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SEVERAL COMPLETENESSES ON v-GENERALIZED
METRIC SPACES

Tomonari SUZUKI

Abstract

We can consider several completenesses on v-generalized metric spaces. In this paper, we study the
relationship between the completenesses. In particular, we study r-completeness.

1. Introduction

Throughout this paper we denote by N the set of all positive integers. Let X be
a set. Then we denote by #X the cardinal number of X. We define a subset X *) of
X* as follows: (x1,x2,...,xx) € XK iff (x1,x2,...,x¢) € X¥ and xy,x3,...,x; are all
different. For k,/ € N, we denote by k %/ the remainder when k is divided by 7.

In 2000, Branciari introduced the following interesting concept, named v-generalized
metric space.

DeriNITION 1 (Branciari [2]). Let X be a set, let d be a function from X x X into
[0,00) and let veN. Then (X,d) is said to be a v-generalized metric space if the
following hold:

(N1) d(x,y)=0&x=y.

(N2) d(x,y) = d(y,%).

(N3) d(x,y) < D(x,uy,un,...,u,,y) for any x,uy,us,...,u,,yeX such that

X, Ui, uy, ..., u, y are all different, where

D(x,uy,up, ... uy, y) =d(x,ur) +d(uy, up) + -+ d(uy, y).

We have studied the topological structure on this concept. See [4, 5, 6, 8, 9, 10,
11, 12] and references therein. For example, we know the following:
e 1- and 3-generalized metric spaces have the compatible topology.
e For any veN\{l,3}, there exists a v-generalized metric space which does not
have the compatible topology.
e Every v-generalized metric space has the strongly compatible topology.
* Every v-generalized metric space has a sequentially compatible topology.
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We can consider several completenesses on v-generalized metric spaces. See
Section 2. In this paper, we study the relationship between the completenesses. In
particular, we study x-completeness.

2. Preliminaries
In this section, we give some preliminaries.

DerNiTION 2 ([1, 2, 7, 11, 13]). Let (X,d) be a v-generalized metric space. Let
{x,} be a sequence in X and x e X.

* {x,} is said to be Cauchy if lim, sup,,., d(xm,x,) =0 holds.

e {x,} is said to be r-Cauchy if

lim sup{d(xu, Xpt14jx) : j=0,1,2,...} =0
n—oo

holds, where x € N.
e {x,} is said to be > -Cauchy if

0

D d(x,x551) < o0
j=1
holds.
* {x,} is said to be (>_,#)-Cauchy if x, (neN) are all different and {x,} is
> -Cauchy.
* {x,} is said to converge to x if lim, d(x,,x) =0 holds.
e {x,} is said to converge exclusively to x if
lim d(x,,x) =0 and liminf d(x,,y) >0

n—oo n—oo

hold for any ye X\{x}.

DErFINITION 3 ([1, 2, 7, 11]).  Let (X, d) be a v-generalized metric space. Let x € N.
* X is said to be complete if every Cauchy sequence converges.

* X is x-complete if every x-Cauchy sequence converges.

* X is said to be > -complete if every > -Cauchy sequence converges.

e X is (O,#)-complete if every (> ,#)-Cauchy sequence converges.

REMARK. X is complete iff X is 1-complete.

DErFINITION 4 (see Example 1.1 in [3]). Let (X,d) be a v-generalized metric space.
X is said to be Hausdorff if lim, d(x,,x) = lim, d(x,, y) =0 implies x = y.

ProposITION 5 (Proposition 6 in [1]). Let (X,d) be a v-generalized metric space
and let k,A €N such that A is divisible by k. Then the following hold:
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(i) Every k-Cauchy sequence is A-Cauchy.
(i) If X is A-complete, then X is x-complete.

LemMa 6 (Lemma 15 in [7]). Let (X,d) be a 2-complete, v-generalized metric space.
Then X is Hausdorff.

LEMMA 7 (Proposition 5.4 in [I1]). Let (X,d) be a Y -complete, v-generalized
metric space. Then X is Hausdorff.

LemMA 8 (Lemma 11 in [7]). Let (X,d) be a v-generalized metric space and let
{xn} be a Cauchy sequence in X converging to some ze€ X. Let {y,} be a sequence in
X satisfying lim, d(x,, y,) =0. Then {y,} also converges to z.

LemMa 9 (Lemma 13 in [7]). Let (X,d) be a (3., #)-complete, v-generalized metric
space. Then X is complete.

THEOREM 10 (Proposition 17 in [7]). Let (X,d) be a v-generalized metric space
where v is odd. Then the following are equivalent:

e X is complete.

o X is (D, #)-complete.

THEOREM 11 (Proposition 18 in [7]). Let (X,d) be a v-generalized metric space.
Then the following are equivalent:

e X is 2-complete.

o X is (D, #)-complete and Hausdorff.

3. Lemmas
In this section, we prove some lemmas.

LemMa 12. Let (X,d) be a v-generalized metric space. Let {a,} and {b,} be
sequences in X satisfying

(1) lim sup{d(ay,by):m=>n}=0.

n—oo

Define two subsets of X by

(2) A={xeX: :#{neN:a,=x} = 0}
and
(3) B={xeX :#{neN:b,=x} = 0}.

Then the following hold:
(i) lim, d(a,b,) =0 holds for all ac A.
(ii) lim, d(a,,b) =0 holds for all b e B.
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(i) If A# & and B # & hold, then there exists z € X satisfying A =B = {z}.
(iv) If #{a,:ne N} < o0 and #{b, : n e N} < 0 hold, then there exist z€ X and
we N satisfying a, = b, =z for all ne N with n > pu.

Proor. We first show (i). Fix aeA. Let ¢ >0 be fixed. Then there exists
A e N satisfying

sup{d(ay, by) : m = n} <,
for ne N with n > 1. We can choose u > 4 satisfying a, =a. We have
sup{d(a,by,) : m > u} = sup{d(a,, by) :m > u} < e.

So we obtain (i).
We next show (ii). Fix beB. Let ¢>0 be fixed. Then there exists AeN
satisfying

sup{d(an,by) :m=n=> 2} <e.
Fix /eN with / > A. Then we can choose x> ¢ satisfying b, =b. We have
d(as,b) =d(as, b,) < sup{d(ay, by) :m>=n=> 1} <e.

So we obtain (ii).
Let us prove (iii). By (i) and (ii), for all (a,b) € A x B, we have

lim d(a,b,) = lim d(a,,b) =0,

n— oo

which implies ¢ = b. Thus, we obtain (iii).
(iv) follows from (iii). O

LemMA 13. Let (X,d) be a v-generalized metric space. Let {a,} and {b,} be
sequences in X. Assume that there exists ue€ N satisfying

lim sup{d(ay,by):m=>n+u} =0.

n— o0

Then

lim sup{max{d(ay, by),d(amn,b,) :m=>n} =0

holds.
Proor. We first show

(4) lim sup{d(ay,b,) :m>n} =0.

n—oo

We consider the following three cases:
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(@) #{ay,:neN} < 0.

(b) #{a,:neN}=oc0 and #{b, :ne N} < c0.

() #{ay:neN}=oc0 and #{b, :neN} = 0.
In the case of (a), define a subset 4 of X by (2). It is obvious that 0 < #4 < «©
and a, € A for sufficiently large neN. By Lemma 12 (i), we have lim, d(a,b,) =
lim, d(a,b,+,) =0 for ae A. So we have

lim sup{d(am,b,) : m >n} = lim max{d(a,b,):ae A} =0.

n—oo n—oo

In the case of (b), define a subset B of X by (3). It is obvious that 0 < #B <
and b, € B for sufficiently large neN. By Lemma 12 (ii), we have lim, d(a,,b) =
lim, d(a,—,,b) =0 for be B. So we have

lim sup{d(am,b,) : m = n} = lim sup{d(a,b) :m =>n,be B} =0.

n—o0 n—o
In the case of (c), we fix ¢ > 0. Then there exists 4y € N satisfying
sup{d(an, b)) - m=>n+u} <e
for n > 4. We can choose 4,4, € N satisfying 1y < 4} <A +u < A and
#lay o <n< i} =2v+3 and #{by M +u<n<i}=2v+3.

Fix m,ne N with m >n > /. In the case where a, = b, holds, we have d(a,,,b,) =
0 <& In the other case, where a,, # b, holds, we can choose f(1),...,f(v),g(0),...,
g(v) e N satisfying

o< f(l)y< - < f(v) </

<h+u<g(l)<---<glv)<i<m

<m+u<g(0)
and (dp, ag(1), - - -, gy, bus by0), - - -+ by(ry) € X P9 We consider the following three
cases:
(c-1) v is even.
(c2) v=1.

(c-3) v is odd with v > 3.
In the case of (c-1), we have

d(am,bn) < D(am, by0), ar1y, by(r), - - > rvya—1), Dg(vy2-1), @r(v/2)5 bn)
< (v+1)e.
In the case of (c-2), we have

d(am,bn) < D(am, byo),ary,bn) < 3e.
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In the case of (c-3), we have
d(am, ar(1)) < D(@m, by(0), @r2)s bg()s -+ (/241725 byvja11/2), 1)
< (v+1)e
and hence
d(am; bu) < Dam, arr), bgrys - - - ar(v/2-1/2)5 bg(v/2-172) Gr(v/241/2)5 bn)
< (2v+1)e.

Since ¢ > 0 is arbitrary, we have shown (4).
In particular, we have

lim sup{d(am,b,) :m>n+u} =0.
n—o0

So, the above argument yields (1). Thus, we obtain the desired result. O

LemMa 14. Let (X,d) be a v-generalized metric space. Let {a,} and {b,} be
sequences in X satisfying

lim sup{d(a,,b,,) :m =n} =0.

n—oo

Then
lim sup{d(am,b,) :m>n} =0

n—co
holds.  In other words, the sequence {u,} defined by
ay,by,a,by, ... a,, by ay1, by, -
is 2-Cauchy.
Proor. By Lemma 13, we obtain the desired result. O

LemMa 15. Let (X,d) be a v-generalized metric space. Let {ay}, {bn}, {cn} and
{en} be sequences in X satisfying

lim sup{d(ay,b,):m>n} =0,

n— 00

lim sup{d(b,,cy):m=>n} =0,

n— o0

lim sup{d(cy,en) :m>n} =0.

n—oo
Assume #{b, :neN} =#{c, :neN} = 0. Then

lim sup{d(a,,en) :m=n} =0

n—oo

holds.
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ProoF. By Lemma 14, we have

lim sup{max{d(ay,b,),d(bm,cn),d(cm,es)} :m >n} =0.

Let ¢ > 0 be fixed. Then there exists x € N satisfying
max{d(an, by),d(by, ), d(cn,em)} <€
for myn e N with m > u and n > u. We can choose 4,4, € N satisfying 4 < A; < 1 and
#{b,:u<n<}=2v+2 and #{en A <n< A} =2v+2.

Fix m,ne N with m >n > 1. In the case where a, = ¢, holds, we have d(ay,e,) =
0 <& In the other case, where a, # e, holds, we can choose f(1),...,f(v),g(1),...,
g(v) e N satisfying

u< f(l)y<-—-<flvy<h<g(l)y<---<glv)<i

and (@, by(1), - - -, by, Co(1)s - - -+ Co(vyr em) € X @D We consider the following three
cases:

(a) v is even.

(b) v=1.

() v is odd with v > 3.
In the case of (a), we have

d(an, em) < D(an, brqry, ¢q(1), br(2), 90205 - - brvy2): Cov72) €m)
< (v+1e
In the case of (b), we have
d(an, em) < D(an, brary, cy(1), em) < 3e.

In the case of (c), we have
d(an; ¢41)) < Dlan, by(2), €420, br3), €3)s - > brovyzaag)s o)
< (v+1)e
and hence
d(an,em) < D(an, g1y, br(1y, Cg2)5 br2)s - - > Cotvy2—172), Previa—12)s Cqv/2+1/2) €m)
< (2v+1)e.
Since ¢ > 0 is arbitrary, we obtain the desired result. O

LemMa 16. Let (X,d) be a Hausdorff, v-generalized metric space. Let {x,} be a
sequence in X converging to z. Then {x,} converges exclusively to z.
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Proor. Let we X satisfy liminf, d(x,,w) =0. Then there exists a subsequence
{f(n)} of the sequence {n} in N satisfying lim, d(x;,,w) = 0. Since lim, d(x/(,),z) =
0 holds, {x(,} converges to w and z. Since X is Hausdorff, w =z holds. O

4. 1-Completeness

In this section, we prove l-completeness is equivalent to 3-completeness.

THEOREM 17. Let (X,d) be a v-generalized metric space. Then the following are
equivalent:

(1) X is complete.

(i) X is 3-complete.

Proor. By Proposition 5 (ii), we obtain (ii) = (i). Let us prove (i) = (ii). Let
{x,} be a 3-Cauchy sequence in X. Define {a,}, {b,} and {c,} by

ay = X3p-2, bn = X3n—1 and Cn = X3p

for ne N. We only have to consider the following two cases:

(@) #{a,:neN} < oo and #{b, :ne N} < c0.

(b) #{b,:neN}=#{c,:ne N} = 0.
In the case of (a), by Lemma 12 (iv), there exist z € X and u € N satisfying a, = b, =z
for all ne N with n > u. It is obvious that {a,} and {b,} converge to z. By Lemma
12 (i), {c4} converges to z. Therefore {x,} converges to z. In the case of (b), since
{x,} is 3-Cauchy, we have

lim sup{max{d(ay, bu),d(b,,cm),d(cn,ams1)} : m =>n} =0.
n—oo
By Lemma 13, we have
lim sup{d(c,,ay): m=>n}=0.
n— o0
By Lemma 15, we have
lim sup{d(a,,ay):m=n}=0.
n—oo

Therefore we obtain that {a,} is Cauchy. Since X is complete, {a,} converges to some
zeX. By Lemma 8, {b,} and {c,} also converge to z. Therefore {x,} converges to z.

O

5. 5-Completeness

In this section, we study 5-completeness.
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THEOREM 18. Let (X,d) be a v-generalized metric space. Let AeN with 1 > 4.
Assume that X is A-complete. Then X is (A — 2)-complete.

Proor. Put x=4-2. Let {x,} be a x-Cauchy sequence in X. We define
sequences {u\’} by

) = Xu_tyess

for je{l,...,x} and neN. By Lemma 14, the sequence defined by

@ 1 @ @ 2
HE >7u§ ),Mé ),Mé >7"'7u}(1 )7ur(z >7u)<1+)17ui(1+>]""
is 2-cauchy. Define a sequence {y,} by
uiw,ugz),u{l),ufz),up),...,u{x),u§1)7u£2>7uéw,uéz),uf),...,ué’c),....

Then {y,} is A-Cauchy. Since X is A-complete, {y,} converges to some z € X. Since
{x,} is a subsequence of {y,}, {x,} also converges to z. Therefore X is x-complete.

O

LemmA 19. Let (X,d) be a r-complete, v-generalized metric space where K €
N\{1,3} holds. Then X is Hausdorff.

ProoF. We have proved the conclusion in the case where x = 2; see Lemma 6.
So we assume k > 4. Let {x,} be a sequence in X converging to z and w in X. Then
the sequence {y,} defined by

Zy X2y Wyeo oy W Xy Zy Xgeq 2y Wy oo o g Wy X0iey Zy X232y Wy v o oy Wy XBpey Zy e e
—— —— ——

k=3 K—3 K—3

is x-Cauchy. Since X is x-complete, {y,} converges to some x € X. It is obvious that
z =x =w holds. ]

THEOREM 20. Let (X,d) be a v-generalized metric space. Let i€ N with i > 4.
Assume that X is k-complete. Then X is (x + 2)-complete.

Proor. By Lemma 19, we note that X is Hausdorfl. Put 2 =1 +2. Let {x,} be
a A-Cauchy sequence in X. We define sequences {u,(/)} by
U = Xy

for je{l,...,2} and ne N. We consider the following two cases:
(a) There exists je {1,2,...,4} satisfying

#{u/) :neN} =0 and  #{u/™ :neN} = o,

where 1+1=1.
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(b) For any je{l,2,...,4}, either
#{u neNy <o or  #{u:neN} <o

holds, where A+ 1 =1.
In the case of (a), by Lemma 15, the sequence {y,} defined by

u u® w0
is x-Cauchy. Since X is x-complete, {y,} converges to some ze X. In particular,
{u,(ql)} converges to z. Define a sequence {z,} by

uf”, ufz), u?), u§4>, Zyo..,2, ué”, uf), u§3>, u§4), Z,...

K—4 K—4

Then in the case where x > 5, it is obvious that {z,} is x-Cauchy. In the other case,
where © =4, by Lemma 13, {z,} is x-Cauchy. Since X is x-complete, {z,} converges.
Since {u,(,l>} converges to z, {z,} converges to z. Therefore {uf,z)} and {u,<,3)} converge
to z. So {x,} converges to z.

In the case of (b), without loss of generality, we may assume #{ufq1> :neN} < o0.
We can choose z satisfying #{neN: u,(,l) =z} = o0. We consider the following two
cases:

(b-1) #{u,(,z) :neN} < oo.

(b-2) #{u? ineN} = o,
In the case of (b-1), by Lemma 12 (iv), ul?) = ul?) =z holds for sufficiently large n € N.
In the case of (b-2), by Lemma 12 (i), lim, d(z, u,(qz)) =0 holds. Since X is Hausdorff,
u,ﬁ” =z holds for sufficiently large n e N. Since #{u,(q3> :neN} < oo holds, u,(f’) =z
holds for sufficiently large n € N. Thus, we can prove that {uf,j >} converges to z for any
je{l,...,A}. Therefore {x,} converges to z. Therefore X is x-complete. O

THEOREM 21. Let (X,d) be a v-generalized metric space. Then the following are
equivalent:

(i) X is S5-complete.

(ii) X is (2 + 3)-complete for any i € N.

(i) X is (2 + 3)-complete for some i € N.

Proor. By Theorem 20, we can prove (i) = (ii). (ii) = (iii) obviously holds. By
Theorem 18, We can prove (iii) = (i). O

6. 2-Completeness
In this section, we study 2-completeness.

THEOREM 22. Let (X,d) be a 2-complete, v-generalized metric space. Then X is
K-complete for any k€ N.
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ProOOF. By Proposition 5 (ii), X is l-complete. So we assume x > 3. By Lemma
6, we note that X is Hausdorff. Let {x,} be a x-Cauchy sequence in X. We define
sequences {u\’’} by
uy(,j> = x(n—])K+j
for je{l,...,x} and neN. Let {U,S‘*”} be the sequence defined by

n @ 1) (2 n 2 ,0 (2
u; U7y U, 7...,u,g>,u,(l>,un+1,un_H,....

By Lemma 14, {v,(f’z)} is 2-Cauchy. Since X is 2-complete, {v,sl"z)} converges to some

12 ¢ X, Similarly, we can prove that the sequence {v\*"} defined by
D D D O O

1,2) 2,3)

converges to some z>3 e X. So {u,(,z)} converges to z! and z! Since X is
Hausdorff, we obtain z(L2) = z(2.3) Therefore {u,<13)} also converges to z(?). Thus
we can prove {u,(/)} converges to z(1?) for je{l,2,...,x}. Therefore {x,} converges

to z(12). We have shown that X is x-complete. O

THEOREM 23. Let (X,d) be a v-generalized metric space. Then the following are
equivalent:

(1) X is 2-complete.

(ii) X is 2x-complete for any ik € N.

(i) X is 2x-complete for some K € N.

Proor. By Theorem 22, we obtain (i) = (ii). (ii) = (iii) obviously holds. By
Proposition 5 (ii), we obtain (iii) = (i). O

THEOREM 24. Let (X,d) be a v-generalized metric space where v is odd. Then the
following are equivalent:

(1) X is complete and Hausdorff.

(il) X is x-complete for any x € N\{l,3}.

(ili) X is x-complete for some x € N\{1,3}.

Proor. We first show (i) = (ii). We assume (i). By Theorem 10, X is (3, #)-
complete. By Theorem 11, X is 2-complete. By Theorem 22, X is x-complete for
any x € N. (ii) = (iii) obviously holds. Let us prove (iii) = (i). We assume (iii). By
Proposition 5 (ii), X is 1-complete, thus, X is complete. By Lemma 19, X is Hausdorff.

O

7. > -Completeness

In this section, we study ) -completeness.
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LemMa 25. Let (X,d) be a Hausdorff, v-generalized metric space. Let {x,} be a
sequence in X. Assume that there exist ik € N and a subsequence {f(n)} of {n} in N
satisfying the following:

e f(n)%rx=n%rx.

* Every subsequence {xy} of {x,} converges provided g(n) > f(n) and g(n) % x =

n%x hold for any neN.
Then {x,} converges.

PrOOF. From the assumption, {x()} converges to some z € X. Arguing by con-
tradiction, we assume limsup, d(x,,z) > O Then there exist ¢ > 0 and a subsequence
{g(n)} of {n} in N satisfying d(x,(,z) > ¢ for any ne N.  We can choose 1 € {0,1,...,
r— 1} satisfying

#{neN:gn) %K =21} = 0.

Without loss of generality, we may assume g(n) % x = A for all ne N. We can choose
a subsequence {i(n)} of {n} in N satisfying

h(n) % x = n%x,
h(n) > f(n),
h(2ir + 1) € g(N),
h(2ir + /) € f(N),
h(2ir + 1+ j) € f(N)

for any n,ieN, /€{0,1,...,k — 1}\{A} and je€{0,1,...,k —1}. From the assump-
tion, {x;(,} converges to some we X. By Lemma 16, {x;,} converges exclusively to
we X. So, since

lim d(xh (2irtic+1)s 2 ) =0

I— o0
holds, we have z =w. However, since
d(Xpinri),2) = €

holds for ie N, we have z # w, which implies a contradiction. Therefore we have
shown lim, d(x,,z) = 0. O

We give an alternative proof of the following:

THEOREM 26 (Proposition 5.4 in [11]). Let (X,d) be a > -complete, v-generalized
metric space. Then X is k-complete for any i € N.

ProorF. By Lemma 7, we first note that X is Hausdorff. Let {x,} be a x-Cauchy
sequence in X. Choose a subsequence {f(n)} of {n} in N satisfying the following:
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o f(n)%rx=n%rx.
o sup{d(x;,Xs+14jx) : j=0,1,2,...} <27 holds for any /,neN with /> f(n).
Let {g(n)} be a subsequence of {n} in N satisfying the following:

s g(n) = f(n).
o gn)%Kr=n%«k.
Then we have

o0

Zd(xg(n>,xg<n+1)) < ZZ_n =1< o0.
n=1

n=1

Since X is ) -complete, {x,,} converges. We have shown the assumption of Lemma
25. So, by Lemma 25, {x,} converges. O

8. Conclusion

Throughout this section, we denote by (>) that (X,d) is > -complete. Similarly
for (2), (32, #), (5) and (1).

THEOREM 27. Let (X,d) be a v-generalized metric space. Then
) =2 =0C.#=010)
and
)= =06)=(1)
hold.

Proor. By Theorem 26, we obtain (> )= (2). By Theorem 11, we obtain
(2) = (3.,#). By Lemma 9, we obtain (> ,#) = (1). By Theorem 22, we obtain
(2) = (5). By Proposition 5 (ii), we obtain (5) = (1). O

THEOREM 28. Let (X,d) be a v-generalized metric space where v is odd with v > 5.
Then

)= 2)=06)=0#) < 1)

holds.
Proor. By Theorem 24, we obtain (2) < (5). By Lemma 9, we obtain
22 #) < (). O
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