦ degrees interval over the full range of 0.0◦ to 25.0◦. The results are shown in the

graphs in Figure 3.21 and Figure 3.22. In the measurement error graph it can be seen

that the accuracy deteriorates towards big change of the pitch angle. Lens distortion
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which was not well calibrated for and environmental conditions could be the reasons for

this deterioration.

The roll angle accuracy measurement was tested in a similar way as the pitch angle with

interval of 5.0◦. It was tested over the full range of 0.0◦ to 90.0◦ and shown in Figure

3.23 and Figure 3.24. In the measurement error graph it can be seen that a decrease in

accuracy occurred from 10.0◦ to 25.0◦ and at 85.0◦.

In both pitch and roll angle measurement result graphs, it is apparent that the vision-

based approach showed slightly better accuracy compare with MEMS gyro sensor. In

order to quantify the experimental results, the average and maximum error of each

measurement was calculated and these are listed in following Table 3.2.

Parameters Average error Maximum error

Pitch 0.37 degrees 1.48 degrees

Roll 0.67 degrees 1.49 degrees

Table 3.2: Measurement errors of test result graphs.

Regarding processing time of the proposed image processing algorithm, the Raspberry Pi

single board computer was not be able to run fast enough to provide attitude measure-

ment in real-time. The following Table 3.3 shows the average process time comparison of

the proposed image processing algorithm and single board computer camera capturing

speed without image processing.

Parameters Processed approach Without image processing

Time (ms) 71 31

Camera speed (FPS) 14 32

Table 3.3: Average process time comparison between the proposed image processing
algorithm and without image processing.

Moreover, the power consumption of the proposed vision-based attitude system is mea-

sured and presented in following Table 3.4. The Raspberry Pi 3 Model B single board

computer has a less power efficiency, because of the Gigabit-Ethernet chip, the Wi-fi

module and other additional integrated chips.

Parameters Current (A) Power (W)

Idle mode 0.484 2.42

During processing of algorithm 0.862 4.31

Table 3.4: Average power consumption comparison between the during processing
algorithm and idle mode.
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Visual-Inertial Attitude

Propagation Approach

4.1 Overview

In this chapter, we discuss Visual-Inertial attitude propagation approach that provides

nominal attitude in 3 degrees of freedom (3DOF) based on homography of two sequen-

tially captured images of a planar scene. In a first step, we focus in particular on the

methodology of our approach, including the geometrical image relationships with satel-

lite attitude, the image processing techniques used in the vision-based method, and the

implementation of the sensor fusion framework. In the next step, the proposed approach

is applied to real Earth-observation raw imagery data and simulated realistic imagery

data. Finally, discussions of simulation and experiment results are presented.

52
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4.2 Visual-Inertial methodology

The integration between visual and inertial sensors is motivated by what happens with

the vestibular and vision system in humans and animals [16], and the basic principle

for integrating vision and inertial sensors together is their complementary properties.

Inertial sensors offer good signals with higher update rates during fast motions but are

sensitive to accumulated drift due to the integration during the estimation of attitude. In

contrast, visual sensors provide precise ego-motion estimation with low rate in long term,

but suffer from blurred features under fast and unpredicted motions. The aim of visual-

inertial sensor integration is to overcome some fundamental limitations of vision-only

tracking and inertial measurement unit (IMU) only tracking using their complementary

properties.

In this thesis the problem of attitude estimation of small satellites is approached using the

combination of a vision and an inertial sensors. Many methods were proposed for satellite

attitude estimation based on vision sensors, such as CMOS Earth horizon sensors, Stellar

gyroscopes and Image-based attitude estimation and control methods. CMOS Earth

horizon sensor tracks Earth’s horizon curvature in the imager’s field of view (FOV) and

provides roll and pitch angle measurements [8][9]. The image-based attitude estimation

and control methods usually are based on Earth’s surface feature tracking and feature-

correspondences matching techniques with different outlier rejection methods and provide

nominal attitude in 3 degrees of freedom (3DOF) [13][15]. The Stellar gyroscope approach

tracks the motion of stars in the imager’s FOV and provides the relative attitude (3DOF)

information [14]. In unmanned aerial vehicle (UAV) navigation studies, sensor fusion of

visual and inertial sensors has been widely investigated [17][18].

In this chapter, we introduce and implement a visual-inertial attitude propagation ap-

proach for small satellites which employs a 2D image sensor as an attitude sensor and

a triad MEMS rate gyro sensor. This approach used triad MEMS rate gyros to obtain

useful information with high update rates during fast rotational motions and a vision

sensor was employed to provide accurate relative attitude estimation with low update

rates.

The vision-based attitude estimation approach is based on the principle that two sequen-

tially captured images of a planar scene are related by a homography [22]. The planar

scene corresponds to the Earth surface, which is assumed to be relatively at, and observed

by the nadir- pointing camera on the satellite. Between sequentially captured images,

the motion of the Earth surface features in camera’s FOV contains information about

the camera movement. Based on this constraint, the relative attitude (3DOF) informa-

tion between the images can be calculated from the homography which is induced by
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sequentially captured images of the Earth surface. In order to estimate the homography,

a set of corresponding feature points must be obtained from two sequentially captured

images. First set of feature points extracted from the first captured image and tracked

on the second image. Then, the image coordinates of each feature in both images used to

calculate the homography. But, between two sequentially captured images the camera

center shifts due to the satellite translational motion. This process causes a parallax

shift [12] that the image coordinates of tracked feature points shifts relative to satellite

motion.

Also, due to the Earth’s rotational motion the image coordinates of tracked feature

points shifts [32]. After compensation of these shifts from the image coordinates of

tracked feature points, the estimated homography used to calculate a relative attitude

information. Based on the homography decomposition algorithm [33] a relative attitude

information with respect to the spacecraft’s initial orientation derived and integrated

with triad rate gyro’s measurements in the unscented Kalman Filter framework.

In our study, the main purpose of the integration of visual and inertial sensors is to

improve the accuracy of attitude estimation capabilities by using a vision-based approach

to compensate the rate gyro’s continually increasing drifts within an unscented Kalman

filter (UKF) framework. Figure 4.1 shows a framework of the proposed approach for

small satellite attitude determination.

Figure 4.1: Framework of the proposed approach for attitude propagation.
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4.3 Vision-Based Method

Conceptually, the attitude propagation of the visual-inertial approach consists of three

main parts. The first part obtains a nominal attitude (3DOF) estimation from the

vision-based method. The second part directly obtains angular velocity from the triad

MEMS rate gyro sensor and provides it into the sensor fusion framework. The third

part integrates the vision-based and inertial-based methods within the sensor fusion

framework and propagates the satellite attitude in 3 degrees of freedom. Figure 4.2

shows a block diagram of the proposed vision-based approach for estimation of attitude

information with camera sensor.

Figure 4.2: The block diagram of the proposed vision-based method.

The proposed vision-based approach employed an Oriented FAST and Rotated BRIEF

(ORB) features detection algorithm [34] due to its computational efficiency compared to

other local feature descriptors such as SIFT (Scale-Invariant Feature Transform) [35][36].

First, a set of feature points are extracted from the first captured image using ORB

descriptor. Then, the KLT (Kanade–Lucas–Tomasi) feature tracker [37] is used to track
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the extracted set of feature points of the first image on the second captured image

to obtain the image coordinates of tracked feature points. After that, the total shift

correction method is applied to compensate the displacement of feature points on image

plane which is occurred due to the satellite’s translational and Earth’s rotational motions.

Then, a corresponding homography is computed from a set of feature points using the

Direct Linear Transform (DLT) algorithm [38] with outlier rejection random sample

consensus (RANSAC) method [39] by removing mismatched feature pairs. Finally, the

satellite’s nominal attitude is derived by using a Singular Value Decomposition (SVD)

algorithm from the estimated homography.

4.3.1 Perspective projection

We consider two sequentially camera frames that have overlapping regions as shown in

Figure 4.3. By using homogeneous coordinates [22], the previous frame point xi on the

image plane and current frame point x′i can be computed from the corresponding world

point Xi which can be expressed as

xi =


u

v

1

 , x′i =


u′

v′

1

 , Xi =


X

Y

Z

1

 , i = 1, 2, 3, ...n (4.1)

xi = sK

[
R 0

t 1

]
Xi (4.2)

where s is the scale factor, the matrix K is the camera calibration matrix, and R and t

are the camera’s extrinsic parameters. Using homogeneous camera projection, the matrix

P world point Xi and image point xi relation can be written succinctly in up to a scale

as

xi ≈ PXi (4.3)

We assume that the images obtained are without the translational motion of the camera

center and that the camera is rotated about its axis without a change in the internal

parameters. It then follows that the image points of a world point Xi by the two frames

are related as

xi = PXi = KR[I| − C]Xi (4.4)

x′i = P ′Xi = KR′[I| − C]Xi (4.5)

P ′ = (KR′)(KR)−1P (4.6)

x′i = (KR′)(KR)−1Pxi (4.7)
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where C is the position of the camera optical centre in the world reference frame. Cor-

responding image points in two frames related by a planar homography are expressed

as

H = (KR′)(KR)−1P (4.8)

x′i = Hxi (4.9)

After that, total shift compensation and scale factor are taken into account in the above

equations yields as

x′i = µ(KR′)(KR)−1P (xi + (∆dt + ∆de)) (4.10)

where µ is the scale factor and the total shift consists of the parallax shift [12] ∆dt

between sequential images that occurred by the satellite’s translational motion and land

surface shift ∆de due to Earth’s rotational motion.

Figure 4.3: Previous and current camera frames with the relationship between world
points and image points .
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4.3.2 Total Shift Correction Method

The parallax shift ∆dt in captured sequential images depends on the satellite’s ground

speed represented by satellite’s altitude of orbit and the camera’s frame rate. We assumed

that satellite position information was obtained from Global Positioning System (GPS)

and that the camera’s frame rate remained constant. If the direction of the flight is along

the x axis of the image plane, then the camera’s principal point will move along the x

axis of image plane. Figure 4.4 shows a schematic view of feature point shifts.

Figure 4.4: Feature points location shift due to satellite translation and Earth’s
rotation.

In this study, we approximated the parallax shift from the relation between the satellite

orbit parameters and the nadir-pointing camera parameters. First, we calculated the

satellite’s ground velocity as

T = 2π(RE + h)

√
RE + h

GmE
(4.11)

υg =
2πRE
T

(4.12)

where h is the altitude of the satellite, RE is the radius of the Earth, mE is the mass

of the Earth, T is an orbital period, and G is the gravitational constant. Then, we

calculated the resolution of the camera with respect to the Earth’s surface as:

tan
θ

2
=
Ny

2f
=
Z/2

L
(4.13)
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where θ is the field of view (FOV) of satellite camera, f is the focal length of camera,

N is the pixel number of the corresponding axis of the camera’s sensor, y is the physical

length of a single pixel of the image sensor, Z is the relative length of the Earth’s surface

with the corresponding image sensor’s axis length, and L is the distance from the camera

sensor to the Earth’s surface. Then, the relative shift of feature points on the image plane

can be computed from Equations (11), (12) and (13) as follows:

∆dt =


υg(t1 − t0)/(Z/N)

0

1

 (4.14)

where (t1 − t0) is the time interval between the current and previous captured images.

The land surface shift δde occurs because of the Earth’s rotational motion and depends

on the latitude of the satellite camera’s line-of-sight on Earth’s surface due to Earth’s

circumference difference at different latitudes. Relative shift of feature points on the

image plane can be computed based on satellite position, flight direction relative to

Earth’s rotation, the Earth’s rotation rate, and satellite orientation angle, and can be

represented as follows:

l = RE cos (α)
N

Z
ΩE(t1 − t0) (4.15)

∆de =


lx cos (γ)− ly sin (γ)

lx sin (γ) + ly cos (γ)

1

 (4.16)

where l is the displacement of the Earth surface between the time interval (t1 − t0), γ

is the satellite orientation angle calculated from trigonometry in the local tangent plane

at the point Xi [18], α is the latitude of the corresponding Earth’s surface captured by

the satellite camera,
N

Z
is an image resolution per pixel of the corresponding axis of the

image sensor, and ΩE is the Earth’s rotation rate.
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4.3.3 Oriented FAST and Rotated BRIEF (ORB)

Robust feature extraction and matching play a crucial role in camera motion estima-

tion based on feature correspondences. A number of feature detection algorithms have

been developed in recent years which can be used for wide range of image processing

applications. However, the computational complexity and accuracy of feature matches

limits the applicability of these algorithms. For instance, SIFT (Scale-Invariant Feature

Transform), SURF (Speeded-Up Robust Features), Oriented FAST and Rotated BRIEF

(ORB) and FREAK (Fast Retina Key point) feature detection algorithms are mostly

used in camera motion estimation approaches due to their robust for finding interesting

points even under scale, illumination, small affine, and pose changes.

In our vision based approach, ORB feature detector is used due to its computational

efficiency compared to other local feature descriptors. ORB is fast binary descriptor

based on BRIEF and FAST which is rotation invariant and resistant to noise. This

approach developed in 2011, it is specically built to be fast and computationally low-cost

for real time applications. ORB detector works with a modied version of FAST, called

oFAST, which retains only the best features within a multi-scale pyramid and adds

the orientation component to them. Harris corner measure is rst used to order FAST

keypoints. For a target set of N keypoints, rst a low threshold is used to get more than

N points, then these are ordered according to their Harris measure and only the better

N are retained. This process is repeated for each scale of a pyramid which is generated

from the basic image in order to obtain multi-scale features. Corner orientation is then

added by a simple measure exploiting the intensity centroid. Intensity centroid assumes

that a corner’s intensity is offset from its center. Dening the moment of a patch as

mpq =
∑
x,y

xp · yp · I(x, y) (4.17)

The centroid may be found as

C =

(
m1,0

m0,0
,
m0,1

m0,0

)
(4.18)

Constructing a vector from the corner center to the centroid, then the orientation can

be simply compute as

θ = arctan(
m0,1

m1,0
) (4.19)

To improve rotation invariance of this measure, moments are computed with x and y

remaining within a circle of radius r equal to the patch size. ORB descriptor is obtained

from a modication of BRIEF, called rBRIEF. First BRIEF descriptor is steered according

to orientation of keypoints. For any set of n binary test at location xi, yi the following
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matrix is dened as

S =

[
x1 · · · xn

y1 · · · yn

]
(4.20)

Using patch orientation θ and corresponding rotation matrix Rθ a steered version of S

is computed as

Sθ = Rθ · S (4.21)

and the steered BRIEF operator becomes:

gn(p, θ) = fn(p)|(xi, yi) ∈ Sθ (4.22)

angle is discretized to increment of 2π/30 and a lock up table of precomputed BRIEF

patterns is constructed. Once BRIEF is oriented along keypoint direction, it loses his

property of having each bit feature with high variance and mean near 0.5, which becomes

more distributed. High variance makes a feature more discriminative, since it responds

differently to inputs. Another desirable property is to have the tests uncorrelated, since

then each test will contribute to the result. To resolve all these, ORB runs a search

among all possible binary tests to nd the ones that have both high variance and means

close to 0.5, as well as being uncorrelated. ORB offers performance quite superior both

than SIFT and SURF, being orders of magnitude faster with lower computational effort

needed. Figure 4.5 and Figure 4.6 show the comparisons of average detection time and

average number of detected features of various feature detectors [40].

Figure 4.5: Average detection time of feature detectors.
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Figure 4.6: Average number of detected features of detectors.

Moreover, the feature matching consists that given two images along with their respective

keypoints and descriptors extracted, in correlating as precisely as possible each keypoint

in the rst image with its corresponding one in the second image. This process can be

done by comparing all the descriptors of the two images in terms of a distance, which

can be different depending on the kind of descriptor extracted. Each feature in the rst

image is then matched with the corresponding feature in the second image which has

the lowest distance. The simplest approach is the so called Brute-Force matching each

descriptor from the rst set of features is matched with all other feature descriptors in the

second set. Matches are then retained in order of distance and only the lowest ones are

taken. Distance used are the classical L2 Norm or the Hamming distance. L2 Norm can

be expressed as

d(D1, D2) =

√√√√ n∑
i=1

(D1i −D2i)2 (4.23)

in whichD1, D2 are the descriptors and d the distance between them. Euclidean distance

perfectly fists for SIFT and SURF. Hamming distance is used instead for binary string

based descriptors, being a measure in two string of the same length of the number of

position in which corresponding symbols are different

e.g. dH(D1, D2) = dH(1011101, 1001001) = 2 (4.24)

This kind of measure works optimally for ORB and BRIEF descriptors, and is particularly

fast to compute with respect to the L2 Norm. In using feature matching it has to be

considered the fact that not all the features extracted in one image can always be found
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in the second one and also that, for similar textured objects, more features can be very

similar to each other. This can result in lot of false matches which have to be rejected.

Furthermore, in order to track the detected features of one image in another image, our

approach used the Kanade-Lucas-Tomasi (KLT) feature tracker. KLT feature tracker is

used for nding sparse pixel wise correspondences and assumes that a point in the nearby

space, and uses image gradients to nd the best possible motion of the feature point.

If during the tracking procedure, the number of feature points go below 2000, then a

new detection is triggered. Also, RANSAC short for “RANdom SAmple Consensus” [39]

is an iterative method to fit models to data that can contain outliers. The basic idea

is that the data contains inliers, the data points that can be described by the model,

and outliers, those that do not fit the model. RANSAC is a very useful outlier rejection

algorithm and our approach used it for accurately match the corresponding feature points

of two images. Figure 4.7, Figure 4.8 and Figure 4.9 show varoius possible image changes

during camera motion estimation and overall performance of ORB features detector with

RANSAC method in two consecutive images.

Figure 4.7: Simulated images matched with observation image after cloud changes
and shifts.
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.

Figure 4.8: Simulated images matched with observation image after various transfor-
mations and noise applied.

Figure 4.9: Corresponding of feature points detected by ORB detector and matched
in two successive images.



Chapter 4. Visual-Inertial approach 65

4.3.4 The planar homography estimation

The planar homography relates the transformation between two image planes. For par-

ticular cases where the scene viewed by the camera is planar, it exist the possibility to

exploit homography to reconstruct the relation between the features seen in the rst im-

age and the second image and then retrieve motion. The homography matrix is a 3× 3

matrix but with 8 degrees of freedom as it is estimated up to a scale. In essence, the

homography H maps 2D points in homogeneous coordinates according to
x′

y′

w′

 =


h1 h2 h3

h4 h5 h6

h7 h8 h9



x

y

w

 or x′ = Hx (4.25)

Homogeneous coordinates are a useful representation for points in image planes. As a

consequence, the homography H is also only defined up to scale and often points are

normalized with w = 1 to have a unique identication of the image coordinates x, y. It is

generally normalized as

h9 = 1 or h2
1 + h2

2 + h2
3 + h2

4 + h2
5 + h2

6 + h2
7 + h2

8 + h2
9 = 1 (4.26)

Moreover, the extra coordinate makes it easy to represent transformations with a single

matrix. The following Figure 4.10 shows a transformation and relationships of homogra-

phies of two image planes.

Figure 4.10: The relationships of a planar surface and two corresponding image
planes.
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Homographies can be computed directly from corresponding points in two images planes.

As mentioned earlier, a full projective transformation has eight degrees of freedom. Each

point correspondence gives two equations, one each for the x and y coordinates,and

therefore at least four point correspondences are needed to compute H matrix. The

Direct Linear Transformation (DLT) is an algorithm [38] for computing H given four or

more correspondences. By rewriting the equation for mapping points using H for several

correspondences, the equation will be



−x1 −y1 −1 0 0 0 x1x
′
1 y1x

′
1 x′1

0 0 0 −x1 −y1 −1 x1y
′
1 y1y

′
1 y′1

−x2 −y2 −1 0 0 0 x2x
′
2 y2x

′
2 x′2

0 0 0 −x2 −y2 −1 x2y
′
2 y2y

′
2 y′2

· · · · · · · · ·





h1

h2

h3

h4

h5

h6

h7

h8

h9



= 0 (4.27)

or we can write as

Ah = 0 (4.28)

and then

ATAh = AT 0 (4.29)

(ATA)h = 0 (4.30)

ATA = UDUT (4.31)

where A is a matrix with twice as many rows as correspondences of two images. By

stacking all corresponding points, a least squares solution for H can be found using

Singular Value Decomposition (SVD) method as shown above.

OpenCV library comes with an already implemented algorithm to calculate homography

between two planes using RANSAC in order to improve the solution in case of outliers.

Many different random subsets of points are used to estimate H along with a quality

measurement, the best subset is then used to produce the initial H estimate which is

further rened with the Levenberg-Marquardt method to reduce reprojection error.
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4.3.5 Attitude estimation from the planar Homography

As mentioned previously, H is the homography matrix that maps the points in the

first camera frame to the corresponding points in the second camera frame. Also, the

homography related to a specific plane computed from the camera displacement can be

expressed as

H = 2R1−
2t1 ·nT

d
(4.32)

where n is the normal vector of the plane and d the distance between the camera frame

and the plane along the plane normal. Also, the rotation matrix that represents the

rotation between the two camera frames is

2R1 = c2R0 · c1R0
T (4.33)

and the translation vector between the two camera frames is

2t1 = c2R0 ·(− c1R0
T · c1t0) + c2t0 (4.34)

The problem of Euclidean homography decomposition, also called Euclidean reconstruc-

tion from homography, is that of retrieving the elements R, t and n from matrix H

H ⇒
{
R, t, n

}
(4.35)

Notice that the translation is estimated up to a positive scalar factor (as t has been

normalized with respect to d′).

SVD-based decomposition method

Decomposing an homography matrix in order to obtain attitude information of the cam-

era between two consecutive frames in terms of rotation R and translation t is not

straight forward. Different numerical procedures and analytical solutions exists to solve

this problem [33]. The homography decomposition problem was first solved by Faugeras

and Lustman (1988), and they proved that the decomposition problem has eight different

solutions except in some special cases. The decomposition method proposed by Faugeras

and Lustman (1988) uses a singular value decomposition H = UΛV T to transform the

problem to an equivalent problem with a diagonal homography matrix Λ. This trans-

formed problem can be solved analytically, and then a transformation of the obtained

solutions back to the original problem using U and V gives the sought congurations.

Out of the eight mathematical solutions, only two are in fact physically possible, and it
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is shown in the paper that the impossible ones can be discarded if one has access to a

number of point correspondences that are mapped by the homography between the two

views. This is done by requiring that all the viewed scene points are in front of both

cameras.

If we perform the singular value decomposition of the homography matrix [33]:

H = UΛV T (4.36)

we get the orthogonal matrices U and V and a diagonal matrix Λ, which contains the

singular values of matrix H. We can consider this diagonal matrix as an homography

matrix as well, and hence apply relation Equation 4.37 to it:

Λ = RΛ + tΛn
T
Λ (4.37)

Computing the components of the rotation matrix, translation and normal vectors is

simple when the matrix being decomposed is a diagonal one. First, tΛ can be easily

eliminated from the three vector equations coming out from Equation 4.37. Then, im-

posing that RΛ is an orthogonal matrix, we can linearly solve for the components of

nΛ, from a new set of equations relating only these components with the three singular

values. As a result of the decomposition algorithm, we can get up to 8 different solutions

for the triplets: RΛ, tΛ, nΛ. Then, assuming that the decomposition of matrix Λ is done,

in order to compute the nal decomposition elements, we just need to use the following

expressions:

R = URΛV
T (4.38)

t = UtΛ (4.39)

n = V nΛ (4.40)

As already mentioned, there are up to 8 solutions in general for this problem. These are

8 mathematical solutions, but not all of them are physically possible. Several constraints

can be applied in order to reduce this number of solutions.
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4.4 Camera Calibration

In many vision-based approaches, the correction for lens distortion was considered to

improve the accuracy of the estimation methods. In general, the calibrating a camera

means determining the internal camera parameters. In this case the matrix K formed as

K =


fx 0 cx

0 fy cy

0 0 1

 (4.41)

where the camera calibration matrix contains the intrinsic parameters of the camera (the

principal point cx, cy and the focal lengths fx and fy, can be factored out on the left.

No lenses are perfect and the low-cost lenses used in many vision sensors are far from

perfect. Lens imperfections result in a variety of distortions including color fringing,

spherical aberration or variation in focus across the scene, and geometric distortions

where points on the image plane are displaced from where they should be according to

in Equation 4.43.

Moreover, radial distortion causes image points to be translated along radial lines from

the principal point. The radial error is well approximated by a polynomial as

δr = K1r
3 + k2r

5 + k3r
7 + · · · (4.42)

where r is the distance of the image point from the principal point.

ud = u+ δu vd = v + δy (4.43)

where the displacement is(
δu

δv

)
=

(
u(K1r

2 + k2r
4 + k3r

6 + · · · )
v(K1r

2 + k2r
4 + k3r

6 + · · · )

)
+

(
p1uv + p2(r2 + 2u2)

p1(r2 + 2v2) + 2p1uv

)
(4.44)

In this equation, first part represents the radial distortion and second part describes

the tangential distortion. This displacement vectors indicate the displacement required

to correct the distortion at different points in the image, in fact (−δu,−δv), and shows

dominant radial distortion. Typically three coefficients are sufficient to describe the

radial distortion and the distortion model is parameterized by (k1, k2, k3, p1, p2) which are

considered as additional intrinsic parameters. Figure 4.11 shows examples of a distorted

and undistorted images.
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Figure 4.11: Distorted image with the curvature of the top row of the squares and
undistorted image.

In our vision-based approach, the experimental camera is calibrated using the Camera

Calibration Toolbox developed by Jean-Yves Bouguet [41]. Following set of checkerboard

pattern images captured by the experimental camera and analyzed. Figure 4.12 shows

the set of the calibration poster images in various different positions that are used in

the calibration algorithm. Figure 4.12 and Figure 4.13 show the computed extrinsic

parameters and complete distortion model of radial and tangential on each pixel of the

image.

Figure 4.12: Images of the calibration checkerboard.
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Figure 4.13: Computed extrinsic parameters.

Figure 4.14: The calculated complete distortion model of radial and tangential.
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4.5 Sensor Fusion Framework

As noted earlier, the attitude determination system that will be used on a particular

CubeSat depends on many things including size, available power, and cost. In what

follows, system architecture for a multisensor attitude determination system is described.

Before describing the system architecture, a brief overview of the sensor fusion algorithm

used is given. An illustration of the proposed sensor fusion framework is shown in Figure

4.15.

Figure 4.15: Sensor fusion approach using Unscented Kalman Filter.

Combining information from multiple sensor types can be achieved with a sensor fusion

algorithm. Kalman filter and its extensions are among the most popular methods of

data fusion. The Kalman filter was invented in the 1950’s by Rudolph Emil Kalman,

as a technique for filtering and prediction in linear systems. It is a method applicable

only to systems represented with continuous states and uses moment representation with

mean and covariance to calculate momentary estimates of the state. In order to obtain

Gaussian estimations of the state given some measurements, state and measurements

probability must be linear with Gaussian noise, and initial state estimate must be normal

distributed. These assumptions of linear state transitions and linear measurements with

Gaussian noise are rarely met in practice. For this reason Extended Kalman Filter

has been developed: EKF overcomes the linearity assumption making use of non-linear

state and measurements probability functions. The EKF has become in recent years

the most popular method for state estimation in wide range variety of applications. Its

strength lies in its simplicity and in its computational efciency. However, a limitation

of the EKF arises however from the fact that it approximates state transitions and

measurements using linear Taylor expansions. While an EKF solves the problem of

nonlinearity with gradual expansion of linear algorithm, an Unscented Kalman Filter

takes unique appraoch which eliminates this linearization process. UKF is mainly based
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on Unscented Transformation (UT) and free of the problem of divergence which is caused

by linear models obtained through Jacobian [42].

4.5.1 The Unscented Transformation

The unscented transformation takes samples from a Gaussian distribution that then have

the system nonlinear function applied to them individually. UT is similar in its concept

with Monte Carlo simulation which randomly selects sample, but this method makes a

delicate selection of weighting for each sample. This significantly reduces the number of

samples required compared to Monte Carlo simulation. An illustration of the principle

is given in Figure 4.16, from Julier and Uhlmann (1997) [25]. For whatever sample set

estimating, an appropriate vector length of the random variable, x, of size n for the

appropriate state and parameters. A set of 2n + 1 sample points, also known as sigma

points is taken from a Gaussian distribution such that the mean and covariance of the

untransformed set are xm and Px respectively.

Consider a state variable x that follows a normal distribution with mean xm and covari-

ance Px.

x ≈ N(xm, Px) (4.45)

The purpose of unscented transformation is to get the mean and covariance of an arbi-

trary function f(x) when x satisfies Equition 4.45.

Figure 4.16: .

]Basic principle behind the unscented transformation [28].

First define the sigma points χi and weights Wi for x as following

χ1 = xm (4.46)
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χi+1 = xm + ui i = 1, 2, · · · , n (4.47)

χi+n+1 = xm − ui i = 1, 2, · · · , n (4.48)

W1 =
k

n+ k
(4.49)

Wi+1 =
1

2(n+ k)
i = 1, 2, · · · , n (4.50)

Wi+n+1 =
1

2(n+ k)
i = 1, 2, · · · , n (4.51)

where ui is a row vector from the following matrix U and k is an arbitrary constant.

UTU = (n+ k)Px (4.52)

Then the mean and covariance of the function y = f(x) could be computed as following

ym =

2n+1∑
i=1

Wif(χi) (4.53)

Py =

2n+1∑
i=1

Wi

{
f(χi)− ym

}{
f(χi)− ym

}T (4.54)

The weights Wi are the constants determining the weighting of each sigma point when

computing mean and covariance. The sigma points and weights in Equation 4.46 to

Equation 4.51 satisfy following characteristics

xm =
2n+1∑
i=1

Wi(χi) (4.55)

Px =
2n+1∑
i=1

Wi

{
χi − xm

}{
χi − xm

}T (4.56)

The power in the unscented transformation lies in a few crucial differences from the

EKF that allow it to capture the mean and covariance of the state to second order, be

numerically stable with the appropriate matrix square root method.
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4.5.2 The Unscented Kalman Filter for attitude estimation

The basic idea behind the Unscented Kalman Filter is that it is easier to approximate a

Gaussian distribution than it is to approximate an arbitrary nonlinear function. Instead

of linearizing the Jacobian matrices, the UKF uses a rational deterministic sampling

approach to capture the mean and covariance estimates with a minimal set of sample

points. In this section, we present an algorithmic description of the UKF omitting some

theoretical considerations, left to [42].

The system model is given by

xk+1 = f(xk) +Gkwk (4.57)

zk = h(xk) + vk (4.58)

where wk and vk represent the process and measurement-error noises, these are zero-mean

Gaussian noise processes with covariances given by Qk and Rk, respectively.

In order to estimate attitude, the state vector is composed of Euler attitude angles and

gyro biases as

x(k) =
[
ϕ θ ψ εx εy εz

]T
(4.59)

Attitude angles and gyro angular velocity biases are modelled as follows

ϕ̇(t) = ω̂x + ω̂y sin ϕ̂ tan θ̂ + ω̂z cos ϕ̂ tan θ̂ (4.60)

θ̇(t) = ω̂y cos ϕ̂− ω̂z sin ϕ̂ (4.61)

ψ̇(t) = ω̂y sin ϕ̂ sec θ̂ + ω̂z cos ϕ̂ sec θ̂ (4.62)

ε̇(t) = 0 (4.63)

The measurement vector z(k) is defined as follows

x(k) =
[
ϕvis θvis ψvis

]T
(4.64)

In the state vector, where ϕ (roll), θ (pitch) and ψ (yaw) are the rotation angles about

the x−, y− and z− axes, but it is not of concern in this study. These come from the

integration of the rate of change of gyros, while εx, εy and εz are biases from gyro in

x−, y− and z− axis, respectively. We use the measurement from the vision-based based

approach in order to calculate ϕvis, θvis and ψvis as measurement vector.
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The computation algorithm starts with initial values

x̂0 = E
[
x0

]
(4.65)

P0 = E
[
(x0 − x̂0)(x0 − x̂0)T

]
(4.66)

Then, sigma points and weights are defined by

χ1 = ˆxk−1 (4.67)

χi+1 = hatxk−1 +
√

(n+ k)Pk−1 i = 1, 2, · · · , n (4.68)

χi+n+1 = hatxk−1 −
√

(n+ k)Pk−1 i = 1, 2, · · · , n (4.69)

W1 =
k

n+ k
(4.70)

Wi+1 =
1

2(n+ k)
i = 1, 2, · · · , n (4.71)

Wi+n+1 =
1

2(n+ k)
i = 1, 2, · · · , n (4.72)

where k is a scaling parameter, n is the state number, respectively.
√
Pk−1 can be

computed with the lower triangular Cholesky factorization.

The state and error covariance are predicted by

x̂−k =
2n+1∑
i=1

Wif(χi) (4.73)

P−k =
2n+1∑
i=1

Wi

{
f(χi)− x̂

−
k

}{
f(χi)− x̂

−
k

}T
+Qk (4.74)

The measurement and covariance are predicted by

ẑ−k =

2n+1∑
i=1

Wih(χi) (4.75)

P−z =
2n+1∑
i=1

Wi

{
h(χi)− ẑk

}{
h(χi)− ẑk

}T
+Rk (4.76)

where Rk represents the measurement error covariance matrix.

Kalman gain is defined by

Pxz =

2n+1∑
i=1

Wi

{
f(χi)− x̂

−
k

}{
h(χi)− ẑk

}T (4.77)
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Kk = PxzP
−1
z (4.78)

Finally, the estimate and error covariance equations are

x̂k = x̂−k +Kk(zk − ẑk) (4.79)

Pk = P−k −KkPzK
T
k (4.80)

The performance of the application of UKF sensor fusion approach with the formulated

kinematic equations to the satellite attitude data is presented in following sections. Fig-

ure 4.17 shows the structure of the proposed sensor fusion framework combined with the

unscented Kalman filter algorithm.

Figure 4.17: Structure of the proposed sensor fusion approach.
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4.6 Experimental Setup

In order to evaluate the performance of the proposed visual-inertial approach, a controlled

experiment is designed to generate data sets of known attitudes to support algorithm

development and study variations, as well as studying the estimation accuracy and the

computational cost. The experiments are based on images of the actual International

Space Station’s (ISS) HDEV payload’s nadir-pointing camera’s imagery data [43]. Re-

garding prototype hardware, we used Raspberry Pi 3 model B single board computer, an

inexpensive 5 mega pixel Omnivision 5647 camera module and MPU6050 inertial sen-

sor’s 3-axis Gyroscope for logging synchronized data sets. Laboratory test environment

and experimental setup for a visual-inertial attitude determination approach are shown

in Figure 4.18 and Figure 4.19. The main purpose of the laboratory experiment is accu-

rately generate known attitude changes and same time provide a realistic input images

for camera sensor. By projecting imagery data into the scene, we propagated the attitude

information of the prototype by the proposed visual-inertial approach. However, lacking

the attitude data information of the corresponding HDEV payload’s imagery data, we

carried out the experiment using a high-precision one axis rate table.

Figure 4.18: Laboratory test environment and experimental setup.
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Figure 4.19: Prototype hardware design for the visual-inertial approach.

Figure 4.20: Transformation of visual and inertial sensor after the calibration.
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In order to fuse visual and inertial measurements into the UKF framework, the sensor

measurements have to be synchronized. The proposed approach utilized time synchro-

nized image acquisitions and inertial measurements. In addition, visual and inertial

sensors are rigidly attached to the prototype’s mechanical structure and relative rotation

and translation remains constant. After determining the transformation matrix (relative

rotation and translation), the vision-based method’s measurements were transformed

and simultaneously fused within the UKF framework with the triad rate gyro’s mea-

surements. Figure 4.20 shows the transformation of visual and inertial sensor after the

calibration procedure.
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4.7 Experimental Results and Performance Evaluation

Two different experiments are carried out to check the validity of the attitude estimation.

In only vision-based approach experiment, we propagated the attitude changes

of the experimental prototype by only vision-based method. HDEV payload’s imagery

data and high-precision one axis rate table are used to provide attitude changes. The

vision-based approach’s experimental process consisted of two estimation steps:

• Initial attitude estimation test: we estimated the attitude of the experimental

prototype by using HDEV payload’s imagery data with the vision- based method

without any additional change of attitude.

• Relative attitude estimation test: we applied a pitch angle change to the exper-

imental prototype during the second attitude estimation process by using a high

precision one axis rate table. After these experiments, we subtracted the first esti-

mated attitude data from the second estimated attitude data to obtain the applied

attitude change during the second estimation test. Therefore, the performance of

the vision- based method can be verified by the high precision one axis rate table.

After these experiments, we subtracted the first estimated attitude data from the sec-

ond estimated attitude data to obtain the applied attitude change during the second

estimation test. Therefore, the performance of the vision-based method can be verified

by the high precision one axis rate table. Figure 4.21 shows the experimental result of

the propagated pitch angle measurement during the experiment and its comparison with

ground truth data.

Figure 4.21: Experimental results of Vision-based method compared with ground
truth data.
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The results obtained by the proposed image processing algorithm using HDEV payload’s

imagery data, can be seen in following images.

Figure 4.22: Result 1 obtained by the proposed image processing algorithm.

Figure 4.23: Result 2 obtained by the proposed image processing algorithm.

Figure 4.24: Result 3 obtained by the proposed image processing algorithm.
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In the visual-inertial approach experiment, the performance of our proposed ap-

proach using UKF algorithm was tested by using simulated realistic imagery data of

Earth-observing satellite and a high precision one axis rate table. UKF algorithm used

following set of initial conditions:

• initial attitude: ϕ = θ = ψ = 0 degree

• initial gyro bias: εx = εy = εz = 10 deg/hour

• initial covariance (P ): σ2
ϕ,θ,ψ = (0.5deg)2 and σ2

gb = (1deg/hour)2

The simulation model parameters are shown in Table 4.1. For the simulation process,

we used the same orbital parameters with the ISS and used real imagery data. In the

simulated imagery data projected to the scene, the Earth surface features induced by sim-

ulated satellite’s translational and earth’s rotational motions. During the experimental

process, we continuously captured the projected imagery data by experimental proto-

type’s camera and simultaneously we applied a pitch angle change to the experimental

prototype by using a high precision one axis rate table. The experimental prototype’s

attitude (3DOF) propagated by the visual- inertial approach and compared to the high

precision one axis rate table’s reference value.

Name Parameters Value

Camera Resolution 640px× 480px

- Frame rate 25 FPS

- Pixel size 1.4µm× 1.4µm

Gyrospoce Sampling rate 200 Hz

- Constant drift 10 deg/h

Simulation model Altitude 410km

- Ground velocity 7.2 km/s

- Earth radius 6371 km

- Earth’s rotation rate 7.272× 10−5rad/s

Table 4.1: Specifications of sensors and simulation model.

The following the results obtained by the proposed visual-inertial approach using the

experimental prototype and a high-precision one axis rate table. Figure 4.25, Figure

4.26, Figure 4.27 and Figure 4.28 show the experimental results of visual-inertial attitude

propagation approach compared to the reference value of the rate table.
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.

Figure 4.25: Comparison between pitch angle estimated by visual-inertial and differ-
ent approaches.

Figure 4.26: Comparison between roll angle estimated by visual-inertial and different
approaches.
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.

Figure 4.27: Comparison between yaw angle estimated by visual-inertial and different
approaches.

Figure 4.28: Gyro biases estimated by Unscented Kalman Filter.
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In the only vision-based approach’s experiment, the pitch angle measurement accuracy

was tested. During the experiment, the high precision one axis rate table rotated its

disk from 0.0◦ to 2.0◦ and from 2.0◦ to −2.0◦ and from −2.0◦ to 2.0◦ in period of 180

seconds. The measurement interval time was 0.04 seconds during the experiment. The

root-mean square error (RMSE) and maximum error of the measurement are listed in

following Table 4.2.

Method RMSE Maximum error

Only vision-based 0.2186 degrees 0.51 degrees

Table 4.2: Measurement errors of only vision-based approach.

Regarding the processing time of the proposed image processing algorithm, the Raspberry

Pi single board computer was only used to capture and save images from the scene during

experiment due to its limited processing power and portability. After the experiment, the

experimental data transformed into the laboratory computer and applied the proposed

image processing algorithm. The laboratory computer has a 2.8 GHz processor and

4 GB memory and has Ubuntu 16.04 operating system. The hardware specifications

of the laboratory computer has been chosen based on single board computer’s limited

computational power. The following Figure 4.29 shows the comparison of the laboratory

computer’s specification with its equivalent single board computers.

Figure 4.29: Comparison between the laboratory computer and equivalent single
board computers.

The following Table 4.3 shows the average process time of the proposed image processing

algorithm.
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Method Time (ms) Camera speed (FPS)

Only vision-based 311 ' 3

Table 4.3: Average process time the proposed image processing algorithm.

The visual-inertial approach experiment used the same method as only vision-based

approach. The Raspberry Pi single board computer was used to save captured images

and measurements of triad gyro sensor in same time during the experiments. The each

captured images from camera and triad gyro measurements are synchronized and logged

with corresponding time-stamps. During the experiment, we applied same rotations to

the prototype as only vision-based approach and only the pitch axis changed by rate

table and another two axes remained not changed. However, due to small slope angle

between the experimental prototype and rate table, it caused small attitude change in

another two axes during the experimental process. Table 4.4 shows measurements of

RMSE comparisons of the visual-inertial and only vision-based approaches.

Axis / Approach Vision-based (deg) Visual-Inertial (deg)

Pitch (RMSE) 0.0670 0.0637

Roll (RMSE) 0.0171 0.0168

Yaw (RMSE) 0.0160 0.0154

Table 4.4: Comparison of root mean square error for the measurement of two ap-
proaches.

Regarding the processing time of the proposed visual-inertial approach, we used the

same laboratory computer. The following Table 4.5 shows the average process time of

the proposed algorithm.

Method Time (ms) Camera speed (FPS)

Visual-Inertial 349 ' 3

Table 4.5: Average process time the proposed visual-inertial approach.

Another essential evaluation for the overall scheme is examining the accuracy of the

attitude estimations. By using the proposed visual-inertial approach it is possible to

determine the attitude of the small satellite with an accuracy of 0.07deg. That shows us

it is possible to increase the attitude determination accuracy of a small satellites, which

has camera, triad gyros onboard. The observability analysis of the proposed attitude

estimation approach has shown that the sensor fusion approach of using complementary

inertial sensors is better than using a single sensor. The only drawback of the proposed

approach is the increased computational load when compared with the other attitude

estimation sensors. In summary the overall attitude estimation scheme increases the

accuracy of the attitude determination procedure but requires the computational power.
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Map-based Approach

5.1 Overview

In this chapter, we discuss the map-based attitude determination approach that provides

absolute attitude in 3 degrees of freedom (3DOF) based on database images and homog-

raphy of two sequentially captured images of a planar scene. In a first step, we focus in

particular on the methodology of our approach, including the inverted file indexing, vec-

tor quantisation, and the absolute attitude determination process. In the next step, the

proposed approach is applied to simulated realistic Earth-observation satellite imagery

data. Moreover, discussions of simulation and experiment results are presented.

88
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5.2 Image Representation with a visual words

One of the fastest methods for image rapid search and retrieval is bag-of-words (BoW)

technique [44]. The bag of words is a technique that uses a visual vocabulary to convert

an image into a sparse numerical vector, allowing to manage big sets of images. With

a visual vocabulary, images can be represented by visual words. The visual word can

be imagined as a representative of an often occurring image patch [45][46]. In order to

detect revisited places in satellite captured images we use a map database composed of

a bag-of-words and inverse indexes, as shown in following figure.

Visual words can be chosen from a space of descriptions (SIFT features). Each description

(SIFT feature) can be understood as a point in this space. We used the visual words by

vector quantisation - one visual word for each cluster of descriptors. The database will

be represented as a sparse matrix database (DB). Each row of the matrix represents a

bag of words representation of one document in the database. Each column of the DB

matrix corresponds to a visual word. An element DB(i, j) is non zero if and only if

image i contains visual word j. The value of the element DB(i, j) is proportional to the

term-frequency of visual word j in image i (how many times this visual word appears in

the image) and the inverse document frequency (IDF) weight of the visual word j. The

bag of words vector is normalized to unit length:
∑

(DB(i, :)2) == 1.

Figure 5.1: Visual words are extracted from images and indexed into an inverted file.
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5.3 Inverted file indexing

Every images in database is represented by a vector of visual words. A vector rep-

resentation of the image with counts of visual words can be obtained by summing the

occurrences of the same words [47]. To be able to search effectively in the image database,

our approach need to estimate the similarity. The standard way is to sum the distances

of corresponding descriptions. In the bag of words method the vector quantisation is

used to approximate the description distance. The distance between descriptions is 0 if

they are assigned to the same visual word and infinity otherwise. For images represented

as vectors of visual words we define similarity as:

score(x, y) = cosϕ =
xy

||x||||y||
=

1

||x||||y||

D∑
i=1

xiyi (5.1)

where x and y are vectors of visual words (bags of words). Moreover, a part of the

similarity can be computed ahead and normalize the size of vectors. After that, the

similarity can be computed as a simple dot product of two vectors.

The visual vocabulary can be very big, often with a few thousands or even millions

of words. To simplify the distance estimation between such long vectors, the so called

inverted file is used [48]. Inverted file is a structure, which for each visual word (A, B,

C, D in the picture) contains a list of images α, β, γ in which the word appears together

with the multiplicity. In Matlab is easy to implement this structure as a sparse matrix.

Matlab represents a sparse matrix as column lists of elements. Therefore, our inverted

file will be a 2D sparse matrix, where columns are visual words and rows are images.

Figure 5.2: Inverted file is a structure.
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5.3.1 Attitude determination from a global map

Conceptually, the map-based attitude determination approach consists of three main

parts. The first part builds a global map and index file using feature extraction method

and vector quantisation then efficiently store it in memory. The second part directly

obtains satellite captured raw image then extract visual words histogram to rapidly

search image features in global map. In the third part, based on similarity of between

matched images in global map, the selected image is used to obtain absolute attitude

knowledge by decomposing from the homography [49] from the captured image to the a

global map matched image as described in previous chapter. Figure 5.3 shows a block

diagram of the proposed map-based approach for determination of attitude information

with camera sensor.

Figure 5.3: The block diagram of the proposed map-based method.
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5.3.2 Simulation and experimental results

In the map-based approach, the performance of our proposed approach tested by using

simulated realistic imagery data of Sentinel-2 Earth-observing satellite and Cesium web-

based simulation platform [50]. The simulation model parameters were same as Visual-

Inertial approach. For the simulation process, we used the same orbital parameters

with the ISS and used Sentinel-2 imagery data. In the web-based simulation platform,

the Earth surface features induced by simulated satellite’s orbit parameters, attitude

changes and camera parameters. During the experimental process, we captured the

Earth imagery data by simulated satellite’s camera and used the captured images to

build global map. After the building global map, we applied our proposed approach

to recover satellite attitude based on corresponding captured images. The simulation

environment of proposed attitude determination approach is shown in Figure 5.4.

Figure 5.4: Cesium web-based simulation platform.

The following the results obtained by the proposed map-based approach using the sim-

ulation software and implemented algorithm of the approach in MATLAB environment.

Figure 5.5, Figure 5.6 and Figure 5.7 show the simulation results of map-based attitude

determination approach.
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Figure 5.5: Stitching and Reconstruction of database images.

Figure 5.6: Simulation results using Sentinel-2 satellite imagery.

Figure 5.7: Simulation results using Sentinel-2 satellite imagery.
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Conclusions

In this dissertation the problem of attitude determination of the satellite is approached

using a combination of vision and inertial sensors. The primary aim of this dissertation

was to propose an accurate attitude determination and propagation method for small

satellites with camera and triad gyros. The conclusions are given in Section 6.1.

6.1 Thesis summary

This thesis has sought to design and develop a comprehensive attitude estimation meth-

ods for Earth-observation small satellites, using the vision and inertial sensors. Three

different approaches have been developed to accurately estimate the satellite attitude

based on captured images and a detailed analysis of each approach and their experiments

have been performed. Implementations of each of the proposed approaches have been

developed as a proof of concept by utilizing the OpenCV and Matlab image-processing

libraries. This section summarizes each chapter and outlines the steps taken to achieve

the objective of this dissertation.

Chapter 1 provides motivation for this thesis by analyzing trends of small satellite mis-

sions over two decades. It was seen that small satellite missions have become increasingly

popular due to the relatively inexpensive access to space and standardized deployment

system. While these missions have begun with relatively modest objectives, such as ed-

ucational tools and technology demonstrations, they have recently shifted to real science

missions. The more ambitious missions have increased more requirements on the attitude

determination and control subsystems. Early small satellite missions could be carried

out via a passive attitude control system. Nevertheless, the most recent missions require

highly accurate pointing and a 3-axis attitude control subsystem which has increased

94
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the amount of required ADCS hardware on board. It is apparent that a low available

volume and limited weight constraints are major challenges that limit the available hard-

ware systems. As a result, it is necessary to develop attitude determination and control

methods for these small satellites in this hardware-restricted environment.

Chapter 2 describes the overall background information of ADCS and sensor models.

A detailed description of the attitude representations and sensor measurement models

relevant to the ADCS are presented. The attitude determination algorithms are also

delineated, which includes a description of the various approaches and advanced filtering

methods. This chapter also introduces the pinhole camera model and measurement

models of the vision-based method necessary for the remaining chapters.

Chapter 3 presents the vision-based algorithms that were developed to efficiently esti-

mate two axes attitude information of small satellite based on Earth-horizon’s position in

the image. When there are problems in gyros or coarse Sun sensor’s measurements, small

satellite’s attitude information becomes complicated since it cannot directly measure or

calculate the attitude of the satellite. A literature review was performed, which showed

that while it is possible to estimate two axes attitude information from Earth-horizon

images captured by low-cost vision sensors. A set of Earth-horizon image processing

algorithms were then developed, which are able to derive roll and pitch angle measure-

ments of the satellite. Laboratory experiments and simulations were then used to show

an accuracy and reliability of the proposed approach. The roll and pitch angles are

properly estimated, and the average error was 0.67 degrees compared to high-precision

one axis rate table.

Chapter 4 solves the problem of estimating complete attitude information, while simulta-

neously using both measurements of camera and gyro sensors. A literature review showed

that many approaches exist for estimating complete attitude information based on the

camera sensor but mostly rely on pre-recorded images. While the visual-inertial sensor

integration architecture developed in this chapter can be used and overcome some fun-

damental limitations of vision-only tracking and inertial measurement unit (IMU) only

tracking methods using their complementary properties. A Vision-based attitude prop-

agation approach is developed to obtain a nominal attitude (3DOF) estimation based

on the planar homography that relates the transformation between two captured image

planes. Also, a sensor fusion framework is developed to efficiently fuse both measure-

ments of Vision-based attitude propagation approach and IMU method, and refine overall

attitude estimation accuracy by employing unscented Kalman Filter. Laboratory exper-

iments show that this approach can properly estimate and propagate nominal attitude

over time with overall RMSE accuracy of 0.067 degrees.
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Chapter 5 presents the map-based attitude determination approach that provides abso-

lute attitude in 3 degrees of freedom (3DOF) based on database images and homography

of two sequentially captured images of a planar scene. This chapter explored the pos-

sibility of improving the robustness of the image-based approaches using the inverted

file indexing method. The map-based attitude determination approach is developed to

obtain absolute attitude information by decomposing the homography from the captured

image to the global map matched image as described in the chapter 4. Finally, the re-

sults are obtained by the proposed map-based approach using the "Cesium" simulation

platform and implemented algorithm of the approach in the MATLAB environment.

6.2 Discussions and Future work

This section provides a concise, retrospective synopsis of the work presented in this dis-

sertation and emphasizes the notable results. From these results, directions for possible

future research are proposed.

Compared to ‘vision-based’ approach, the combination of the complementary sensors

yields a more accurate and robust attitude estimation system. The unscented Kalman

Filter is used in proposed sensor fusion framework. The implementation of unscented

Kalman filter has been chosen based on its robustness, ability to fuse multiple sensor

observations from different reference frames and their good performance with respect

to noisy measurements. During the experiments, a high precision one-axis rate table is

used to move the experimental multi-sensor setup and experimental results show that

this setup is able to estimate the prototype’s attitude with an accuracy of 0.07 degrees.

The proposed visual-inertial attitude estimation system achieves 3 frames per second

(FPS) estimation by fusing vision and inertial sensors using the framework of nonlinear

state estimation on the computer with limited computational power equivalent to sin-

gle board computers. Regarding the experimental results, background research in the

camera ego-motion estimation and attitude dynamics show that vision-based approaches

(Earth-horizon, Visual-Inertial, Map-based) are can be useful and provide enough atti-

tude information for various small satellite missions.

An overall attitude estimation method for small satellites carrying the vision sensor

and triad gyros was presented and tested. The performance of the overall attitude

estimation scheme is evaluated by demonstrations for a hypothetical Earth-observation

small satellite.
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Several avenues for future research related to this dissertation are the following:

• Further investigate possible methods for reducing the computational power of the

overall attitude estimation algorithm (for example: use a FPGA boards).

• Further study the performance of the Earth-horizon based approach integrating

with additional sensors (such as: triad-Gyro sensors).

• Extend the experiments of the map-based attitude determination approach to de-

termine the absolute attitude and localization of the satellite orbiting the Moon

Mars.

• Further study the performance of the map-based attitude determination approach

with Vision-based attitude control methods using 3-axis reaction wheels.

• Extend the current research approach into Vision-based navigation system for au-

tonomous planetary landing.

• Validate the performance of the proposed overall attitude determination method

using CubeSat class of satellite with applications in the space.



Abbreviations

LEO Low Earth Orbit

EHS Earth Horizon Sensor

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

FOV Field Of View

DOF Degree Of Freedom

UAV Unmaned Aerial Vehicle

UKF Unscented Kalman Filter

EKF Extended Kalman Filter

ECEF Earth Centered Earth Fixed

ECI Earth Centered Inertial

IMU Inertial Measurement Unit
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