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Abstract 

Optimizing the groove size of flat micro heat pipes is crucial for improving their thermal performance. 

In this study, we developed a grooved converging microchannel array for use in a flat micro heat pipe to 

enhance the capillary force. A simplified theoretical analysis was used to optimize the groove size for 

given operating conditions of converging microchannels and straight microchannels. The evaporation 

section of the grooved microchannel was hydrophilic and had a smaller hydraulic diameter than the 

hydrophobic condensation section. The smaller diameter of the evaporation section enabled the 

condensed working fluid to be effectively drawn back to the same section. Experiments were performed 

to measure the thermal performance of the micro heat pipes under the analyzed operating conditions. 

Compared to a heat pipe with a straight microchannel, and a heat pipe with an unoptimized converging 

microchannel, the micro heat pipe with the optimized converging microchannel was confirmed to yield a 

higher thermal performance. Capillary-driven flow experiments at room temperature and atmospheric 

pressure were also used to investigate the capillary forces of the different microchannels. The optimized 

converging microchannel was once again observed to generate the largest capillary force. 
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Nomenclature 

A area, m2 

A1 cross-sectional area of vapor, m2 

h heat transfer coefficient, W/(m2·K) 

hfg latent heat, J/kg 

H groove height, m 

N number of grooves, - 

L length, m 

ṁ mass flow rate, kg/s 

p pressure, N/m2 

Q input heat, W 

R thermal resistance, K/W 

t time, s 

T temperature, K

u velocity, m/s 

W groove width, m 

Greek Symbols 

θ contact angle, degree 

λ thermal conductivity, W/(m·K) 

µ viscosity, Pa·s 

ρ density, kg/m3 

σ surface tension, N/m 

Subscripts 

c condenser section 

ca capillary 



e evaporator section 

hp heat pipe 

i liquid–vapor interface 

l liquid 

v vapor 



1. Introduction 

Micro heat pipes (MHPs) are self-driven cooling devices used for the removal of high heat flux from 

electronic devices. They can be fabricated using micro-electro-mechanical system (MEMS) technology, 

and considerable research has been channeled toward developing innovative MEMS-based flat micro 

heat pipes [1-20]. Although the compactness of flat MHPs is well-suited to the cooling of current and 

future chips, their thermal performance is limited by miniaturization. To improve the thermal 

performance of flat MHPs, a better understanding of the associated heat and mass transfer phenomena is 

required.  

The capillary limit is a major challenge in improving the thermal performance of a flat MHP and 

avoiding dry-out in its evaporation section. In a flat MHP, the liquid returns from the condenser to the 

evaporator through a capillary structure that is usually composed of a microchannel array, which differs 

from the additional wicks installed in a conventional heat pipe. Accordingly, the capillary radius of the 

liquid–vapor interface in an MHP is comparable to the hydraulic diameter of the flow passage, and the 

capillary action dominates the gravitational force in the microchannel array. The capillary limit of an 

MHP thus depends on the capillary performance of the microchannel. 

Several studies on capillary-driven flow have investigated the capillary performance of microchannels 

[21-40]. It has been found that the capillary force can be increased by decreasing the characteristic length, 

i.e., the hydraulic diameter, of the microchannel grooves [25-30], and controlling the surface structure 

[31-34] or wettability [35-37]. However, the pressure drop due to viscous friction in microchannels 

increases with the decreasing hydraulic diameter of the flow passage. Yang et al. reported that capillary 

filling of a nanochannel significantly degrades the performance [38]. Conversely, given the relatively 

high surface-to-volume ratio of a microchannel, the surface effect increases with the decreasing scale of 

the channel [41-44]. Nagayama et al. posited that the scale effect of the solid–liquid interfacial resistance 

in a microchannel becomes more significant with a decreasing hydraulic diameter [44]. The deviation 

from the classical theory with a decreasing hydraulic diameter is due to a breakdown of the continuum 



solid–liquid boundary condition. In addition, the hydraulic and thermal resistances are the dominant 

causative factors of the poor thermal performance of microchannels. Optimization of the groove size is 

thus crucial to enhancing the thermal performance of a flat MHP.  

In the present study, we developed a novel grooved converging microchannel array for a flat MHP to 

enhance the thermal performance [45]. To effectively draw the condensed working fluid back into the 

evaporation section of the microchannel, the hydraulic diameter of the grooves in the condensation 

section was made larger than that of the grooves in the evaporation section. The optimal groove size was 

determined based on the balance between the capillary and frictional forces in the rectangular grooves, 

taking into consideration the effect of surface wettability. Experiments were performed to compare the 

maximum input heat of the optimized converging microchannel with that of a straight microchannel. The 

heat pipe with the optimized converging microchannel was confirmed to exhibit a higher thermal 

performance. Experiments were also performed to clarify the effect of convergence on the force of the 

capillary-driven flow at room temperature and atmospheric pressure. 



2. Theoretical model 

Figure 1 shows a schematic of the open rectangular groove considered in this study. The groove 

height H and length L are constant, whereas the width W(x) linearly decreases in the x-direction. The 

groove has a converging shape, with the cross-sectional area decreasing in the axial direction between the 

condensation and evaporation sections.  

 

To optimize the groove size of the flat heat pipe, the balance between the capillary force and the 

pressure loss of the flow along the x-axis of the microchannel was derived based on the following 

assumptions: 

(1) steady-state incompressible flow, 

(2) saturated vapor, 

(3) negligible heat generation due to viscous dissipation, 

(4) no dry-out in the evaporation section, and 

(5) no blocking in the condensation section. 

The local physical properties of the liquid and vapor along the x-axis were considered temperature-

dependent variables. 

Figure 1 Model of a groove in the converging microchannel array for a flat MHP. 



2.1 Capillary force 

When a meniscus is formed at the liquid–vapor interface inside the groove, the local pressure 

difference at the interface at x, Δpi(x), can be calculated by the well-known Young–Laplace equation: 
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where σl(x) is the local surface tension of the liquid, and θ is the local contact angle of the meniscus.  

Because the groove height H and length L are constant, a decrease in the groove width would 

increase the capillary pressure, according to Eq. (1). To effectively draw the condensed working fluid 

back into the evaporation section, the minimum groove width should be the optimized value for the 

evaporation section, resulting in the maximization of Eq. (1), while the maximum width should be the 

optimized value for the condensation section. The local pressure differences at the liquid–vapor 

interfaces in the condensation and evaporation sections are respectively given by 
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where σc, θc, and Wc (=W(0)) are respectively the local surface tension, contact angle, and width of the 

condensation section, and σe, θe, and We (=W(L)) are the corresponding parameters of the evaporation 

section.  

For the considered open rectangular groove shown in Fig. 1, the total capillary pressure difference 

between the evaporation and condensation sections is given by 
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2.2 Pressure loss  

According to the mass conservation law, in the steady state, the mass evaporation rate in the 

evaporation section is balanced by the mass flow rate of the condensed liquid through the groove. 

Therefore, the mass flow rate ṁ through the groove can be obtained as follows:  

fgh
Qm =& , (5) 

where Q is the input heat transfer rate (i.e., the input power), and hfg is the latent heat. The mean flow 

velocity through the groove, u , is thus given by 
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where ρl is the density of the liquid, and N is the number of grooves. Assuming a one-dimensional 

laminar flow through the groove in the axial (x) direction, the pressure loss Δploss of the mass flow rate 

ṁ over a distance L is given by 
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where µ(x) is the local viscosity of the liquid, and u(x) is the local flow velocity. Because the groove 

width W(x) linearly decreases in the x-direction, where 
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the mass conservation in the x-direction becomes 
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Hence, Eq. (7) can be rewritten as follows: 
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2.3 Driving force of capillary flow through groove 

The total capillary pressure change along the groove, Δpca, can be determined using Eq. (4), and the 

pressure loss Δploss over the distance L can be determined using Eq. (10). Further, the driving force of 

the capillary flow can be estimated from the difference between Δpca and Δploss, i.e., lossca ppp ∆−∆=∆ . 

A positive driving force is required to draw the condensed liquid from the condensation section back 

into the evaporation section. 

 

Figure 2 Test section of Si-based MHP. 
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3. Experimental method 

3.1 Test section of flat MHP 

Figure 2 shows the test section of the flat MHP fabricated on a P-type silicon wafer. The micro-

electro-mechanical fabrication technique was employed for the fabrication. The grooves were etched on a 

15 × 70 mm area on the Si substrate, which measured 22 × 80 mm. The height of all the grooves was set 

to 100±5 µm. The groove widths were determined using the theoretical predictions shown in the later 

section 4.1 based on the method described in the previous section. Table 1 gives the parameters for the 

considered experimental cases under an operating condition of Tc = 20 °C, Te = 80 °C, θc = 80°, θe = 0°, 

H = 100 µm, L = 70 mm and Q = 20 W, as a demonstration for comparisons. The grooves of cases 1-4 

had the rectangular cross section shown in Fig. 2 and were fabricated by Bosch deep reactive ion etching. 

A thin SiO2 layer was deposited on the surface of the grooves by thermal oxidation. Separate chemical 

treatments were used to control the surface wettability of the evaporation section, adiabatic section, and 

condensation section. As indicated in Table 1, the surfaces of the evaporation and adiabatic sections 

were hydrophilic, while the surface of the condensation section was more hydrophobic than those of 

the evaporation and adiabatic sections, having a contact angle of approximately 80o. 

The grooved Si substrate was bonded to a Pyrex glass by a sandwiched silicone rubber sheet of 

Table 1 Parameters of the grooves fabricated on Si substrates. 

Cases Wc [µm] We [µm] H [µm] N 
Contact angles [deg.] 

θe, θa θc* θc** 

1 300 100 100 42 0 80 0 

2 400 200 100 33 0 82 0 

3 300 300 100 33 0 80 0 

4 100 100 100 50 0 80 0 

*For heat pipe experiments. **For capillary-driven flow experiments. 



thickness 2 mm, as shown in Fig. 2. Two holes drilled into the Pyrex glass were used to evacuate the 

MHP and fill the working fluid into the MHP. Eight T-type thermocouples (diameter 0.2 mm, indicated 

by the red dots in Fig. 2) were used to measure the surface temperature of the grooved Si substrate. The 

lengths of the condensation, adiabatic, and evaporation sections of the MHP were 30, 20, and 20 mm, 

respectively. After fabrication, the MHP was evacuated to remove non-condensable gases, and then 

filled with ultra-pure water (Kishida Chemical, electrical resistivity 18 M ⋅Ω cm) as the working fluid. 

The MHP was heated and part of the generated vapor was removed to attain a filling ratio of 50% [8]. 

3.2 Experimental setup of MHP 

All the experiments were performed with the MHP oriented horizontally in a room at a constant 

temperature of 25 °C and constant humidity of 40 RH%. Figure 3 shows the experimental setup used to 

evaluate the thermal performance of the MHP. The evaporator and condenser were respectively heated 

and cooled using a flat heater and cooler. The heat flux supplied to the evaporator and condenser was 

measured using 0.4-mm-thick heat flux sensors (Captec, HF series). The thermal data were collected by 

a computer via a data logger. Thermal resistance of the heat pipe Rhp, mainly depending on summation 

of the evaporator resistance and the condensation resistance, can be written as follows [47]: 
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Figure 3 Experimental setup of MHP. 
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where he and hc are the heat transfer coefficient of the evaporator and condenser, and Ae and Ac are the 

heat transfer area of the evaporator and condenser. Since the total wall resistances R0 can be measured 

under the condition of the heat pipe without the working fluid, the overall thermal resistance of the flat 

heat pipe Rtotal can be obtained based on the thermal resistance network of Rhp and R0 in parallel. Hence, 

the overall thermal resistance Rtotal becomes,  
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where Qin is the input heat and Te-Tc is the overall temperature difference between the evaporator and 

condenser. Therefore, the thermal performance of the MHP can be characterized by the effective 

thermal conductivity λhp as follows, 

1AR
L

hp
hp =λ  (13) 

where L is the length of the heat pipe and A1 is the cross-sectional area of the vapor. 

An uncertainty analysis has been performed according to the method proposed by Holman [46]. The 

estimated uncertainties of temperature is ±0.11 K (±0.16 %) for the thermocouples. The maximum 

value of uncertainty of the heat flux and the effective thermal conductivity, is 1.47 kW/m2 (2.12 %) and 

1.58 W/(m∙K) (0.21 %) respectively. 

3.3 Experiment on capillary-driven flow in open microchannel 

A schematic of the capillary-driven flow is shown in Fig. 4 to clarify how the convergence increases 

the capillary force. The flow was observed by a motion analysis microscope (Keyence, VW-6000) on a 

horizontal stage at room temperature and pressure. The fabricated Si substrates were carefully cleaned 

with a mixture of sulfuric acid and hydrogen peroxide to obtain uniformly hydrophilic surfaces. A 6-µl 

ultra-pure water droplet was deposited on the Si substrate using a syringe. Once the droplet touched the 

hydrophilic substrate, the liquid began to flow through the groove under the action of the capillary 

force. A high-speed camera mounted on the motion analysis microscope was used to obtain images of 



Figure 4 Schematic of the capillary-driven flow experiment setup and microscope images 

obtained at the observation point. 

the liquid flow at the observation point located at x = 68 mm. Samples of the obtained images are 

shown in Fig. 4. A sharply concave advancing meniscus was observed, and the velocity of its inflection 

point (red dots in Fig. 4) was analyzed based on the time history of the flow images. The measurements 

for each experimental case were repeated more than 5 times to calculate the mean imbibition velocity. 

 

4. Results and discussion 

4.1 Theoretically determined optimal groove size  

Figures 5 and 6 show the estimated force balance as a function of the groove width under an 

operating condition defined by Tc = 20 °C, Te = 80 °C, θc = 80°, θe = 0°, H = 100 µm, L = 70 mm, and Q 

= 20 W. The total capillary pressure difference along the groove, Δpca, was calculated using Eq. (4), 

while the pressure loss Δploss over a distance L was calculated using Eq. (10). The driving force of the 

capillary flow was estimated from the difference between Δpca and Δploss, i.e., lossca ppp ∆−∆=∆ . 



For the straight groove, it is clear from Fig. 5 that decreasing the width increases both the capillary 

force and frictional force, with the driving force vanishing when the width is decreased to 50 µm. The 

peak driving force occurs at a groove width of approximately 100 µm. This width was thus considered 

as the optimal value under the above-specified operating condition.  

 

0

0.5

1

1.5

2

2.5

0 100 200 300 400

pca

pl

pca-pl

∆p
 [k

Pa
]

Groove width [µm]

∆p
ca

∆p
loss

∆p
ca

-∆p
loss

Figure 5 Effect of the groove width on the force balance in the straight groove for Tc = 

20 °C, Te = 80 °C, θc = 80°, θe = 0°, H = 100 µm, L = 70 mm, and Q = 20 W. 



Using the determined optimal width of the evaporation section in the converging groove, We = 100 

µm, the driving force was obtained as a function of the groove width in the condensation section, Wc. 

Strictly speaking, the groove is divergent when Wc < We and convergent when Wc > We. As can be 

observed from Fig. 6, for a constant We = 100 µm, the capillary force decreases with decreasing Wc 

owing to the increasing pressure loss, eventually vanishing at Wc = 40 µm. Compared to the straight 

groove (open circle in Fig. 6), the driving force of the converging groove is large for Wc > We, whereas 

it is small for Wc < We. This indicates that the enhancement of the driving force is only achieved in a 

converging groove. Considering the relatively small increase in the capillary and driving forces for Wc 

> 300 µm, 300 µm is considered to be the optimal value of Wc for a converging groove with We = 100 

µm. The driving force in the converging groove with Wc = 300 µm and We = 100 µm is approximately 

1.36 times that of the straight groove with a uniform width W = 100 µm.  
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Figure 6 Effect of the groove width Wc and We on the force balance in the converging (Wc > We) 

or diverging (Wc < We) groove at Tc = 20 °C, Te = 80 °C, θc = 80°, θe = 0°, H = 100 µm, 

L = 70 mm, and Q = 20 W for We = 100 µm. 



Theoretically, decreasing the groove width in the evaporator section or increasing the groove width 

in the condenser section can increase the capillary performance than that with the optimized converging 

microchannels of 300µm -100µm. However, the solid-liquid interfacial resistance in a microchannel 

becomes significant with a decreasing hydraulic diameter and the thermal resistance are the dominant 

causative factor of the poor thermal performance of microchannels [44]. The thermal slip length 

(Kapitz length) is about 150µm for the bare Si surface, and about 80µm for the super-hydrophilic Si 

surface [48]. Thus, as a demonstration on the thermal performance of MHP with converging 

microchannels, the optimal groove width of straight microchannel of 100µm was used to the minimum 

groove width at the evaporator of MHP with converging microchannels in the present study.  

4.2 Thermal performance of flat MHP 

The temperature profiles for the different grooved Si surfaces are shown in Fig. 7 for the steady-

state heat pipe operating condition defined by Tc = 20 °C and Te ≤  80 °C. The maximum temperature 

difference on the grooved surfaces was determined to be approximately 60 °C, with the temperature in 

the evaporation section increasing with increasing input heating power. Here, the maximum input heat 

was defined as the input heat when the operating temperature exceeded the temperature limit of 100 °C 

at the evaporator, which was indicated by the red symbols in Fig. 7. The maximum input heat for case 1 

(converging microchannel with the optimized groove) was the highest among all the experimental cases, 

being 1.20 times that of case 2 (converging microchannel with the unoptimized groove), 1.64 times that 

of case 3 (straight microchannel with the unoptimized groove) and 1.21 times that of case 4 (straight 

microchannel with the optimized groove). For the same number of grooves (cases 2 and 3), the 

maximum input heat of case 2 (converging microchannel) is higher than that of case 3 (straight 

microchannel). Comparing the straight microchannels of cases 3 and 4, we found that case 4 with the 

smaller groove width and the larger number of the grooves has the higher maximum input heat. On the 

other hand, since the area of the evaporator is same for all the experimental cases, increasing the 

number of grooves will increase both the real heat transfer area and the liquid-vapor phase change area. 



However, the thermal performance of case 1 still was the highest of the other cases, although the 

groove number of case 1 is smaller than that of case 4. That is, the driving force obtained from the 

pressure difference plays primary role on the thermal performance of MHP; while the number of 

grooves (i.e. the real heat transfer area and the liquid-vapor phase change area) plays the secondary role. 

Thus, the MHP with the optimized converging microchannel was confirmed to exhibit better thermal 

performance than that with the straight microchannel. 

Figure 7 Temperature profiles of the fabricated flat MHPs: (a) case 1: converging MHP with the 

optimized groove; (b) case 2: converging MHP with the unoptimized groove; (c) case 3: 

straight MHP, and (d) case 4: optimized straight MHP. 
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(b) Case 2: 400-200 µm
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Figure 8 shows the determined effective thermal conductivities of the different fabricated flat MHPs 

with respect to the heat flux. As can be seen, the thermal conductivity increases with increasing heat 

flux, with case 1 (converging channel with the optimized groove) exhibiting the highest thermal 

conductivity, approximately eight times that of the empty heat pipe without the working fluid 

(represented by the dotted line).  

4.3 Capillary performance of groove  

The capillary-driven flow at room temperature and pressure was observed to clarify the effect of 

convergence on the capillary force. The motion of the inflection point of the advancing concave 

meniscus was analyzed. In the vicinity of the observation point x = 68 mm, the groove width was 

approximately 100 µm in cases 1 and 4, 200 µm in case 2, and 300 µm in case 3. Figure 9 (a) shows the 

time history of the travel distance for the inflection point of the advancing concave meniscus obtained 

from the flow images in the vicinity of the observation point. The mean imbibition velocity of 5 

measurements was shown in Fig. 9 (b). Case 1 exhibited a better capillary performance than cases 2, 3 

and 4, substantiating the advantage of convergence for enhancing the capillary performance. Reduction 

of the groove width was thus found to improve the capillary performance, consistent with the 

observations of previous study [25]. However, this is inconsistent with the observations in 

Figure 8 Effective thermal conductivities of the fabricated flat MHPs with respect to the heat flux. 
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nanochannels [38]. Further studies are planed to investigate this difference between microscale and 

nanoscale grooves [49]. 
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Figure 9 Capillary flow in microchannels observed at x = 68 mm: (a) typical time history of travel 

distance for the inflection point of the advancing concave meniscus; (b) mean imbibition 

velocity of the capillary flow. 



5. Conclusion 

We developed a novel grooved converging microchannel array for a flat MHP. The optimal groove 

size was estimated based on the balance between the capillary and frictional forces in the rectangular 

grooves, taking surface wettability into consideration. For a given operating condition of a 70-mm-long 

flat, converging MHP, defined by a condenser temperature of 20 °C, an evaporator temperature of 80 °C, 

and input heat of 20 W, the optimal groove widths were theoretically determined to be 100 µm in the 

hydrophilic evaporator section and 300 µm in the hydrophobic condenser section. Our experiments 

verified the theoretical estimates, and demonstrated that the MHP with the converging microchannel 

provides better thermal and capillary performance than that with a straight microchannel.  

It is verified that the driving force from the pressure difference plays primary role on the thermal 

performance of MHP; however, the real heat transfer area and the liquid-vapor phase change area also 

plays the secondary role which cannot be ignored in the case of those significant decreasing at the 

evaporator section. On the other hand, as a demonstration on the thermal performance of MHP with 

converging microchannels, the optimal groove width of straight microchannel of 100µm was used to the 

minimum groove width at the evaporator of MHP with converging microchannels in the present study. 

Further investigations for the groove width less than 100µm with converging microchannles, as well as 

the scale effect of the solid-liquid interfacial resistance on thermal performance of MHP are expected in 

the future. 
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Abstract

Optimizing the groove size of flat micro heat pipes is crucial for improving their thermal performance. In this study, we developed a grooved converging microchannel array for use in a flat micro heat pipe to enhance the capillary force. A simplified theoretical analysis was used to optimize the groove size for given operating conditions of converging microchannels and straight microchannels. The evaporation section of the grooved microchannel was hydrophilic and had a smaller hydraulic diameter than the hydrophobic condensation section. The smaller diameter of the evaporation section enabled the condensed working fluid to be effectively drawn back to the same section. Experiments were performed to measure the thermal performance of the micro heat pipes under the analyzed operating conditions. Compared to a heat pipe with a straight microchannel, and a heat pipe with an unoptimized converging microchannel, the micro heat pipe with the optimized converging microchannel was confirmed to yield a higher thermal performance. Capillary-driven flow experiments at room temperature and atmospheric pressure were also used to investigate the capillary forces of the different microchannels. The optimized converging microchannel was once again observed to generate the largest capillary force.

Keywords: Converging microchannel, Micro heat pipe, Capillary force, Capillary-driven flow, Evaporation, Condensation

Nomenclature

A
area, m2

A1
cross-sectional area of vapor, m2

h
heat transfer coefficient, W/(m2·K)

hfg
latent heat, J/kg


H
groove height, m

N
number of grooves, -


L
length, m


ṁ
mass flow rate, kg/s


p
pressure, N/m2

Q
input heat, W

R
thermal resistance, K/W

t
time, s


T
temperature, K

u
velocity, m/s

W
groove width, m


Greek Symbols


θ
contact angle, degree


λ
thermal conductivity, W/(m·K)

µ
viscosity, Pa·s


ρ
density, kg/m3

σ
surface tension, N/m

Subscripts


c
condenser section


ca
capillary


e
evaporator section

hp
heat pipe

i
liquid–vapor interface


l
liquid


v
vapor


1. Introduction

Micro heat pipes (MHPs) are self-driven cooling devices used for the removal of high heat flux from electronic devices. They can be fabricated using micro-electro-mechanical system (MEMS) technology, and considerable research has been channeled toward developing innovative MEMS-based flat micro heat pipes [1-20]. Although the compactness of flat MHPs is well-suited to the cooling of current and future chips, their thermal performance is limited by miniaturization. To improve the thermal performance of flat MHPs, a better understanding of the associated heat and mass transfer phenomena is required. 

The capillary limit is a major challenge in improving the thermal performance of a flat MHP and avoiding dry-out in its evaporation section. In a flat MHP, the liquid returns from the condenser to the evaporator through a capillary structure that is usually composed of a microchannel array, which differs from the additional wicks installed in a conventional heat pipe. Accordingly, the capillary radius of the liquid–vapor interface in an MHP is comparable to the hydraulic diameter of the flow passage, and the capillary action dominates the gravitational force in the microchannel array. The capillary limit of an MHP thus depends on the capillary performance of the microchannel.

Several studies on capillary-driven flow have investigated the capillary performance of microchannels [21-40]. It has been found that the capillary force can be increased by decreasing the characteristic length, i.e., the hydraulic diameter, of the microchannel grooves [25-30], and controlling the surface structure [31-34] or wettability [35-37]. However, the pressure drop due to viscous friction in microchannels increases with the decreasing hydraulic diameter of the flow passage. Yang et al. reported that capillary filling of a nanochannel significantly degrades the performance [38]. Conversely, given the relatively high surface-to-volume ratio of a microchannel, the surface effect increases with the decreasing scale of the channel [41-44]. Nagayama et al. posited that the scale effect of the solid–liquid interfacial resistance in a microchannel becomes more significant with a decreasing hydraulic diameter [44]. The deviation from the classical theory with a decreasing hydraulic diameter is due to a breakdown of the continuum solid–liquid boundary condition. In addition, the hydraulic and thermal resistances are the dominant causative factors of the poor thermal performance of microchannels. Optimization of the groove size is thus crucial to enhancing the thermal performance of a flat MHP. 

In the present study, we developed a novel grooved converging microchannel array for a flat MHP to enhance the thermal performance [45]. To effectively draw the condensed working fluid back into the evaporation section of the microchannel, the hydraulic diameter of the grooves in the condensation section was made larger than that of the grooves in the evaporation section. The optimal groove size was determined based on the balance between the capillary and frictional forces in the rectangular grooves, taking into consideration the effect of surface wettability. Experiments were performed to compare the maximum input heat of the optimized converging microchannel with that of a straight microchannel. The heat pipe with the optimized converging microchannel was confirmed to exhibit a higher thermal performance. Experiments were also performed to clarify the effect of convergence on the force of the capillary-driven flow at room temperature and atmospheric pressure.

2. Theoretical model
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Figure 1 shows a schematic of the open rectangular groove considered in this study. The groove height H and length L are constant, whereas the width W(x) linearly decreases in the x-direction. The groove has a converging shape, with the cross-sectional area decreasing in the axial direction between the condensation and evaporation sections. 

To optimize the groove size of the flat heat pipe, the balance between the capillary force and the pressure loss of the flow along the x-axis of the microchannel was derived based on the following assumptions:

(1) steady-state incompressible flow,

(2) saturated vapor,

(3) negligible heat generation due to viscous dissipation,

(4) no dry-out in the evaporation section, and

(5) no blocking in the condensation section.


The local physical properties of the liquid and vapor along the x-axis were considered temperature-dependent variables.

2.1 Capillary force


When a meniscus is formed at the liquid–vapor interface inside the groove, the local pressure difference at the interface at x, Δpi(x), can be calculated by the well-known Young–Laplace equation:
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(d) Case 4: 100-100 µm


,
(1)


where σl(x) is the local surface tension of the liquid, and θ is the local contact angle of the meniscus. 

Because the groove height H and length L are constant, a decrease in the groove width would increase the capillary pressure, according to Eq. (1). To effectively draw the condensed working fluid back into the evaporation section, the minimum groove width should be the optimized value for the evaporation section, resulting in the maximization of Eq. (1), while the maximum width should be the optimized value for the condensation section. The local pressure differences at the liquid–vapor interfaces in the condensation and evaporation sections are respectively given by



[image: image2.wmf]÷


÷


ø


ö


ç


ç


è


æ


+


×


=


D


H


W


H


W


p


c


c


c


c


i


2


cos


)


0


(


q


s



(2)

and
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where σc, θc, and Wc (=W(0)) are respectively the local surface tension, contact angle, and width of the condensation section, and σe, θe, and We (=W(L)) are the corresponding parameters of the evaporation section. 

For the considered open rectangular groove shown in Fig. 1, the total capillary pressure difference between the evaporation and condensation sections is given by
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2.2 Pressure loss 

According to the mass conservation law, in the steady state, the mass evaporation rate in the evaporation section is balanced by the mass flow rate of the condensed liquid through the groove. Therefore, the mass flow rate ṁ through the groove can be obtained as follows: 
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where Q is the input heat transfer rate (i.e., the input power), and hfg is the latent heat. The mean flow velocity through the groove, 

[image: image7.wmf]u


, is thus given by
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where ρl is the density of the liquid, and N is the number of grooves. Assuming a one-dimensional laminar flow through the groove in the axial (x) direction, the pressure loss Δploss of the mass flow rate ṁ over a distance L is given by
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where µ(x) is the local viscosity of the liquid, and u(x) is the local flow velocity. Because the groove width W(x) linearly decreases in the x-direction, where
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the mass conservation in the x-direction becomes
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Hence, Eq. (7) can be rewritten as follows:
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The total capillary pressure change along the groove, Δpca, can be determined using Eq. (4), and the pressure loss Δploss over the distance L can be determined using Eq. (10). Further, the driving force of the capillary flow can be estimated from the difference between Δpca and Δploss, i.e., 
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. A positive driving force is required to draw the condensed liquid from the condensation section back into the evaporation section.

3. Experimental method

3.1 Test section of flat MHP
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Figure 2 shows the test section of the flat MHP fabricated on a P-type silicon wafer. The micro-electro-mechanical fabrication technique was employed for the fabrication. The grooves were etched on a 15 × 70 mm area on the Si substrate, which measured 22 × 80 mm. The height of all the grooves was set to 100±5 µm. The groove widths were determined using the theoretical predictions shown in the later section 4.1 based on the method described in the previous section. Table 1 gives the parameters for the considered experimental cases under an operating condition of Tc = 20 °C, Te = 80 °C, θc = 80°, θe = 0°, H = 100 µm, L = 70 mm and Q = 20 W, as a demonstration for comparisons. The grooves of cases 1-4 had the rectangular cross section shown in Fig. 2 and were fabricated by Bosch deep reactive ion etching. A thin SiO2 layer was deposited on the surface of the grooves by thermal oxidation. Separate chemical treatments were used to control the surface wettability of the evaporation section, adiabatic section, and condensation section. As indicated in Table 1, the surfaces of the evaporation and adiabatic sections were hydrophilic, while the surface of the condensation section was more hydrophobic than those of the evaporation and adiabatic sections, having a contact angle of approximately 80o.

The grooved Si substrate was bonded to a Pyrex glass by a sandwiched silicone rubber sheet of thickness 2 mm, as shown in Fig. 2. Two holes drilled into the Pyrex glass were used to evacuate the MHP and fill the working fluid into the MHP. Eight T-type thermocouples (diameter 0.2 mm, indicated by the red dots in Fig. 2) were used to measure the surface temperature of the grooved Si substrate. The lengths of the condensation, adiabatic, and evaporation sections of the MHP were 30, 20, and 20 mm, respectively. After fabrication, the MHP was evacuated to remove non-condensable gases, and then filled with ultra-pure water (Kishida Chemical, electrical resistivity 18 M[image: image14.wmf]×


W


cm) as the working fluid. The MHP was heated and part of the generated vapor was removed to attain a filling ratio of 50% [8].
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(a) Case 1: 300-100 µm


3.2 Experimental setup of MHP

All the experiments were performed with the MHP oriented horizontally in a room at a constant temperature of 25 °C and constant humidity of 40 RH%. Figure 3 shows the experimental setup used to evaluate the thermal performance of the MHP. The evaporator and condenser were respectively heated and cooled using a flat heater and cooler. The heat flux supplied to the evaporator and condenser was measured using 0.4-mm-thick heat flux sensors (Captec, HF series). The thermal data were collected by a computer via a data logger. Thermal resistance of the heat pipe Rhp, mainly depending on summation of the evaporator resistance and the condensation resistance, can be written as follows [47]:
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where he and hc are the heat transfer coefficient of the evaporator and condenser, and Ae and Ac are the heat transfer area of the evaporator and condenser. Since the total wall resistances R0 can be measured under the condition of the heat pipe without the working fluid, the overall thermal resistance of the flat heat pipe Rtotal can be obtained based on the thermal resistance network of Rhp and R0 in parallel. Hence, the overall thermal resistance Rtotal becomes, 
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where Qin is the input heat and Te-Tc is the overall temperature difference between the evaporator and condenser. Therefore, the thermal performance of the MHP can be characterized by the effective thermal conductivity λhp as follows,
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where L is the length of the heat pipe and A1 is the cross-sectional area of the vapor.


An uncertainty analysis has been performed according to the method proposed by Holman [46]. The estimated uncertainties of temperature is ±0.11 K (±0.16 %) for the thermocouples. The maximum value of uncertainty of the heat flux and the effective thermal conductivity, is 1.47 kW/m2 (2.12 %) and 1.58 W/(m∙K) (0.21 %) respectively.

3.3 Experiment on capillary-driven flow in open microchannel

A schematic of the capillary-driven flow is shown in Fig. 4 to clarify how the convergence increases the capillary force. The flow was observed by a motion analysis microscope (Keyence, VW-6000) on a horizontal stage at room temperature and pressure. The fabricated Si substrates were carefully cleaned with a mixture of sulfuric acid and hydrogen peroxide to obtain uniformly hydrophilic surfaces. A 6-l ultra-pure water droplet was deposited on the Si substrate using a syringe. Once the droplet touched the hydrophilic substrate, the liquid began to flow through the groove under the action of the capillary force. A high-speed camera mounted on the motion analysis microscope was used to obtain images of the liquid flow at the observation point located at x = 68 mm. Samples of the obtained images are shown in Fig. 4. A sharply concave advancing meniscus was observed, and the velocity of its inflection point (red dots in Fig. 4) was analyzed based on the time history of the flow images. The measurements for each experimental case were repeated more than 5 times to calculate the mean imbibition velocity.
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(b) Case 2: 400-200 µm




4. Results and discussion

4.1 Theoretically determined optimal groove size 


Figures 5 and 6 show the estimated force balance as a function of the groove width under an operating condition defined by Tc = 20 °C, Te = 80 °C, θc = 80°, θe = 0°, H = 100 µm, L = 70 mm, and Q = 20 W. The total capillary pressure difference along the groove, Δpca, was calculated using Eq. (4), while the pressure loss Δploss over a distance L was calculated using Eq. (10). The driving force of the capillary flow was estimated from the difference between Δpca and Δploss, i.e., 
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(c) Case 3: 300-300 µm


For the straight groove, it is clear from Fig. 5 that decreasing the width increases both the capillary force and frictional force, with the driving force vanishing when the width is decreased to 50 m. The peak driving force occurs at a groove width of approximately 100 µm. This width was thus considered as the optimal value under the above-specified operating condition. 

[image: image25.wmf]0


20


40


60


80


100


0


10


20


30


40


50


60


70


4.20


5.74


7.25


9.35


10.58


13.46


14.39


Temperature [°C]


x [mm]


Input heat [W]


(d) Case 4: 100-100 µm


Using the determined optimal width of the evaporation section in the converging groove, We = 100 µm, the driving force was obtained as a function of the groove width in the condensation section, Wc. Strictly speaking, the groove is divergent when Wc < We and convergent when Wc > We. As can be observed from Fig. 6, for a constant We = 100 µm, the capillary force decreases with decreasing Wc owing to the increasing pressure loss, eventually vanishing at Wc = 40 µm. Compared to the straight groove (open circle in Fig. 6), the driving force of the converging groove is large for Wc > We, whereas it is small for Wc < We. This indicates that the enhancement of the driving force is only achieved in a converging groove. Considering the relatively small increase in the capillary and driving forces for Wc > 300 µm, 300 µm is considered to be the optimal value of Wc for a converging groove with We = 100 µm. The driving force in the converging groove with Wc = 300 µm and We = 100 µm is approximately 1.36 times that of the straight groove with a uniform width W = 100 m. 

Theoretically, decreasing the groove width in the evaporator section or increasing the groove width in the condenser section can increase the capillary performance than that with the optimized converging microchannels of 300µm -100µm. However, the solid-liquid interfacial resistance in a microchannel becomes significant with a decreasing hydraulic diameter and the thermal resistance are the dominant causative factor of the poor thermal performance of microchannels [44]. The thermal slip length (Kapitz length) is about 150µm for the bare Si surface, and about 80µm for the super-hydrophilic Si surface [48]. Thus, as a demonstration on the thermal performance of MHP with converging microchannels, the optimal groove width of straight microchannel of 100µm was used to the minimum groove width at the evaporator of MHP with converging microchannels in the present study. 

4.2 Thermal performance of flat MHP

The temperature profiles for the different grooved Si surfaces are shown in Fig. 7 for the steady-state heat pipe operating condition defined by Tc = 20 °C and Te 
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 80 °C. The maximum temperature difference on the grooved surfaces was determined to be approximately 60 °C, with the temperature in the evaporation section increasing with increasing input heating power. Here, the maximum input heat was defined as the input heat when the operating temperature exceeded the temperature limit of 100 °C at the evaporator, which was indicated by the red symbols in Fig. 7. The maximum input heat for case 1 (converging microchannel with the optimized groove) was the highest among all the experimental cases, being 1.20 times that of case 2 (converging microchannel with the unoptimized groove), 1.64 times that of case 3 (straight microchannel with the unoptimized groove) and 1.21 times that of case 4 (straight microchannel with the optimized groove). For the same number of grooves (cases 2 and 3), the maximum input heat of case 2 (converging microchannel) is higher than that of case 3 (straight microchannel). Comparing the straight microchannels of cases 3 and 4, we found that case 4 with the smaller groove width and the larger number of the grooves has the higher maximum input heat. On the other hand, since the area of the evaporator is same for all the experimental cases, increasing the number of grooves will increase both the real heat transfer area and the liquid-vapor phase change area. [image: image26.wmf]0
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However, the thermal performance of case 1 still was the highest of the other cases, although the groove number of case 1 is smaller than that of case 4. That is, the driving force obtained from the pressure difference plays primary role on the thermal performance of MHP; while the number of grooves (i.e. the real heat transfer area and the liquid-vapor phase change area) plays the secondary role. Thus, the MHP with the optimized converging microchannel was confirmed to exhibit better thermal performance than that with the straight microchannel.
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Figure 8 shows the determined effective thermal conductivities of the different fabricated flat MHPs with respect to the heat flux. As can be seen, the thermal conductivity increases with increasing heat flux, with case 1 (converging channel with the optimized groove) exhibiting the highest thermal conductivity, approximately eight times that of the empty heat pipe without the working fluid (represented by the dotted line). 

4.3 Capillary performance of groove 


The capillary-driven flow at room temperature and pressure was observed to clarify the effect of convergence on the capillary force. The motion of the inflection point of the advancing concave meniscus was analyzed. In the vicinity of the observation point x = 68 mm, the groove width was approximately 100 µm in cases 1 and 4, 200 µm in case 2, and 300 µm in case 3. Figure 9 (a) shows the time history of the travel distance for the inflection point of the advancing concave meniscus obtained from the flow images in the vicinity of the observation point. The mean imbibition velocity of 5 measurements was shown in Fig. 9 (b). Case 1 exhibited a better capillary performance than cases 2, 3 and 4, substantiating the advantage of convergence for enhancing the capillary performance. Reduction of the groove width was thus found to improve the capillary performance, consistent with the observations of previous study [25]. However, this is inconsistent with the observations in nanochannels [38]. Further studies are planed to investigate this difference between microscale and [image: image28.wmf]0
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nanoscale grooves [49].

5. Conclusion

We developed a novel grooved converging microchannel array for a flat MHP. The optimal groove size was estimated based on the balance between the capillary and frictional forces in the rectangular grooves, taking surface wettability into consideration. For a given operating condition of a 70-mm-long flat, converging MHP, defined by a condenser temperature of 20 °C, an evaporator temperature of 80 °C, and input heat of 20 W, the optimal groove widths were theoretically determined to be 100 µm in the hydrophilic evaporator section and 300 µm in the hydrophobic condenser section. Our experiments verified the theoretical estimates, and demonstrated that the MHP with the converging microchannel provides better thermal and capillary performance than that with a straight microchannel. 

It is verified that the driving force from the pressure difference plays primary role on the thermal performance of MHP; however, the real heat transfer area and the liquid-vapor phase change area also plays the secondary role which cannot be ignored in the case of those significant decreasing at the evaporator section. On the other hand, as a demonstration on the thermal performance of MHP with converging microchannels, the optimal groove width of straight microchannel of 100µm was used to the minimum groove width at the evaporator of MHP with converging microchannels in the present study. Further investigations for the groove width less than 100µm with converging microchannles, as well as the scale effect of the solid-liquid interfacial resistance on thermal performance of MHP are expected in the future.
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Figure 1	Model of a groove in the converging microchannel array for a flat MHP.





Figure 2	Test section of Si-based MHP.
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Table 1 Parameters of the grooves fabricated on Si substrates.


Cases�

Wc [µm]�

We [µm]�

H [µm]�

N�

Contact angles [deg.]�

�

�

�

�

�

�

θe, θa�

θc*�

θc**�

�

1�

300�

100�

100�

42�

0�

80�

0�

�

2�

400�

200�

100�

33�

0�

82�

0�

�

3�

300�

300�

100�

33�

0�

80�

0�

�

4�

100�

100�

100�

50�

0�

80�

0�

�

*For heat pipe experiments. **For capillary-driven flow experiments.





Figure 3	Experimental setup of MHP.
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Figure 4	Schematic of the capillary-driven flow experiment setup and microscope images obtained at the observation point.
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Figure 5	Effect of the groove width on the force balance in the straight groove for Tc = 20 °C, Te = 80 °C, θc = 80°, θe = 0°, H = 100 µm, L = 70 mm, and Q = 20 W.
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Figure 6	Effect of the groove width Wc and We on the force balance in the converging (Wc > We) or diverging (Wc < We) groove at Tc = 20 °C, Te = 80 °C, θc = 80°, θe = 0°, H = 100 µm, L = 70 mm, and Q = 20 W for We = 100 µm.





Figure 7	Temperature profiles of the fabricated flat MHPs: (a) case 1: converging MHP with the optimized groove; (b) case 2: converging MHP with the unoptimized groove; (c) case 3: straight MHP, and (d) case 4: optimized straight MHP.
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Figure 8	Effective thermal conductivities of the fabricated flat MHPs with respect to the heat flux.
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Figure 9	Capillary flow in microchannels observed at x = 68 mm: (a) typical time history of travel distance for the inflection point of the advancing concave meniscus; (b) mean imbibition velocity of the capillary flow.
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(a) Case 1: 300-100 µm
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(b) Case 2: 400-200 µm
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