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                            Abstract 

  Rough sets theory is now becoming a mathematical foundation of soft comput

ing. This theory makes use of equivalence relations defined for each set of attributes 

in any table, and applies the concept like definability of a set, dependency among 

attributes, reduction of data, rule extraction, etc., to data analysis. 

  In this paper, a problem of knowledge discovering in the form of rules from any 

table with nondeterministic information is discussed. At first, the rough sets based 

concept including rule extraction is surveyed, and this concept is extended to new 

one related to nondeterministic information. Then, a framework of rule extraction 

from tables with nondeterministic information is proposed, and some algorithms 

for handling such new concept are presented. Also implemented programs and a 

real execution of these programs are shown.
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I. Introduction 

   Rough sets theory is seen as a mathematical foundation of soft computing. The 
theory covers important areas of research in AI such as knowledge, imprecision, vague
ness, learning and induction (Pawlak, 1991;1996; Orlowska and Pawlak, 1984; Naka
mura et al., 1996). It has been applied to machine learning and knowledge discovery by 
Polkowski and Skowron (1998a;1998b), Grzymala-Busse (1997), Ras and Joshi (1997), 
Tsumoto (2000) and Zhong et al. (1998). 

   Rough sets theory usually handles a table with deterministic information which we 
call DIS(Deterministic Information System). Recently for handling incomplete informa
tion like null values (Codd, 1970), unknown values (Lipski, 1981; GrzymalaBusse, 1991; 
Kryszkiewicz, 1998;1999; Sakai, 1998), etc., rough sets in a table with nondeterministic 
information, which we call NIS(Nondeterministic Information System), attract interest 
of researchers. 

   Already some important work on NISs has been conducted, but most work has 
focused on logic, in particular, an axiomatization of logic in NISs (Orlowska and 
Pawlak, 1984; Lipski, 1981). There is only few work that deals with real data anal

ysis in NISs. For example, Lipski (1981) showed modal questionanswering systems 
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besides the axiomatization of logic. Grzymala-Busse (1991;1997;1998) surveyed the un
known attribute values, and studied the learning from examples with unknown attribute 
values. Kryszkiewicz (1998;1999) discussed the theoretical aspect of rules in incomplete 
information systems. These are the most important work related to NISs. 

   The research of rough sets based data analysis in NISs has still been untouched. 
Rough sets based data analysis in NISs could also be a mathematical foundation of 
knowledge discovery and data mining from incomplete information. In such a situation, 
we are now investigating rough sets based algorithms for data analysis, namely  algo
rithms using equivalence relations in DISs and algorithms using possible equivalence 
relations in NISs. In (Sakai and Okuma, 1999; Sakai, 2001b), a manipulation of possi
ble equivalence relations in NISs was studied. This work proposed a method to obtain 
all possible equivalence relations in any NIS. A new data dependency among attributes 
in NISs and algorithms for checking this dependency were also proposed (Sakai and 
Okuma, 2000; Sakai, 2001a). Algorithms using possible equivalence relations drastically 
reduced the execution time for checking this data dependency. 

   In this paper, the framework of rule extraction from DISs is extended to the 
framework of rule extraction from NISs. In every NIS, a rule is defined by a formula 
satisfying some kinds of constraints. Six groups of rules are introduced into NISs as a 
constraint, and the proposed dependency in NISs is applied as another constraint to 
formulas. The problem is reduced to pick up formulas satisfying constraints, and some 
effective algorithms are needed. For this problem, we applied algorithms using possible 
equivalence relations, and realized a tool to obtain rules from NISs. This framework 
follows the framework of rule extraction from DISs. Thus, it is possible to extract rules 
not only from DISs but also from NISs.

2. A Survey of Rough Sets Theory 

   This section surveys basic concept in rough sets theory.

2.1. Some Definitions in Deterministic Information Systems 

   A Deterministic Information System (DIS) is a quadruplet (OB, AT, {VALala E 
AT}, f), where OB is a finite set whose elements are called objects, AT is a finite set 
whose elements are called attributes, V ALa is a finite set whose elements are called 
attribute values and f is such a mapping that f : OB x AT -9 UaEATVALa which is 
called a classification function. If f (x, a)= f (y, a) for every a E ATR C AT, we see 
there is a relation between x and y for ATR. This relation is an equivalence relation 
over OB. eq(ATR) denotes this equivalence relation, and [x]ATR denotes an equivalence 
class with x. In this case either [x]ATR=[y]ATR or [x]ATR n [y]ATR=O holds for any 
x, y E OB. Furthermore, UxEOB[x]ATR=OB also holds. If a set X C OB is the union 
of some equivalence classes, we say X is definable (for ATR) in DIS. Otherwise we 
say X is rough. 

   Let us consider two sets CON C AT which we call condition attributes and DEC C 
AT which we call decision attributes. Two distinct objects x, y E OB are consistent 
(between CON and DEC), if f (x, a)= f (y, a) for every a E CON implies f (x, a)= f (y, a) 
for every a E DEC. A DIS is consistent (between CON and DEC), if every pair of 
objects is consistent. In this case, we may say DEC depends totally on CON. 

   Now, let us show an important proposition connecting dependencies with equiv
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alence relations. Let  eql and eq2 be two equivalence relations over OB. A formula 
eqi C eq2 means that for every equivalence class L E eql there exists such an equiva
lence class M E eq2 that L C M. 

   PROPOSITION 2.1. (Pawlak, 1982;1991) For any DIS, condition attributes CON 
and decision attributes DEC, 1 and 2 in the following are equivalent. 

1. DEC depends totally on CON. 

2. eq(CON) C eq(DEC).0 

   Positive region POScoN(DEC)=U{L Eeq(CON)I there exists such M Eeq(DEC) 
that L CM} is applied to characterize dependencies. Each degree is measured by a ratio 
I POScoN (DEC) I / IOBI , and this ratio is called the degree of dependency from CON to 
DEC. The degree of dependency is 1 if and only if DEC depends totally on CON.

2.2. Rules in Deterministic Information Systems 

   Let us survey important work for extracting rules in DISs. For any DIS, let CON 
and DEC be condition and decision attributes, respectively. For any x E OB, a function 
ds : CONUDEC UaECONUDECVALa such that dx(a)=f (x,a) is introduced in DISs 
(Pawlak, 1991). ds I CON denotes a formula naECON [a, f (x, a)], and dx I DEC denotes a 
formula AaEDEC[a, f (x, a)]. The formula [a, f (x, a)] is called a descriptor, and it means 
that f (x, a) is the value of the attribute a. Generally, a rule is defined by an implication 
ds I CON dX I DEC satisfying some kinds of constraints. 

   The most familiar constraint is a dependency from CON to DEC. If the degree of 
dependency is more than a threshold value, each implication in DIS is a rule (Pawlak, 
1991). Some criteria are applied to each implication as other constraint. Three criteria 
in the following are applied to each implication from x (Tsumoto, 2000) . 

  support(x) = I{y E OBI dyICON=dxICON and dyIDEC=dxIDEC }I / IOBI, 
  accuracy(x)=I[X]CON n [x]DEC I / I [x]CON I , 

  coverage(x) = I [x]CON n [x]DECI / I [x]DECI 
If each criterion value of an implication is more than each threshold value respectively, 
this implication is a rule.

EXAMPLE 2.2. Let us consider a DIS in Table 1. 

                 OB A B C 
                 1 2 2 1 
                 2 1 2 2 

                 3 2 2 1 
                 4 1 3 3  

                Table 1: A deterministic information system

Here, eq({A})={{1, 3}, {2, 4}} and eq({C})={{1, 3}, {2}, {4}} hold. A set {1,2,3,4} is 
definable for {A}, because this set is equal to {1, 3} U {2, 4}. However, a set {1, 2, 3} 
is rough for {A}. Both sets are definable for attributes {C}. Since eq({C}) ceq({A}), 
{A} depends totally on {C}, and every implication dx I {C} = dx RA} (x E OB) is seen
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as a rule. This dependency generates rules in the following. 

 diI{C}  4d1J{A} (= d3I{C} = d3I{A}) :[C,1]= [A,2], 
  d21{C} = d2I{A} :[C,2]z.[A,1], 4{C} d4J{A} :[C,3]= [A,1]. 

Suppose CON={A} and DEC={C} hold. In this case POS{A}({C})={1, 3} OB, 
and {C} does not depend on {A}. However, two implications from object 1 and 3 are 
seen as rules under the constraint that support > 0.25, accuracy > 1.0 and coverage> 
1.0. Since accuracy=0.5 holds for other implications, each other implication is not seen 
as a rule under this constraint.^

2.3. A Definition of Nondeterministic Information Systems 

   A Nondeterministic Information System (NIS) is also a quadruplet (OB, AT, {
V ALa ( a EAT}, g), where g is a mapping from OB x AT to a power set of UQEATV ALa, 

i.e., g : OB x AT -+ P(UaEATVALa) (Orlowska and Pawlak, 1984; Orlowska, 1998). 
g(x, a) is interpreted as if there is an actual value in this set but it is not known. This is 
the unknown interpretation for incomplete information (Lipski, 1981; GrzymalaBusse, 
1991; Kryszkiewicz, 1998). Especially if the actual value is not known at all, g(x, a) is 
equal to VALa. This is the same as null value interpretation (Codd, 1970).

3. Rules in Nondeterministic Information Systems 

   This section defines possible implications in NISs and two kinds of constraints for 
them. A rule is defined by a possible implication satisfying two kinds of constraints .

3.1. Possible Implications in Nondeterministic Information Systems 

   An example of a NIS clarifies problems in NISs, and possible implications in 
NISs are proposed. 

EXAMPLE 3.1. Let us consider a NIS such that OB = {1, • • • , 10}, AT = {A, B, C, D}, 
VAL1={0, 1, 2}, VAL2={0, 1, 2, 3}, VAL3=VAL4={0, 1, 2, 3, 4, 5}. Table 2 shows the 
function g in NIS. In such a table, how do we deal with the dependency among 
attributes and rule extraction ?^

Table 2: A nondeterministic information system
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   DEFINITION 3.2. Let  NIS=(OB, AT, {VALaIa E AT}, g) hold and ATR be a set 
{al , • • • , an} C AT. For any x E OB, PT (x, ATR) denotes Cartesian product g(x, ai) x 
• • • x g(x, an). We call an element a possible tuple (for ATR) of x. Every possible 
tuple (= (rlal , • • • , 7a,.) E PT (x, ATR) is identified with a formula Al <i<n [aimai ] • ^ 

   DEFINITION 3.3. For any NIS, let CON be condition attributes and DEC be 
decision attributes. For any x E OB, IMP(x, CON, DEC) denotes a set {(= rji( E 
PT (x, CON), rl E PT (x, DEC) }. We call an element (= rl a possible implication 
fromx.^ 

   Let us consider a case that CON={A, B, C} and DEC={D} in Example 3.1. 
PT(1, {A, B, C})={(0, 2, 5), (0, 3, 5)}, PT(1, {D})={(3)} and IMP(1, {A, B, C}, {D})= 
{ [A, 0] A [B, 2] A [C, 5] = [D, 3], [A, 0] A [B, 3] A [C, 5] = [D,3]} hold. A rule in a NIS 
is defined by a possible implication satisfying some kinds of constraints. Some kinds of 
constraints to possible implications characterize rules in NISs. In the subsequent sec
tions, two kinds of constraints are proposed in NISs, and they are applied to possible 
implications.

3.2. Constraint 1: Data Dependencies 

   Data dependencies in DISs are extended to dependencies in NISs. 

   DEFINITION 3.4. Let us consider a NIS=(OB, AT, {VALal a E AT}, g), a set of at
tributes ATR C AT and a mapping h: OB x ATR -* UaEATRVALa such that h(x, a) E 
g(x, a) for any x E OB and any a E ATR. We call a DIS=(OB, ATR, {VALaIa E 
ATR}, h) a derived DIS (for ATR form NIS). We call an equivalence relation in a 
derived DIS a possible equivalence relation (perelation), and call an element in a pe
relation a possible equivalence class (peclass).^ 

   In Table 2, there are 648(=23 x 34) derived DISs for {A, B, C, D}, and there are 
6(=2 x 3) derived DISs for {C}, According to the interpretation of g(x, a), it is known 
that there is a derived DIS with real information, but it is not known. 

   DEFINITION 3.5. Let us consider a NIS, condition attributes CON, decision at
tributes DEC and all derived DIS1, • • •, DIS,, for CONUDEC. For two threshold 
values val1 and val2(0 < vall, val2 < 1), if conditions 1 and 2 hold then we see DEC 
depends on CON in NIS. 

  1. I{DISiIDISi(1 < i < m) is consistent }1/m > vall. 

  2. mini {degree of dependency in DI Si (1 < i < m) } > val2 .^ 

   In Definition 3.5, condition 1 requires most derived DISs are consistent, and condi
tion 2 specifies the minimum value of degrees of dependency. This dependency is applied 
as a constraint to defining rules in NISs.

3.3. Constraint 2: Six Groups of Possible Implications 

   Six groups of possible implications are introduced in NISs. These groups are useful 

for characterizing each possible implication.
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 Globally  _consistent Marginal Globally _inconsistent 
De f inite DGCDMDGI  

Inde f inite IGCIMIGI

Table 3: Six groups of possible implications in NISs

   DEFINITION 3.6. Let us consider a NIS, condition attributes CON, decision at
tributes DEC and any object x E OB. For any possible implication EIMP(x, CON, 
DEC), DDIS(z/', x, CON, DEC) denotes a set {0I 0 is such a derived DIS for CON U 
DEC that an implication dx I CON = dx I DEC in 0 is equal to 0}. ^ 

   DEFINITION 3.7. Let us consider a NIS, condition attributes CON, decision at
tributes DEC and any object x E OB. If IMP(x, CON, DEC) is a singleton set {z/i}, 
we say is definite. Otherwise we say each E IMP(x, CON, DEC) is indefinite. 
If DDIS(0, x, CON, DEC)={¢ EDDIS(', x, CON, DEC) I x is consistent with other 
objects in 0}, we say b is globally consistent. If {¢ EDDIS(', x, CON, DEC)I x is 
consistent with other objects in ¢}=o, we say is globally inconsistent. Otherwise we 
say is marginal. Finally, six groups in Table 3 are defined. ^ 

   Let us consider a possible implication z/' : [B, 1] = [C, 5] E IMP(5, {B}, {C}) in 
Table 2. There exist 72(=23 x 32) derived DISs for {B, C}, and DDIS(0, 5, {B}, {C}) 
consists of 36(=72/2) derived DISs. Because object 5 is inconsistent with object 10 in all 
36 derived DISs, belongs to IGI group. There exists no information incompleteness 
for each possible implication in definite groups. Possible implications in DGC or IGC 
groups are preferable, and possible implications in DGI or IGI groups are inappropriate. 
These six groups are also applied as another constraint to defining rules in NISs.

3.4. A Definition of Rules in Nondeterministic Information Systems 

   DEFINITION 3.8. For any NIS, let DEC be decision attributes. A rule (for DEC) 
from an object x is a possible implication E IMP(x, CON, DEC) satisfying condi
tions below: 

  1. There exists a dependency from CON to DEC. 

 2. IP belongs to DGC or IGC groups in Table 3.^ 

   Condition 1 follows data dependencies in DISs, and information incompleteness in 
NISs causes condition 2. Even though there may be other definitions of rules in NISs, 
rules in Definition 3.8 are dealt with in this paper. 

   In Definition 3.8 the most important problem is to find appropriate CON for 
specified DEC. In order to find appropriate CON, it is necessary to know each degree 
of dependency in every derived DIS. For CON={A, B, C} and DEC={D} in Example 
3.1, it is necessary to apply a procedure 648 times. The number of all derived DISs 
is equal to the number of products TT                                xEOB,aECONUDECI g(x,a) I,and it increases in 
exponential order. Therefore a method, which sequentially applies the same procedure 
to all derived DISs, is not appropriate for handling NISs with a large number of derived 
DISs. For solving such a problem, we propose a method using perelations in NISs. 
Some other problems are also solved by applications of perelations.
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4. A Method to Extract Rules in Nondeterministic Information Systems 

   A method to extract rules (for specified decision attributes DEC) in any NIS is 
proposed, which consists of seven steps. 

(Step 1) Make a data file. 

(Step 2) Execute a program transall for translating the data file to internal expres
    sions in each attribute. 

(Step 3) Execute a program pe to obtain all perelations in each attribute. 

(Step 4) Execute a program merge to obtain all perelations for specified decision 
    attributes DEC. 

(Step 5) Fix condition attributes CON, and execute a program merge to obtain all 
 perelations for CON. 

(Step 6) Execute a program dependency to check the dependency from CON to DEC. 
    If there exists a dependency, go to Step 7 else go to Step 5. 

(Step 7) Execute a program extract to pick up possible implications belonging to 
 DGC or IGC groups.^

   In order to clarify this method, a real execution handling Example 3.1 is presented. 
A workstation with 450MHz UltraSparc is employed for this experiment. The contents 
of data file data8.pl in Example 3.1 are as follows: 

object (10,4) . data(1, [0, [2,3] ,5,3]) . data(2, [0, [0,1,3] ,4,5]) . • • • 
data(9, [0,1,5,4]) . data(10, [2,1,0,1]) . 

The following is a real execution in Step 2. 
    ?transall. 

    File Name:'data8.p1'. 
EXEC_TIME = 0.112 (sec) 

   yes 
After this translation, four files A.rs, B.rs, C.rs and D.rs are produced. Step 3 is applied 
to these four files. 

     ?-pe. 
    File Name:'data8.p1'. 

   EXEC_TIME = 0.182 (sec) 
   yes 

After this execution, four files A.pe, B.pe, C.pe and D.pe are produced. Every file stores 
all perelations in a format. In Step 4, suppose DEC be {C}. All perelations for {C} 
are stored in a file C.pe. In Step 5, all perelations for {A, B, D} are produced by a 
program merge. 

7. merge 
    Merging A.pe ... 

    Merging B.pe ... 
    Merging D.pe ... 

EXEC_TIME = 0.020 (sec)
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After this execution, a file ABD.pe is produced. It is known from this file that there 
exist 108 derived DISs for {A, B, D}, and there is only a kind of perelation, i.e., 

 {{1},  {2},  {3},  {4},  {5},  {6},  {7},  {8},  {9},  {10}}. Since any distinct objects x, y E OB 
are different each other, it is known every derived DIS (for CON={A, B, D} and DEC= 
{C}) is consistent. A program dependency is executed in Step 6. Here, vali and val2 
in Definition 3.5 are fixed to 0.5 and 0.6, respectively. 

'h dependency 

   CRITERION 1 
      Number of Derived DISs:648 

      Number of Derived Consistent DISs:648 
      Degree of Consistent DISs:1.000 

   CRITERION 2 
      Minimum Degree of Dependency:1.000 

      Maximum Degree of Dependency:1.000 
EXEC TIME = 0.000 (sec) 

This execution shows a preferable result, namely each degree of dependency from {A, B, 
D} to {C} is 1. By repeating Step 5 and Step 6, some kinds of dependencies are checked, 
and CON is fixed to a set {A, D}. In Step 7, CON={A, D} and DEC={C} are specified 
in a file attrib.pl, and either a program extract or extractall is executed. Because there 
exists a dependency from {A, D} to {C}, most possible implications belong to DGC or 
IGC groups. 

    ?extractall. 
   Rules from [A,D] to [C] 

   [1] [2,1] => [0] (0.667= 36/54, 54, DM ) from object 10 
   [2] [0,1] => [1] (1.000= 18/18, 54, IGC ) from object 4 
   [3] [1,1] => [1] (1.000= 18/18, 54, IGC ) from object 4 
   [4] [2,1] => [1] (0.000= 0/18, 54, IGI ) from object 4 

   [16] [2,4] _> [5] (1.000= 27/27, 54, IGC ) from object 6 
   [17] [0,4] => [5] (1.000= 54/54, 54, DGC ) from object 9 

EXEC TIME = 0.025 (sec) 
   yes 

   In this way it is possible to obtain rules in any NIS. Even though there exists 
work handling logic in NISs, there seems no work processing these rules in NISs. Of 
course, there exists a lot of work handling rules in DISs. 

   In the subsequent sections algorithms of programs are examined. Every equivalence 
relation is effectively applied to extracting rules in any DIS, and every perelation is 
analogically applied to extracting rules in any NIS. Every program is realized according 
to perelations.

5. Algorithms for Obtaining perelations 

   In this section, algorithms in Step 2 and Step 3 are examined. An algorithm for 

solving the definability of a set in any NIS is first proposed, and an algorithm to obtain 

all perelations is also proposed.
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5.1. An Algorithm for Solving the Definability of a Set in any NIS 

   The definability of a set in DISs is extended to the definability of a set in NISs. 

 DEFINITION 5.1. Let us consider a NIS and a set X C OB. X is definable in 
NIS, if X is definable in some derived DISs from NIS.^ 

   To check this, a method which sequentially examines the definability of a set for 
every derived DIS may be employed. However, this method will not be suitable for 
NISs with a large number of derived DISs. We propose another method according to 
Proposition 5.2. 

PROPOSITION 5.2. (Sakai, 2001b) Suppose there exist a NIS and a set X C OB. 
X is definable in NIS, if and only if there exist subsets CL1 i • • • , CLm of OB, satisfying 
1 and 2 below: 

  1. UiCLi=X, 

  2. {CLi, • • • ,CL,.„,} is a subset of a perelation.^ 

   According to this proposition, it is possible to check the definability of a set by 
finding CL1 i • • • , CL.m. An algorithm in the following checks the definability of a set. 

ALGORITHM 5.3. (Sakai, 2001b) 
Input: A NIS and a set X COB. 
Output: X is definable in this NIS or not. 

   (1) X*=X and eq=0. 
   (2) For any element x E X*, find a set CL satisfying conditions (CL-1) and (CL-2). 

(CL1)xECL and CLCX*, 
       (CL-2) eq U {CL} is a subset of a perelation. 

(2-1) If there is a set CL, then [x] =CL, eq=eq U { [x] } and X* =X* — CL. If X* 0 0 
       then go to (2). If X*=O then X is definable. 

   (2-2) If there is no CL, then backtrack. If there is no branch for backtracking, then 
    X is not definable in this NIS.^ 

   This algorithm is similar to LEM1 and LEM2 algorithms (Grzymala-Busse and 
Werbrouck, 1998) . The set CL is unique in every DIS, but in NIS this set CL may not 
be unique. Therefore, a search with backtracking is applied. At this point, Algorithm 
5.3 is different from LEM1 and LEM2. In order to realize Algorithm 5.3, two extra 
properties of perelations are necessary (Sakai, 2001b).

5.2. Basic Programs candidate and class 

   A program class which checks the definability of a set in NIS is as follows: 
class (ATR, X) : class0 (ATR, X, [] , EQ , [] , Pres, [] ,Nres) . 
class0(ATR,X,Y,EQ,Ppre,Pres,Npre,Nres) 

:X==[],EQ=Y,Pres=Ppre,Nres=Npre. 
class0(ATR,[XIX1],Y,EQ,Ppre,Pres,Npre,Nres) 

: -candidate (ATR,[XIX1], CAN ,Ppre,Presl,Npre,Nresl), 
minus ([XIX1], CAN , REST) , 
class0(ATR,REST, [CAN IY],EQ,Presl,Pres,Nresl,Nres).
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A program candidate, which assigns a pe-class to the variable CAN, is realized due to the 
clarification of two properties for perelations. A program translate in Step 2 produces 
data for the program candidate. The following is a real execution for  ATR=IA, B1, 
which is specified in a file attrib.pl.

?-translate. 
File Name for Read Open:'data8.p1'. 
Attribute Definition File: ' attrib . p1' . 
EXEC_TIME = 0.025 (sec) 

yes 
?-classall(con, [2,3,4,5]). 
[1] (EQUIVALENCE)RELATION: [[2] , [3,4] , [5]] 
POSITIVE SELECTION 
CONDITION OF 2: [0,0] * 
CONDITION OF 3: [2,3] 
CONDITION OF 4: [2,3] * 
CONDITION OF 5:[1,1] * 

                                                                                      • [2] (EQUIVALENCE)RELATION: [ [2] , [3] , [4] , [5] ] 

[3] (EQUIVALENCE)RELATION: [[2,4] , [3] , [5] ] 

[4] (EQUIVALENCE)RELATION: [[2] , [3,4] , [5]] 
POSITIVE SELECTION 
CONDITION OF 2: [0,3] * 
CONDITION OF 3: [2,3] 
CONDITION OF 4: [2,3] * 
CONDITION OF 5: [1,1] * 
NEGATIVE SELECTION 
CONDITION OF 1: [0,3] * 
CONDITION OF 4: [0,3] * 
EXEC_TIME = 0.016 (sec) 

yes 
?class(con,[2,3,4,5,6]). 
EXEC_TIME = 0.005 (sec) 

yes

   It is known that there are four kinds of relations which make a set {2, 3, 4, 5} 
definable. Every relation is stored in the variable EQ in a clause class. A set {2, 3, 4, 5, 6} 
is not definable in this NIS, because [6]{A,B}={6,10} holds in any perelation.

5.3. Side Effect of Algorithm 5.3 

   Algorithm 5.3 has the following merit. After checking the definability of a set , a 
subset of a perelation is stored in the variable EQ as a side effect of this algorithm. If 
X=OB, it is possible to obtain a perelation from this EQ. By applying this algorithm 
repeatedly until there is no branch for backtracking, all perelations can be obtained .
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6. A Data Structure of perelations 

   Usually, a number i is identified with an object located in the i-th row of a table. 
By the order of row, it is possible to introduce the total order into OB. Suppose 
there exist N kinds of perelations for  ATR, and let peq(ATR, k) denote the k-th pe
relation for ATR. For handling peq(AT R, k), two arrays head ATR [k] [i] and snccATR [k] [i] 
(1 < k < N, 1 < i < 1OBI) are employed. A set [i]ATR,k E peq(ATR, k) denotes a 
pe-class including object i. headATR[k][j] for any j E [i]ATR,k is the first element of 
the pe-class [i]ATR,k, and succATR[k][j] is the successor to j in [i]ATR,k. For the last 
element j E [i]ATR,k, SUCCATR[k][j]=0. In such a data structure, every pe-class [i]ATR,k 
can easily be obtained. For every i, [i]ATR,k={headATR[k][i], succATR[k][head[k][i]], • • •, 
succATR [k] [• • • succATR [k] [headATR [k] [i]]] } holds. 

   For ATR={A} in Example 3.1, there exist three perelations, and peq({A}, 3)={{1, 
2, 9}, {3, 6,10}, {4, 5, 7, 8}} is identified with two arrays below: 

head{A} [3] [1]=1, succ{A} [3] [1]=2, head{A} [3] [2]=1, succ{A} [3] [2]=9, 
  head{A} {3] [3] =3, succ{A} [3] [3] =6, head{A} [3] [4] =4, succ{ A} [3][4]=5, 

head{A} [3] [5]=4, succ{A} [3] [5]=7, • • •, head{A} [3] [10)=3, succ{A} [3] [10]=O. 
For object 2, head{A}[3][2]=1, succ{A}[3][1]=2, succ{A}[3][2]=9 and succ{A}[3][9]=0 
hold, so it is known [2]{A},3={1, 2, 9}.

7. An Algorithm for Checking Inclusion of peclasses 

    Let us show an important proposition. 

PROPOSITION 7.1. For a NIS and an ATR C AT, let us consider t-th perelation 
peq(ATR, t) , i.e., two arrays headATR[t][i] and succATR[t][i] (1 < i < IOBI). For any 
j E OB, j E [i]ATR,t holds if and only if headATR[t][j]=headATR[t][i] holds. 

   PROOF. If j E [i]ATR,t holds, clearly headATR[t][j]=headATR[t][i] holds. If j 
[i]ATR,t holds, j belongs to other different class [i']ATR,t • The first element of [i]ATR,t 
and the first element of [i']ATR,t are clearly different each other, and headATR[t][j] 
headATR[t][i] is derived. Therefore if headATR [t] [ j ] =headATR [t] [i] holds, j E [i]ATR,t 
holds by contraposition.^ 

   By applying Proposition 7.1 to each j E [i]coN,t, it is possible to check [i]coN,t C 
[i]DEC,s or not. This inclusion implies every object in [i]coN,t is consistent with other 
objects. Algorithm 7.2 solves this inclusion relation. 

ALGORITHM 7.2. (Algorithm for checking the inclusion of peclasses) 
Input: Any object i, a pe-class [i]coN,t for CON and a pe-class[i]DEC,sfor DEC. 
Output: [i]coN,t C [i]DEC,s or not. 
begin 

mark :=0; point:=headcoN It] [i] ; 
   while point00 do 

      if headDEC [s] [point] =headDEC Is) [i] then point : =succcoN [t] [point] 
          else begin mark:=1; point :=0 end; 

   if mark=0 then [i] CoN,t C [i] DEC,. else [i] CoN,t St [i] DEC,s 
end.^ 

   Algorithm 7.2 sequentially picks up point E [i]coN,t, and applies Proposition 7.1 
to checking point E [i]DEC,s. The complexity of the worst case, which is a case such
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that  [i]coN,t C [i]DEC,s, is o(1[i]coN,tl)• Algorithm 7.2 is a basic algorithm for realizing 
a program dependency in Step 6. 

8. An Algorithm for Merging perelations 

   A program merge in Step 5 is examined in this section. 

   PROPOSITION 8.1. (Pawlak, 1991) Suppose A, B C AT hold in a DIS. An 
equivalence relation eq(A U B) is {M C OBIM = [i]A n [i]B for [i]A E eq(A) and 
[i]B E eq(B)(1 < i < IOB1)}.^ 

    Proposition 8.1 shows us a way to merge two equivalence relations. Algorithm 8.2 
produces peq(A U B, _) from peq(A, t) and peq(B, s). 
ALGORITHM 8.2. (Sakai, 2001b) 
Input: peq(A, t) for A C AT and peq(B, s) for B C AT respectively, 

    i.e., headA [t] [i], succA [t] [i], headB [s] [i] and sUccB [s] [i] (1 < i < 1 OB I) . 
Output: peq(A U B, _) for A U B C AT, 

    i.e., headAuB[_][i] and succAuB[ ][i] (1 < i < IOBI). 
begin 

   for i : =1 to I OB I do begin headAus [-] [i] :=i ; succAUB [,] [i] : =0 end; 
   for i :=1 to I OBI do if headAus [,] [i] =i then 

      begin 

pre : =i ; point : =succA [t] [i] ; 
      while point 0 do 

        begin if headB [s] [point] =headB [s] [i] then 
            begin succAUB [a [pre] : =point ; 

headAus C-1 [point] :=i ; pre : =point 
             end; 

point : =succA [t] [point] 
          end 

       end 
end.^ 

   In Algorithm 8.2, if peq(A, t)={{1, 2, • • ., 1OBI}} and peq(B, s) = {{1}, {2}, • • ., 
{iOB1}}, it is necessary to check headB[s][point]=headB[s][i] for every point E [i]A,t= 
{1, 2, • • •, 10B I} and every i E OB. Thus, computational complexity in the worst case 
is o(I0B12). On the contrary, if peq(A, t) C peq(B, s) holds, [i]A,t C [i]B,s holds for any 
i E OB. Therefore headB [s] [point] =headB [s] [i] always holds for any point E [i]A,t, and 
headB [s] [point] =headB [s] [i] is checked only once for any point E [i]A,t. Thus computa
tional complexity in the best case is o(IOB1). 

   Algorithm 8.2 is more effective for merging several kinds of attributes. Suppose 
there exists a sequence of attributes A1, A2i • • • , Am C AT, and it is necessary to obtain 
eq(Ai U • • • U Am). In this case, Algorithm 8.2 is sequentially applied to eq(Ai U • • • U Ak) 
and eq(Ak+i) (1 < k < m — 1). Even though the order may be o(i0B12) in the first 
application of Algorithm 8.2, the order is sequentially near to o(1OB1). Because, every 
object is sequentially discerned by merging attributes.

9. An Algorithm for Calculating the Dependencies 

   A program dependency in Step 6 is examined in this section. Algorithm 9.1 calcu

lates the degree of dependency by using perelations.
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ALGORITHM 9.1. (Algorithm for calculating the degree of dependency) 
Input:  peq(CON,  t) for attributes CON and peq(DEC, s) for attributes DEC. 
Output: The degree of dependency based on peq(CON, t) and peq(DEC, s). 
begin 

count:=0; 
   for i :=1 to 10B I do if headcoN [t] [i] =i then 

      if [i] CON,t C [i] DEC,s then count : =count+ I [i] CON,t I ; 
degree:=count/IOBI 

end.0 

   In Algorithm 9.1, inclusion [i]CON,t C[i]DEC,s is checked for any object i satisfying 
headcoN[t][i] = i. Since the order of checking this inclusion is less than o(I[i]CON,tI), 
the order of Algorithm 9.1 is less than o f E{ilheadCON [i] [i]=0 I [z]CON,tI ), which is equal 
to o(1OB1). Because [i]CON,t is an equivalence class, i.e., UiEOB[i]CON,t= OB and 
[i]CON,t n [i]coN,t=O for any two distinct classes hold. 

   Suppose there exist NcoN kinds of perelations for CON and NDEC kinds of pe
relations for DEC. By applying Algorithm 9.1 to these pairs of perelations NcoN X 
NDEC times, it is possible to obtain each degree of dependency in all derived DISs. As 
stated before, the number of pairs of perelations are much smaller than the number of 
all derived DISs. If NcoN=1 and NDEC=1, it is possible to check the dependency by 
only one time application of Algorithm 9.1. 

10. Execution Time for Checking Dependencies 

   In order to examine the execution time, four NISs in Table 4 are prepared, and 
each degree of dependency from CON={A, B, C} to DEC={D} is calculated. Four 
NISs are produced by using a random number program.

NIS IOBI 'ATI IVALal(a E AT) Derived_DISs 
NISI 10 4 10864  
NIS2 100 4 101944  
NIS3 300 4 103888  
NIS4 1000 4 107776

Table 4: Definitions of NISs

Table 5 shows each execution time. The column of simple method shows expected values 

for obtaining each degree of dependency in all derived DISs. An execution time for 

calculating the degree of dependency is measured in a derived DIS, and expected values

NIS Step2 Step_3 Step_5 Step_6 Total simplesnethod  
NISI 0.087 0.241 0.000 0.000 0.328 0.000(= 0.000 * 864)  
NIS2 0.752 2.746 0.080 0.000 3.578 0.000(= 0.000 * 1944)  
NIS3 3.799 6.840 0.420 0.000 11.059 116.640(= 0.030 * 3888)  
NIS4 32.548 50.001 0.090 0.080 82.719 2643.840(= 0.340 * 7776)

Table 5: Results of the execution time(sec) for dependency [A, B, C] = [D]
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Table 6: Results of the execution time in Step 5 + Step 6(sec) for every dependency

are defined by this execution time multiplied the number of derived DISs. According to 
Table 5, Step 5 and Step 6 take less execution time. Step 3, which obtains all perelations 
for each attribute, is the most timeconsuming. 

   Table 6 shows each execution time in Step 5 and Step 6 for three cases. In order 
to find appropriate CON for specified DEC, it may be necessary to calculate some 
kinds of dependencies. Suppose N kinds of dependencies are calculated in a NIS . Total 
execution time is [execution time of (Step 1 + Step 2 + Step 3 + Step 4) +  N  x {execution 
time of (Step 5 + Step 6)}]. Because, Step 5 and Step 6 take less execution time, it is 
convenient for finding dependencies in a NIS. If simple method is employed in this case, 
total execution time is N x (the number of derived DISs) x (execution time of checking a 
dependency in a DIS). In this way simple method is not suitable for finding appropriate 
attributes CON. Proposed method is more effective than simple method.

11. Program extractall in Step 7 

    A program extractall in Step 7 is examined in this section. This program is now 
implemented by prolog, and this program sequentially compares possible implications 

  E IMP(x, CON, DEC) and tiIy E IMP(y, CON, DEC). The computational order 
is o((>1<i<1oB1 IIMP(i, CON, DEC) I )2). This program took about 5(sec) in NIS2, 
about 100(sec) in NIS3 and over 1000(sec) in NIS4 in Table 6. In this program, it is 
also necessary to apply perelations, however there is a problem. In Example 3.1 suppose 
CON={A, B} and DEC={D} hold, and let us consider all perelations for CON and 
DEC. By using these perelations, it is easy to obtain the following response. 

'/. ratio 
   File Name for Condition:AB.pe 

   File Name for Decision:D.pe 
   Consistent ratio of object 1:0.722(= 78 / 108) 

   Consistent ratio of object 2:0.444(= 48 / 108) 
   Consistent ratio of object 3:0.667(= 72 / 108) 

   Consistent ratio of object 9:0.667(= 72 / 108) 
   Consistent ratio of object 10:0.000(= 0 / 108) 

EXEC_TIME = 0.040(sec) 

According to this response it is known object 1 is consistent with other objects in 
78 derived DISs. This information is related to every object, and is not related to 
each possible implication. According to data structure of head[*] [*] and succ[*][*], it is 
possible to reach all perelations from any object. However, there is no relation between
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perelations and possible implications, and it is impossible to reach  perelations from 
any possible implication. A new data structure connecting perelations and possible 
implications is necessary for improving the program extractall. It is also important to 
extend three criteria support(0), accuracy(0) and coverage(i) in DISs to new criteria 
in NISs. An application of such criteria to rule extraction is under consideration.

12. Concluding Remarks 

   The rough sets based concept in DISs is extended to new concept in NISs for han

dling incomplete information, and a framework of rule extraction from nondeterministic 
information systems is proposed. Some algorithms using possible equivalence relations 

are also proposed for realizing programs. These programs may be useful tools for data 

analysis in nondeterministic information systems. 

   Up to now, there is only few work that deals with real data analysis in NISs. For 

handling not only certain information but also incomplete information, the research of 

rough sets based data analysis in NISs will be important. Furthermore, rough sets 

based data analysis in NISs could also be a mathematical foundation of knowledge 

discovery and data mining from incomplete information. Our work is toward real data 

analysis in NISs, and will extend the application area of rough sets theory.
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