
A New ATPG Method for Efficient Capture Power Reduction
During Scan Testing

Xiaoqing Wen 1, Seiji Kajihara 1, Kohei Miyase 2, Tatsuya Suzuki 1, Kewal K. Saluja 3,
Laung-Terng Wang 4, Khader S. Abdel-Hafez 4, and Kozo Kinoshita 5

1 Dept. of CSE, Kyushu Institute of Technology, Iizuka 820-8502, Japan
2 Innovation Plaza Fukuoka, Japan Science and Technology Agency, Fukuoka 814-0001, Japan

3 Dept. of ECE, University of Wisconsin - Madison, Madison, WI 53706, USA
4 SynTest Technologies, Sunnyvale, CA 94086, USA

5 Faculty of Informatics, Osaka Gakuin University, Suita 564-8511, Japan

Abstract

High power dissipation can occur when the response to a
test vector is captured by flip-flops in scan testing, resulting
in excessive IR drop, which may cause significant capture-
induced yield loss in the DSM era. This paper addresses
this serious problem with a novel test generation method,
featuring a unique algorithm that deterministically
generates test cubes not only for fault detection but also for
capture power reduction. Compared with previous methods
that passively conduct X-filling for unspecified bits in test
cubes generated only for fault detection, the new method
achieves more capture power reduction with less test set
inflation. Experimental results show its effectiveness.

1. Introduction
Scan testing, which is based on full-scan design and
combinational automatic test pattern generation (ATPG), is
the most widely adopted test scheme for digital integrated
circuits. Due to its simplicity and efficiency, scan testing
will remain dispensable in the deep submicron (DSM) era.
In a full-scan sequential circuit, all functional flip-flops
(F/Fs) are replaced with scan F/Fs that operate in two
modes: shift and capture. In shift mode, scan F/Fs form one
or more scan chains directly accessible from a tester. This
mode is used to load a test vector through shift-in or obtain
a test response through shift-out, for the combinational
portion of the sequential circuit. In capture mode, scan F/Fs
operate as functional F/Fs and the response of the
combinational portion for a test vector is loaded into them.
Therefore, the task of testing a full-scan sequential circuit is
reduced to that of testing its combinational portion, in that
now it is sufficient to generate test vectors only for the
combinational portion with combinational ATPG [1].
However, the applicability of scan testing is being severely
challenged recently by the following four problems: (1) test
data volume, (2) test application time, (3) test heat, and (4)
test-related yield loss.
The problems of test data volume and test application time
are caused by larger gate and F/F counts, longer scan chains,
and the use of complex fault models, such as transition and
path delay fault models. Many methods have been proposed

to address these problems, using such approaches as test
compaction, test compression-decompression, multi-capture
test clocking, etc. [2].

The problem of test heat is caused by the accumulative
impact of power dissipation in shift mode during scan
testing [3]. This is because shifting a test vector or the
response to a test vector through all scan chains needs a
large number of consecutive clock pulses, depending on the
maximum scan chain length. Accumulatively, shift power
dissipation can cause excessive test heat, which may
permanently damage the circuit under test or lower its
reliability due to accelerated electromigration.

Many methods have been proposed to tackle the test heat
problem through shift power reduction [4], and they are
based on four major approaches: scheduling, test vector
manipulation, circuit modification, and scan chain
modification. Test scheduling considers the power budget
in selecting modules to be tested simultaneously. Test vector
manipulation includes low-power ATPG, static compaction,
test vector modification, test vector reordering, test vector
compression, and coding. Circuit modification includes
transition blocking, clock gating, and multi-duty scan. Scan
chain modification includes scan chain reordering, scan
chain partitioning, and scan chain modification.

The problem of test-related yield loss is caused by such
factors as wrong test set-up, excessive test power, over-test,
etc. In the past, errors in the test set-up (test programs,
automatic test equipment (ATE), and peripheral circuitry)
were the major reason for yield loss during testing. Recently,
excessive test power dissipation in scan testing has emerged
as a significant yield-killer [5]. The reason is that severe IR
drop may occur due to excessive test power dissipation
when a clock pulse is applied in shift or capture mode,
causing direct F/F malfunction and/or increasing circuit
delay. This leads to faulted values in F/Fs, resulting in test-
related yield loss on top of process-related yield loss.

In this paper, we focus on how to reduce test-related yield
loss caused by excessive test power dissipation. The reason
is that this problem is worsening rapidly, especially for
large-scale, high-speed, and low-power DSM circuits.

Obviously, since IR drop may occur whenever an
excessively large number of F/Fs change their output values
simultaneously during scan testing, it is necessary to reduce
test power dissipation in both shift and capture modes in
order to reduce test-related yield loss. The current status of
research on shift power reduction and capture power
reduction is briefly summarized bellow:

Shift Power Reduction

Many methods [4] have been proposed for reducing test
power dissipation in shift mode. Most of them are initially
targeted for reducing average shift power but they usually
can reduce peak shift power as well, making these methods
also effective for reducing shift-induced yield loss. For
example, the MD-Scan method [5] uses different phases in
the same shift cycle for different clock domains to
dramatically reduce the number of simultaneously switching
F/Fs in shift mode. Note that this method is independent of
test vectors, allowing test vectors to be manipulated for
achieving other goals, such as capture power reduction. �

Capture Power Reduction

Compared with shift power reduction, capture power
reduction is a less researched yet more challenging area.
Different from shift power reduction, capture power
reduction usually relies on test vector manipulation. Most of
previous methods are based on X-filling [6-8], i.e. properly
assigning 0’s and 1’s to all unspecified bits (X-bits) in a test
cube so as to reduce the capture power dissipation of the
resulting fully-specified test vector. However, these
methods all suffer from the problem that the specified bits
in a test cube are usually determined only for fault detection,
with capture power reduction being totally neglected.

There are two approaches to test cube generation: In the in-
ATPG approach, logic values for some inputs of a circuit
are determined only for the purpose of detecting a target
fault, and the result is usually a test cube since not all inputs
need to be assigned with logic values [1]. There is also a
test generation method [9] that takes test power reduction
into consideration, but it lacks generality in that one fault
needs to be detected by a pair of input vectors based on a
special clock-disabling low power design. In the post-ATPG
approach, a fully-specified test vector or test set is given,
and some bits are changed to X-bits if doing so does not
affect fault coverage [7, 10]. Here again, capture power
reduction is not considered in such X-bit identification. �

Obviously, the specified bits in a test cube generated by the
above methods are not necessarily good for capture power
reduction although they can detect some faults. As a result,
the overall capture power reduction effect may be
unsatisfactory since X-filling can only reduce capture power
related to the unspecified bits in a test cube.

In this paper, we propose a novel concept, called capture-
aware (CA) test cube generation, for deterministically
generating test cubes not only for fault detection but also

for capture power reduction. The key idea is that, a target
fault can usually be detected by many test cubes, and some
of them can reduce capture power at the same time. In
order to generate such a test cube, a unique PODEM-based
algorithm is proposed by using capture conflict based
backtrack to take capture power reduction into
consideration and by using implication stack restoration to
guarantee fault detection. Obviously, further conducing X-
filling on test cubes generated in this way results in better
performance for overall capture power reduction.
The rest of the paper is organized as follows: Section 2
describes the research background. Section 3 presents a
new ATPG method for capture power reduction based on
CA test cube generation and X-filling. Section 4 shows
experimental results, and Section 5 concludes the paper.

2. Background

2.1 Capture Power Problem
Fig. 1 shows a general full-scan circuit with one scan chain
for the sake of clarity. v is a test vector or a test cube. The
combinational portion implements logic function F, and its
functional response to v is F(v). The PI and PPI bits in v as
well as PO and PPO bits in F(v) are denoted by <v: PI>,
<v: PPI>, <F(v): PO>, and <F(v): PPO>, respectively.

SI

m1 Combinational
Portion

PIs

Scan
F/Fs

n
PPIs F

SO

m2

POs

n
PPOs

v F(v)

n

<v: PI>

<v: PPI>

<F(v): PO>

<F(v): PPO>

SI

m1 Combinational
Portion

PIs

Scan
F/Fs

n
PPIs F

SO

m2

POs

n
PPOs

v F(v)

n

<v: PI>

<v: PPI>

<F(v): PO>

<F(v): PPO>

Fig. 1 A General Full-Scan Circuit.

Definition 1: If a bit a in <v: PPI> and its corresponding bit
b in <F(v): PPO> have opposite logic values at a scan F/F
in Fig. 1, a capture transition is said to occur at the output
of the scan F/F in capture mode during scan testing. The
number of capture transitions for v is denoted by CT(v).
Obviously, if v is a fully-specified test vector, CT(v) = |<v:
PPI> � <F(v): PPO>|. It has been demonstrated that CT(v)
is closely correlated with the level of switching activity
caused by the test vector v [7]. If CT(v) is too large,
excessive switching activity will occur when <F(v): PPO>
is captured into the scan F/Fs, resulting in IR drop and
consequently, capture-induced yield loss [5, 8, 11].
In order to reduce capture-induced yield loss, a test vector v
should have low switching activity in capture mode. This
can be achieved by making sure that CT(v) is under a pre-
set limit. Therefore, the LCP (Low Capture Power) test
generation problem can be formalized as follows:

LCP Test Generation Problem: Generate a test vector v
for a full-scan circuit, such that CT(v) < c_limit, where
c_limit is a pre-set capture transition limit.

2.2 Previous Solutions

Most of previous LCP test generation methods are based on
X-filling techniques [7, 8], i.e. properly assigning 0’s and
1’s to all unspecified bits in a test cube v’ to reduce CT(v)
of the resulting fully-specified test vector v. However, the
specified bits in such a test cube are usually determined
only for fault detection, not for capture power reduction.

F

v’

<v’: PI>

<v’: PPI>

1
X
1
0
X

0
1
1

0a1

a2

a3

a4

a5

b2

b3

b4

b1

Capture

<F(v’): PPO>

<F(v’): PO>

f
F(v’)

F

v’

<v’: PI>

<v’: PPI>

1
X
1
0
X

0
1
1

0a1

a2

a3

a4

a5

b2

b3

b4

b1

Capture

<F(v’): PPO>

<F(v’): PO>

ff
F(v’)

Fig. 2 Impact of specified bits in a test cube.

As shown in Fig. 2, the test cube is v’ = <a1, a2, a3, a4, a5>
= <1, X, 1, 0, X> for detecting the fault f. The specified bits
in <v’: PPI> are a3 = 1 and a4 = 0. Obviously, this causes
two capture transitions for a3/b2 and a4/b3. X-filling the X-
bit a5 with 1 can avoid a capture transition for a5/b4 [7, 8].
However, such X-filling cannot reduce capture transitions
related to the specified bits, a3 and a4.

2.3 Motivation

The example of Fig. 2 indicates that, X-filling only for
unspecified bits in a test cube may not be enough to achieve
a satisfactory effect in capture power reduction. In other
words, capture power reduction must also be considered
when determining specified bits in test cube generation.

Note that a target fault can often be detected by multiple
test cubes, and that some of them have fewer capture
transitions related to specified bits. In Fig. 2, for example,
suppose that the test cube v” = <a1, a2, a3, a4, a5> = <0, X,
0, 1, X> can also detect the fault f, and that the functional
response to v” is <b1, b2, b3, b4> = <1, 0, 1, 1>. In this case,
specified bits in v” do not cause any capture transition.

Based on this observation, we propose a novel capture-
aware or CA test cube generation algorithm to
deterministically find such test cubes good for capture
power reduction. Then, a new method for LCP test
generation can be built by combining this algorithm with
any X-filling technique for overall capture power reduction.

3. New Method for LCP Test Generation

3.1 Overview
The new method for LCP test generation is based on a two-
pass flow as follows:
Pass-1: Conventional detection-oriented ATPG is used to
generate a compact test set T with satisfactory fault coverage.
Pass-2: Any high-capture-power test vector v in T is
identified and replaced with a new test vector v” such that
CT(v”) < c_limit, where c_limit is a pre-set limit.

Fig. 3 shows the general flow of the new method for LCP
test generation. The initial test set T is generated by a
conventional detection-oriented ATPG procedure � in
Pass-1. In Pass-2, first, Ttar is obtained in � by selecting
any vector v from T if CT(v) > c_limit. Then, for each
vector v in Ttar, a target fault list Ftar(v) is obtained in �
such that no fault coverage loss occurs if all faults in Ftar(v)
are detected. Following that, a capture-aware or CA test
cube generation procedure � is repeated to generate a new
test cube v’ progressively to detect all faults in Ftar(v), with
capture power reduction being taken into consideration.
After that, X-bits in v’ are filled with a low capture power or
LCP X-filling procedure �, and a new fully-specified test
vector v” is obtained. Finally, a new test set T’ is obtained
in � by replacing the original test vector v in T with v”.
Obviously, T’ has the same fault coverage as T but test
vectors in T’ have low capture power.

Unprocessed v in Ttar ?

Undetected fault f in Ftar(v) ?

v’ = CA_test_cube_generation(f)

N

Y

Ttar = target_vector_selection(T)

START

Ftar(v) = target_fault_selection(v)

N

Y

v” = LCP_X-Filling(v’)

END

T’ = replace(T, v, v”)

T = initial_test_set_genration() �

�

�

�

�

�

Pa
ss

-1
Pa

ss
-2

� v � Ttar

Unprocessed v in Ttar ?

Undetected fault f in Ftar(v) ?

v’ = CA_test_cube_generation(f)

N

Y

Ttar = target_vector_selection(T)

START

Ftar(v) = target_fault_selection(v)

N

Y

v” = LCP_X-Filling(v’)

END

T’ = replace(T, v, v”)

T = initial_test_set_genration() �

�

�

�

�

�

Pa
ss

-1
Pa

ss
-2

� v � Ttar

Fig. 3 Flow of the New Method for LCP Test Generation.

The procedures � ~ � in Fig. 3, which are marked in gray,
are unique to the new method for LCP test generation. The
details of the procedures � ~ � are presented in 3.2, 3.3,
and 3.4, respectively.

3.2 Target Vector Selection
The target_vector_selection(T) procedure in Fig. 3 is used
to identify the set of high-capture-power test vectors from T,
and these vectors are stored in Ttar. Its purpose is to avoid
wasting efforts in processing a test vector that already has
low capture power.

Target vector selection is best based on power analysis, but
this approach is time-consuming and layout information
may not be available at that stage. Therefore, in this paper,
we select a test vector v as a target vector if CT(v) � c_limit.
Generally, c_limit can be set by taking the power budget of
a design into consideration or by using a heuristic approach
as mentioned in Section 4.

3.3 Target Fault Selection
After the set of high-capture-power test vectors Ttar is
identified, low-capture-power test vectors need to be
generated to replace the test vectors in Ttar, one at a time. In
order to generate a new vector to replace a vector v in Ttar,
it is necessary to select a list of faults Ftar(v) to target so
that no fault coverage loss occurs. Generally, this target
fault selection should satisfy the following conditions:

(a) �
� tarTv

vFtar)(should contain all faults that are only

detected by test vectors in Ttar. This is to guarantee that no
fault coverage loss occurs.
(b) Ftar(v) should contain faults that are easier to be
detected with a test cube of low capture power.
(c) Ftar(v) should be made as small as possible.

The target_fault_selection(v) procedure in Fig. 3 is used to
obtain the target fault list Ftar(v) that satisfies the three
conditions. An example is shown in Fig. 4.

HCP
Vector?

v1

v2

v3

v4

v5

f12

Y

N

N

Y

Y

Target Fault List
Ftar(vi)

Fault
Classification

f1

f4

f5

f6

f7

f10

f9

f8

: vector-essential fault : set-essential fault

f1

f2

f3

f4

f5

f6

f11

f12

f7

f10

f10

f9

f9

f8

f11

HCP
Vector?

v1

v2

v3

v4

v5

f12

Y

N

N

Y

Y

Target Fault List
Ftar(vi)

Fault
Classification

f1

f4

f5

f6

f7

f10

f9

f8

: vector-essential fault : set-essential fault

f1

f2

f3

f4

f5

f1

f2

f3

f4

f5

f6

f11

f12

f7

f10

f6

f11

f12

f7

f10

f11

f12

f7

f10

f10

f9

f10

f9

f9

f8

f11

f9

f8

f11

Fig. 4 Example of Target Fault Selection.

In Fig. 4, the original test set is T = {v1, v2, v3, v4, v5}.
Suppose that v1, v4, and v5 are high-capture-power (HCP)
test vectors. That is, Ttar = {v1, v4, v5}. There are 12 faults
and the detection information obtained by fault simulation
is also shown in Fig. 4. Note that f11 and f12 are also
detected by v2 and v3, which are not in Ttar. That is, the set
of faults that are only detected by test vectors in Ttar is TA =
{f1, f4 ~ f10}. Obviously, no fault coverage loss will occur if
all faults in TA are detected by a set of new test vectors.

All faults in TA can be classified into two groups: A vector-
essential fault is detected by exactly one test vector in Ttar
and by no other test vector in T. All faults marked in circles
in Fig. 4 are vector-essential faults. On the other hand, a
set-essential fault is detected by multiple test vectors in Ttar
and by no other test vector in (T – Ttar). All faults marked in
squares in Fig. 4 are set-essential faults.

All vector-essential faults of v should be included in Ftar(v).
For example, f1 and f6 should be included in Ftar(v1). On
the other hand, a set-essential fault of v can be included in
Ftar(v) or in the target fault list of another test vector that
also detects the fault, without any fault coverage loss. For
example, f9 is a set-essential fault detected by v1 and v4.
That is, f9 can be included in either Ftar(v1) or Ftar(v4).

The decision on whether to place a set-essential fault of v
into the current Ftar(v) is made by checking how the
easiness of detecting the faults in Ftar(v) with a test cube of
low capture power is affected by the decision. In order to
measure the easiness, we introduce a new heuristic concept
as follows:

Definition 2: Let fa and fb be two faults in a full-scan
circuit. Denote the sets of PPIs that are structurally
reachable from fa and fb by RI(a) and RI(b), respectively.
Denote the sets of PPOs that are structurally reachable from
fa and fb by RO(a) and RO(b), respectively. The
overlapping degree between fa and fb, denoted by od(fa, fb),
is defined as follows:

od(fa, fb) = �
�

�

bai
iRI

bRIaRI

,
)(

|)()(| + �
�

�

bai
iRO

bROaRO

,
)(

|)()(|

As illustrated in Fig. 5, the larger the value of od(fa, fb), the
more fa and fb overlap at PPIs and PPOs. This indicates that
it may be difficult to reduce capture transitions when
generating a test cube to detect both fa and fb.

fa

fb

RI(a)
RI(b)

RO(b)
RO(a)

Combinational Portion

fa

fb

RI(a)
RI(b)

RO(b)
RO(a)

Combinational Portion

Fig. 5 Concept of Overlapping Degree.

Suppose that a set-essential fault f is detected by a test
vector v whose current target fault list is Ftar(v) = {fn1, fn2,
…, fnp}, where f � Ftar(v). We first calculate od(f, fn1), od(f,
fn2), …, and od(f, fnp), and then obtain the average
overlapping degree as follows:

aod(f, Ftar(v)) = �
� pi

ifnfod
,...,2,1

),(/ |Ftar(v)|

Now, in order to decide where to place a set-essential fault f
that is detected by test vectors vm1, vm2, …, and vms, we
calculate aod(f, Ftar(vm1)), aod(f, Ftar(vm2)), …, and aod(f,
Ftar(vms)), and place f into the target fault list of the test
vector that has the lowest average overlapping degree.

In Fig. 4, for example, at the time when we need to
determine where to place the set-essential fault f9 (detected
by v1 and v4), Ftar(v1) and Ftar(v4) are {f1, f6} and {f4, f7,
f8}, respectively. Suppose that aod(f9, Ftar(v1)) < aod(f9,
Ftar(v4)). In this case, f9 is placed into Ftar(v1). The final
result of target fault selection is also shown in Fig. 4.

3.4 Capture-Aware Test Cube Generation
After the target fault list Ftar(v) is properly obtained for a
high-capture-power test vector v, the next step is to generate
a low-capture-power test cube to detect all faults in Ftar(v).
The capture-aware or CA test cube generation procedure,
CA_test_cube_generation(f) in Fig. 3, is used for this
purpose. Its general flow is shown in Fig. 6.

YPrimary implication stack
exhausted?

N
Add the copy of the current primary implication stack

to the top of the restoration implication stack list
if C-conflict is found.

Test
generation

failed.

backtrack()

Restoration implication stack list
empty?

N
Remove the top restoration implication stack S

and make S the primary implication stack.

imply()

Suppress checking of the C-conflict of S.

Y

.

D-conflict found?

N

Target fault detected?

N

objective()
backtrace()

imply()

Test
generation
successful.

Y

Y

.

START

C-conflict found?

N

Y.

�

�

�

�

�

�

�

�

	

�

YPrimary implication stack
exhausted?

N
Add the copy of the current primary implication stack

to the top of the restoration implication stack list
if C-conflict is found.

Test
generation

failed.

backtrack()

Restoration implication stack list
empty?

N
Remove the top restoration implication stack S

and make S the primary implication stack.

imply()

Suppress checking of the C-conflict of S.

Y

.

D-conflict found?

N

Target fault detected?

N

objective()
backtrace()

imply()

Test
generation
successful.

Y

Y

.

START

C-conflict found?

N

Y.

�

�

�

�

�

�

�

�

	

�

Fig. 6 General Flow of CA_test_cube_generation(f).

Generally, CA_test_cube_generation(f) is based on
PODEM [12] and has a few enhancements marked in gray.
These enhancements are based on two new concepts,
capture conflict and restoration implication stack, that
allow CA_test_cube_generation(f) to generate a test cube to
detect fault f, and at the same time to reduce the number of
capture transitions w.r.t. the specified bits in the test cube as
much as possible. The details are as follows:

In a conventional PODEM-based test generation procedure,
backtrack occurs only when X-path-checking finds a
detection conflict, or D-conflict in short, that there is no
path containing undetermined values between the gates of
D-frontiers and any PO or PPO in order to be able to
complete a sensitized path for fault detection [12].

In CA_test_cube_generation(f), we introduce a new
backtrack condition, called capture conflict, or C-conflict in
short, that a PPI and its corresponding PPO have opposite
logic values, indicating a capture transition at a scan F/F. If
there are n scan F/Fs, there are n C-conflicts, donated by C1,
C2, …, Cn, as shown in Fig. 7, where Ci is the C-conflict at
the PPI and PPO lines for the i-th scan F/F. In comparison,
there is only one D-conflict for any failed X-path-check.

PPI1

Combinational
Portion

PPO1

PPI2 PPO2

PPIn PPOn

C1

C2

Cn

C-conflicts

...
PPI1

Combinational
Portion

PPO1

PPI2 PPO2

PPIn PPOn

C1

C2

Cn

C-conflicts

......

Fig. 7 C-Conflicts.

C-conflicts are checked in CA_test_cube_generation(f) in
the order of their impacts on capture power dissipation. A
simple heuristic to assess the impact of the C-conflict Ci is
to count the number of gates in the combinational portion
that are reachable from the output of the i-th scan F/F.

CA_test_cube_generation(f) backtracks in � when either a
D-conflict in � or a C-conflict in � is found. However, a
D-conflict and a C-conflict are fundamentally different for
the following reasons: If the search space is exhausted only
because of D-conflicts, test generation really fails. However,
if at least one C-conflict occurs before the search space is
exhausted, test generation may be made successful if the C-
conflict is ignored. A test cube generated by ignoring a C-
conflict can still detect the target fault, but cannot avoid a
capture transition at the corresponding scan F/F.

Obviously, it is beneficial to check for C-conflicts to reduce
capture transitions but it is also necessary to prevent a C-
conflict from blocking the generation of a test cube for
detecting the target fault. Therefore, we introduce two types
of implication stack: A primary implication stack is similar
to what is used in a conventional PODEM-based ATPG
procedure and it is used for managing the search space. A
restoration implication stack is a copy of the primary
implication stack obtained when a C-conflict is found.
Since multiple C-conflicts may occur, there may exist
multiple restoration implication stacks. These stacks are
placed in a list, called a restoration implication stack list.

When the primary implication stack is exhausted in �, one
checks if the restoration implication stack list is empty in �.
A non-empty list means that at least one C-conflict occurred,
contributing to the failing of the current test generation pass.
In this case, the top or latest stack S in the restoration
implication stack list is removed from the list and restored
as the primary implication stack in �. In addition, the C-
conflict corresponding to the stack S is suppressed from
further C-conflict checking in �. Then, test generation is
resumed. This way, a test cube, which detects the target
fault and at the same time reduces the number of capture
transitions as much as possible, can be generated.

An example of conducting test cube generation by
CA_test_cube_generation(f) is shown in Fig. 8, where A
through G are PPI lines. Suppose that backtrace()
determines logic values for these lines during test cube
generation in the search order of A to G. In addition, denote
the primary implication stack by PS.

Restoration Implication Stack Pointer
A: 0
B: 1
C: 1
D: 0

A: 0
B: 1
C: 1
D: 1
E: 0

A:0
B:1
C:0 C:1

D:0 D:1

E:0 E:1
F:0 F:1

B:0
A:1A

B
C
D
E
F

D
C1

C2

D D

D
D

Primary Implication Stack Exhausted
CopyCopy

C1
C2

G

Restoration Implication Stack Pointer
A: 0
B: 1
C: 1
D: 0

A: 0
B: 1
C: 1
D: 1
E: 0

A:0
B:1
C:0 C:1

D:0 D:1

E:0 E:1
F:0 F:1

B:0
A:1A

B
C
D
E
F

D
C1

C2

D D

D
D

Primary Implication Stack Exhausted
CopyCopy

C1
C2

G

(a) Failed Test Generation due to the D-Conflict and C-Conflicts

Restoration Implication Stack Pointer
A: 0
B: 1
C: 1
D: 0

A: 0
B: 1
C: 1
D: 1
E: 0
Restore

A:0
B:1
C:0 C:1

D:0 D:1
E:0
F:0 F:1

A
B
C
D
E
F

D
C1

D

Successful Detection

C1
C2

G

Restoration Implication Stack Pointer
A: 0
B: 1
C: 1
D: 0

A: 0
B: 1
C: 1
D: 1
E: 0
Restore

A:0
B:1
C:0 C:1

D:0 D:1
E:0
F:0 F:1

A
B
C
D
E
F

D
C1

D

Successful Detection

C1
C2

G

(b) Successful Test Generation by Implication Stack Restoration

Fig. 8 Example of Capture-Aware Test Cube Generation.
As shown in Fig. 8 (a), when PS = <A: 0, B: 1, C: 0>, the
D-conflict occurs, which is indicated by D. Backtracking
brings logic 1 to C, and backtrace() further determines
logic 0 for D. When PS = <A: 0, B: 1, C: 1, D: 0>, C-
conflict C1 occurs. In this case, a copy of PS, denoted by C1,
is placed into the restoration implication stack list.
Backtracking brings logic 1 to D. Similarly, when PS = <A:
0, B: 1, C: 1, D: 1, E: 0>, C-conflict C2 occurs, and a copy
of PS, denoted by C2, is placed into the restoration
implication stack list. At the end, PS is exhausted due to a
few more occurrences of the D-conflict.

In Fig. 8 (b), the top stack, C2, in the restoration implication
stack list, is restored as the primary implication stack, and
test generation is resumed with C-conflict C2 being
suppressed. The resulting test cube is <A, B, C, D, E, F, G>
= <0, 1, 1, 1, 0, 1, X>, which detects the target fault and
avoids a capture transition corresponding to C-conflict C1.

4. Experimental Results

The new method for LCP test generation, whose flow is
shown in Fig. 3, was implemented and experiments were
conducted on ISCAS’89 circuits. The results are
summarized in Table 1.

Table 1 Results of LCP Test Generation

Circuit
Ori. Test Generation

of
Vec.

of
Vec.

LCP Test Generation

Max.
Trans.

Max.
Trans.

CPU
(Sec.)

s1238
s1423
s5378
s9234

s13207
s15850
s35932
s38417
s38584

128
27

106
133
235
101

13
91

121

125
24

100
111
235

97
12
87

114

18
49

102
124
380
282

1548
590
925

11
29
85
99

286
169
922
491
459

18.2
7.6

20.3
62.7
66.9

114.2
114.4
224.9
479.5

Fault
Cov.
(%)

94.9
99.1
99.1
93.5
98.5
96.7
89.9
99.5
95.9

CPU
(Sec.)

0.2
0.1
0.5
2.9
4.3
6.3

36.1
78.0
54.9

Circuit
Ori. Test Generation

of
Vec.

of
Vec.

LCP Test Generation

Max.
Trans.

Max.
Trans.

CPU
(Sec.)

s1238
s1423
s5378
s9234

s13207
s15850
s35932
s38417
s38584

128
27

106
133
235
101

13
91

121

125
24

100
111
235

97
12
87

114

18
49

102
124
380
282

1548
590
925

11
29
85
99

286
169
922
491
459

18.2
7.6

20.3
62.7
66.9

114.2
114.4
224.9
479.5

Fault
Cov.
(%)

94.9
99.1
99.1
93.5
98.5
96.7
89.9
99.5
95.9

CPU
(Sec.)

0.2
0.1
0.5
2.9
4.3
6.3

36.1
78.0
54.9

In the experiments, c_limit was set as 50% of the maximum
number of capture transitions of original test vectors. On
average, the maximum number of capture transitions was
reduced by 32.1%, much higher than the 21.6% obtained by
X-filling only [8], at the cost of 7.1% increase in the
number of test vectors, due to the fact that multiple new test
vectors might be generated to detect all target faults in
Ftar(v) for v. Using the original detection order will solve
this issue, and its implementation is under way.

5. Conclusions

This paper proposed a novel algorithm for test cube
generation not only for fault detection but also for capture
power reduction, by introducing the concepts of capture
conflict and implication stack restoration into ATPG. This
algorithm, together with low-capture-power X-filling, leads
to more effective reduction of capture-induced yield loss.

More evaluations are being planned to assess the effect of
the proposed method directly through power analysis.

References
[1] M. Abramovici, M. Breuer, and A. Friedman, Digital Systems

Testing and Testable Design, IEEE Press, 1994.
[2] L.-T. Wang, X. Wen, H. Furukawa, F. Hsu, S. Lin, S. Tsai, K. S.

Abdel-Hafez, and S. Wu, “VirtualScan: A New Compressed Scan
Technology for Test Cost Reduction,” Proc. Int’l Test Conf., pp.
916-925, 2004.

[3] Y. Zorian, “A Distributed BIST Control Scheme for Complex VLSI
Devices,” Proc. VLSI Test Symp., pp. 4-9, 1993.

[4] P. Girad, “Survey of Low-Power Testing of VLSI Circuits,” IEEE
Design & Test of Computers, Vol. 19, No. 3, pp. 82-92, 2002.

[5] T. Yoshida and M. Watari, “MD-Scan Method for Low Power Scan
Testing,” Proc. Intl. Test Conf., pp. 480-487, 2003.

[6] W. Li, S. M. Reddy, and I. Pomeranz, “On Reducing Peak Current
and Power During Test,” Proc. CSASV, pp. 156-161, 2005.

[7] R. Sankaralingam and N. Touba, “Controlling Peak Power During
Scan Testing,” Proc. VLSI Test Symp., pp. 153-159, 2002.

[8] X. Wen, H. Yamashita, S. Kajihara, L.-T. Wang, K. Saluja, and K.
Kinoshita, “On Low-Capture-Power Test Generation for Scan
Testing,” Proc. VLSI Test Symp., pp. 265-270, 2005.

[9] J. Silva, J. Monteiro, and K.A. Sakallah, “Test Pattern Generation
for Circuit Using Power Management Techniques”, Proc. IEEE
European Test Workshop, 1997.

[10] K. Miyase and S. Kajihara, “XID: Don't Care Identification of Test
Patterns for Combinational Circuits,” IEEE Trans. Computer-
Aided Design, Vol. 23, No. 2, pp. 321-326, 2004.

[11] J. Saxena, K. M. Butler, V. B. Jayaram, and S. Kundu, “A Case
Study of IR-Drop in Structured At-Speed Testing,” Proc. Intl. Test
Conf., pp. 1098-1104, 2003.

[12] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for
Combinational Logic Circuits,” IEEE Trans. Computers, Vol. 30,
No. 3, pp. 215-222, 1981.

	Abstract

	1. Introduction

	2. Background

	2.1 Capture Power Problem

	2.2 Previous Solutions

	2.3 Motivation

	3. New Method for LCP Test Generation

	3.1 Overview

	3.2 Target Vector Selection

	3.3 Target Fault Selection

	4. Experimental Results

	5. Conclusions

	References

	Return to Table of Contents

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

