
Bulletin of Informatics and Cybernetics, Vol. 34, No. 1, 2002

ON A METHOD TO EXTRACT RULES FROM A
 TABLE WITH NONDETERMINISTIC

 INFORMATION: A ROUGH SETS BASED
 APPROACH

 By

Hiroshi SAKAI*

 Abstract

 Rough sets theory is now becoming a mathematical foundation of soft comput

ing. This theory makes use of equivalence relations defined for each set of attributes

in any table, and applies the concept like definability of a set, dependency among

attributes, reduction of data, rule extraction, etc., to data analysis.

 In this paper, a problem of knowledge discovering in the form of rules from any

table with nondeterministic information is discussed. At first, the rough sets based

concept including rule extraction is surveyed, and this concept is extended to new

one related to nondeterministic information. Then, a framework of rule extraction

from tables with nondeterministic information is proposed, and some algorithms

for handling such new concept are presented. Also implemented programs and a

real execution of these programs are shown.

Key Words and Phrases: Rule extraction, Rough sets, Nondeterministic information, Data

dependency, Possible equivalence relation.

I. Introduction

 Rough sets theory is seen as a mathematical foundation of soft computing. The
theory covers important areas of research in AI such as knowledge, imprecision, vague
ness, learning and induction (Pawlak, 1991;1996; Orlowska and Pawlak, 1984; Naka
mura et al., 1996). It has been applied to machine learning and knowledge discovery by
Polkowski and Skowron (1998a;1998b), Grzymala-Busse (1997), Ras and Joshi (1997),
Tsumoto (2000) and Zhong et al. (1998).

 Rough sets theory usually handles a table with deterministic information which we
call DIS(Deterministic Information System). Recently for handling incomplete informa
tion like null values (Codd, 1970), unknown values (Lipski, 1981; GrzymalaBusse, 1991;
Kryszkiewicz, 1998;1999; Sakai, 1998), etc., rough sets in a table with nondeterministic
information, which we call NIS(Nondeterministic Information System), attract interest
of researchers.

 Already some important work on NISs has been conducted, but most work has
focused on logic, in particular, an axiomatization of logic in NISs (Orlowska and
Pawlak, 1984; Lipski, 1981). There is only few work that deals with real data anal

ysis in NISs. For example, Lipski (1981) showed modal questionanswering systems
* Department of Computer Engineering

, Kyushu Institute of Technology, Tobata Kitakyushu 804
 Japan. tel +8193-884-3258 sakai@comp.kyutech.ac.jp

14H. SAKAI

besides the axiomatization of logic. Grzymala-Busse (1991;1997;1998) surveyed the un
known attribute values, and studied the learning from examples with unknown attribute
values. Kryszkiewicz (1998;1999) discussed the theoretical aspect of rules in incomplete
information systems. These are the most important work related to NISs.

 The research of rough sets based data analysis in NISs has still been untouched.
Rough sets based data analysis in NISs could also be a mathematical foundation of
knowledge discovery and data mining from incomplete information. In such a situation,
we are now investigating rough sets based algorithms for data analysis, namely algo
rithms using equivalence relations in DISs and algorithms using possible equivalence
relations in NISs. In (Sakai and Okuma, 1999; Sakai, 2001b), a manipulation of possi
ble equivalence relations in NISs was studied. This work proposed a method to obtain
all possible equivalence relations in any NIS. A new data dependency among attributes
in NISs and algorithms for checking this dependency were also proposed (Sakai and
Okuma, 2000; Sakai, 2001a). Algorithms using possible equivalence relations drastically
reduced the execution time for checking this data dependency.

 In this paper, the framework of rule extraction from DISs is extended to the
framework of rule extraction from NISs. In every NIS, a rule is defined by a formula
satisfying some kinds of constraints. Six groups of rules are introduced into NISs as a
constraint, and the proposed dependency in NISs is applied as another constraint to
formulas. The problem is reduced to pick up formulas satisfying constraints, and some
effective algorithms are needed. For this problem, we applied algorithms using possible
equivalence relations, and realized a tool to obtain rules from NISs. This framework
follows the framework of rule extraction from DISs. Thus, it is possible to extract rules
not only from DISs but also from NISs.

2. A Survey of Rough Sets Theory

 This section surveys basic concept in rough sets theory.

2.1. Some Definitions in Deterministic Information Systems

 A Deterministic Information System (DIS) is a quadruplet (OB, AT, {VALala E
AT}, f), where OB is a finite set whose elements are called objects, AT is a finite set
whose elements are called attributes, V ALa is a finite set whose elements are called
attribute values and f is such a mapping that f : OB x AT -9 UaEATVALa which is
called a classification function. If f (x, a)= f (y, a) for every a E ATR C AT, we see
there is a relation between x and y for ATR. This relation is an equivalence relation
over OB. eq(ATR) denotes this equivalence relation, and [x]ATR denotes an equivalence
class with x. In this case either [x]ATR=[y]ATR or [x]ATR n [y]ATR=O holds for any
x, y E OB. Furthermore, UxEOB[x]ATR=OB also holds. If a set X C OB is the union
of some equivalence classes, we say X is definable (for ATR) in DIS. Otherwise we
say X is rough.

 Let us consider two sets CON C AT which we call condition attributes and DEC C
AT which we call decision attributes. Two distinct objects x, y E OB are consistent
(between CON and DEC), if f (x, a)= f (y, a) for every a E CON implies f (x, a)= f (y, a)
for every a E DEC. A DIS is consistent (between CON and DEC), if every pair of
objects is consistent. In this case, we may say DEC depends totally on CON.

 Now, let us show an important proposition connecting dependencies with equiv

On a Method to Extract Rules from a Table with Nondeterministic Information 15

alence relations. Let eql and eq2 be two equivalence relations over OB. A formula
eqi C eq2 means that for every equivalence class L E eql there exists such an equiva
lence class M E eq2 that L C M.

 PROPOSITION 2.1. (Pawlak, 1982;1991) For any DIS, condition attributes CON
and decision attributes DEC, 1 and 2 in the following are equivalent.

1. DEC depends totally on CON.

2. eq(CON) C eq(DEC).0

 Positive region POScoN(DEC)=U{L Eeq(CON)I there exists such M Eeq(DEC)
that L CM} is applied to characterize dependencies. Each degree is measured by a ratio
I POScoN (DEC) I / IOBI , and this ratio is called the degree of dependency from CON to
DEC. The degree of dependency is 1 if and only if DEC depends totally on CON.

2.2. Rules in Deterministic Information Systems

 Let us survey important work for extracting rules in DISs. For any DIS, let CON
and DEC be condition and decision attributes, respectively. For any x E OB, a function
ds : CONUDEC UaECONUDECVALa such that dx(a)=f (x,a) is introduced in DISs
(Pawlak, 1991). ds I CON denotes a formula naECON [a, f (x, a)], and dx I DEC denotes a
formula AaEDEC[a, f (x, a)]. The formula [a, f (x, a)] is called a descriptor, and it means
that f (x, a) is the value of the attribute a. Generally, a rule is defined by an implication
ds I CON dX I DEC satisfying some kinds of constraints.

 The most familiar constraint is a dependency from CON to DEC. If the degree of
dependency is more than a threshold value, each implication in DIS is a rule (Pawlak,
1991). Some criteria are applied to each implication as other constraint. Three criteria
in the following are applied to each implication from x (Tsumoto, 2000) .

 support(x) = I{y E OBI dyICON=dxICON and dyIDEC=dxIDEC }I / IOBI,
 accuracy(x)=I[X]CON n [x]DEC I / I [x]CON I ,

 coverage(x) = I [x]CON n [x]DECI / I [x]DECI
If each criterion value of an implication is more than each threshold value respectively,
this implication is a rule.

EXAMPLE 2.2. Let us consider a DIS in Table 1.

 OB A B C
 1 2 2 1
 2 1 2 2

 3 2 2 1
 4 1 3 3

 Table 1: A deterministic information system

Here, eq({A})={{1, 3}, {2, 4}} and eq({C})={{1, 3}, {2}, {4}} hold. A set {1,2,3,4} is
definable for {A}, because this set is equal to {1, 3} U {2, 4}. However, a set {1, 2, 3}
is rough for {A}. Both sets are definable for attributes {C}. Since eq({C}) ceq({A}),
{A} depends totally on {C}, and every implication dx I {C} = dx RA} (x E OB) is seen

16H. SAKAI

as a rule. This dependency generates rules in the following.

 diI{C} 4d1J{A} (= d3I{C} = d3I{A}) :[C,1]= [A,2],
 d21{C} = d2I{A} :[C,2]z.[A,1], 4{C} d4J{A} :[C,3]= [A,1].

Suppose CON={A} and DEC={C} hold. In this case POS{A}({C})={1, 3} OB,
and {C} does not depend on {A}. However, two implications from object 1 and 3 are
seen as rules under the constraint that support > 0.25, accuracy > 1.0 and coverage>
1.0. Since accuracy=0.5 holds for other implications, each other implication is not seen
as a rule under this constraint.^

2.3. A Definition of Nondeterministic Information Systems

 A Nondeterministic Information System (NIS) is also a quadruplet (OB, AT, {
V ALa (a EAT}, g), where g is a mapping from OB x AT to a power set of UQEATV ALa,

i.e., g : OB x AT -+ P(UaEATVALa) (Orlowska and Pawlak, 1984; Orlowska, 1998).
g(x, a) is interpreted as if there is an actual value in this set but it is not known. This is
the unknown interpretation for incomplete information (Lipski, 1981; GrzymalaBusse,
1991; Kryszkiewicz, 1998). Especially if the actual value is not known at all, g(x, a) is
equal to VALa. This is the same as null value interpretation (Codd, 1970).

3. Rules in Nondeterministic Information Systems

 This section defines possible implications in NISs and two kinds of constraints for
them. A rule is defined by a possible implication satisfying two kinds of constraints .

3.1. Possible Implications in Nondeterministic Information Systems

 An example of a NIS clarifies problems in NISs, and possible implications in
NISs are proposed.

EXAMPLE 3.1. Let us consider a NIS such that OB = {1, • • • , 10}, AT = {A, B, C, D},
VAL1={0, 1, 2}, VAL2={0, 1, 2, 3}, VAL3=VAL4={0, 1, 2, 3, 4, 5}. Table 2 shows the
function g in NIS. In such a table, how do we deal with the dependency among
attributes and rule extraction ?^

Table 2: A nondeterministic information system

On a Method to Extract Rules from a Table with Nondeterministic Information 17

 DEFINITION 3.2. Let NIS=(OB, AT, {VALaIa E AT}, g) hold and ATR be a set
{al , • • • , an} C AT. For any x E OB, PT (x, ATR) denotes Cartesian product g(x, ai) x
• • • x g(x, an). We call an element a possible tuple (for ATR) of x. Every possible
tuple (= (rlal , • • • , 7a,.) E PT (x, ATR) is identified with a formula Al <i<n [aimai] • ^

 DEFINITION 3.3. For any NIS, let CON be condition attributes and DEC be
decision attributes. For any x E OB, IMP(x, CON, DEC) denotes a set {(= rji(E
PT (x, CON), rl E PT (x, DEC) }. We call an element (= rl a possible implication
fromx.^

 Let us consider a case that CON={A, B, C} and DEC={D} in Example 3.1.
PT(1, {A, B, C})={(0, 2, 5), (0, 3, 5)}, PT(1, {D})={(3)} and IMP(1, {A, B, C}, {D})=
{ [A, 0] A [B, 2] A [C, 5] = [D, 3], [A, 0] A [B, 3] A [C, 5] = [D,3]} hold. A rule in a NIS
is defined by a possible implication satisfying some kinds of constraints. Some kinds of
constraints to possible implications characterize rules in NISs. In the subsequent sec
tions, two kinds of constraints are proposed in NISs, and they are applied to possible
implications.

3.2. Constraint 1: Data Dependencies

 Data dependencies in DISs are extended to dependencies in NISs.

 DEFINITION 3.4. Let us consider a NIS=(OB, AT, {VALal a E AT}, g), a set of at
tributes ATR C AT and a mapping h: OB x ATR -* UaEATRVALa such that h(x, a) E
g(x, a) for any x E OB and any a E ATR. We call a DIS=(OB, ATR, {VALaIa E
ATR}, h) a derived DIS (for ATR form NIS). We call an equivalence relation in a
derived DIS a possible equivalence relation (perelation), and call an element in a pe
relation a possible equivalence class (peclass).^

 In Table 2, there are 648(=23 x 34) derived DISs for {A, B, C, D}, and there are
6(=2 x 3) derived DISs for {C}, According to the interpretation of g(x, a), it is known
that there is a derived DIS with real information, but it is not known.

 DEFINITION 3.5. Let us consider a NIS, condition attributes CON, decision at
tributes DEC and all derived DIS1, • • •, DIS,, for CONUDEC. For two threshold
values val1 and val2(0 < vall, val2 < 1), if conditions 1 and 2 hold then we see DEC
depends on CON in NIS.

 1. I{DISiIDISi(1 < i < m) is consistent }1/m > vall.

 2. mini {degree of dependency in DI Si (1 < i < m) } > val2 .^

 In Definition 3.5, condition 1 requires most derived DISs are consistent, and condi
tion 2 specifies the minimum value of degrees of dependency. This dependency is applied
as a constraint to defining rules in NISs.

3.3. Constraint 2: Six Groups of Possible Implications

 Six groups of possible implications are introduced in NISs. These groups are useful

for characterizing each possible implication.

18H. SAKAI

 Globally _consistent Marginal Globally _inconsistent
De f inite DGCDMDGI

Inde f inite IGCIMIGI

Table 3: Six groups of possible implications in NISs

 DEFINITION 3.6. Let us consider a NIS, condition attributes CON, decision at
tributes DEC and any object x E OB. For any possible implication EIMP(x, CON,
DEC), DDIS(z/', x, CON, DEC) denotes a set {0I 0 is such a derived DIS for CON U
DEC that an implication dx I CON = dx I DEC in 0 is equal to 0}. ^

 DEFINITION 3.7. Let us consider a NIS, condition attributes CON, decision at
tributes DEC and any object x E OB. If IMP(x, CON, DEC) is a singleton set {z/i},
we say is definite. Otherwise we say each E IMP(x, CON, DEC) is indefinite.
If DDIS(0, x, CON, DEC)={¢ EDDIS(', x, CON, DEC) I x is consistent with other
objects in 0}, we say b is globally consistent. If {¢ EDDIS(', x, CON, DEC)I x is
consistent with other objects in ¢}=o, we say is globally inconsistent. Otherwise we
say is marginal. Finally, six groups in Table 3 are defined. ^

 Let us consider a possible implication z/' : [B, 1] = [C, 5] E IMP(5, {B}, {C}) in
Table 2. There exist 72(=23 x 32) derived DISs for {B, C}, and DDIS(0, 5, {B}, {C})
consists of 36(=72/2) derived DISs. Because object 5 is inconsistent with object 10 in all
36 derived DISs, belongs to IGI group. There exists no information incompleteness
for each possible implication in definite groups. Possible implications in DGC or IGC
groups are preferable, and possible implications in DGI or IGI groups are inappropriate.
These six groups are also applied as another constraint to defining rules in NISs.

3.4. A Definition of Rules in Nondeterministic Information Systems

 DEFINITION 3.8. For any NIS, let DEC be decision attributes. A rule (for DEC)
from an object x is a possible implication E IMP(x, CON, DEC) satisfying condi
tions below:

 1. There exists a dependency from CON to DEC.

 2. IP belongs to DGC or IGC groups in Table 3.^

 Condition 1 follows data dependencies in DISs, and information incompleteness in
NISs causes condition 2. Even though there may be other definitions of rules in NISs,
rules in Definition 3.8 are dealt with in this paper.

 In Definition 3.8 the most important problem is to find appropriate CON for
specified DEC. In order to find appropriate CON, it is necessary to know each degree
of dependency in every derived DIS. For CON={A, B, C} and DEC={D} in Example
3.1, it is necessary to apply a procedure 648 times. The number of all derived DISs
is equal to the number of products TT xEOB,aECONUDECI g(x,a) I,and it increases in
exponential order. Therefore a method, which sequentially applies the same procedure
to all derived DISs, is not appropriate for handling NISs with a large number of derived
DISs. For solving such a problem, we propose a method using perelations in NISs.
Some other problems are also solved by applications of perelations.

On a Method to Extract Rules from a Table with Nondeterministic Information 19

4. A Method to Extract Rules in Nondeterministic Information Systems

 A method to extract rules (for specified decision attributes DEC) in any NIS is
proposed, which consists of seven steps.

(Step 1) Make a data file.

(Step 2) Execute a program transall for translating the data file to internal expres
 sions in each attribute.

(Step 3) Execute a program pe to obtain all perelations in each attribute.

(Step 4) Execute a program merge to obtain all perelations for specified decision
 attributes DEC.

(Step 5) Fix condition attributes CON, and execute a program merge to obtain all
 perelations for CON.

(Step 6) Execute a program dependency to check the dependency from CON to DEC.
 If there exists a dependency, go to Step 7 else go to Step 5.

(Step 7) Execute a program extract to pick up possible implications belonging to
 DGC or IGC groups.^

 In order to clarify this method, a real execution handling Example 3.1 is presented.
A workstation with 450MHz UltraSparc is employed for this experiment. The contents
of data file data8.pl in Example 3.1 are as follows:

object (10,4) . data(1, [0, [2,3] ,5,3]) . data(2, [0, [0,1,3] ,4,5]) . • • •
data(9, [0,1,5,4]) . data(10, [2,1,0,1]) .

The following is a real execution in Step 2.
 ?transall.

 File Name:'data8.p1'.
EXEC_TIME = 0.112 (sec)

 yes
After this translation, four files A.rs, B.rs, C.rs and D.rs are produced. Step 3 is applied
to these four files.

 ?-pe.
 File Name:'data8.p1'.

 EXEC_TIME = 0.182 (sec)
 yes

After this execution, four files A.pe, B.pe, C.pe and D.pe are produced. Every file stores
all perelations in a format. In Step 4, suppose DEC be {C}. All perelations for {C}
are stored in a file C.pe. In Step 5, all perelations for {A, B, D} are produced by a
program merge.

7. merge
 Merging A.pe ...

 Merging B.pe ...
 Merging D.pe ...

EXEC_TIME = 0.020 (sec)

20H. SAKAI

After this execution, a file ABD.pe is produced. It is known from this file that there
exist 108 derived DISs for {A, B, D}, and there is only a kind of perelation, i.e.,

 {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}. Since any distinct objects x, y E OB
are different each other, it is known every derived DIS (for CON={A, B, D} and DEC=
{C}) is consistent. A program dependency is executed in Step 6. Here, vali and val2
in Definition 3.5 are fixed to 0.5 and 0.6, respectively.

'h dependency

 CRITERION 1
 Number of Derived DISs:648

 Number of Derived Consistent DISs:648
 Degree of Consistent DISs:1.000

 CRITERION 2
 Minimum Degree of Dependency:1.000

 Maximum Degree of Dependency:1.000
EXEC TIME = 0.000 (sec)

This execution shows a preferable result, namely each degree of dependency from {A, B,
D} to {C} is 1. By repeating Step 5 and Step 6, some kinds of dependencies are checked,
and CON is fixed to a set {A, D}. In Step 7, CON={A, D} and DEC={C} are specified
in a file attrib.pl, and either a program extract or extractall is executed. Because there
exists a dependency from {A, D} to {C}, most possible implications belong to DGC or
IGC groups.

 ?extractall.
 Rules from [A,D] to [C]

 [1] [2,1] => [0] (0.667= 36/54, 54, DM) from object 10
 [2] [0,1] => [1] (1.000= 18/18, 54, IGC) from object 4
 [3] [1,1] => [1] (1.000= 18/18, 54, IGC) from object 4
 [4] [2,1] => [1] (0.000= 0/18, 54, IGI) from object 4

 [16] [2,4] _> [5] (1.000= 27/27, 54, IGC) from object 6
 [17] [0,4] => [5] (1.000= 54/54, 54, DGC) from object 9

EXEC TIME = 0.025 (sec)
 yes

 In this way it is possible to obtain rules in any NIS. Even though there exists
work handling logic in NISs, there seems no work processing these rules in NISs. Of
course, there exists a lot of work handling rules in DISs.

 In the subsequent sections algorithms of programs are examined. Every equivalence
relation is effectively applied to extracting rules in any DIS, and every perelation is
analogically applied to extracting rules in any NIS. Every program is realized according
to perelations.

5. Algorithms for Obtaining perelations

 In this section, algorithms in Step 2 and Step 3 are examined. An algorithm for

solving the definability of a set in any NIS is first proposed, and an algorithm to obtain

all perelations is also proposed.

On a Method to Extract Rules from a Table with Nondeterministic Information 21

5.1. An Algorithm for Solving the Definability of a Set in any NIS

 The definability of a set in DISs is extended to the definability of a set in NISs.

 DEFINITION 5.1. Let us consider a NIS and a set X C OB. X is definable in
NIS, if X is definable in some derived DISs from NIS.^

 To check this, a method which sequentially examines the definability of a set for
every derived DIS may be employed. However, this method will not be suitable for
NISs with a large number of derived DISs. We propose another method according to
Proposition 5.2.

PROPOSITION 5.2. (Sakai, 2001b) Suppose there exist a NIS and a set X C OB.
X is definable in NIS, if and only if there exist subsets CL1 i • • • , CLm of OB, satisfying
1 and 2 below:

 1. UiCLi=X,

 2. {CLi, • • • ,CL,.„,} is a subset of a perelation.^

 According to this proposition, it is possible to check the definability of a set by
finding CL1 i • • • , CL.m. An algorithm in the following checks the definability of a set.

ALGORITHM 5.3. (Sakai, 2001b)
Input: A NIS and a set X COB.
Output: X is definable in this NIS or not.

 (1) X*=X and eq=0.
 (2) For any element x E X*, find a set CL satisfying conditions (CL-1) and (CL-2).

(CL1)xECL and CLCX*,
 (CL-2) eq U {CL} is a subset of a perelation.

(2-1) If there is a set CL, then [x] =CL, eq=eq U { [x] } and X* =X* — CL. If X* 0 0
 then go to (2). If X*=O then X is definable.

 (2-2) If there is no CL, then backtrack. If there is no branch for backtracking, then
 X is not definable in this NIS.^

 This algorithm is similar to LEM1 and LEM2 algorithms (Grzymala-Busse and
Werbrouck, 1998) . The set CL is unique in every DIS, but in NIS this set CL may not
be unique. Therefore, a search with backtracking is applied. At this point, Algorithm
5.3 is different from LEM1 and LEM2. In order to realize Algorithm 5.3, two extra
properties of perelations are necessary (Sakai, 2001b).

5.2. Basic Programs candidate and class

 A program class which checks the definability of a set in NIS is as follows:
class (ATR, X) : class0 (ATR, X, [] , EQ , [] , Pres, [] ,Nres) .
class0(ATR,X,Y,EQ,Ppre,Pres,Npre,Nres)

:X==[],EQ=Y,Pres=Ppre,Nres=Npre.
class0(ATR,[XIX1],Y,EQ,Ppre,Pres,Npre,Nres)

: -candidate (ATR,[XIX1], CAN ,Ppre,Presl,Npre,Nresl),
minus ([XIX1], CAN , REST) ,
class0(ATR,REST, [CAN IY],EQ,Presl,Pres,Nresl,Nres).

22H. SAKAI

A program candidate, which assigns a pe-class to the variable CAN, is realized due to the
clarification of two properties for perelations. A program translate in Step 2 produces
data for the program candidate. The following is a real execution for ATR=IA, B1,
which is specified in a file attrib.pl.

?-translate.
File Name for Read Open:'data8.p1'.
Attribute Definition File: ' attrib . p1' .
EXEC_TIME = 0.025 (sec)

yes
?-classall(con, [2,3,4,5]).
[1] (EQUIVALENCE)RELATION: [[2] , [3,4] , [5]]
POSITIVE SELECTION
CONDITION OF 2: [0,0] *
CONDITION OF 3: [2,3]
CONDITION OF 4: [2,3] *
CONDITION OF 5:[1,1] *

 • [2] (EQUIVALENCE)RELATION: [[2] , [3] , [4] , [5]]

[3] (EQUIVALENCE)RELATION: [[2,4] , [3] , [5]]

[4] (EQUIVALENCE)RELATION: [[2] , [3,4] , [5]]
POSITIVE SELECTION
CONDITION OF 2: [0,3] *
CONDITION OF 3: [2,3]
CONDITION OF 4: [2,3] *
CONDITION OF 5: [1,1] *
NEGATIVE SELECTION
CONDITION OF 1: [0,3] *
CONDITION OF 4: [0,3] *
EXEC_TIME = 0.016 (sec)

yes
?class(con,[2,3,4,5,6]).
EXEC_TIME = 0.005 (sec)

yes

 It is known that there are four kinds of relations which make a set {2, 3, 4, 5}
definable. Every relation is stored in the variable EQ in a clause class. A set {2, 3, 4, 5, 6}
is not definable in this NIS, because [6]{A,B}={6,10} holds in any perelation.

5.3. Side Effect of Algorithm 5.3

 Algorithm 5.3 has the following merit. After checking the definability of a set , a
subset of a perelation is stored in the variable EQ as a side effect of this algorithm. If
X=OB, it is possible to obtain a perelation from this EQ. By applying this algorithm
repeatedly until there is no branch for backtracking, all perelations can be obtained .

On a Method to Extract Rules from a Table with Nondeterministic Information 23

6. A Data Structure of perelations

 Usually, a number i is identified with an object located in the i-th row of a table.
By the order of row, it is possible to introduce the total order into OB. Suppose
there exist N kinds of perelations for ATR, and let peq(ATR, k) denote the k-th pe
relation for ATR. For handling peq(AT R, k), two arrays head ATR [k] [i] and snccATR [k] [i]
(1 < k < N, 1 < i < 1OBI) are employed. A set [i]ATR,k E peq(ATR, k) denotes a
pe-class including object i. headATR[k][j] for any j E [i]ATR,k is the first element of
the pe-class [i]ATR,k, and succATR[k][j] is the successor to j in [i]ATR,k. For the last
element j E [i]ATR,k, SUCCATR[k][j]=0. In such a data structure, every pe-class [i]ATR,k
can easily be obtained. For every i, [i]ATR,k={headATR[k][i], succATR[k][head[k][i]], • • •,
succATR [k] [• • • succATR [k] [headATR [k] [i]]] } holds.

 For ATR={A} in Example 3.1, there exist three perelations, and peq({A}, 3)={{1,
2, 9}, {3, 6,10}, {4, 5, 7, 8}} is identified with two arrays below:

head{A} [3] [1]=1, succ{A} [3] [1]=2, head{A} [3] [2]=1, succ{A} [3] [2]=9,
 head{A} {3] [3] =3, succ{A} [3] [3] =6, head{A} [3] [4] =4, succ{ A} [3][4]=5,

head{A} [3] [5]=4, succ{A} [3] [5]=7, • • •, head{A} [3] [10)=3, succ{A} [3] [10]=O.
For object 2, head{A}[3][2]=1, succ{A}[3][1]=2, succ{A}[3][2]=9 and succ{A}[3][9]=0
hold, so it is known [2]{A},3={1, 2, 9}.

7. An Algorithm for Checking Inclusion of peclasses

 Let us show an important proposition.

PROPOSITION 7.1. For a NIS and an ATR C AT, let us consider t-th perelation
peq(ATR, t) , i.e., two arrays headATR[t][i] and succATR[t][i] (1 < i < IOBI). For any
j E OB, j E [i]ATR,t holds if and only if headATR[t][j]=headATR[t][i] holds.

 PROOF. If j E [i]ATR,t holds, clearly headATR[t][j]=headATR[t][i] holds. If j
[i]ATR,t holds, j belongs to other different class [i']ATR,t • The first element of [i]ATR,t
and the first element of [i']ATR,t are clearly different each other, and headATR[t][j]
headATR[t][i] is derived. Therefore if headATR [t] [j] =headATR [t] [i] holds, j E [i]ATR,t
holds by contraposition.^

 By applying Proposition 7.1 to each j E [i]coN,t, it is possible to check [i]coN,t C
[i]DEC,s or not. This inclusion implies every object in [i]coN,t is consistent with other
objects. Algorithm 7.2 solves this inclusion relation.

ALGORITHM 7.2. (Algorithm for checking the inclusion of peclasses)
Input: Any object i, a pe-class [i]coN,t for CON and a pe-class[i]DEC,sfor DEC.
Output: [i]coN,t C [i]DEC,s or not.
begin

mark :=0; point:=headcoN It] [i] ;
 while point00 do

 if headDEC [s] [point] =headDEC Is) [i] then point : =succcoN [t] [point]
 else begin mark:=1; point :=0 end;

 if mark=0 then [i] CoN,t C [i] DEC,. else [i] CoN,t St [i] DEC,s
end.^

 Algorithm 7.2 sequentially picks up point E [i]coN,t, and applies Proposition 7.1
to checking point E [i]DEC,s. The complexity of the worst case, which is a case such

24H. SAKAI

that [i]coN,t C [i]DEC,s, is o(1[i]coN,tl)• Algorithm 7.2 is a basic algorithm for realizing
a program dependency in Step 6.

8. An Algorithm for Merging perelations

 A program merge in Step 5 is examined in this section.

 PROPOSITION 8.1. (Pawlak, 1991) Suppose A, B C AT hold in a DIS. An
equivalence relation eq(A U B) is {M C OBIM = [i]A n [i]B for [i]A E eq(A) and
[i]B E eq(B)(1 < i < IOB1)}.^

 Proposition 8.1 shows us a way to merge two equivalence relations. Algorithm 8.2
produces peq(A U B, _) from peq(A, t) and peq(B, s).
ALGORITHM 8.2. (Sakai, 2001b)
Input: peq(A, t) for A C AT and peq(B, s) for B C AT respectively,

 i.e., headA [t] [i], succA [t] [i], headB [s] [i] and sUccB [s] [i] (1 < i < 1 OB I) .
Output: peq(A U B, _) for A U B C AT,

 i.e., headAuB[_][i] and succAuB[][i] (1 < i < IOBI).
begin

 for i : =1 to I OB I do begin headAus [-] [i] :=i ; succAUB [,] [i] : =0 end;
 for i :=1 to I OBI do if headAus [,] [i] =i then

 begin

pre : =i ; point : =succA [t] [i] ;
 while point 0 do

 begin if headB [s] [point] =headB [s] [i] then
 begin succAUB [a [pre] : =point ;

headAus C-1 [point] :=i ; pre : =point
 end;

point : =succA [t] [point]
 end

 end
end.^

 In Algorithm 8.2, if peq(A, t)={{1, 2, • • ., 1OBI}} and peq(B, s) = {{1}, {2}, • • .,
{iOB1}}, it is necessary to check headB[s][point]=headB[s][i] for every point E [i]A,t=
{1, 2, • • •, 10B I} and every i E OB. Thus, computational complexity in the worst case
is o(I0B12). On the contrary, if peq(A, t) C peq(B, s) holds, [i]A,t C [i]B,s holds for any
i E OB. Therefore headB [s] [point] =headB [s] [i] always holds for any point E [i]A,t, and
headB [s] [point] =headB [s] [i] is checked only once for any point E [i]A,t. Thus computa
tional complexity in the best case is o(IOB1).

 Algorithm 8.2 is more effective for merging several kinds of attributes. Suppose
there exists a sequence of attributes A1, A2i • • • , Am C AT, and it is necessary to obtain
eq(Ai U • • • U Am). In this case, Algorithm 8.2 is sequentially applied to eq(Ai U • • • U Ak)
and eq(Ak+i) (1 < k < m — 1). Even though the order may be o(i0B12) in the first
application of Algorithm 8.2, the order is sequentially near to o(1OB1). Because, every
object is sequentially discerned by merging attributes.

9. An Algorithm for Calculating the Dependencies

 A program dependency in Step 6 is examined in this section. Algorithm 9.1 calcu

lates the degree of dependency by using perelations.

On a Method to Extract Rules from a Table with Nondeterministic Information 25

ALGORITHM 9.1. (Algorithm for calculating the degree of dependency)
Input: peq(CON, t) for attributes CON and peq(DEC, s) for attributes DEC.
Output: The degree of dependency based on peq(CON, t) and peq(DEC, s).
begin

count:=0;
 for i :=1 to 10B I do if headcoN [t] [i] =i then

 if [i] CON,t C [i] DEC,s then count : =count+ I [i] CON,t I ;
degree:=count/IOBI

end.0

 In Algorithm 9.1, inclusion [i]CON,t C[i]DEC,s is checked for any object i satisfying
headcoN[t][i] = i. Since the order of checking this inclusion is less than o(I[i]CON,tI),
the order of Algorithm 9.1 is less than o f E{ilheadCON [i] [i]=0 I [z]CON,tI), which is equal
to o(1OB1). Because [i]CON,t is an equivalence class, i.e., UiEOB[i]CON,t= OB and
[i]CON,t n [i]coN,t=O for any two distinct classes hold.

 Suppose there exist NcoN kinds of perelations for CON and NDEC kinds of pe
relations for DEC. By applying Algorithm 9.1 to these pairs of perelations NcoN X
NDEC times, it is possible to obtain each degree of dependency in all derived DISs. As
stated before, the number of pairs of perelations are much smaller than the number of
all derived DISs. If NcoN=1 and NDEC=1, it is possible to check the dependency by
only one time application of Algorithm 9.1.

10. Execution Time for Checking Dependencies

 In order to examine the execution time, four NISs in Table 4 are prepared, and
each degree of dependency from CON={A, B, C} to DEC={D} is calculated. Four
NISs are produced by using a random number program.

NIS IOBI 'ATI IVALal(a E AT) Derived_DISs
NISI 10 4 10864
NIS2 100 4 101944
NIS3 300 4 103888
NIS4 1000 4 107776

Table 4: Definitions of NISs

Table 5 shows each execution time. The column of simple method shows expected values

for obtaining each degree of dependency in all derived DISs. An execution time for

calculating the degree of dependency is measured in a derived DIS, and expected values

NIS Step2 Step_3 Step_5 Step_6 Total simplesnethod
NISI 0.087 0.241 0.000 0.000 0.328 0.000(= 0.000 * 864)
NIS2 0.752 2.746 0.080 0.000 3.578 0.000(= 0.000 * 1944)
NIS3 3.799 6.840 0.420 0.000 11.059 116.640(= 0.030 * 3888)
NIS4 32.548 50.001 0.090 0.080 82.719 2643.840(= 0.340 * 7776)

Table 5: Results of the execution time(sec) for dependency [A, B, C] = [D]

26H. SAKAI

Table 6: Results of the execution time in Step 5 + Step 6(sec) for every dependency

are defined by this execution time multiplied the number of derived DISs. According to
Table 5, Step 5 and Step 6 take less execution time. Step 3, which obtains all perelations
for each attribute, is the most timeconsuming.

 Table 6 shows each execution time in Step 5 and Step 6 for three cases. In order
to find appropriate CON for specified DEC, it may be necessary to calculate some
kinds of dependencies. Suppose N kinds of dependencies are calculated in a NIS . Total
execution time is [execution time of (Step 1 + Step 2 + Step 3 + Step 4) + N x {execution
time of (Step 5 + Step 6)}]. Because, Step 5 and Step 6 take less execution time, it is
convenient for finding dependencies in a NIS. If simple method is employed in this case,
total execution time is N x (the number of derived DISs) x (execution time of checking a
dependency in a DIS). In this way simple method is not suitable for finding appropriate
attributes CON. Proposed method is more effective than simple method.

11. Program extractall in Step 7

 A program extractall in Step 7 is examined in this section. This program is now
implemented by prolog, and this program sequentially compares possible implications

 E IMP(x, CON, DEC) and tiIy E IMP(y, CON, DEC). The computational order
is o((>1<i<1oB1 IIMP(i, CON, DEC) I)2). This program took about 5(sec) in NIS2,
about 100(sec) in NIS3 and over 1000(sec) in NIS4 in Table 6. In this program, it is
also necessary to apply perelations, however there is a problem. In Example 3.1 suppose
CON={A, B} and DEC={D} hold, and let us consider all perelations for CON and
DEC. By using these perelations, it is easy to obtain the following response.

'/. ratio
 File Name for Condition:AB.pe

 File Name for Decision:D.pe
 Consistent ratio of object 1:0.722(= 78 / 108)

 Consistent ratio of object 2:0.444(= 48 / 108)
 Consistent ratio of object 3:0.667(= 72 / 108)

 Consistent ratio of object 9:0.667(= 72 / 108)
 Consistent ratio of object 10:0.000(= 0 / 108)

EXEC_TIME = 0.040(sec)

According to this response it is known object 1 is consistent with other objects in
78 derived DISs. This information is related to every object, and is not related to
each possible implication. According to data structure of head[*] [*] and succ[*][*], it is
possible to reach all perelations from any object. However, there is no relation between

On a Method to Extract Rules from a Table with Nondeterministic Information 27

perelations and possible implications, and it is impossible to reach perelations from
any possible implication. A new data structure connecting perelations and possible
implications is necessary for improving the program extractall. It is also important to
extend three criteria support(0), accuracy(0) and coverage(i) in DISs to new criteria
in NISs. An application of such criteria to rule extraction is under consideration.

12. Concluding Remarks

 The rough sets based concept in DISs is extended to new concept in NISs for han

dling incomplete information, and a framework of rule extraction from nondeterministic
information systems is proposed. Some algorithms using possible equivalence relations

are also proposed for realizing programs. These programs may be useful tools for data

analysis in nondeterministic information systems.

 Up to now, there is only few work that deals with real data analysis in NISs. For

handling not only certain information but also incomplete information, the research of

rough sets based data analysis in NISs will be important. Furthermore, rough sets

based data analysis in NISs could also be a mathematical foundation of knowledge

discovery and data mining from incomplete information. Our work is toward real data

analysis in NISs, and will extend the application area of rough sets theory.

 References

Codd, E. (1970). A relational model of data for large shared data banks, Communication
 of the ACM, 13, 377-387.

GrzymalaBusse, J. (1991). On the unknown attribute values in learning from examples,
 Lecture Notes in AI, SpringerVerlag, 542, 368-377.

GrzymalaBusse, J. (1997). A new version of the rule induction system LERS, Funda
 menta Informaticae, IOS Press, 31, 27-39.

GrzymalaBusse, J. and Werbrouck, P. (1998). On the best search method in the LEM1
 and LEM2 algorithms, Incomplete Information: Rough Set Analysis, Studies in

 Fuzziness and Soft Computing, PhysicaVerlag, 13, 75-91.

Kryszkiewicz, M. (1998). Rough set approach to incomplete information systems, In
 formation Sciences, 112, 39-49.

Kryszkiewicz, M. (1999). Rules in incomplete information systems, Information Sci
 ences, 113, 271-292.

Lipski, W. (1981). On databases with incomplete information, Journal of the ACM, 28,
 41-70.

Nakamura, A., Tsumoto, S., Tanaka, H. and Kobayashi, S. (1996). Rough set theory
 and its applications, Journal of Japanese Society for AI, 11, 209-215.

Orlowska, E. and Pawlak, Z. (1984). Representation of nondeterministic information,
 Theoretical Computer Science, 29, 27-39.

Orlowska, E. (1998). What you always wanted to know about rough sets, Incomplete
 Information: Rough Set Analysis, Studies in Fuzziness and Soft Computing, Physica

 Verlag, 13, 1-20.

28H. SAKAI

Pawlak, Z. (1982). Rough sets, Int'l. Journal of Information and Computer Sciences,
 11, 341-356.

Pawlak, Z. (1991). Rough Sets, Kluwer Academic Publisher.
Pawlak, Z. (1996). Data versus logic a rough set view, Proc. 4th Int'l. Workshop on

 Rough Set, Fuzzy Sets and Machine Discovery, 1-8.
Polkowski, L. and Skowron, A.(Eds.) (1998a). Rough Sets in Knowledge Discovery 1, S

tudies in Fuzziness and Soft Computing, PhysicaVerlag, 18.
Polkowski, L. and Skowron, A.(Eds.) (1998b). Rough Sets in Knowledge Discovery 2,

 Studies in Fuzziness and Soft Computing, PhysicaVerlag, 19.
Ras, Z. and Joshi, S. (1997). Query approximate answering system for an incomplete

 DKBS, Fundamenta Informnaticae, IOS Press, 30, 313-324.
Sakai, H. (1998). Some issues on nondeterministic knowledge bases with incomplete and

 selective information, Lecture Notes in AI, SpringerVerlag, 1424, 424-431.
Sakai, H. and Okuma, A. (1999). An algorithm for finding equivalence relations from

 tables with nondeterministic information, Lecture Notes in AI, SpringerVerlag,
 1711, 64-72.

Sakai, H. and Okuma, A. (2000). An algorithm for checking dependencies of attributes
 in a table with nondeterministic information: a rough sets based approach, Lecture

 Notes in AI, SpringerVerlag, 1886, 219-229.
Sakai, H. (2001a). Two procedures for dependencies among attributes in a table with

 nondeterministic information: a summary, Lecture Notes in AI, SpringerVerlag,
 2253, 301-305.

Sakai, H. (2001b). Effective procedures for handling possible equivalence relations in
 nondeterministic information systems, Fundamenta Informaticae, IOS Press, 48,

 343-362.
Tsumoto, S. (2000). Knowledge discovery in clinical databases and evaluation of discov

 ered knowledge in outpatient clinic, Information Sciences, 124, 125-137.
Zhong, N., Dong, J., Fujitsu, S. and Ohsuga, S. (1998). Soft techniques to rule discov

 ery in data, Transactions of Information Processing Society of Japan, 39, 2581-2592.

Received March 16, 2001

Revised April 10, 2002

