
1404
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

LETTER

Clustering Malicious DNS Queries for Blacklist-Based Detection∗
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SUMMARY Some of the most serious threats to network security in-
volve malware. One common way to detect malware-infected machines in
a network is by monitoring communications based on blacklists. However,
such detection is problematic because (1) no blacklist is completely reli-
able, and (2) blacklists do not provide the sufficient evidence to allow ad-
ministrators to determine the validity and accuracy of the detection results.
In this paper, we propose a malicious DNS query clustering approach for
blacklist-based detection. Unlike conventional classification, our cause-
based classification can efficiently analyze malware communications, al-
lowing infected machines in the network to be addressed swiftly.
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1. Introduction

Some of the most serious threats to network security in-
volve malware. Cyber-criminals use malware-infected ma-
chines to undertake malicious activities such as stealing
confidential information, distributing malware, and send-
ing spam. According to a McAfee report [1], over 300,000
new forms of malware are created each day. To prevent
damage from malware, administrators must swiftly identify
and remove infected machines that reside in their networks.
One common way to detect infected machines in a network
is by monitoring communications based on blacklists. To
improve the detection capability, several studies have at-
tempted to automatically update blacklist entries by using
machine learning techniques [2]. However, such detection is
problematic because (1) no blacklist is completely reliable,
and (2) blacklists do not provide the sufficient evidence to al-
low administrators to determine the validity and accuracy of
the detection results. Therefore, simply matching commu-
nications with blacklist entries is insufficient, and adminis-
trators should pursue their causes by investigating the com-
munications themselves.

The goal of this study is to classify malicious DNS
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queries detected through blacklists by their causes. We fo-
cus on DNS because domain name resolution always occurs
prior to malware communications. This cause-based clas-
sification drastically reduces the number of malicious DNS
queries to be investigated because the investigation scope
is limited to only representative queries in classification re-
sults. The remainder of this paper is organized as follows:
In Sect. 2, we review the related studies and their limita-
tions. In Sect. 3, we propose a malicious DNS query clus-
tering approach for blacklist-based detection. We describe
experiments conducted to analyze the effectiveness of our
approach in classifying malicious DNS queries in Sect. 4.
Finally, we summarize our conclusions and future work in
Sect. 5.

2. Related Work

Kheir et al. [3] showed that blacklists typically contain a
considerable number of errors. These errors stem from do-
mains containing mixed benign and malicious codes, such
as cloud services, advertising networks, and dynamic DNSs.
Automatically generated blacklists simply exacerbate this
problem. The authors of [3] attempted to improve the detec-
tion accuracy by cross-checking domains on multiple black-
lists. However, a blacklist has specific coverage; conse-
quently, cross-checking greatly narrows the coverage.

Kührer et al. [4] evaluated the effectiveness of 19 types
of blacklists by considering factors, such as unregistered do-
mains, parking domains, and sinkhole domains. In the eval-
uation, the authors of [4] used only datasets prelabeled as
benign or malicious. This is because the investigation scope
expands proportionally to the number of detections, which
complicates determining the validity and accuracy of detec-
tion results.

Some previous studies have focused on analyzing DNS
queries and responses. Wang et al. [5] developed a sys-
tem called DBod that detects and classifies infected ma-
chines based on the statistical similarity of query behaviors.
However, DBod is specific to domain generation algorithm-
based malware and cannot be applied to other kinds of mal-
ware. Berger et al. [6] developed a system called DNSMap
that discovers potentially compromised machines by rapidly
changing DNS queries. DNSMap derives the similarity of
character strings in domain names by considering their hi-
erarchical structure but the superficial similarity does not
perform sufficiently well in classifying malicious queries by
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their causes.

3. Proposal

In this paper, we propose a malicious DNS query cluster-
ing approach for blacklist-based detection. This approach
focuses on the following observation: a malware commu-
nication is divided into several transactions; thus surround-
ing queries that occur before and after a malicious query
detected through blacklists help in estimating the cause of
the malicious query. By numerically comparing their sur-
rounding queries, the approach is able to classify malicious
queries by their causes. Unlike conventional classification,
which is based on the superficial similarity of character
strings in domain names, our cause-based classification can
efficiently analyze malware communications, allowing in-
fected machines in the network to be addressed swiftly.

General classification techniques in natural language
processing can be probably applied by regarding a malicious
query and surrounding queries as words. Le et al. [7] pro-
posed Doc2Vec that classifies various documents by using
co-occurrences between words. Unfortunately, the perfor-
mance deteriorates due to the influence of irrelevant queries
to classification. In contrast, our approach weights queries
based on insight about malware communications.

Figure 1 shows an overview of the proposed approach,
which has three functions: (1) Query Sub-log Selection,
(2) Numerical Representation, and (3) Similarity Calcula-
tion. The following sections describe each function in de-
tail.

3.1 Query Sub-Log Selection

A query log for the input of our approach is a record of
queries for domain name resolution to a recursive DNS from

Fig. 1 Overview of the malicious DNS query clustering approach for
blacklist-based detection.

machines on a network. In the query log, each query has
values such as a timestamp, source address, and queried do-
main name along with class and type. In particular, note
that domain names in the query log are shortened to and
replaced to primary domain names. A primary domain is
the highest-level domain name given to a registrar. For ex-
ample, the primary domain names for www.ieice.org and
smtp.kyutech.ac.jp would respectively be ieice.org
and kyutech.ac.jp.

First, this function detects malicious queries from a
query log through comparison with blacklists. A query xn in
the query log is considered to be malicious when the domain
name in query xn matches the entry in blacklist LB. The
function then selects all the queries with the same source
address as malicious query xn that occur within tα seconds
before and after malicious query xn. These queries form
the query sub-log Xn. This step is conducted because these
queries in query sub-log Xn help in estimating the cause of
malicious query xn. Finally, the output of the function is
set X, which consists of the N query sub-logs, where N de-
notes the number of malicious queries detected in the query
log.

3.2 Numerical Representation

This function attempts to numerically represent queries
based on their co-occurrences by using the two machine
learning techniques: Word2Vec [8] and soft clustering with
Gaussian Mixture Models [9]. Through this step, effective
features are extracted from the enormous number of queries
included in all the query sub-logs.

First, the function applies a Word2Vec model to all the
query sub-logs X to create a distributed representation based
on co-occurrences between queries. A distributed repre-
sentation is to associate one data with one point in multi-
dimensional space, and Word2Vec, which has drawn con-
siderable attention in the field of natural language process-
ing, expresses the features of each word as a vector based
on the assumption that each word in a sentence has a strong
relation with its surrounding words. We modify Word2Vec
to change its focus from words in a sentence to queries in a
query sub-log as follows: (1) we replace words with queried
domain names, and (2) whereas the conventional Word2Vec
algorithm uses the distance between words in a sentence to
measure co-occurrences, we instead use time interval be-
tween queries in a query sub-log, where the time interval
between queries is restricted to within tβ seconds.

Next, the function applies soft clustering with Gaussian
Mixture Models to the distributed representation of queries.
Soft clustering yields the probability that each data point
belongs to each cluster. Because each cluster consists of
queries with similar co-occurrences in the clustering results,
a cluster can be expected to indicate a transaction in a mal-
ware communication. Finally, the output of the function is
the membership vector of each query, written as follows:

�p(xi) =
(

p(c1|xi), · · · , p(cm|xi), · · · , p(cM |xi)
)
,



1406
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

where M is the number of clusters and p(cm|xi) is the prob-
ability that query xi belongs to cluster cm.

3.3 Similarity Calculation

This function calculates the feature vector from the mem-
bership vectors of the queries found in each query sub-log.
By comparing the similarity of feature vectors according
to their cosine distance, the function achieves cause-based
classification latently indicated by the malicious queries and
their surrounding queries. Note that we emphasize queries
commonly appearing in multiple query sub-logs based on
the following insight about malware communications: in-
fected machines in a same malware family repeatedly com-
municate with a same malicious domain group.

The membership vectors of the queries found in each
query sub-log imply the transactions constituting a malware
communication; in query sub-logs, the similarities of trans-
actions are strongly dependent on the similarities of causes;
thus, the feature vector for each query sub-log is derived
from the weighted sum of the membership vectors of the
queries found in each query sub-log, as follows:

�Xn =
∑

xi∈Xn
wα(xi) wβ(xi) wγ(xi) �p(xi) .

Here, wγ = 0 if the domain name for query xi is included
in whitelist LW ; otherwise, wγ = 1. From the insight con-
cerning malware communications, the weights wα and wβ
for query xi are respectively defined as

wα(xi) =
|Faddr(xi,X) ∩ Fname(xi,X)|

|Faddr(xi,X)|
and

wβ(xi) =
|Flist(xi,X) ∩ Fname(xi,X)|

|Flist(xi,X)| ,

where Fname(xi,X), Faddr(xi,X), and Flist(xi,X) are differing
subsets of set X. Fname(xi,X) is a set formed from query
sub-logs including a query with the same domain name
as query xi; Faddr(xi,X) is a set formed from query sub-
logs that consist of queries with the same source address
as query xi; Flist(xi,X) is a set formed from query sub-logs
that are detected by the same blacklist entry as query sub-
log Xn including query xi. Additionally, | · | indicates the
number of set elements. Finally, the output of the function
is the similarities of malicious queries calculated by com-
paring the feature vectors of query sub-logs through their
cosine distance.

4. Evaluation

In this section, we evaluate the effectiveness of the proposed
approach through experiments using DNS queries observed
on a campus network. This evaluation focuses primarily on
the classification accuracy of malicious queries and the effi-
ciency of the analysis of their causes. We first describe the
experimental setup in Sect. 4.1 and then discuss the experi-
mental results in Sect. 4.2.

4.1 Experimental Setup

The dataset used for the experiments consisted of DNS
queries observed from January 2017 to February 2018 on a
campus network. For blacklist LB, we employed three pub-
lic listings of malicious domains [10]–[12]; for whitelist LW ,
we employed the top one million domains provided by
Alexa [13].

We set the parameters in our approach to the follow-
ing values: tα = 90 and tβ = 1.0. The number of iterations,
number of dimensions, and learning rate for Word2Vec were
set to 250,000, 100, and 0.0005, respectively. By experi-
mentally verifying several values, we determined the above
five parameters. We will address parameter optimization in
future work. In soft clustering, Bayesian Information Cri-
terion (BIC) was used for model decision. The parameters
were selected according to BICs of the 14 types of multi-
variate mixture models and number of clusters up to 20. For
further details refer to [9].

For comparison with the proposed approach, we im-
plemented the two different approaches for classifying mali-
cious queries described in [6] and [7]. The first implementa-
tion uses the similarity of character strings in domain names,
and the second implementation uses Doc2Vec, which is a
well-known extension to Word2Vec. While Word2Vec de-
rives the feature vectors of words, Doc2Vec derives the
feature vectors of documents. We set the maximum dis-
tance between words for measuring co-occurrences to 5 for
Doc2Vec; the other parameters were set to the same values
as those used for the proposed approach.

4.2 Discussion

The authors of [14] reported that many types of malware
communicate through TXT-type queries. Therefore, we
considered TXT-type queries in which the domain names
matched blacklist entries to be malicious. By matching
these criteria, 388 queries with 158 unique domains were
detected from the dataset.

Figure 2 shows the experimental results, using multi-
dimensional scaling to visualize the similarity among mali-
cious queries. In the figure, each symbol represents a mali-
cious query, and the distance between symbols indicates the
similarity between malicious queries. Because the symbols
in Figs. 2 (a) and 2 (b) are scattered, it is difficult to deter-
mine the similarity of the malicious queries. The respective
reasons for performance deterioration in the two compared
implementations are (1) the limitations of classifying mali-
cious queries based on the superficial similarity of character
strings in domain names, and (2) the influence of surround-
ing queries before and after malicious queries that are un-
necessary for estimating their causes. In contrast, our ap-
proach clearly classifies the 388 malicious queries detected
through blacklists into 3 clusters, suggesting the possibility
for efficient analysis.

The numbers of malicious queries classified into clus-
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Fig. 2 Experimental results.

ters (1), (2), and (3) in Fig. 2 (c) were 1, 375, and 12, re-
spectively. Only one malicious query was classified into
cluster (1) because nearly no surrounding queries occurred
either before or after the malicious query, i.e., only seven
queries to two domains were observed during the period.
In this case, it is difficult for the proposed approach to
correctly derive similarity. In cluster (2), queries related
to domain reputation frequently occurred before and af-
ter the malicious queries, for example, to spamhaus.org,
abuseat.org, and barracudacentral.org. Accord-
ingly, we believe that the malicious queries in cluster (2)
were caused by misdetection of communications from some
security appliances. In cluster (3), queries to BitTor-
rent tracking sites occurred before and after the malicious
queries, for example, to opentrackr.org, asnet.pw, and
blackunicorn.xyz. The communications were to do-
mains included in the blacklists, and several studies reported
malware that use P2P for interactions [15], [16]. Accord-
ingly, we attribute the malicious queries in cluster (3) to be
due to malware infection. The results confirmed that each
cluster consists of malicious queries with a common cause,
which suggests the possibility for accurate classification.

Concluding the evaluation, our approach realizes to
classify the 388 malicious queries detected through black-
lists into 3 clusters, and each cluster consists of malicious
queries with a common cause. These results indicate that ad-
ministrators can pursue all the causes by investigating only
representative queries of each cluster, and thereby swiftly
address infected machines in the network.

5. Conclusions

In this study, we aimed to classify malicious DNS queries
detected through blacklists by their causes. Through the
experiments, we confirmed that our approach could group
the 388 malicious queries into the 3 clusters consisting of
queries with a common cause. By enabling administrators
to swiftly address infected machines in the network, our ap-
proach contributes to dramatically improving network secu-
rity.

In future work, we plan to evaluate the proposed ap-

proach using non-TXT-type queries detected through black-
lists. We will also consider adding a new function to remove
clusters unrelated to malware communications.
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