Bull. Kyushu Inst. Tech. Pure Appl. Math. No. 67, 2020, pp. 29-42

SEVERAL COMPLETENESSES ON *v*-GENERALIZED METRIC SPACES

Tomonari Suzuki

Abstract

We can consider several completenesses on v-generalized metric spaces. In this paper, we study the relationship between the completenesses. In particular, we study κ -completeness.

1. Introduction

Throughout this paper we denote by **N** the set of all positive integers. Let X be a set. Then we denote by #X the cardinal number of X. We define a subset $X^{(k)}$ of X^k as follows: $(x_1, x_2, \ldots, x_k) \in X^{(k)}$ iff $(x_1, x_2, \ldots, x_k) \in X^k$ and x_1, x_2, \ldots, x_k are all different. For $k, \ell \in \mathbf{N}$, we denote by $k \% \ell$ the remainder when k is divided by ℓ .

In 2000, Branciari introduced the following interesting concept, named v-generalized metric space.

DEFINITION 1 (Branciari [2]). Let X be a set, let d be a function from $X \times X$ into $[0, \infty)$ and let $v \in \mathbb{N}$. Then (X, d) is said to be a *v*-generalized metric space if the following hold:

- (N1) $d(x, y) = 0 \Leftrightarrow x = y.$
- (N2) d(x, y) = d(y, x).
- (N3) $d(x, y) \le D(x, u_1, u_2, \dots, u_v, y)$ for any $x, u_1, u_2, \dots, u_v, y \in X$ such that $x, u_1, u_2, \dots, u_v, y$ are all different, where

$$D(x, u_1, u_2, \dots, u_{\nu}, y) = d(x, u_1) + d(u_1, u_2) + \dots + d(u_{\nu}, y).$$

We have studied the topological structure on this concept. See [4, 5, 6, 8, 9, 10, 11, 12] and references therein. For example, we know the following:

- 1- and 3-generalized metric spaces have the compatible topology.
- For any v ∈ N\{1,3}, there exists a v-generalized metric space which does not have the compatible topology.
- Every *v*-generalized metric space has the strongly compatible topology.
- Every v-generalized metric space has a sequentially compatible topology.

²⁰¹⁰ Mathematics Subject Classification. Primary 54E25, Secondary 54E50.

Key words and phrases. v-generalized metric space, completeness.

The author is supported in part by JSPS KAKENHI Grant Number 16K05207 from Japan Society for the Promotion of Science.

We can consider several completenesses on *v*-generalized metric spaces. See Section 2. In this paper, we study the relationship between the completenesses. In particular, we study κ -completeness.

2. Preliminaries

In this section, we give some preliminaries.

DEFINITION 2 ([1, 2, 7, 11, 13]). Let (X, d) be a v-generalized metric space. Let $\{x_n\}$ be a sequence in X and $x \in X$.

- $\{x_n\}$ is said to be *Cauchy* if $\lim_n \sup_{m>n} d(x_m, x_n) = 0$ holds.
- $\{x_n\}$ is said to be κ -Cauchy if

$$\lim_{n \to \infty} \sup \{ d(x_n, x_{n+1+j\kappa}) : j = 0, 1, 2, \ldots \} = 0$$

holds, where $\kappa \in \mathbf{N}$.

• $\{x_n\}$ is said to be \sum -Cauchy if

$$\sum_{j=1}^{\infty} d(x_j, x_{j+1}) < \infty$$

holds.

- $\{x_n\}$ is said to be (\sum, \neq) -Cauchy if $x_n \ (n \in \mathbb{N})$ are all different and $\{x_n\}$ is \sum -Cauchy.
- $\{x_n\}$ is said to converge to x if $\lim_n d(x_n, x) = 0$ holds.
- $\{x_n\}$ is said to converge exclusively to x if

$$\lim_{n\to\infty} d(x_n, x) = 0 \quad \text{and} \quad \liminf_{n\to\infty} d(x_n, y) > 0$$

hold for any $y \in X \setminus \{x\}$.

DEFINITION 3 ([1, 2, 7, 11]). Let (X, d) be a v-generalized metric space. Let $\kappa \in \mathbb{N}$.

- X is said to be *complete* if every Cauchy sequence converges.
- X is κ -complete if every κ -Cauchy sequence converges.
- X is said to be \sum -complete if every \sum -Cauchy sequence converges.
- X is (\sum, \neq) -complete if every (\sum, \neq) -Cauchy sequence converges.

REMARK. X is complete iff X is 1-complete.

DEFINITION 4 (see Example 1.1 in [3]). Let (X, d) be a v-generalized metric space. X is said to be *Hausdorff* if $\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x_n, y) = 0$ implies x = y.

PROPOSITION 5 (Proposition 6 in [1]). Let (X, d) be a v-generalized metric space and let $\kappa, \lambda \in \mathbb{N}$ such that λ is divisible by κ . Then the following hold:

- (i) Every κ -Cauchy sequence is λ -Cauchy.
- (ii) If X is λ -complete, then X is κ -complete.

LEMMA 6 (Lemma 15 in [7]). Let (X, d) be a 2-complete, v-generalized metric space. Then X is Hausdorff.

LEMMA 7 (Proposition 5.4 in [11]). Let (X, d) be a \sum -complete, v-generalized metric space. Then X is Hausdorff.

LEMMA 8 (Lemma 11 in [7]). Let (X, d) be a v-generalized metric space and let $\{x_n\}$ be a Cauchy sequence in X converging to some $z \in X$. Let $\{y_n\}$ be a sequence in X satisfying $\lim_{n \to \infty} d(x_n, y_n) = 0$. Then $\{y_n\}$ also converges to z.

LEMMA 9 (Lemma 13 in [7]). Let (X, d) be a (\sum, \neq) -complete, v-generalized metric space. Then X is complete.

THEOREM 10 (Proposition 17 in [7]). Let (X, d) be a v-generalized metric space where v is odd. Then the following are equivalent:

- X is complete.
- X is (\sum, \neq) -complete.

THEOREM 11 (Proposition 18 in [7]). Let (X,d) be a v-generalized metric space. Then the following are equivalent:

- X is 2-complete.
- X is (\sum, \neq) -complete and Hausdorff.

3. Lemmas

In this section, we prove some lemmas.

LEMMA 12. Let (X,d) be a v-generalized metric space. Let $\{a_n\}$ and $\{b_n\}$ be sequences in X satisfying

(1)
$$\lim_{n \to \infty} \sup\{d(a_n, b_m) : m \ge n\} = 0.$$

Define two subsets of X by

(2)
$$A = \{x \in X : \#\{n \in \mathbb{N} : a_n = x\} = \infty\}$$

and

(3)
$$B = \{x \in X : \#\{n \in \mathbb{N} : b_n = x\} = \infty\}.$$

Then the following hold:

- (i) $\lim_{n \to \infty} d(a, b_n) = 0$ holds for all $a \in A$.
- (ii) $\lim_{n \to \infty} d(a_n, b) = 0$ holds for all $b \in B$.

- (iii) If $A \neq \emptyset$ and $B \neq \emptyset$ hold, then there exists $z \in X$ satisfying $A = B = \{z\}$.
- (iv) If $\#\{a_n : n \in \mathbb{N}\} < \infty$ and $\#\{b_n : n \in \mathbb{N}\} < \infty$ hold, then there exist $z \in X$ and $\mu \in \mathbb{N}$ satisfying $a_n = b_n = z$ for all $n \in \mathbb{N}$ with $n \ge \mu$.

PROOF. We first show (i). Fix $a \in A$. Let $\varepsilon > 0$ be fixed. Then there exists $\lambda \in \mathbb{N}$ satisfying

$$\sup\{d(a_n, b_m): m \ge n\} < \varepsilon,$$

for $n \in \mathbb{N}$ with $n \ge \lambda$. We can choose $\mu \ge \lambda$ satisfying $a_{\mu} = a$. We have

$$\sup\{d(a, b_m) : m \ge \mu\} = \sup\{d(a_\mu, b_m) : m \ge \mu\} < \varepsilon$$

So we obtain (i).

We next show (ii). Fix $b \in B$. Let $\varepsilon > 0$ be fixed. Then there exists $\lambda \in \mathbb{N}$ satisfying

$$\sup\{d(a_n, b_m) : m \ge n \ge \lambda\} < \varepsilon$$

Fix $\ell \in \mathbf{N}$ with $\ell \geq \lambda$. Then we can choose $\mu \geq \ell$ satisfying $b_{\mu} = b$. We have

$$d(a_{\ell}, b) = d(a_{\ell}, b_{\mu}) \le \sup\{d(a_n, b_m) : m \ge n \ge \lambda\} < \varepsilon.$$

So we obtain (ii).

Let us prove (iii). By (i) and (ii), for all $(a,b) \in A \times B$, we have

$$\lim_{n\to\infty} d(a,b_n) = \lim_{n\to\infty} d(a_n,b) = 0,$$

which implies a = b. Thus, we obtain (iii).

(iv) follows from (iii).

LEMMA 13. Let (X, d) be a v-generalized metric space. Let $\{a_n\}$ and $\{b_n\}$ be sequences in X. Assume that there exists $\mu \in \mathbb{N}$ satisfying

$$\lim_{n\to\infty} \sup\{d(a_n,b_m): m\ge n+\mu\}=0.$$

Then

$$\lim_{n\to\infty} \sup\{\max\{d(a_n,b_m),d(a_m,b_n):m\geq n\}=0$$

holds.

PROOF. We first show

(4)
$$\lim_{n \to \infty} \sup\{d(a_m, b_n) : m \ge n\} = 0.$$

We consider the following three cases:

v-Generalized Metric Space

- (a) $\#\{a_n:n\in\mathbb{N}\}<\infty$.
- (b) $\#\{a_n : n \in \mathbf{N}\} = \infty$ and $\#\{b_n : n \in \mathbf{N}\} < \infty$.
- (c) $\#\{a_n : n \in \mathbf{N}\} = \infty$ and $\#\{b_n : n \in \mathbf{N}\} = \infty$.

In the case of (a), define a subset A of X by (2). It is obvious that $0 < \#A < \infty$ and $a_n \in A$ for sufficiently large $n \in \mathbb{N}$. By Lemma 12 (i), we have $\lim_n d(a, b_n) = \lim_n d(a, b_{n+\mu}) = 0$ for $a \in A$. So we have

$$\lim_{n\to\infty} \sup\{d(a_m,b_n): m\ge n\} = \lim_{n\to\infty} \max\{d(a,b_n): a\in A\} = 0.$$

In the case of (b), define a subset *B* of *X* by (3). It is obvious that $0 < \#B < \infty$ and $b_n \in B$ for sufficiently large $n \in \mathbb{N}$. By Lemma 12 (ii), we have $\lim_n d(a_n, b) = \lim_n d(a_{n-\mu}, b) = 0$ for $b \in B$. So we have

$$\lim_{n \to \infty} \sup\{d(a_m, b_n) : m \ge n\} = \lim_{n \to \infty} \sup\{d(a_m, b) : m \ge n, b \in B\} = 0.$$

In the case of (c), we fix $\varepsilon > 0$. Then there exists $\lambda_0 \in \mathbf{N}$ satisfying

$$\sup\{d(a_n, b_m) : m \ge n + \mu\} < \varepsilon$$

for $n \ge \lambda_0$. We can choose $\lambda, \lambda_1 \in \mathbb{N}$ satisfying $\lambda_0 < \lambda_1 < \lambda_1 + \mu < \lambda$ and

 $\#\{a_n: \lambda_0 < n < \lambda_1\} \ge 2\nu + 3 \qquad \text{and} \qquad \#\{b_n: \lambda_1 + \mu < n < \lambda\} \ge 2\nu + 3.$

Fix $m, n \in \mathbb{N}$ with $m \ge n \ge \lambda$. In the case where $a_m = b_n$ holds, we have $d(a_m, b_n) = 0 < \varepsilon$. In the other case, where $a_m \ne b_n$ holds, we can choose $f(1), \ldots, f(v), g(0), \ldots, g(v) \in \mathbb{N}$ satisfying

$$\lambda_0 < f(1) < \dots < f(v) < \lambda_1$$
$$< \lambda_1 + \mu < g(1) < \dots < g(v) < \lambda < m$$
$$< m + \mu < g(0)$$

and $(a_m, a_{f(1)}, \ldots, a_{f(\nu)}, b_n, b_{g(0)}, \ldots, b_{g(\nu)}) \in X^{(2\nu+3)}$. We consider the following three cases:

- (c-1) v is even.
- (c-2) v = 1.
- (c-3) v is odd with $v \ge 3$.

In the case of (c-1), we have

$$d(a_m, b_n) \le D(a_m, b_{g(0)}, a_{f(1)}, b_{g(1)}, \dots, a_{f(\nu/2-1)}, b_{g(\nu/2-1)}, a_{f(\nu/2)}, b_n)$$

< $(\nu + 1)\varepsilon$.

In the case of (c-2), we have

$$d(a_m, b_n) \leq D(a_m, b_{g(0)}, a_{f(1)}, b_n) < 3\varepsilon.$$

In the case of (c-3), we have

$$d(a_m, a_{f(1)}) \le D(a_m, b_{g(0)}, a_{f(2)}, b_{g(2)}, \dots, a_{f(\nu/2+1/2)}, b_{g(\nu/2+1/2)}, a_{f(1)})$$

< $(\nu + 1)\varepsilon$

and hence

$$d(a_m, b_n) \le D(a_m, a_{f(1)}, b_{g(1)}, \dots, a_{f(\nu/2 - 1/2)}, b_{g(\nu/2 - 1/2)}, a_{f(\nu/2 + 1/2)}, b_n)$$

< $(2\nu + 1)\varepsilon$.

Since $\varepsilon > 0$ is arbitrary, we have shown (4).

In particular, we have

$$\lim_{n\to\infty} \sup\{d(a_m, b_n): m \ge n+\mu\} = 0.$$

So, the above argument yields (1). Thus, we obtain the desired result.

LEMMA 14. Let (X,d) be a v-generalized metric space. Let $\{a_n\}$ and $\{b_n\}$ be sequences in X satisfying

$$\lim_{n\to\infty} \sup\{d(a_n, b_m) : m \ge n\} = 0.$$

Then

$$\lim_{n \to \infty} \sup\{d(a_m, b_n) : m \ge n\} = 0$$

holds. In other words, the sequence $\{u_n\}$ defined by

 $a_1, b_1, a_2, b_2, \ldots, a_n, b_n, a_{n+1}, b_{n+1}, \ldots$

is 2-Cauchy.

PROOF. By Lemma 13, we obtain the desired result. \Box

LEMMA 15. Let (X, d) be a v-generalized metric space. Let $\{a_n\}, \{b_n\}, \{c_n\}$ and $\{e_n\}$ be sequences in X satisfying

$$\lim_{n \to \infty} \sup\{d(a_n, b_m) : m \ge n\} = 0,$$
$$\lim_{n \to \infty} \sup\{d(b_n, c_m) : m \ge n\} = 0,$$
$$\lim_{n \to \infty} \sup\{d(c_n, e_m) : m \ge n\} = 0.$$

Assume $\#\{b_n : n \in \mathbf{N}\} = \#\{c_n : n \in \mathbf{N}\} = \infty$. Then

$$\lim_{n\to\infty} \sup\{d(a_n,e_m):m\ge n\}=0$$

holds.

34

PROOF. By Lemma 14, we have

 $\lim_{n \to \infty} \sup\{\max\{d(a_m, b_n), d(b_m, c_n), d(c_m, e_n)\} : m \ge n\} = 0.$

Let $\varepsilon > 0$ be fixed. Then there exists $\mu \in \mathbf{N}$ satisfying

$$\max\{d(a_n, b_m), d(b_n, c_m), d(c_n, e_m)\} < \varepsilon$$

for $m, n \in \mathbb{N}$ with $m \ge \mu$ and $n \ge \mu$. We can choose $\lambda, \lambda_1 \in \mathbb{N}$ satisfying $\mu < \lambda_1 < \lambda$ and

 $\#\{b_n : \mu < n < \lambda_1\} \ge 2\nu + 2$ and $\#\{c_n : \lambda_1 < n < \lambda\} \ge 2\nu + 2$.

Fix $m, n \in \mathbb{N}$ with $m \ge n \ge \lambda$. In the case where $a_n = e_m$ holds, we have $d(a_n, e_m) = 0 < \varepsilon$. In the other case, where $a_n \ne e_m$ holds, we can choose $f(1), \ldots, f(v), g(1), \ldots, g(v) \in \mathbb{N}$ satisfying

$$\mu < f(1) < \dots < f(\nu) < \lambda_1 < g(1) < \dots < g(\nu) < \lambda$$

and $(a_n, b_{f(1)}, \ldots, b_{f(\nu)}, c_{g(1)}, \ldots, c_{g(\nu)}, e_m) \in X^{(2\nu+2)}$. We consider the following three cases:

- (a) v is even.
- (b) v = 1.
- (c) v is odd with $v \ge 3$.

In the case of (a), we have

$$d(a_n, e_m) \le D(a_n, b_{f(1)}, c_{g(1)}, b_{f(2)}, c_{g(2)}, \dots, b_{f(\nu/2)}, c_{g(\nu/2)}, e_m)$$

< $(\nu + 1)\varepsilon$.

In the case of (b), we have

$$d(a_n, e_m) \le D(a_n, b_{f(1)}, c_{g(1)}, e_m) < 3\varepsilon.$$

In the case of (c), we have

$$d(a_n, c_{g(1)}) \le D(a_n, b_{f(2)}, c_{g(2)}, b_{f(3)}, c_{g(3)}, \dots, b_{f(\nu/2+3/2)}, c_{g(1)})$$

< $(\nu + 1)\varepsilon$

and hence

$$d(a_n, e_m) \le D(a_n, c_{g(1)}, b_{f(1)}, c_{g(2)}, b_{f(2)}, \dots, c_{g(\nu/2-1/2)}, b_{f(\nu/2-1/2)}, c_{g(\nu/2+1/2)}, e_m)$$

< $(2\nu + 1)\varepsilon$.

Since $\varepsilon > 0$ is arbitrary, we obtain the desired result.

LEMMA 16. Let (X, d) be a Hausdorff, v-generalized metric space. Let $\{x_n\}$ be a sequence in X converging to z. Then $\{x_n\}$ converges exclusively to z.

PROOF. Let $w \in X$ satisfy $\liminf_n d(x_n, w) = 0$. Then there exists a subsequence $\{f(n)\}$ of the sequence $\{n\}$ in N satisfying $\lim_n d(x_{f(n)}, w) = 0$. Since $\lim_n d(x_{f(n)}, z) = 0$ holds, $\{x_{f(n)}\}$ converges to w and z. Since X is Hausdorff, w = z holds. \Box

4. 1-Completeness

In this section, we prove 1-completeness is equivalent to 3-completeness.

THEOREM 17. Let (X, d) be a v-generalized metric space. Then the following are equivalent:

- (i) X is complete.
- (ii) X is 3-complete.

PROOF. By Proposition 5 (ii), we obtain (ii) \Rightarrow (i). Let us prove (i) \Rightarrow (ii). Let $\{x_n\}$ be a 3-Cauchy sequence in X. Define $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ by

$$a_n = x_{3n-2}, \quad b_n = x_{3n-1} \quad \text{and} \quad c_n = x_{3n-2}$$

for $n \in \mathbb{N}$. We only have to consider the following two cases:

(a) $\#\{a_n:n\in\mathbf{N}\}<\infty$ and $\#\{b_n:n\in\mathbf{N}\}<\infty$.

(b) $\#\{b_n : n \in \mathbf{N}\} = \#\{c_n : n \in \mathbf{N}\} = \infty.$

In the case of (a), by Lemma 12 (iv), there exist $z \in X$ and $\mu \in \mathbb{N}$ satisfying $a_n = b_n = z$ for all $n \in \mathbb{N}$ with $n \ge \mu$. It is obvious that $\{a_n\}$ and $\{b_n\}$ converge to z. By Lemma 12 (i), $\{c_n\}$ converges to z. Therefore $\{x_n\}$ converges to z. In the case of (b), since $\{x_n\}$ is 3-Cauchy, we have

$$\lim_{n \to \infty} \sup\{\max\{d(a_n, b_m), d(b_n, c_m), d(c_n, a_{m+1})\} : m \ge n\} = 0.$$

By Lemma 13, we have

$$\lim_{n\to\infty} \sup\{d(c_n,a_m):m\geq n\}=0.$$

By Lemma 15, we have

$$\lim_{n\to\infty} \sup\{d(a_n,a_m):m\geq n\}=0.$$

Therefore we obtain that $\{a_n\}$ is Cauchy. Since X is complete, $\{a_n\}$ converges to some $z \in X$. By Lemma 8, $\{b_n\}$ and $\{c_n\}$ also converge to z. Therefore $\{x_n\}$ converges to z.

5. 5-Completeness

In this section, we study 5-completeness.

THEOREM 18. Let (X,d) be a v-generalized metric space. Let $\lambda \in \mathbb{N}$ with $\lambda \geq 4$. Assume that X is λ -complete. Then X is $(\lambda - 2)$ -complete.

PROOF. Put $\kappa = \lambda - 2$. Let $\{x_n\}$ be a κ -Cauchy sequence in X. We define sequences $\{u_n^{(j)}\}$ by

$$u_n^{(j)} = x_{(n-1)\kappa+j}$$

for $j \in \{1, ..., \kappa\}$ and $n \in \mathbb{N}$. By Lemma 14, the sequence defined by

$$u_1^{(1)}, u_1^{(2)}, u_2^{(1)}, u_2^{(2)}, \dots, u_n^{(1)}, u_n^{(2)}, u_{n+1}^{(1)}, u_{n+1}^{(2)}, \dots$$

is 2-cauchy. Define a sequence $\{y_n\}$ by

$$u_1^{(1)}, u_1^{(2)}, u_1^{(1)}, u_1^{(2)}, u_1^{(3)}, \dots, u_1^{(\kappa)}, u_2^{(1)}, u_2^{(2)}, u_2^{(1)}, u_2^{(2)}, u_2^{(3)}, \dots, u_2^{(\kappa)}, \dots$$

Then $\{y_n\}$ is λ -Cauchy. Since X is λ -complete, $\{y_n\}$ converges to some $z \in X$. Since $\{x_n\}$ is a subsequence of $\{y_n\}$, $\{x_n\}$ also converges to z. Therefore X is κ -complete.

LEMMA 19. Let (X, d) be a κ -complete, ν -generalized metric space where $\kappa \in \mathbb{N} \setminus \{1, 3\}$ holds. Then X is Hausdorff.

PROOF. We have proved the conclusion in the case where $\kappa = 2$; see Lemma 6. So we assume $\kappa \ge 4$. Let $\{x_n\}$ be a sequence in X converging to z and w in X. Then the sequence $\{y_n\}$ defined by

$$z, x_2, \underbrace{w, \ldots, w}_{\kappa-3}, x_{\kappa}, z, x_{\kappa+2}, \underbrace{w, \ldots, w}_{\kappa-3}, x_{2\kappa}, z, x_{2\kappa+2}, \underbrace{w, \ldots, w}_{\kappa-3}, x_{3\kappa}, z, \ldots$$

is κ -Cauchy. Since X is κ -complete, $\{y_n\}$ converges to some $x \in X$. It is obvious that z = x = w holds.

THEOREM 20. Let (X, d) be a v-generalized metric space. Let $\kappa \in \mathbb{N}$ with $\kappa \geq 4$. Assume that X is κ -complete. Then X is $(\kappa + 2)$ -complete.

PROOF. By Lemma 19, we note that X is Hausdorff. Put $\lambda = \kappa + 2$. Let $\{x_n\}$ be a λ -Cauchy sequence in X. We define sequences $\{u_n^{(j)}\}$ by

$$u_n^{(j)} = x_{(n-1)\lambda+j}$$

for $j \in \{1, ..., \lambda\}$ and $n \in \mathbb{N}$. We consider the following two cases:

(a) There exists $j \in \{1, 2, ..., \lambda\}$ satisfying

$$\#\{u_n^{(j)}:n\in\mathbf{N}\}=\infty\qquad\text{and}\qquad\#\{u_n^{(j+1)}:n\in\mathbf{N}\}=\infty,$$

where $\lambda + 1 = 1$.

(b) For any $j \in \{1, 2, \dots, \lambda\}$, either

 $#\{u_n^{(j)}:n\in\mathbf{N}\}<\infty$ or $#\{u_n^{(j+1)}:n\in\mathbf{N}\}<\infty$

holds, where $\lambda + 1 = 1$.

In the case of (a), by Lemma 15, the sequence
$$\{y_n\}$$
 defined by

$$u_1^{(1)}, u_1^{(4)}, u_1^{(5)}, u_1^{(6)}, \dots, u_1^{(\lambda)}, u_2^{(1)}, u_2^{(4)}, u_2^{(5)}, u_2^{(6)}, \dots, u_2^{(\lambda)}, \dots$$

is κ -Cauchy. Since X is κ -complete, $\{y_n\}$ converges to some $z \in X$. In particular, $\{u_n^{(1)}\}\$ converges to z. Define a sequence $\{z_n\}\$ by

$$u_1^{(1)}, u_1^{(2)}, u_1^{(3)}, u_1^{(4)}, \underbrace{z, \dots, z}_{\kappa-4}, u_2^{(1)}, u_2^{(2)}, u_2^{(3)}, u_2^{(4)}, \underbrace{z, \dots, z}_{\kappa-4}, \dots$$

Then in the case where $\kappa \ge 5$, it is obvious that $\{z_n\}$ is κ -Cauchy. In the other case, where $\kappa = 4$, by Lemma 13, $\{z_n\}$ is κ -Cauchy. Since X is κ -complete, $\{z_n\}$ converges. Since $\{u_n^{(1)}\}$ converges to z, $\{z_n\}$ converges to z. Therefore $\{u_n^{(2)}\}$ and $\{u_n^{(3)}\}$ converge to z. So $\{x_n\}$ converges to z.

In the case of (b), without loss of generality, we may assume $\#\{u_n^{(1)}: n \in \mathbb{N}\} < \infty$. We can choose z satisfying $\#\{n \in \mathbb{N} : u_n^{(1)} = z\} = \infty$. We consider the following two cases:

(b-1) $\#\{u_n^{(2)}: n \in \mathbf{N}\} < \infty.$ (b-2) $\#\{u_n^{(2)}: n \in \mathbf{N}\} = \infty.$

In the case of (b-1), by Lemma 12 (iv), $u_n^{(1)} = u_n^{(2)} = z$ holds for sufficiently large $n \in \mathbb{N}$. In the case of (b-2), by Lemma 12 (i), $\lim_{n \to \infty} u_n^{(2)} = 0$ holds. Since X is Hausdorff, $u_n^{(1)} = z$ holds for sufficiently large $n \in \mathbb{N}$. Since $\#\{u_n^{(3)} : n \in \mathbb{N}\} < \infty$ holds, $u_n^{(3)} = z$ holds for sufficiently large $n \in \mathbb{N}$. Thus, we can prove that $\{u_n^{(j)}\}$ converges to z for any $j \in \{1, \dots, \lambda\}$. Therefore $\{x_n\}$ converges to z. Therefore X is κ -complete.

THEOREM 21. Let (X, d) be a v-generalized metric space. Then the following are *equivalent*:

 \square

- (i) X is 5-complete.
- (ii) X is $(2\kappa + 3)$ -complete for any $\kappa \in \mathbb{N}$.
- (iii) X is $(2\kappa + 3)$ -complete for some $\kappa \in \mathbb{N}$.

PROOF. By Theorem 20, we can prove (i) \Rightarrow (ii). (ii) \Rightarrow (iii) obviously holds. By Theorem 18, We can prove (iii) \Rightarrow (i).

2-Completeness 6.

In this section, we study 2-completeness.

THEOREM 22. Let (X,d) be a 2-complete, v-generalized metric space. Then X is κ -complete for any $\kappa \in \mathbb{N}$.

PROOF. By Proposition 5 (ii), X is 1-complete. So we assume $\kappa \ge 3$. By Lemma 6, we note that X is Hausdorff. Let $\{x_n\}$ be a κ -Cauchy sequence in X. We define sequences $\{u_n^{(j)}\}$ by

$$u_n^{(j)} = x_{(n-1)\kappa+j}$$

for $j \in \{1, ..., \kappa\}$ and $n \in \mathbb{N}$. Let $\{v_n^{(1,2)}\}$ be the sequence defined by

$$u_1^{(1)}, u_1^{(2)}, u_2^{(1)}, u_2^{(2)}, \dots, u_n^{(1)}, u_n^{(2)}, u_{n+1}^{(1)}, u_{n+1}^{(2)}, \dots$$

By Lemma 14, $\{v_n^{(1,2)}\}$ is 2-Cauchy. Since X is 2-complete, $\{v_n^{(1,2)}\}$ converges to some $z^{(1,2)} \in X$. Similarly, we can prove that the sequence $\{v_n^{(2,3)}\}$ defined by

$$u_1^{(2)}, u_1^{(3)}, u_2^{(2)}, u_2^{(3)}, \dots, u_n^{(2)}, u_n^{(3)}, u_{n+1}^{(2)}, u_{n+1}^{(3)}, \dots$$

converges to some $z^{(2,3)} \in X$. So $\{u_n^{(2)}\}$ converges to $z^{(1,2)}$ and $z^{(2,3)}$. Since X is Hausdorff, we obtain $z^{(1,2)} = z^{(2,3)}$. Therefore $\{u_n^{(3)}\}$ also converges to $z^{(1,2)}$. Thus we can prove $\{u_n^{(j)}\}$ converges to $z^{(1,2)}$ for $j \in \{1, 2, ..., \kappa\}$. Therefore $\{x_n\}$ converges to $z^{(1,2)}$. We have shown that X is κ -complete.

THEOREM 23. Let (X, d) be a v-generalized metric space. Then the following are equivalent:

- (i) X is 2-complete.
- (ii) X is 2κ -complete for any $\kappa \in \mathbf{N}$.
- (iii) X is 2κ -complete for some $\kappa \in \mathbf{N}$.

PROOF. By Theorem 22, we obtain (i) \Rightarrow (ii). (ii) \Rightarrow (iii) obviously holds. By Proposition 5 (ii), we obtain (iii) \Rightarrow (i).

THEOREM 24. Let (X, d) be a v-generalized metric space where v is odd. Then the following are equivalent:

- (i) X is complete and Hausdorff.
- (ii) *X* is κ -complete for any $\kappa \in \mathbb{N} \setminus \{1, 3\}$.
- (iii) X is κ -complete for some $\kappa \in \mathbb{N} \setminus \{1, 3\}$.

PROOF. We first show (i) \Rightarrow (ii). We assume (i). By Theorem 10, X is (\sum, \neq) complete. By Theorem 11, X is 2-complete. By Theorem 22, X is κ -complete for
any $\kappa \in \mathbb{N}$. (ii) \Rightarrow (iii) obviously holds. Let us prove (iii) \Rightarrow (i). We assume (iii). By
Proposition 5 (ii), X is 1-complete, thus, X is complete. By Lemma 19, X is Hausdorff.

7. \sum -Completeness

In this section, we study \sum -completeness.

LEMMA 25. Let (X, d) be a Hausdorff, v-generalized metric space. Let $\{x_n\}$ be a sequence in X. Assume that there exist $\kappa \in \mathbb{N}$ and a subsequence $\{f(n)\}$ of $\{n\}$ in \mathbb{N} satisfying the following:

- $f(n) \% \kappa = n \% \kappa$.
- Every subsequence $\{x_{g(n)}\}$ of $\{x_n\}$ converges provided $g(n) \ge f(n)$ and $g(n) \% \kappa = n \% \kappa$ hold for any $n \in \mathbb{N}$.

Then $\{x_n\}$ converges.

PROOF. From the assumption, $\{x_{f(n)}\}$ converges to some $z \in X$. Arguing by contradiction, we assume $\limsup_n d(x_n, z) > 0$. Then there exist $\varepsilon > 0$ and a subsequence $\{g(n)\}$ of $\{n\}$ in **N** satisfying $d(x_{g(n)}, z) \ge \varepsilon$ for any $n \in \mathbf{N}$. We can choose $\lambda \in \{0, 1, \ldots, \kappa - 1\}$ satisfying

$$\#\{n \in \mathbf{N} : g(n) \% \kappa = \lambda\} = \infty.$$

Without loss of generality, we may assume $g(n) \% \kappa = \lambda$ for all $n \in \mathbb{N}$. We can choose a subsequence $\{h(n)\}$ of $\{n\}$ in \mathbb{N} satisfying

$$h(n) \% \kappa = n \% \kappa,$$

$$h(n) \ge f(n),$$

$$h(2i\kappa + \lambda) \in g(\mathbf{N}),$$

$$h(2i\kappa + \ell) \in f(\mathbf{N}),$$

$$h(2i\kappa + \kappa + j) \in f(\mathbf{N})$$

for any $n, i \in \mathbb{N}$, $\ell \in \{0, 1, ..., \kappa - 1\} \setminus \{\lambda\}$ and $j \in \{0, 1, ..., \kappa - 1\}$. From the assumption, $\{x_{h(n)}\}$ converges to some $w \in X$. By Lemma 16, $\{x_{h(n)}\}$ converges exclusively to $w \in X$. So, since

$$\lim_{i\to\infty} d(x_{h(2i\kappa+\kappa+\lambda)},z) = 0$$

holds, we have z = w. However, since

$$d(x_{h(2i\kappa+\lambda)}, z) \ge \varepsilon$$

holds for $i \in \mathbb{N}$, we have $z \neq w$, which implies a contradiction. Therefore we have shown $\lim_{n \to \infty} d(x_n, z) = 0$.

We give an alternative proof of the following:

THEOREM 26 (Proposition 5.4 in [11]). Let (X, d) be a \sum -complete, v-generalized metric space. Then X is κ -complete for any $\kappa \in \mathbb{N}$.

PROOF. By Lemma 7, we first note that X is Hausdorff. Let $\{x_n\}$ be a κ -Cauchy sequence in X. Choose a subsequence $\{f(n)\}$ of $\{n\}$ in N satisfying the following:

• $f(n) \% \kappa = n \% \kappa$.

• $\sup\{d(x_{\ell}, x_{\ell+1+j\kappa}) : j = 0, 1, 2, ...\} < 2^{-n}$ holds for any $\ell, n \in \mathbb{N}$ with $\ell \ge f(n)$. Let $\{g(n)\}$ be a subsequence of $\{n\}$ in \mathbb{N} satisfying the following:

- $g(n) \ge f(n)$.
- $g(n) \% \kappa = n \% \kappa$.

Then we have

$$\sum_{n=1}^{\infty} d(x_{g(n)}, x_{g(n+1)}) < \sum_{n=1}^{\infty} 2^{-n} = 1 < \infty.$$

Since X is \sum -complete, $\{x_{g(n)}\}$ converges. We have shown the assumption of Lemma 25. So, by Lemma 25, $\{x_n\}$ converges.

8. Conclusion

Throughout this section, we denote by (\sum) that (X, d) is \sum -complete. Similarly for (2), (\sum, \neq) , (5) and (1).

THEOREM 27. Let (X, d) be a v-generalized metric space. Then

$$(\sum) \Rightarrow (2) \Rightarrow (\sum, \neq) \Rightarrow (1)$$

and

$$(\sum) \Rightarrow (2) \Rightarrow (5) \Rightarrow (1)$$

hold.

PROOF. By Theorem 26, we obtain $(\sum) \Rightarrow (2)$. By Theorem 11, we obtain $(2) \Rightarrow (\sum, \neq)$. By Lemma 9, we obtain $(\sum, \neq) \Rightarrow (1)$. By Theorem 22, we obtain $(2) \Rightarrow (5)$. By Proposition 5 (ii), we obtain $(5) \Rightarrow (1)$.

THEOREM 28. Let (X, d) be a v-generalized metric space where v is odd with $v \ge 5$. Then

$$(\sum) \Rightarrow (2) \Leftrightarrow (5) \Rightarrow (\sum, \neq) \Leftrightarrow (1)$$

holds.

PROOF. By Theorem 24, we obtain $(2) \Leftrightarrow (5)$. By Lemma 9, we obtain $(\sum, \neq) \Leftrightarrow (1)$.

References

 B. Alamri, T. Suzuki and L. A. Khan, Caristi's fixed point theorem and Subrahmanyam's fixed point theorem in v-generalized metric spaces, J. Funct. Spaces, 2015, Art. ID 709391, 6 pp. MR3352136

- [2] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. MR1771669
- [3] I. Ramabhadra Sarma, J. Madhusudana Rao and S. S. Rao, Contractions over generalized metric spaces, J. Nonlinear Sci. Appl., 2 (2009), 180–182. MR2521195
- T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstr. Appl. Anal., 2014, Art. ID 458098, 5 pp. MR3248859
- [5] —, Completeness of 3-generalized metric spaces, Filomat, 30 (2016), 3575–3585. MR3593055
- [6] —, Another generalization of Edelstein's fixed point theorem in generalized metric spaces, Linear Nonlinear Anal., 2 (2016), 271–279. MR3638645
- [7] —, Nadler's fixed point theorem in v-generalized metric spaces, Fixed Point Theory Appl., 2017, 2017;18. MR3736639
- [8] —, The strongest sequentially compatible topology on a v-generalized metric space, J. Nonlinear Var. Anal., 1 (2017), 333–343.
- [9] —, Every generalized metric space has a sequentially compatible topology, Linear Nonlinear Anal., 3 (2017), 393–399. MR3745214
- [10] —, The strongly compatible topology on v-generalized metric spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 112 (2018), 301–309. MR3743005
- [11] —, Some metrization problem on *v*-generalized metric spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, **113** (2019), 1267–1278.
- [12] T. Suzuki, B. Alamri and M. Kikkawa, Only 3-generalized metric spaces have a compatible symmetric topology, Open Math., 13 (2015), 510–517. MR3393419
- [13] —, Edelstein's fixed point theorem in generalized metric spaces, J. Nonlinear Convex Anal., 16 (2015), 2301–2309. MR3429363

Department of Basic Sciences Faculty of Engineering Kyushu Institute of Technology Tobata, Kitakyushu 804-8550, Japan E-mail: suzuki-t@mns.kyutech.ac.jp