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SEVERAL COMPLETENESSES ON n-GENERALIZED

METRIC SPACES

Tomonari Suzuki

Abstract

We can consider several completenesses on n-generalized metric spaces. In this paper, we study the

relationship between the completenesses. In particular, we study k-completeness.

1. Introduction

Throughout this paper we denote by N the set of all positive integers. Let X be

a set. Then we denote by aX the cardinal number of X . We define a subset X ðkÞ of

X k as follows: ðx1; x2; . . . ; xkÞ A X ðkÞ i¤ ðx1; x2; . . . ; xkÞ A X k and x1; x2; . . . ; xk are all

di¤erent. For k; l A N, we denote by k % l the remainder when k is divided by l.

In 2000, Branciari introduced the following interesting concept, named n-generalized

metric space.

Definition 1 (Branciari [2]). Let X be a set, let d be a function from X � X into

½0;yÞ and let n A N. Then ðX ; dÞ is said to be a n-generalized metric space if the

following hold:

(N1) dðx; yÞ ¼ 0 , x ¼ y.

(N2) dðx; yÞ ¼ dðy; xÞ.
(N3) dðx; yÞaDðx; u1; u2; . . . ; un; yÞ for any x; u1; u2; . . . ; un; y A X such that

x; u1; u2; . . . ; un; y are all di¤erent, where

Dðx; u1; u2; . . . ; un; yÞ ¼ dðx; u1Þ þ dðu1; u2Þ þ � � � þ dðun; yÞ:

We have studied the topological structure on this concept. See [4, 5, 6, 8, 9, 10,

11, 12] and references therein. For example, we know the following:
� 1- and 3-generalized metric spaces have the compatible topology.
� For any n A Nnf1; 3g, there exists a n-generalized metric space which does not

have the compatible topology.
� Every n-generalized metric space has the strongly compatible topology.
� Every n-generalized metric space has a sequentially compatible topology.
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We can consider several completenesses on n-generalized metric spaces. See

Section 2. In this paper, we study the relationship between the completenesses. In

particular, we study k-completeness.

2. Preliminaries

In this section, we give some preliminaries.

Definition 2 ([1, 2, 7, 11, 13]). Let ðX ; dÞ be a n-generalized metric space. Let

fxng be a sequence in X and x A X .
� fxng is said to be Cauchy if limn supm>n dðxm; xnÞ ¼ 0 holds.
� fxng is said to be k-Cauchy if

lim
n!y

supfdðxn; xnþ1þjkÞ : j ¼ 0; 1; 2; . . .g ¼ 0

holds, where k A N.
� fxng is said to be

P
-Cauchy if

Xy

j¼1

dðxj; xjþ1Þ < y

holds.
� fxng is said to be ð

P
;0Þ-Cauchy if xn ðn A NÞ are all di¤erent and fxng isP

-Cauchy.
� fxng is said to converge to x if limn dðxn; xÞ ¼ 0 holds.
� fxng is said to converge exclusively to x if

lim
n!y

dðxn; xÞ ¼ 0 and lim inf
n!y

dðxn; yÞ > 0

hold for any y A Xnfxg.

Definition 3 ([1, 2, 7, 11]). Let ðX ; dÞ be a n-generalized metric space. Let k A N.
� X is said to be complete if every Cauchy sequence converges.
� X is k-complete if every k-Cauchy sequence converges.
� X is said to be

P
-complete if every

P
-Cauchy sequence converges.

� X is ð
P

;0Þ-complete if every ð
P

;0Þ-Cauchy sequence converges.

Remark. X is complete i¤ X is 1-complete.

Definition 4 (see Example 1.1 in [3]). Let ðX ; dÞ be a n-generalized metric space.

X is said to be Hausdor¤ if limn dðxn; xÞ ¼ limn dðxn; yÞ ¼ 0 implies x ¼ y.

Proposition 5 (Proposition 6 in [1]). Let ðX ; dÞ be a n-generalized metric space

and let k; l A N such that l is divisible by k. Then the following hold:
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( i ) Every k-Cauchy sequence is l-Cauchy.

(ii) If X is l-complete, then X is k-complete.

Lemma 6 (Lemma 15 in [7]). Let ðX ; dÞ be a 2-complete, n-generalized metric space.

Then X is Hausdor¤.

Lemma 7 (Proposition 5.4 in [11]). Let ðX ; dÞ be a
P

-complete, n-generalized

metric space. Then X is Hausdor¤.

Lemma 8 (Lemma 11 in [7]). Let ðX ; dÞ be a n-generalized metric space and let

fxng be a Cauchy sequence in X converging to some z A X. Let fyng be a sequence in

X satisfying limn dðxn; ynÞ ¼ 0. Then fyng also converges to z.

Lemma 9 (Lemma 13 in [7]). Let ðX ; dÞ be a ð
P

;0Þ-complete, n-generalized metric

space. Then X is complete.

Theorem 10 (Proposition 17 in [7]). Let ðX ; dÞ be a n-generalized metric space

where n is odd. Then the following are equivalent:
� X is complete.
� X is ð

P
;0Þ-complete.

Theorem 11 (Proposition 18 in [7]). Let ðX ; dÞ be a n-generalized metric space.

Then the following are equivalent:
� X is 2-complete.
� X is ð

P
;0Þ-complete and Hausdor¤.

3. Lemmas

In this section, we prove some lemmas.

Lemma 12. Let ðX ; dÞ be a n-generalized metric space. Let fang and fbng be

sequences in X satisfying

lim
n!y

supfdðan; bmÞ : mb ng ¼ 0:ð1Þ

Define two subsets of X by

A ¼ fx A X :afn A N : an ¼ xg ¼ ygð2Þ

and

B ¼ fx A X :afn A N : bn ¼ xg ¼ yg:ð3Þ

Then the following hold:

( i ) limn dða; bnÞ ¼ 0 holds for all a A A.

( ii ) limn dðan; bÞ ¼ 0 holds for all b A B.

n-Generalized Metric Space 31



(iii) If A0q and B0q hold, then there exists z A X satisfying A ¼ B ¼ fzg.
(iv) If afan : n A Ng < y and afbn : n A Ng < y hold, then there exist z A X and

m A N satisfying an ¼ bn ¼ z for all n A N with nb m.

Proof. We first show (i). Fix a A A. Let e > 0 be fixed. Then there exists

l A N satisfying

supfdðan; bmÞ : mb ng < e;

for n A N with nb l. We can choose mb l satisfying am ¼ a. We have

supfdða; bmÞ : mb mg ¼ supfdðam; bmÞ : mb mg < e:

So we obtain (i).

We next show (ii). Fix b A B. Let e > 0 be fixed. Then there exists l A N

satisfying

supfdðan; bmÞ : mb nb lg < e:

Fix l A N with lb l. Then we can choose mb l satisfying bm ¼ b. We have

dðal; bÞ ¼ dðal; bmÞa supfdðan; bmÞ : mb nb lg < e:

So we obtain (ii).

Let us prove (iii). By (i) and (ii), for all ða; bÞ A A� B, we have

lim
n!y

dða; bnÞ ¼ lim
n!y

dðan; bÞ ¼ 0;

which implies a ¼ b. Thus, we obtain (iii).

(iv) follows from (iii). r

Lemma 13. Let ðX ; dÞ be a n-generalized metric space. Let fang and fbng be

sequences in X. Assume that there exists m A N satisfying

lim
n!y

supfdðan; bmÞ : mb nþ mg ¼ 0:

Then

lim
n!y

supfmaxfdðan; bmÞ; dðam; bnÞ : mb ng ¼ 0

holds.

Proof. We first show

lim
n!y

supfdðam; bnÞ : mb ng ¼ 0:ð4Þ

We consider the following three cases:
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(a) afan : n A Ng < y.

(b) afan : n A Ng ¼ y and afbn : n A Ng < y.

(c) afan : n A Ng ¼ y and afbn : n A Ng ¼ y.

In the case of (a), define a subset A of X by (2). It is obvious that 0 <aA < y
and an A A for su‰ciently large n A N. By Lemma 12 (i), we have limn dða; bnÞ ¼
limn dða; bnþmÞ ¼ 0 for a A A. So we have

lim
n!y

supfdðam; bnÞ : mb ng ¼ lim
n!y

maxfdða; bnÞ : a A Ag ¼ 0:

In the case of (b), define a subset B of X by (3). It is obvious that 0 <aB < y
and bn A B for su‰ciently large n A N. By Lemma 12 (ii), we have limn dðan; bÞ ¼
limn dðan�m; bÞ ¼ 0 for b A B. So we have

lim
n!y

supfdðam; bnÞ : mb ng ¼ lim
n!y

supfdðam; bÞ : mb n; b A Bg ¼ 0:

In the case of (c), we fix e > 0. Then there exists l0 A N satisfying

supfdðan; bmÞ : mb nþ mg < e

for nb l0. We can choose l; l1 A N satisfying l0 < l1 < l1 þ m < l and

afan : l0 < n < l1gb 2nþ 3 and afbn : l1 þ m < n < lgb 2nþ 3:

Fix m; n A N with mb nb l. In the case where am ¼ bn holds, we have dðam; bnÞ ¼
0 < e. In the other case, where am 0 bn holds, we can choose f ð1Þ; . . . ; f ðnÞ; gð0Þ; . . . ;
gðnÞ A N satisfying

l0 < f ð1Þ < � � � < f ðnÞ < l1

< l1 þ m < gð1Þ < � � � < gðnÞ < l < m

< mþ m < gð0Þ

and ðam; af ð1Þ; . . . ; af ðnÞ; bn; bgð0Þ; . . . ; bgðnÞÞ A X ð2nþ3Þ. We consider the following three

cases:

(c-1) n is even.

(c-2) n ¼ 1.

(c-3) n is odd with nb 3.

In the case of (c-1), we have

dðam; bnÞaDðam; bgð0Þ; af ð1Þ; bgð1Þ; . . . ; af ðn=2�1Þ; bgðn=2�1Þ; af ðn=2Þ; bnÞ

< ðnþ 1Þe:

In the case of (c-2), we have

dðam; bnÞaDðam; bgð0Þ; af ð1Þ; bnÞ < 3e:
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In the case of (c-3), we have

dðam; af ð1ÞÞaDðam; bgð0Þ; af ð2Þ; bgð2Þ; . . . ; af ðn=2þ1=2Þ; bgðn=2þ1=2Þ; af ð1ÞÞ

< ðnþ 1Þe
and hence

dðam; bnÞaDðam; af ð1Þ; bgð1Þ; . . . ; af ðn=2�1=2Þ; bgðn=2�1=2Þ; af ðn=2þ1=2Þ; bnÞ

< ð2nþ 1Þe:

Since e > 0 is arbitrary, we have shown (4).

In particular, we have

lim
n!y

supfdðam; bnÞ : mb nþ mg ¼ 0:

So, the above argument yields (1). Thus, we obtain the desired result. r

Lemma 14. Let ðX ; dÞ be a n-generalized metric space. Let fang and fbng be

sequences in X satisfying

lim
n!y

supfdðan; bmÞ : mb ng ¼ 0:

Then

lim
n!y

supfdðam; bnÞ : mb ng ¼ 0

holds. In other words, the sequence fung defined by

a1; b1; a2; b2; . . . ; an; bn; anþ1; bnþ1; . . .

is 2-Cauchy.

Proof. By Lemma 13, we obtain the desired result. r

Lemma 15. Let ðX ; dÞ be a n-generalized metric space. Let fang, fbng, fcng and

feng be sequences in X satisfying

lim
n!y

supfdðan; bmÞ : mb ng ¼ 0;

lim
n!y

supfdðbn; cmÞ : mb ng ¼ 0;

lim
n!y

supfdðcn; emÞ : mb ng ¼ 0:

Assume afbn : n A Ng ¼afcn : n A Ng ¼ y. Then

lim
n!y

supfdðan; emÞ : mb ng ¼ 0

holds.
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Proof. By Lemma 14, we have

lim
n!y

supfmaxfdðam; bnÞ; dðbm; cnÞ; dðcm; enÞg : mb ng ¼ 0:

Let e > 0 be fixed. Then there exists m A N satisfying

maxfdðan; bmÞ; dðbn; cmÞ; dðcn; emÞg < e

for m; n A N with mb m and nb m. We can choose l; l1 A N satisfying m < l1 < l and

afbn : m < n < l1gb 2nþ 2 and afcn : l1 < n < lgb 2nþ 2:

Fix m; n A N with mb nb l. In the case where an ¼ em holds, we have dðan; emÞ ¼
0 < e. In the other case, where an 0 em holds, we can choose f ð1Þ; . . . ; f ðnÞ; gð1Þ; . . . ;
gðnÞ A N satisfying

m < f ð1Þ < � � � < f ðnÞ < l1 < gð1Þ < � � � < gðnÞ < l

and ðan; bf ð1Þ; . . . ; bf ðnÞ; cgð1Þ; . . . ; cgðnÞ; emÞ A X ð2nþ2Þ. We consider the following three

cases:

(a) n is even.

(b) n ¼ 1.

(c) n is odd with nb 3.

In the case of (a), we have

dðan; emÞaDðan; bf ð1Þ; cgð1Þ; bf ð2Þ; cgð2Þ; . . . ; bf ðn=2Þ; cgðn=2Þ; emÞ

< ðnþ 1Þe:

In the case of (b), we have

dðan; emÞaDðan; bf ð1Þ; cgð1Þ; emÞ < 3e:

In the case of (c), we have

dðan; cgð1ÞÞaDðan; bf ð2Þ; cgð2Þ; bf ð3Þ; cgð3Þ; . . . ; bf ðn=2þ3=2Þ; cgð1ÞÞ

< ðnþ 1Þe

and hence

dðan; emÞaDðan; cgð1Þ; bf ð1Þ; cgð2Þ; bf ð2Þ; . . . ; cgðn=2�1=2Þ; bf ðn=2�1=2Þ; cgðn=2þ1=2Þ; emÞ

< ð2nþ 1Þe:

Since e > 0 is arbitrary, we obtain the desired result. r

Lemma 16. Let ðX ; dÞ be a Hausdor¤, n-generalized metric space. Let fxng be a

sequence in X converging to z. Then fxng converges exclusively to z.
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Proof. Let w A X satisfy lim infn dðxn;wÞ ¼ 0. Then there exists a subsequence

f f ðnÞg of the sequence fng in N satisfying limn dðxf ðnÞ;wÞ ¼ 0. Since limn dðxf ðnÞ; zÞ ¼
0 holds, fxf ðnÞg converges to w and z. Since X is Hausdor¤, w ¼ z holds. r

4. 1-Completeness

In this section, we prove 1-completeness is equivalent to 3-completeness.

Theorem 17. Let ðX ; dÞ be a n-generalized metric space. Then the following are

equivalent:

( i ) X is complete.

(ii) X is 3-complete.

Proof. By Proposition 5 (ii), we obtain (ii) ) (i). Let us prove (i) ) (ii). Let

fxng be a 3-Cauchy sequence in X . Define fang, fbng and fcng by

an ¼ x3n�2; bn ¼ x3n�1 and cn ¼ x3n

for n A N. We only have to consider the following two cases:

(a) afan : n A Ng < y and afbn : n A Ng < y.

(b) afbn : n A Ng ¼afcn : n A Ng ¼ y.

In the case of (a), by Lemma 12 (iv), there exist z A X and m A N satisfying an ¼ bn ¼ z

for all n A N with nb m. It is obvious that fang and fbng converge to z. By Lemma

12 (i), fcng converges to z. Therefore fxng converges to z. In the case of (b), since

fxng is 3-Cauchy, we have

lim
n!y

supfmaxfdðan; bmÞ; dðbn; cmÞ; dðcn; amþ1Þg : mb ng ¼ 0:

By Lemma 13, we have

lim
n!y

supfdðcn; amÞ : mb ng ¼ 0:

By Lemma 15, we have

lim
n!y

supfdðan; amÞ : mb ng ¼ 0:

Therefore we obtain that fang is Cauchy. Since X is complete, fang converges to some

z A X . By Lemma 8, fbng and fcng also converge to z. Therefore fxng converges to z.

r

5. 5-Completeness

In this section, we study 5-completeness.

Tomonari Suzuki36



Theorem 18. Let ðX ; dÞ be a n-generalized metric space. Let l A N with lb 4.

Assume that X is l-complete. Then X is ðl� 2Þ-complete.

Proof. Put k ¼ l� 2. Let fxng be a k-Cauchy sequence in X . We define

sequences fuð jÞn g by

uð jÞn ¼ xðn�1Þkþj

for j A f1; . . . ; kg and n A N. By Lemma 14, the sequence defined by

u
ð1Þ
1 ; u

ð2Þ
1 ; u

ð1Þ
2 ; u

ð2Þ
2 ; . . . ; uð1Þn ; uð2Þn ; u

ð1Þ
nþ1; u

ð2Þ
nþ1; . . .

is 2-cauchy. Define a sequence fyng by

u
ð1Þ
1 ; u

ð2Þ
1 ; u

ð1Þ
1 ; u

ð2Þ
1 ; u

ð3Þ
1 ; . . . ; u

ðkÞ
1 ; u

ð1Þ
2 ; u

ð2Þ
2 ; u

ð1Þ
2 ; u

ð2Þ
2 ; u

ð3Þ
2 ; . . . ; u

ðkÞ
2 ; . . . :

Then fyng is l-Cauchy. Since X is l-complete, fyng converges to some z A X . Since

fxng is a subsequence of fyng, fxng also converges to z. Therefore X is k-complete.

r

Lemma 19. Let ðX ; dÞ be a k-complete, n-generalized metric space where k A
Nnf1; 3g holds. Then X is Hausdor¤.

Proof. We have proved the conclusion in the case where k ¼ 2; see Lemma 6.

So we assume kb 4. Let fxng be a sequence in X converging to z and w in X . Then

the sequence fyng defined by

z; x2;w; . . . ;w|fflfflfflfflffl{zfflfflfflfflffl}
k�3

; xk; z; xkþ2;w; . . . ;w|fflfflfflfflffl{zfflfflfflfflffl}
k�3

; x2k; z; x2kþ2;w; . . . ;w|fflfflfflfflffl{zfflfflfflfflffl}
k�3

; x3k; z; . . .

is k-Cauchy. Since X is k-complete, fyng converges to some x A X . It is obvious that

z ¼ x ¼ w holds. r

Theorem 20. Let ðX ; dÞ be a n-generalized metric space. Let k A N with kb 4.

Assume that X is k-complete. Then X is ðkþ 2Þ-complete.

Proof. By Lemma 19, we note that X is Hausdor¤. Put l ¼ kþ 2. Let fxng be

a l-Cauchy sequence in X . We define sequences fuð jÞn g by

uð jÞn ¼ xðn�1Þlþj

for j A f1; . . . ; lg and n A N. We consider the following two cases:

(a) There exists j A f1; 2; . . . ; lg satisfying

afuð jÞn : n A Ng ¼ y and afuð jþ1Þ
n : n A Ng ¼ y;

where lþ 1 ¼ 1.
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(b) For any j A f1; 2; . . . ; lg, either

afuð jÞn : n A Ng < y or afuð jþ1Þ
n : n A Ng < y

holds, where lþ 1 ¼ 1.

In the case of (a), by Lemma 15, the sequence fyng defined by

u
ð1Þ
1 ; u

ð4Þ
1 ; u

ð5Þ
1 ; u

ð6Þ
1 ; . . . ; u

ðlÞ
1 ; u

ð1Þ
2 ; u

ð4Þ
2 ; u

ð5Þ
2 ; u

ð6Þ
2 ; . . . ; u

ðlÞ
2 ; . . . :

is k-Cauchy. Since X is k-complete, fyng converges to some z A X . In particular,

fuð1Þn g converges to z. Define a sequence fzng by

u
ð1Þ
1 ; u

ð2Þ
1 ; u

ð3Þ
1 ; u

ð4Þ
1 ; z; . . . ; z|fflfflfflffl{zfflfflfflffl}

k�4

; u
ð1Þ
2 ; u

ð2Þ
2 ; u

ð3Þ
2 ; u

ð4Þ
2 ; z; . . . ; z|fflfflfflffl{zfflfflfflffl}

k�4

; . . . :

Then in the case where kb 5, it is obvious that fzng is k-Cauchy. In the other case,

where k ¼ 4, by Lemma 13, fzng is k-Cauchy. Since X is k-complete, fzng converges.

Since fuð1Þn g converges to z, fzng converges to z. Therefore fuð2Þn g and fuð3Þn g converge

to z. So fxng converges to z.

In the case of (b), without loss of generality, we may assume afuð1Þn : n A Ng < y.

We can choose z satisfying afn A N : u
ð1Þ
n ¼ zg ¼ y. We consider the following two

cases:

(b-1) afuð2Þn : n A Ng < y.

(b-2) afuð2Þn : n A Ng ¼ y.

In the case of (b-1), by Lemma 12 (iv), u
ð1Þ
n ¼ u

ð2Þ
n ¼ z holds for su‰ciently large n A N.

In the case of (b-2), by Lemma 12 (i), limn dðz; uð2Þn Þ ¼ 0 holds. Since X is Hausdor¤,

u
ð1Þ
n ¼ z holds for su‰ciently large n A N. Since afuð3Þn : n A Ng < y holds, u

ð3Þ
n ¼ z

holds for su‰ciently large n A N. Thus, we can prove that fuð jÞn g converges to z for any

j A f1; . . . ; lg. Therefore fxng converges to z. Therefore X is k-complete. r

Theorem 21. Let ðX ; dÞ be a n-generalized metric space. Then the following are

equivalent:

( i ) X is 5-complete.

( ii ) X is ð2kþ 3Þ-complete for any k A N.

(iii) X is ð2kþ 3Þ-complete for some k A N.

Proof. By Theorem 20, we can prove (i) ) (ii). (ii) ) (iii) obviously holds. By

Theorem 18, We can prove (iii) ) (i). r

6. 2-Completeness

In this section, we study 2-completeness.

Theorem 22. Let ðX ; dÞ be a 2-complete, n-generalized metric space. Then X is

k-complete for any k A N.
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Proof. By Proposition 5 (ii), X is 1-complete. So we assume kb 3. By Lemma

6, we note that X is Hausdor¤. Let fxng be a k-Cauchy sequence in X . We define

sequences fuð jÞn g by

uð jÞn ¼ xðn�1Þkþj

for j A f1; . . . ; kg and n A N. Let fvð1;2Þn g be the sequence defined by

u
ð1Þ
1 ; u

ð2Þ
1 ; u

ð1Þ
2 ; u

ð2Þ
2 ; . . . ; uð1Þn ; uð2Þn ; u

ð1Þ
nþ1; u

ð2Þ
nþ1; . . . :

By Lemma 14, fvð1;2Þn g is 2-Cauchy. Since X is 2-complete, fvð1;2Þn g converges to some

zð1;2Þ A X . Similarly, we can prove that the sequence fvð2;3Þn g defined by

u
ð2Þ
1 ; u

ð3Þ
1 ; u

ð2Þ
2 ; u

ð3Þ
2 ; . . . ; uð2Þn ; uð3Þn ; u

ð2Þ
nþ1; u

ð3Þ
nþ1; . . .

converges to some zð2;3Þ A X . So fuð2Þn g converges to zð1;2Þ and zð2;3Þ. Since X is

Hausdor¤, we obtain zð1;2Þ ¼ zð2;3Þ. Therefore fuð3Þn g also converges to zð1;2Þ. Thus

we can prove fuð jÞn g converges to zð1;2Þ for j A f1; 2; . . . ; kg. Therefore fxng converges

to zð1;2Þ. We have shown that X is k-complete. r

Theorem 23. Let ðX ; dÞ be a n-generalized metric space. Then the following are

equivalent:

( i ) X is 2-complete.

( ii ) X is 2k-complete for any k A N.

(iii) X is 2k-complete for some k A N.

Proof. By Theorem 22, we obtain (i) ) (ii). (ii) ) (iii) obviously holds. By

Proposition 5 (ii), we obtain (iii) ) (i). r

Theorem 24. Let ðX ; dÞ be a n-generalized metric space where n is odd. Then the

following are equivalent:

( i ) X is complete and Hausdor¤.

( ii ) X is k-complete for any k A Nnf1; 3g.
(iii) X is k-complete for some k A Nnf1; 3g.

Proof. We first show (i) ) (ii). We assume (i). By Theorem 10, X is ð
P

;0Þ-
complete. By Theorem 11, X is 2-complete. By Theorem 22, X is k-complete for

any k A N. (ii) ) (iii) obviously holds. Let us prove (iii) ) (i). We assume (iii). By

Proposition 5 (ii), X is 1-complete, thus, X is complete. By Lemma 19, X is Hausdor¤.

r

7.
P

-Completeness

In this section, we study
P

-completeness.
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Lemma 25. Let ðX ; dÞ be a Hausdor¤, n-generalized metric space. Let fxng be a

sequence in X. Assume that there exist k A N and a subsequence f f ðnÞg of fng in N

satisfying the following:
� f ðnÞ% k ¼ n% k.
� Every subsequence fxgðnÞg of fxng converges provided gðnÞb f ðnÞ and gðnÞ% k ¼

n% k hold for any n A N.

Then fxng converges.

Proof. From the assumption, fxf ðnÞg converges to some z A X . Arguing by con-

tradiction, we assume lim supn dðxn; zÞ > 0. Then there exist e > 0 and a subsequence

fgðnÞg of fng in N satisfying dðxgðnÞ; zÞb e for any n A N. We can choose l A f0; 1; . . . ;
k� 1g satisfying

afn A N : gðnÞ% k ¼ lg ¼ y:

Without loss of generality, we may assume gðnÞ% k ¼ l for all n A N. We can choose

a subsequence fhðnÞg of fng in N satisfying

hðnÞ% k ¼ n% k;

hðnÞb f ðnÞ;

hð2ikþ lÞ A gðNÞ;

hð2ikþ lÞ A f ðNÞ;

hð2ikþ kþ jÞ A f ðNÞ

for any n; i A N, l A f0; 1; . . . ; k� 1gnflg and j A f0; 1; . . . ; k� 1g. From the assump-

tion, fxhðnÞg converges to some w A X . By Lemma 16, fxhðnÞg converges exclusively to

w A X . So, since

lim
i!y

dðxhð2ikþkþlÞ; zÞ ¼ 0

holds, we have z ¼ w. However, since

dðxhð2ikþlÞ; zÞb e

holds for i A N, we have z0w, which implies a contradiction. Therefore we have

shown limn dðxn; zÞ ¼ 0. r

We give an alternative proof of the following:

Theorem 26 (Proposition 5.4 in [11]). Let ðX ; dÞ be a
P

-complete, n-generalized

metric space. Then X is k-complete for any k A N.

Proof. By Lemma 7, we first note that X is Hausdor¤. Let fxng be a k-Cauchy

sequence in X . Choose a subsequence f f ðnÞg of fng in N satisfying the following:
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� f ðnÞ% k ¼ n% k.
� supfdðxl; xlþ1þjkÞ : j ¼ 0; 1; 2; . . .g < 2�n holds for any l; n A N with lb f ðnÞ.

Let fgðnÞg be a subsequence of fng in N satisfying the following:
� gðnÞb f ðnÞ.
� gðnÞ% k ¼ n% k.

Then we have

Xy

n¼1

dðxgðnÞ; xgðnþ1ÞÞ <
Xy

n¼1

2�n ¼ 1 < y:

Since X is
P

-complete, fxgðnÞg converges. We have shown the assumption of Lemma

25. So, by Lemma 25, fxng converges. r

8. Conclusion

Throughout this section, we denote by ð
P

Þ that ðX ; dÞ is
P

-complete. Similarly

for ð2Þ, ð
P

;0Þ, ð5Þ and ð1Þ.

Theorem 27. Let ðX ; dÞ be a n-generalized metric space. Then

ð
P

Þ ) ð2Þ ) ð
P

;0Þ ) ð1Þ

and

ð
P

Þ ) ð2Þ ) ð5Þ ) ð1Þ

hold.

Proof. By Theorem 26, we obtain ð
P

Þ ) ð2Þ. By Theorem 11, we obtain

ð2Þ ) ð
P

;0Þ. By Lemma 9, we obtain ð
P

;0Þ ) ð1Þ. By Theorem 22, we obtain

ð2Þ ) ð5Þ. By Proposition 5 (ii), we obtain ð5Þ ) ð1Þ. r

Theorem 28. Let ðX ; dÞ be a n-generalized metric space where n is odd with nb 5.

Then

ð
P

Þ ) ð2Þ , ð5Þ ) ð
P

;0Þ , ð1Þ

holds.

Proof. By Theorem 24, we obtain ð2Þ , ð5Þ. By Lemma 9, we obtain

ð
P

;0Þ , ð1Þ. r
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