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ABSTRACT Some of the most serious security threats facing computer networks involve malware.
To prevent this threat, administrators need to swiftly remove the infected machines from their networks. One
common way to detect infected machines in a network is by monitoring communications based on blacklists.
However, detection using this method has the following two problems: no blacklist is completely reliable, and
blacklists do not provide sufficient evidence to allow administrators to determine the validity and accuracy
of the detection results. Therefore, simply matching communications with blacklist entries is insufficient,
and administrators should pursue their detection causes by investigating the communications themselves.
In this paper, we propose an approach for classifying malicious DNS queries detected through blacklists by
their causes. This approach is motivated by the following observation: a malware communication is divided
into several transactions, each of which generates queries related to the malware; thus, surrounding queries
that occur before and after a malicious query detected through blacklists help in estimating the cause of the
malicious query. Our cause-based classification drastically reduces the number of malicious queries to be
investigated because the investigation scope is limited to only representative queries in the classification
results. In experiments, we have confirmed that our approach could group 388 malicious queries into
3 clusters, each consisting of queries with a common cause. These results indicate that administrators can
briefly pursue all the causes by investigating only representative queries of each cluster, and thereby swiftly
address the problem of infected machines in the network.

INDEX TERMS Malware, blacklist, domain name system, network security, machine learning.

I. INTRODUCTION
Some of the most serious security threats facing com-
puter networks involve malware. Cyber-criminals use
malware-infected machines to undertake malicious activities
such as stealing confidential information, spreading malware
to additional machines, and phishing to an organization.
According to a recent McAfee report [1], over 300,000 new
forms of malware are created each day, and the global annual
cost may be as much as $600 billion; thus, it is imperative to
establish security mechanisms to protect against malware.

The associate editor coordinating the review of this manuscript and

approving it for publication was Luis Javier Garcia Villalba .

In order to prevent damage from malware, administrators
need to swiftly identify and remove the infected machines
that reside in their networks. One common way to detect
infected machines in a network is by monitoring communica-
tions based on blacklists. This method detects the suspected
machines of infecting malware by matching communications
with blacklist entries. To improve the detection capability
of this method, several studies have attempted to automat-
ically update blacklist entries by using machine learning
techniques [2], [3]. However, detection using this method has
the following two problems [4], [5]: (1) no blacklist is com-
pletely reliable, and (2) blacklists do not provide sufficient
evidence to allow administrators to determine the validity and
accuracy of the detection results. Therefore, simply matching

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 142991

https://orcid.org/0000-0003-3178-1041
https://orcid.org/0000-0003-1832-5412
https://orcid.org/0000-0003-0430-0871
https://orcid.org/0000-0002-8920-5875
https://orcid.org/0000-0001-7573-6272


A. Satoh et al.: Cause-Based Classification Approach for Malicious DNS Queries Detected Through Blacklists

communications with blacklist entries is insufficient, and
administrators should pursue their detection causes by inves-
tigating the communications themselves [6].

In this paper, we propose a novel approach for classify-
ing malicious DNS (domain name system) queries detected
through blacklists by their causes. We focus on the DNS
because domain name resolution always occurs prior to
malware communications and the name resolution is an
unencrypted interaction. This approach is motivated by the
following important observation: a malware communication
is divided into several transactions, each of which generates
queries related to the malware; thus, surrounding queries that
occur before and after a malicious query detected through
blacklists help in estimating the cause of the malicious
query. Most previous work [7]–[10] adopted the superficial
similarity of character strings and hierarchical structures in
domain names. Unlike such superficial classification, our
cause-based classification drastically reduces the number of
malicious DNS queries to be investigated because the inves-
tigation scope is limited to only representative queries in
the classification results. Through experiments using DNS
queries observed on a campus network, we have confirmed
that our approach could group 388 malicious queries into
3 clusters, each consisting of queries with a common cause.
These results indicate that administrators can briefly pursue
all the causes by investigating only representative queries
of each cluster, and thereby swiftly address the problem of
infected machines in the network.

The remainder of this paper is organized as follows:
In Section II, we review the related studies and their limi-
tations. In Section III, we propose a cause-based classifica-
tion approach for malicious DNS queries detected through
blacklists. We describe experiments conducted to analyze the
effectiveness of our approach in classifying malicious DNS
queries in Section IV. Finally, we summarize our conclusions
and future work in Section V.

II. RELATED WORK
Soldo et al. [11] proposed a method for significantly improv-
ing blacklists based on previous attack logs provided by
multiple contributors. Meanwhile, AutoBLG developed by
Sun et al. [2] and Segugio developed by Rahbarinia et al. [3]
are systems that automatically generate new blacklists from
existing ones. The difference between these is that AutoBLG
uses the results of web crawling, whereas Segugio uses the
results of monitoring passive traffic for automatic generation.
Špaček et al. [12], [13] developed a DNS firewall system
that blocks communications from the protected network to
malicious domains on the outside network. This system uses
the DNS RPZ (response policy zones) technology [14] for
advanced domain blacklisting. Studies that produce more
sophisticated blacklists are frequently conducted and still
constitute the core of network threat defense strategy.

Kheir et al. [4] showed that blacklists typically contain
a considerable number of errors. These errors are due to
domains containing mixed benign and malicious codes,

such as in the cases of cloud computing services, adver-
tising network services, and dynamic DNS services.
Automatically generated blacklists simply exacerbate this
problem. They attempted to improve the detection accuracy
by cross-checking domains on multiple blacklists. However,
each blacklist has a specific coverage, so cross-checking them
greatly narrows the effective coverage.

Kührer et al. [5] evaluated the effectiveness of 19 types
of blacklists by considering such factors as unregistered
domains, parking domains, and sinkhole domains. Their eval-
uation used only datasets prelabeled as benign or malicious.
This is due to the fact that the investigation scope expands in
proportion to the number of detections, which complicates
determining the validity and accuracy of detection results,
as was also pointed out by [15].

Gomez et al. [6] described that the errors due to the
fallacious severity in detection systems interfere with nor-
mal activities; accordingly, administrators should pursue the
detection causes by investigating the communications them-
selves. To address this problem, they developed a threat anal-
ysis console named THACO that visualizes DNS queries with
multiple heterogeneous network threat intelligence sources.
This system focuses on visualization while our approach
focuses on classification, both of which assist administrators
in efficiently analyzing malicious DNS queries and swiftly
pursuing their causes.

Since DNS queries accurately reflect various activi-
ties [16], many anomaly detection methods for DNS queries
have been proposed over the past decade. For example,
Cui et al. [17] explored various data mining algorithms for
obtaining useful patterns from an enormous volume of fast
evolving DNS queries. Robberechts et al. [18] designed and
implemented an anomaly detection system namedQLAD that
is applicable to the high volume and specific nature of queries
to the top-level DNS servers. In experiments, QLAD found
several anomalies of the sort that are of interest to registry
operators, such as domain enumerations and DoS attacks.
Li et al. [19] established a machine learning framework to
handle DGA (domain generation algorithm) malware threats.
A DGA is a technique to hide the callback communica-
tions from infected machines to their C&C (command-and-
control) server. This framework leverages the behaviors of
DNS queries for detecting infected machines because C&C
domains have different characteristics when compared with
other domains. Besides the above work, various methods
based on query behaviors have been proposed for detecting
the certain types of threats, such as botnets [20], advanced
persistent threat attacks [21], and water torture attacks [22].

Some previous studies have focused on analyzing DNS
queries and responses like our approach. Wang et al. [23]
developed a system called DBod that detects and classi-
fies infected machines on the basis of statistical similarity
between query behaviors. However, DBod is specific to DGA
malware and cannot be adapted to handle other kinds of mal-
ware. Berger et al. [7] developed a system called DNSMap
that discovers potentially compromisedmachines on the basis
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FIGURE 1. Overview of the cause-based classification approach for
malicious DNS queries.

of rapidly changing DNS queries. DNSMap derives the sim-
ilarity of character strings in domain names by considering
their hierarchical structure, but the superficial similarity is
insufficient for well classifying malicious queries by their
causes. Not only DNSMap but also most other work [8]–[10]
has adopted the superficial similarity of domain names.

III. PROPOSAL
In this paper, we propose a cause-based classification
approach for malicious DNS queries detected through black-
lists. This approach is motivated by the fact that a malware
communication is divided into several transactions, each of
which generates queries related to the malware, so the sur-
rounding queries that occur before and after amalicious query
detected through blacklists help in estimating the cause of
the malicious query. By numerically comparing their sur-
rounding queries, the approach is able to classify malicious
queries by their causes. Unlike conventional classification,
which is based on the superficial similarity of character
strings in domain names, our cause-based classification can
efficiently analyze malware communications, allowing mea-
sures for the infected machines in the network to be taken
swiftly. General classification techniques in natural language
processing could probably be applied by regarding a mali-
cious query and surrounding queries as words. Le et al. [24]
proposed Doc2Vec, which classifies various documents by
using co-occurrences between words. Unfortunately, the per-
formance deteriorates due to the influence of queries irrele-
vant to the classification. In contrast, our approach weights
queries based on insight about malware communications.

Figure 1 shows an overview of the proposed approach,
which has three functions: (1) Query Sub-log Selection,
(2) Numerical Representation, and (3) Similarity Calculation.

The following sections describe a query log and each of these
functions in detail.

The proposed approach was initially introduced in our
previous work [25]. We significantly extend the previous
work by sophisticating each function further, evaluating the
approach from various perspectives through experiments, and
deeply discussing about the experimental results. Specially,
this paper presents a lot of evidence to prove the effectiveness
of our approach.

A. QUERY LOG
A query log for the input of our approach is a record of
queries for domain name resolution to an RDNS (recur-
sive DNS) server from machines on a network. Figure 2
shows an example of a query log for an RDNS server
with address 192.168.0.1. In the query log, each query has
values such as a timestamp, source address, and queried
domain name along with class and type. In particular,
note that domain names in the query log are shortened
to and replaced with primary domain names. A pri-
mary domain is the highest-level domain name given to
a registrar [26]. For example, the primary domain names
for www.ieee.org and smtp.kyutech.ac.jp would
respectively be ieee.org and kyutech.ac.jp.

B. QUERY SUB-LOG SELECTION
This function detects malicious queries from a query log
through comparison with blacklists. Then, queries before
and after a malicious query are selected from the query log,
forming a query sub-log. Note that a query sub-log contains
some queries related to malware communications.

A query xn in the query log is considered to be malicious if
the domain name in query xnmatches the entry in blacklist LB.
The function then selects all the queries with the same source
address as malicious query xn that occur within tα seconds of
either before or after malicious query xn. These queries con-
stitute the query sub-log Xn. This step is conducted because
these queries in query sub-log Xn help in estimating the cause
of malicious query xn. Finally, the output of the function is
set X, which comprises the N number of query sub-logs,
where N denotes the number of malicious queries detected
in the query log.

C. NUMERICAL REPRESENTATION
This function attempts to numerically represent queries based
on their co-occurrences by using two machine learning tech-
niques: Word2Vec [27] and soft clustering with Gaussian
mixture models [28]. This step extracts effective features
from the enormous number of queries included in all the
query sub-logs.

First, the function applies a Word2Vec model to all
the query sub-logs X to create a distributed representa-
tion based on co-occurrences between queries. A distributed
representation is to associate one data record with one
point in multi-dimensional space, and Word2Vec, which
has drawn considerable attention in the field of natural
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FIGURE 2. Example of a query log for an RDNS server.

language processing, expresses the features of each word as a
vector based on the assumption that each word in a sentence
has a strong relation with its surrounding words. We modify
Word2Vec to change its focus from words in a sentence to
queries in a query sub-log as follows: (1) we replace words
with queried domain names, and (2) whereas the conventional
Word2Vec algorithm uses the distance between words in
a sentence to measure co-occurrences, we use instead the
time interval between queries in a query sub-log, which is
restricted to within tβ seconds.

Next, the function applies soft clustering with Gaussian
mixture models to the distributed representation of queries.
Soft clustering yields the probability that each data point
belongs to each cluster. Because each cluster comprises
queries with similar co-occurrences in the clustering results,
a cluster can be expected to indicate a transaction in a mal-
ware communication. Finally, the output of the function is the
membership vector of each query, written as follows:

Ep(xi) =
(
p(c1|xi), · · · , p(cm|xi), · · · , p(cM |xi)

)
,

where M is the number of clusters and p(cm|xi) is the proba-
bility that query xi belongs to cluster cm.

D. SIMILARITY CALCULATION
This function calculates the feature vector from the mem-
bership vectors of the queries found in each query sub-log.
By comparing the similarity of feature vectors according
to their cosine distance, the function achieves cause-based
classification latently indicated by the malicious queries and
their surrounding queries. Note that we emphasize queries
commonly appearing in multiple query sub-logs based on the
following insight about malware communications: infected
machines in a same malware family repeatedly communicate
with a same malicious domain group.

Themembership vectors of the queries found in each query
sub-log imply the transactions constituting a malware com-
munication. In query sub-logs, the similarities of transactions
are strongly dependent on the similarities of causes. Thus,
the feature vector for each query sub-log is derived from the
weighted sum of the membership vectors of the queries found
in each query sub-log, as follows:

EXn =
∑

xi∈Xn
wα(xi) wβ (xi) wγ (xi) Ep(xi) .

Here, wγ = 0 if the domain name for query xi is included
in whitelist LW ; otherwise, wγ = 1. From the above insight
concerning malware communications, the weightswα andwβ
for query xi are respectively defined as

wα(xi) =
|Faddr(xi,X) ∩ Fname(xi,X)|

|Faddr(xi,X)|
and

wβ (xi) =
|Flist(xi,X) ∩ Fname(xi,X)|

|Flist(xi,X)|
whereFname(xi,X),Faddr(xi,X), andFlist(xi,X) are differing
subsets of set X. Fname(xi,X) is a set formed from query
sub-logs including a query with the same domain name as
query xi;Faddr(xi,X) is a set formed from query sub-logs that
consist of queries with the same source address as query xi;
Flist(xi,X) is a set formed from query sub-logs that are
detected by the same blacklist entry as query sub-log Xn
including query xi. Additionally, | · | indicates the number
of set elements. In short, wα and wβ give high weights to
the following two types: (1) queries to the same domain
that repeatedly occur from a machine, and (2) queries to the
same domain that repeatedly occur from machines detected
by a blacklist entry. Finally, the output of the function is the
similarities of malicious queries calculated by comparing the
feature vectors of query sub-logs on the basis of their cosine
distance.

IV. EVALUATION
In this section, we present our evaluation of the effective-
ness of the proposed approach based on experiments using
DNS queries observed on a campus network. This evaluation
focuses primarily on the classification accuracy of malicious
queries and the efficiency of the analysis of their causes.
We first describe the experimental setup in Section IV-A
and then discuss the experimental results in the following
sections.

A. EXPERIMENTAL SETUP
Figure 3 shows the layout of our campus network. The
campus network with two class B address blocks consists
of 132 access networks managed by 31 departments and
two wireless networks. We have managed only the core
and wireless networks, including the connection points to
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FIGURE 3. Layout of our campus network.

TABLE 1. Sources for blacklist LB and whitelist LW .

TABLE 2. Specifications of a machine for implementation.

the access networks. The total number of MAC addresses
observed at their connection points was about 9000. A total
of 337 access points are placed in the two wireless networks
that geographically cover most of our campus. The machines
of more than 6000 employees and students in addition to
many visitors connect to the two wireless networks. The
total number of machines connected to the two wireless
networks was 6500 at a given point in time; 56% of themwere
iOS, 20% were Windows, 20% were Android, and 4% were
macOS. The dataset used for the experiments comprises DNS
queries for RDNS servers observed from January 2017 to
February 2018 on the campus network, which total 372 GB
in size. For blacklist LB, we combined three public lists of
malicious domains [29]–[31]; for whitelist LW , we used the
top one million domains provided by Alexa [32]. Details of
the data sources are given in Table 1.

We set the parameters in our approach as follows: tα = 90
and tβ = 1.0. Also, the number of iterations, num-
ber of dimensions, and learning rate for Word2Vec were
set to 250,000, 100, and 0.0005, respectively. These five

TABLE 3. Characteristics of multivariate mixture models.

parameters were determined experimentally. Parameter opti-
mization will be addressed in future work. In soft clustering,
the BIC (bayesian information criterion) was used for model
decision. The parameters were selected according to the BICs
of 14 types of multivariate mixture models and up to 10 clus-
ters. The characteristics of the types of multivariate mixture
models are summarized in Table 3. For further details, refer
to [28].

For comparison with the proposed approach, we imple-
mented the two different approaches for classifying mali-
cious queries described in [7] and [24]. The specifications
of a machine for implementation are given in Table 2.
The first implementation uses the similarity of charac-
ter strings in domain names, and the second implementa-
tion uses Doc2Vec, which is a well-known extension to
Word2Vec. While Word2Vec derives the feature vectors of
words, Doc2Vec derives the feature vectors of documents.
We set the maximum distance between words for measur-
ing co-occurrences to 5 for Doc2Vec; the other parameters
were set to the same values as those used for the proposed
approach.

B. CLASSIFICATION ACCURACY
The authors of [33], [34] reported that many types of mal-
ware communicate through TXT-type queries. Therefore,
we considered TXT-type queries in which the domain names
matched blacklist entries to be malicious. Based on this cri-
terion, 388 queries with 158 unique domains were detected
from the dataset.

Figure 4 shows the experimental classification results,
using multidimensional scaling to visualize the similarity
among malicious queries. In the figure, each symbol rep-
resents a malicious query, and the distance between sym-
bols indicates the similarity between the malicious queries.
Because the symbols in Figures 4(a) and 4(b) are scattered,
it is difficult to determine the similarity of the malicious
queries. The respective reasons for performance deterioration
in the two compared implementations are (1) the limitations
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FIGURE 4. Experimental classification results.

of classifying malicious queries based on the superficial
similarity of character strings in domain names, and (2) the
influence of surrounding queries that are unnecessary for esti-
mating their causes. In contrast, our approach clearly classi-
fies the 388malicious queries detected through blacklists into
3 clusters, suggesting the possibility for efficient analysis.

The numbers of malicious queries classified into clus-
ters (1), (2), and (3) shown in Figure 4(c) were 1, 375,
and 12, respectively. We pursued their causes by investi-
gating both the malicious queries themselves and the sur-
rounding queries based on several services, such as web
search, WHOIS [35], and domain reputation [36]–[39]. Only
one malicious query was classified into cluster (1) because
so few surrounding queries occurred either before or after
the malicious query; namely, only seven queries to two
domains were observed during the period. In such a case,
i.e., when there are too few surrounding queries, it is dif-
ficult for the proposed approach to correctly derive simi-
larity. In cluster (2), queries related to domain reputation
frequently occurred before and after the malicious queries,
for example, queries to spamhaus.org, abuseat.org,
and barracudacentral.org. Accordingly, we believe
that the malicious queries in cluster (2) were caused
by misdetection of communications from some security
appliances. In cluster (3), queries to BitTorrent track-
ing sites occurred before and after the malicious queries,
for example, to opentrackr.org, asnet.pw, and
blackunicorn.xyz. The communications were to
domains included in the blacklists, and several studies have
reported malware that use P2P for interactions [40], [41].
Accordingly, we attribute the malicious queries in clus-
ter (3) to be due to malware infection. The results con-
firmed that each cluster consists of malicious queries with
a common cause, which suggests the possibility for accurate
classification.

Figure 5 shows the relationships between F-measure value,
number of clusters and cutoff distance in clustering malicious
queries, where F-measure value is a commonmetric for quan-
titatively evaluating classification accuracy [42]. This metric
penalizes the noise in each cluster, as follows:∑

A∈A
|A|
N

max
C∈C

2P(A,C)R(A,C)
P(A,C)+R(A,C)

.

Here, P(A,C) and R(A,C) are given by |A ∩ C|/|A| and
|C ∩ A|/|C|; C is a set of clusters, each of which consists
of malicious queries within a cutoff distance, and A is a set
of true clusters revealed by the above analysis; N indicates
the total number of elements, and | · | indicates the number
of set elements. We used UPGMA (unweighted pair-group
method using arithmetic averages) as a hierarchical clustering
algorithm [43]. The solid line in the figure indicates the
relationship between F-measure value and cutoff distance,
whereas the dashed line indicates the relationship between
number of clusters and cutoff distance. A cutoff distance
ranges from 0 to 1.0, where 0 means that queries with the
same similarity are classified into each cluster, and 1.0 means
that all queries are classified into one cluster. In Figures 5(a)
and 5(b), the highest F-measure value was roughly 0.25 at the
cutoff distance of 0.5, at which point the number of clusters
was over 80. In Figure 5(c), the F-measure value and number
of clusters reached the maximum and minimum at the cutoff
distance of 0.07, and after that, the two values remained
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FIGURE 5. F-measure value and number of clusters with respect to cutoff
distance in clustering malicious queries.

unchanged with increasing the cutoff distance up to 0.5. The
results indicate that the proposed approach arranges similar
malicious queries closely and different malicious queries far
away. Thus this approach enables classification with a high
accuracy compared to the two implementations.

TABLE 4. Number of queries for each cause in three types of data.

Summarizing the evaluation results, our approach success-
fully classified the 388 malicious queries detected through
blacklists into 3 clusters, each consisting of malicious queries
with a common cause. These results indicate that administra-
tors can pursue all the causes by investigating only represen-
tative queries of each cluster, and thereby swiftly address the
problem of infected machines in the network.

C. CLASSIFICATION ACCURACY FOR QUERY
DATA WITH VARIOUS DEVIATIONS
For evaluation as mentioned in Section IV-B, we used
388 queries with 158 unique domains that ware classified
into 3 causes. The data of these queries had large deviations
because one cluster consisted of 375 queries with a common
cause. Accordingly, we evaluated our approach using three
types of query data to clarify the impact of data deviations on
classification accuracy. Table 4 gives the number of queries
for each cause in three types of data generated by randomly
removing these 388 queries, where the cause number corre-
sponds to the cluster number in Figure 4(c).

Figure 6 shows the experimental classification results for
three types of query data, using multidimensional scaling to
visualize the similarity among malicious queries. Each sym-
bol represents a malicious query, each symbol type represents
the cause of a malicious query, and the distance between sym-
bols indicates the similarity between the malicious queries.
In Figures 6(a), 6(b), and 6(c), the malicious queries with
the same cause were classified into the same cluster; the
F-measure values of query data (A), (B), and (C) were max-
imized at the cutoff distances of 0.005, 0.005, and 0.03,
respectively. The results indicate that the proposed approach
arranges similar malicious queries closely and different mali-
cious queries far away for all the query data. Thus, the clas-
sification accuracy of this approach is unaffected by data
deviations.

D. CALCULATION TIME
The calculation time for each approach is listed in Table 5.
Note that the time required to select the query sub-log
is excluded, since this can be processed in advance. The
times for the two other implementations are 1.505 s and
1418.474 s, whereas our proposed approach had the worst
time at 3976.791 s. The portion requiring the most compu-
tation time in the proposed approach is the processing of
Word2Vec and soft clustering in the numerical representation
function, which accounted for 83% of the total time. Based on
this result, we investigated ways of improving the proposed
approach.

VOLUME 7, 2019 142997



A. Satoh et al.: Cause-Based Classification Approach for Malicious DNS Queries Detected Through Blacklists

FIGURE 6. Experimental classification results for three type of query data.
(a) Query data (A). (b) Query data (B). (c) Query data (C).

Figure 7 shows the relationships between calculation time,
loss value, and number of iterations in Word2Vec, where loss
value is the sum of deviations between the predicted value and
correct value when deriving co-occurrences. The solid line in
the figure indicates the relationship between calculation time
and number of iterations, whereas the dashed line indicates

TABLE 5. Experimental calculation time.

FIGURE 7. Calculation time and loss value with respect to number of
iterations in Word2Vec .

the relationship between loss value and number of iterations.
From the solid line increasing linearly we can infer the impor-
tance of keeping the number of iterations low in order to
shorten calculation time. The point indicated by (A) is where
the number of iterations is 250,000, which was used in the
previous experiments, whereas (B), (C), and (D) respectively
indicate 125,000, 500,000, and 1,000,000 iterations. The loss
values at (A), (B), (C), and (D) are respectively 12.844,
25.892, 8.585, and 5.876, indicating that the loss values have
nearly converged at point (B). Moreover, we examined the
classification results for points (B), (C), and (D) and found
no difference between them and the classification results for
point (A), results that are similar to those in Figure 4(c).
This is because the slight differences in co-occurrences are
absorbed in the subsequent soft clustering step. It is clear
from the results that calculation time can be significantly
shortened by terminating iteration on the basis of loss value
convergence.

In the soft clustering using 14 types of multivariate mixture
models with the number of clusters varying from 1 to 20,
the combination with the lowest BIC value, i.e., the combina-
tion best fitting the data, was EII with 4 clusters.We examined
the calculation times of the processes and found that most of
the time was taken up by complex models dealing with mul-
tiple variables, such as EEV, VEV, EVV, and VVV. Figure 8
shows the relationships between calculation time, BIC value,
and number of clusters for the EEV model. Note that in the
figure, calculation times and BIC values are shown relative
to those of the EII model. We focused on EEV because it
showed the lowest BIC among the complex models. Com-
pared with the EII model, it can be seen that the EEV model
requires a great deal of calculation time as the number of
clusters increases to fit the data. The relative calculation time
for 5 clusters was about 2.7, for 10 clusters was about 12,
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FIGURE 8. Calculation time and BIC value with respect to number of
clusters in EEV model.

TABLE 6. Qualitative comparison of two other implementations and our
approach.

and for 20 clusters was about 26. In addition, BIC is kept
at a constantly high value, demonstrating a bad fit with the
data. Specifically, the relative BIC value for 5 clusters was
about 1.2, whereas for 10 clusters, it was about 1.5. It is clear
from this result that the calculation time can be significantly
shortened by successively excluding incompatible models
based on the BIC value.

By improving our approach based on the above-mentioned
two results, we confirmed that the calculation time can be
reduced from 3976.791 s to 1442.302 s. The calculation time
of this improved approach is almost equal to that of the
method in [24].

E. QUALITATIVE COMPARISON
A qualitative comparison of the approaches is presented
in Table 6. The factors for comparison are classification accu-
racy, calculation time, efficiency of analysis, flexibility, and
versatility of approach. Looking at the results, firstly, the pro-
posed approach has a higher classification accuracy than the
other approaches, as discussed in Section IV-B. Since the
investigation scope is limited to only representative queries
in the classification results, the load on the administrator can
be substantially reduced. On the other hand, the proposed
approach requires a large computation time, although this
can be improved as discussed in Section IV-D. Secondly,
existing approaches based on the similarity of domain name
character strings simply classify communications with the
same domain as identical malicious queries, whereas our
proposed approach focuses on both malicious queries and
the accompanying queries, enabling an extremely flexible
classification. For example, the approach can (1) distinguish

malware communications to the same domain as different
malicious queries on the basis of the success or failure of com-
munication, and (2) distinguish communications consisting
of multiple domains in coordination, as typified by malvertis-
ing [44] and malware distribution network [45], as the same
malicious query on the basis of similarity of the destination.
Finally, the proposed approach is highly versatile, having a
range of applications not limited to DNS query logs. More
concretely, it can potentially be applied to various system
logs, such as those for anomaly detection, firewall, and web
proxy.

One of the most essential tasks keeping the detection per-
formance is to update blacklists. The proposed approach is
based on the following observations: the surrounding queries
that occur with a malicious query detected through blacklists
depend on the cause of the malicious query, and accordingly,
when malicious queries detected before and after updating
involve similar surrounding queries, they will be classified
into the same cluster. Thus, the classification accuracy of this
approach is unaffected by updating blacklists.

An important issue is poisoning attacks against the training
model in our approach. A poisoning attack pollutes the query
log by initiating queries that looks like normal name reso-
lution with spoofed IPs, and thereby might violate the soft
clustering with gaussian mixture models to the distributed
representation of queries. Adversarial machine learning [46]
including such an attack is one of the interesting research
fields. For example, Suciu et al. [47] proposed FAIL models
that accurately evaluate the threat of realistic attacks against
machine learning systems for improving defense mecha-
nisms. Jagielski et al. [48] designed a new principled defense
algorithm with significantly increased robustness against a
large class of poisoning attacks. In addition to the findings
reported in [47], [48], we expect that detection methods based
on DNS traffic behaviors [49] are effective for this type of
attack. This is because the attack will indicate similar behav-
iors to Kaminsky attacks by repeatedly initiating queries with
spoofed IPs.

As mentioned in Section IV-B, the accuracy of the clas-
sification results using the proposed approach is determined
based on our analysis. There are two main reasons for this.
First, unlike datasets of other formats such as traffic [50],
spam [51], malware binaries [52], and C&C domains [53],
the format of query logs does not have a public dataset. Sev-
eral studies have surely focused on collecting DNS datasets.
For example, Kountouras et al. [54] implemented a system,
Thales, that creates massive amounts of malicious domain
names by distilling freely available and multiple sources.
Pearce et al. [55] developed a scalable, accurate, and ethical
system, Iris, that measures global name resolution with active
manipulation for tracking the trends of domain names that
evolve over time. However, various activities are reflected by
query logs observed on private networks, and accordingly,
DNS datasets including the query logs still have privacy con-
cerns. Second, there are no established methods to evaluate
the classification results because there are no studies that have
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the same focus and approach as this one. Although there is
some lack of objectivity, we believe that the results of our
research hold important implications for subsequent studies
with respect to guidelines and standards.

V. CONCLUSION
In this study, we aimed to classify malicious DNS queries
detected through blacklists by their causes. Unlike the con-
ventional classification approach, which is based on the
superficial similarity of character strings and hierarchical
structures in domain names, our cause-based classification
drastically reduces the number of malicious DNS queries
to be investigated because the investigation scope is limited
to only representative queries in the classification results.
Through experiments, we confirmed that our approach could
group the 388 malicious queries into 3 clusters, each com-
prising queries with a common cause. These results indi-
cated that administrators can briefly pursue all the causes
by investigating only representative queries of each cluster.
By enabling administrators to swiftly address the problem
of infected machines in the network, our approach is able to
dramatically improve network security.

The most important contribution of this study is that it
showed that surrounding queries help in classifyingmalicious
queries by their causes. The results can potentially be applied
not only to DNS query logs but also to various system logs,
such as those for anomaly detection, firewall, and web proxy.
Moreover, we believe that our findings enhance both the
detection of various malicious activities and their precise
classification, with cross-sectional analysis of multiple sys-
tem logs through the SIEM (security information and event
management) [56].

In future work, we plan to evaluate the proposed approach
by usingmultiple system logs through the SIEM.Wewill also
consider adding a new function to remove clusters unrelated
to malware communications.
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