
Uniform deployment

of mobile agents in asynchronous ringsI,II

Masahiro Shibataa,∗, Toshiya Megab, Fukuhito Ooshitac,
Hirotsugu Kakugawab, Toshimitsu Masuzawab

aKyushu Institute of Technology, 680-4, Kawadu, Iizuka, Fukuoka, 820-8502, Japan
bGraduate School of Information Science and Technology, Osaka University, 1-5

Yamadaoka, Suita, Osaka 565-0871, Japan
cGraduate School of Information Science, NAIST
Takayama 8916-5, Ikoma, Nara 630-0192, Japan

Abstract

In this paper, we consider the uniform deployment problem of mobile agents
in asynchronous unidirectional rings, which requires the agents to uniformly
spread in the ring. The uniform deployment problem is in striking contrast
to the rendezvous problem which requires the agents to meet at the same
node. While rendezvous aims to break the symmetry, uniform deployment
aims to attain the symmetry. It is well known that the symmetry breaking is
difficult in distributed systems and the rendezvous problem cannot be solved
from some initial configurations. Hence, we are interested in clarifying what
difference the uniform deployment problem has on the solvability and the
number of agent moves compared to the rendezvous problem. We consider
two problem settings, with knowledge of k (or n) and without knowledge of
k or n where k is the number of agents and n is the number of nodes. First,
we consider agents with knowledge of k (or n since k and n can be easily
obtained if one of them is given). In this case, we propose two algorithms.

IThe conference version of this paper is published in the proceedings of 29th ACM
Symposium on Principles of Distributed Computing (PODC 2016).

IIThis work was supported by JSPS KAKENHI Grant Numbers 24500039, 26280022,
26330084, 15H00816, and 16K00018.

∗Corresponding author. Tel.:+81 9 4829 7656.
Email addresses: shibata@cse.kyutech.ac.jp (Masahiro Shibata),

f-oosita@is.naist.jp (Fukuhito Ooshita), kakugawa@ist.osaka-u.ac.jp
(Hirotsugu Kakugawa), masuzawa@ist.osaka-u.ac.jp (Toshimitsu Masuzawa)

Preprint submitted to Journal of Parallel and Distributed Computing February 19, 2018

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

The first algorithm solves the uniform deployment problem with termination
detection. This algorithm requires O(k log n) memory space per agent, O(n)
time, and O(kn) total moves. The second algorithm also solves the uniform
deployment problem with termination detection. This algorithm reduces the
memory space per agent to O(log n), but uses O(n log k) time, and requires
O(kn) total moves. Both algorithms are asymptotically optimal in terms of
total moves since there are some initial configurations such that agents re-
quire Ω(kn) total moves to solve the problem. Next, we consider agents with
no knowledge of k or n. In this case, we show that, when termination detec-
tion is required, there exists no algorithm to solve the uniform deployment
problem. For this reason, we consider the relaxed uniform deployment prob-
lem that does not require termination detection, and we propose an algorithm
to solve the relaxed uniform deployment problem. This algorithm requires
O((k/l) log(n/l)) memory space per agent, O(n/l) time, and O(kn/l) total
moves when the initial configuration has symmetry degree l. This means
that the algorithm can solve the problem more efficiently when the initial
configuration has higher symmetric degree (i.e., is closer to uniform deploy-
ment). Note that all the proposed algorithms achieve uniform deployment
from any initial configuration, which is a striking difference from the ren-
dezvous problem because the rendezvous problem is not solvable from some
initial configurations.

Keywords: distributed system, mobile agent, uniform deployment, ring
networks, token, symmetry degree

1. Introduction

1.1. Background and motivation

A distributed system consists of a set of computers (nodes) connected by
communication links. As a promising design paradigm of distributed sys-
tems, (mobile) agent systems have attracted a lot of attention [1, 2]. Agents
can traverse the system carrying information collected at visiting nodes and
process tasks on each node using the information. In other words, agents can
encapsulate the process code and data, which simplifies design of distributed
systems [3, 4].

In this paper, we consider the uniform deployment (or uniform scattering)
problem as a fundamental problem for coordination of agents. This problem
requires all agents to spread uniformly in the network. From a practical

2

point of view, uniform deployment is useful for the network management. In
a distributed system, it is necessary that regularly each node gets software
updates and is checked whether some application installed on the node is
running correctly or not [5, 6]. Hence, considering agents with such services,
uniform deployment guarantees that agents visit each node at short intervals
and provide services. Uniform deployment might be useful also for a kind
of the load balancing. That is, considering agents with large-size database
replicas, uniform deployment guarantees that not all nodes need to store the
database but each node can quickly access the database [7, 8]. Hence, we
can see the uniform deployment problem as a kind of the resource allocation
problem.

1.2. Related works

There are several researches considering the uniform deployment problem
in the Look-Compute-Move model. In this model, agents are assumed to be
oblivious (or memoryless) but be able to observe multiple agents (and nodes
in graph environments) within its visibility range. In the look phase, an
agent takes a snapshot and gets the positions of all agents (and nodes in graph
environments) within the visibility range. In the compute phase, based on the
snapshot, the agent decides where to go in the next movement. In the move
phase, the agent moves to the destination. Agents repeat such cycles until
the given task is completed. In the Look-Compute-Move model, Flocchini
et al. [9] considered the uniform deployment problem in cycle environments
of length m (m is a real number). They considered two types of uniform
deployment: exact and ϵ-approximate. In the exact uniform deployment,
agents move in the ring so that the distance between any two consecutive
agents is the same, say d. In the ϵ-approximate uniform deployment, agents
move in the cycle so that the distance should be between d−ϵ and d+ϵ. They
showed that if agents do not have common sense of direction, agents cannot
solve the exact uniform deployment problem even if agents have unlimited
memory and visibility range. If agents have common sense of direction, they
proposed an algorithm to solve the exact uniform deployment problem for
agents with knowledge of d. In addition, for any ϵ > 0 they proposed an
algorithm to solve the ϵ-approximate uniform deployment problem for agents
without knowledge of d.

Elor et al. [10] considered uniform deployment in ring networks. They
considered agents without knowledge k or n, where k is the number of agents
and n is the number of nodes, but with visibility range VR. They considered

3

a semi-synchronous model, that is, a subset of agents execute a behavior in
each round. They showed that, if VR < ⌊n/k⌋ holds, agents cannot solve the
uniform deployment problem. If VR ≥ ⌊n/k⌋ holds, they proposed an algo-
rithm to solve the balanced uniform deployment problem without quiescence.
That is, agents eventually satisfy the condition of uniform deployment and
continue to move in the ring satisfying the condition. In addition, they pro-
posed an algorithm to solve the semi-balanced uniform deployment problem
with quiescence. That is, agents eventually terminate the algorithm satisfy-
ing the condition such that the distance between any two adjacent agents is
between n/k − k/2 and n/k + k/2.

While [9] and [10] considered uniform deployment in ring networks, Bar-
riere et al. [11] considered uniform deployment in grid networks and proposed
an algorithm to achieve uniform deployment in O(n/d) time, where d is the
interval of uniform deployment.

1.3. Our contributions

In this paper, we focus on uniform deployment on asynchronous unidirec-
tional rings. Although ring networks might seem so restricted in practice, it is
known that the idea for ring networks is fundamental one and can be applied
to other networks by embedding a ring in the network [12, 13]. Different from
[9, 10, 11], we consider agents that have memory but cannot observe nodes
except for the currently located node. To the best of our knowledge, this is
the first research considering uniform deployment for such agents. In addi-
tion to the fact that uniform deployment is useful from a practical point of
view as mentioned before, it is interesting to investigate also from a theoreti-
cal point of view. The problem exhibits a striking contrast to the rendezvous
problem. The rendezvous problem, one of the most investigated problem,
requires all agents to meet at a single node [14], and by doing this agents can
share information or synchronize behaviors among them [15, 16, 17, 18, 19].
While rendezvous aims to break the symmetry and requires all the agents to
meet at the single node, uniform deployment aims to attain the symmetry
of agent locations and requires agents to spread uniformly. It is well known
that the symmetry breaking is difficult (and sometimes impossible) in dis-
tributed systems, and the rendezvous problem cannot be solved from some
initial configurations. Hence, it is interesting to clarify what difference the
uniform deployment problem has on the solvability and the number of agent
moves compared to the rendezvous problem.

4

Table 1: Results in each model

Result 1
(Section 3.1)

Result 2
(Section 3.2)

Result 3
(Section 4.1)

Result 4
(Section 4.2)

Knowledge of k Available Available Not Available Not Available
Termination detection Required Required Required Not Required
Solvable / Unsolvable Solvable Solvable Not Solvable Solvable

Agent memory O(k log n) O(log n) - O((k/l) log(n/l))
Time complexity O(n) O(n log k) - O(n/l)
Total agent moves O(kn) O(kn) - O(kn/l)

n: number of nodes, k: number of agents, l: symmetry degree of the initial configuration

Contributions of this paper are summarized in Table 1. We assume that
each agent initially has a token and can release it on a node that it is vis-
iting. After a token is released at some node, agents cannot remove the
token. In addition, we assume that agents can send a message of any size to
agents staying at the same node. We consider two problem settings. First,
we consider agents with knowledge of k (or n since k and n can be easily
obtained if one of them is given). In this case, we propose two algorithms.
The first algorithm solves the uniform deployment problem with termination
detection. This algorithm requires O(k log n) memory space per agent, O(n)
time, and O(kn) total moves. The second algorithm also solves the uniform
deployment problem with termination detection. This algorithm reduces the
memory space per agent to O(log n), but uses O(n log k) time, and requires
O(kn) total moves. Note that, from some initial configurations agents re-
quire Ω(kn) total moves to solve the problem. Hence, both algorithms are
asymptotically optimal in terms of total moves.

Next, we consider agents with no knowledge of k or n. In this case, we
show that, when termination detection is required, there exists no algorithm
to solve the uniform deployment problem. Intuitively, it is due to impossibil-
ity of finding k or n when the initial configuration has sufficient number of
repetitions of an agent location pattern: when an agent misestimates these
at smaller numbers than actual ones, it prematurely terminates and uniform
deployment cannot be achieved.

For this reason, we consider the relaxed uniform deployment problem
that does not require termination detection, and we propose an algorithm to
solve the relaxed uniform deployment problem. In this algorithm, each agent

5

�

�

�

�

�

�

�

�

�

�

�
�

��� ���

� � � � � �

Figure 1: An example of the symmetry degree

estimates k and n (possibly at smaller values than actual ones) and behaves
based on the estimation. Thus, the efficiency of the algorithm depends on
the estimation. To evaluate the efficiency, we introduce the following pa-
rameter l to denote by the symmetry degree of an initial configuration: we
say that an initial configuration has symmetry degree l when its distance se-
quence can be represented as l-times repetition of some aperiodic sequence.
For example, the initial configuration in Fig. 1 (a) has symmetry degree 1
since its whole distance sequence (1,4,2,1,2,2) is aperiodic, and the initial
configuration in Fig. 1 (b) has symmetry degree 2 since its whole distance se-
quence (1,2,3,1,2,3) is represented as 2-times repetition of aperiodic sequence
(1,2,3). Hence, the symmetry degree becomes larger for a more highly sym-
metric initial configuration. Note that if the initial configuration is already
uniform, l = k holds, and hence 1 ≤ l ≤ k holds. Agents cannot know l
but the efficiency depends on it. Using the symmetry degree parameter l,
the efficiency of the algorithm is denoted as follows: this algorithm requires
O((k/l) log(n/l)) memory space per agent, O(n/l) time, and O(kn/l) total
moves. At first glance, the upper bound O(kn/l) of the total moves seem
to violate the lower bound Ω(kn) of the total moves. However, the lower
bound is for the worst case of initial configurations. Initial configuration
with l ≥ 2 are closer to the uniformly-deployed configuration and agents
require less than Ω(kn) total moves to solve the problem. Hence, from such

6

initial configurations agents can adaptively solve the problem in less than
Ω(kn) total moves. Thus, this algorithm achieves uniform deployment more
efficiently when the initial configuration has a higher symmetry degree. This
is a natural but interesting property. For example, for an asymmetric ini-
tial configuration this algorithm requires O(k log n) memory space per agent,
O(n) time, and O(kn) total moves. However, when l is ω(1), this algorithm
requires o(k log n) memory space per agent, o(n) time, and o(kn) total moves.
When l is Ω(k), this algorithm requires O(log(n/k)) memory space per agent,
O(n/k) time, and O(n) total moves.

Note that, from any initial configuration such that all agents are in the
initial state and placed at the distinct nodes, all proposed algorithms achieve
uniform deployment, which is a striking difference from the rendezvous prob-
lem because the rendezvous problem is not solvable from some initial sym-
metric configurations.

1.4. Organization

The paper is organized as follows. Section 2 presents the system model
and the problem to be solved. In Section 3 we consider agents with knowledge
of k. In Section 4 we consider agents with no knowledge of k or n. Section
5 concludes the paper.

2. Preliminaries

2.1. System model

A unidirectional ring network R is defined as 2-tuple R = (V,E), where V
is a set of anonymous nodes and E is a set of unidirectional links. We denote
by n (= |V |) the number of nodes. Then, we define V = {v0, v1, . . . , vn−1}
and E = {e0, e1, . . . , en−1} (ei = (vi, v(i+1) mod n)). For simplicity, operations
on an index of a node assume calculations modulo n, that is, v(i+1) mod n is
simply represented by vi+1. We define the direction from vi to vi+1 as the
forward direction. In addition, we define the j-th forward agent a′ of agent
a as the agent such that j − 1 agents exist between a and a′ in the forward
direction of a. For convenience, we define the 0-th forward agent of a as a
itself. Moreover, the distance from node vi to vj (0 ≤ i, j ≤ n− 1) is defined
to be (j − i) mod n.

An agent is a state machine having an initial state. Let A = {a0, a1, . . .
, ak−1} be a set of k (≤ n) anonymous agents. For simplicity, operations
on an index of an agent assume calculations modulo k. Since the ring is

7

unidirectional, agents staying at vi can move only to vi+1. We consider two
problem settings: agents with knowledge of k (or n since k and n can be
easily obtained if one of them is given) and agents with no knowledge of k
or n. We assume that each agent initially has a token and can release it on
a node that it is visiting. The token on an agent or a node can be realized
by one bit memory that denotes existence of the token, and thus, the token
cannot carry any additional information. Note that if agents are not allowed
to have tokens, they cannot mark nodes in any way and this means that
uniform deployment problem cannot be solved. This is because if all agents
move in a synchronous manner, they cannot get any information of other
agents. After a token is released at some node, agents cannot remove the
token. Note that since agents are anonymous, they cannot recognize the
owner of the token. In addition, we assume that agents can send a message
of any size to agents staying at the same node. We assume that agents move
through a link in a FIFO manner, that is, when agent ap leaves vi after agent
aq, ap reaches vi+1 after aq. Note that such a FIFO assumption is natural
because 1) agents are implemented as messages in practice, and 2) the FIFO
assumption of messages are natural and can be easily realized in distributed
systems.

Each agent ai executes the following five operations in an atomic action:
1) The agent reaches a node v (when ai is in transit toward v), or it starts
operations at v (when ai is at v), 2) the agent receives all the messages (if
any), 3) the agent executes local computation, 4) the agent broadcasts a
message to all the agents staying at the same node v (if any) if it decides
to send a message, and 5) the agent leaves v if it decides to move. After
taking an atomic action, ai has no message. Note that these assumptions of
atomic actions are also natural because they can be implemented locally at
a node if each node has an incoming buffer that stores agents about to visit
the node and makes them execute actions in a FIFO order. We consider an
asynchronous system, that is, the time for each agent to transit to the next
node and to wait until execution of the next action (when staying at a node)
is finite but unbounded.

A (global) configuration C is defined as a 5-tuple C = (S, T,M, P,Q) and
the correspondence table is given in Table 2. The first element S is a k-tuple
S = (s0, s1, . . . , sk−1), where si is the state (including the state to denote
whether it holds a token or not) of agent ai (0 ≤ i ≤ k − 1). The second
element T is an n-tuple T = (t0, t1, . . . , tn−1), where ti is the state (i.e., the
number of tokens) of node vi (0 ≤ i ≤ n − 1). The third element M is a

8

Table 2: Meaning of each element in configuration C = (S, T,M,P,Q)

Element Meaning and example

S = (s0, s1, . . . , sk−1) Set of agent states (si: the state of agent ai)
T = (t0, t1, . . . , tn−1) Set of node states (ti: the state of node vi)
M = (m0,m1, . . . ,mk−1) Set of message sequences

(mi: a sequence of massages sent to ai and not received by ai)
P = (p0, p1, . . . , pn−1) Set of agents staying at nodes

(pi: a set of agents staying at node vi)
Q = (q0, q1, . . . , qn−1) Set of agent sequences residing on links

(qi: a sequence of agents in transit from vi−1 to vi)

k-tuple M = (m0,m1, . . .mk−1), where mi is a sequence of messages reached
ai but not consumed yet by ai. The remaining elements P and Q represent
the positions of agents. The element P is an n-tuple P = (p0, p1, . . . , pn−1),
where pi is a set of agents staying at node vi (0 ≤ i ≤ n− 1). The element Q
is an n-tuple Q = (q0, q1, . . . , qn−1), where qi is a sequence of agents residing
in the FIFO queue corresponding to link (vi−1, vi) (0 ≤ i ≤ n − 1). Hence,
agents in qi are those in transit from vi−1 to vi.

We denote by C the set of all possible configurations. In initial configura-
tion C0 ∈ C, all agents are in the initial state (where each has a token) and
placed at distinct nodes, and no node has any token. In addition, in C0 the
node where agent a is located is called the home node of a and denoted by
vHOME(a). We assume that in C0 agent a is stored at the incoming buffer of
its home node vHOME(a). This assures that agent a starts the algorithm at
vHOME(a) before any other agent visits vHOME(a), that is, a is the first agent
that takes an action at vHOME(a).

In addition, we define periodic rings and the symmetry degree l. For
initial configuration C0, we assume that agents a0, a1, . . . , ak−1 exist in this
order, that is, ai is the i-th forward agent of a0 in C0. Then, in C0 we de-
fine the distance sequence of agent ai as Di(C0) = (di0(C0), . . . , d

i
k−1(C0)),

where dij(C0) is the distance from the j-th forward agent of ai to the (j +
1)-th forward agent of ai in C0. In addition, we define the distance se-
quence of configuration C0 as the lexicographically minimum sequence among
{Di(C0)|ai ∈ A}, and we denote it by D(C0). Moreover, let shift(D, x) =
(dx, dx+1, . . . , dk−1, d0, d1, . . . , dx−1) for sequenceD = (d0, d1, . . . , dk−1). Then,
when D(C0) = shift(D(C0), x) holds for some x (0 < x < k), we say the ring

9

is periodic. For a periodic ring, letting x be the minimum integer satisfy-
ing D(C0) = shift(D(C0), x), the symmetric degree l of C0 is defined to be
l = k/x. Otherwise, we say the ring is aperiodic and we define l = 1.

A schedule is an infinite sequence of agents. A schedule X = ρ1, ρ2, . . .
is fair if every agent appears in X infinitely often. An infinite sequence of
configurations E = C0, C1, . . . is called an execution from C0 if there exists a
fair schedule X = ρ1, ρ2, . . . that satisfies the following conditions for each h
(h > 0):

• If ρh−1 ∈ pi holds for some i in configuration Ch−1, the states of ρh−1

and vi in Ch−1 are changed to those in Ch by local computation of ρh−1.
Let aj = ρh−1. If mj ̸= ∅, all messages in mj are delivered to aj and
consumed, that is, mj becomes ∅. In addition, if ρh−1 sends a message,
the message is appended to the tail of ml for each agent al staying at
vi. Moreover, if ρh−1 releases its token at vi, the value of ti increases by
one. After this, if ρh−1 decides to move to vi+1, ρh−1 is removed from
pi and is appended to the tail of sequence qi+1. If ρh−1 decides to stay,
ρh−1 remains in pi. The other elements in Ch are the same as those in
Ch−1.

• If ρh−1 is at the head of qi for some i in configuration Ch−1, ρh−1 moves
to vi, that is, ρh−1 is removed from qi. Then, the states of ρh−1 and
vi in Ch−1 are changed to those in Ch by local computation of ρh−1.
If ρh−1 sends a message, the message is appended to the tail of ml for
each agent al staying at vi. In addition, if ρh−1 releases its token at vi,
the value of ti increases by one. After this, if ρh−1 decides to move to
vi+1, ρh−1 is appended to the tail of sequence qi+1. If ρh−1 decides to
stay, ρh−1 is inserted in pi. The other elements in Ch are the same as
those in Ch−1.

2.2. The uniform deployment problem

The uniform deployment problem in a ring network requires k (≥ 2)
agents to spread uniformly in the ring, that is, all the agents are located
at distinct nodes and the distance between any two adjacent agents should
become identical like Fig. 2. Here, we say two agents are adjacent when there
exists no agent between them. However, we should consider the case that n
is not a multiple of k. In this case, we aim to distribute the agents so that
the distance d of any two adjacent agents should be ⌊n/k⌋ or ⌈n/k⌉.

10

Figure 2: An example of uniform deployment (n = 16, k = 4, d = 3)

We consider two kinds of the uniform deployment problem: with termi-
nation detection and without termination detection. At first, we define the
uniform deployment problem with termination detection. In this case, a
unique halt state is defined as follows: when agent ai enters the halt state,
it terminates the algorithm, that is, ai neither changes its state nor leaves
the current node even if another agent sends a message to ai. Hence if an
agent enters the halt state, it can detect its termination. Now, we define the
uniform deployment problem with termination detection as follows.

Definition 1. An algorithm solves the uniform deployment problem with
termination detection if any execution satisfies the following conditions.

• All agents change their states to the halt state in finite time.

• When all agents are in the halt state, qj = ∅ holds for any qj ∈ Q and
the distance of each pair of adjacent agents is ⌊n/k⌋ or ⌈n/k⌉.

Next, we define the uniform deployment problem without termination
detection. In this case, suspended states are defined as follows: when agent
ai enters a suspended state, it neither changes its state nor leaves the current
node unless another agent sends a message to ai. If ai receives a message,
it can resume its behavior and leave the current node. Different from the
halt state, the suspended states are not uniquely defined since an agent can
resume its behavior from a suspended state; the suspended state should
contain the information necessary to resume the behavior. The uniform
deployment problem without termination detection allows all agents to stop
in the suspended states, which is also known as communication deadlock.

11

a

b

c

d

�

�

�

�

�

Figure 3: The initial configuration to derive a lower bound Ω(kn) of the total moves

Definition 2. An algorithm solves the uniform deployment problem without
termination detection if any execution satisfies the following conditions.

• All agents change their states to the suspended states in finite time.

• When all agents are in the suspended states, mi = ∅ holds for each
agent ai, qj = ∅ holds for any qj ∈ Q, and the distance of each pair of
adjacent agents satisfies ⌊n/k⌋ or ⌈n/k⌉.

For the uniform deployment problem, we have the following lower bound
of total moves. This lower bound holds even if agents have knowledge of k.

Theorem 1. When k ≤ pn holds for some constant p (p < 1), a lower bound
of the total moves to solve the uniform deployment problem (with or without
termination detection) is Ω(kn) even if agents have knowledge of k.

Proof. We assume for simplicity that k ≤ n/4 holds and consider the initial
configuration such that all agents stay in a quarter part of the ring like Fig. 3.
In such an initial configuration, l = 1 holds (i.e. the ring is aperiodic). Then,
the ring is divided into four quarter parts, and in the initial configuration,
all agents are in the part a. To achieve uniform deployment, k/4 agents need
to move to the part c, the opposite part of a, and each of them must move at
least n/4 times. Thus, the total number of moves is at least (k/4)× (n/4) =
kn/16. This argument can be easily extended to any constant p (p < 1)
satisfying k ≤ pn.

12

Next, we define the time complexity as the time required to achieve uni-
form deployment. Since there is no assumption on time in asynchronous
systems, it is impossible to measure the exact time. Instead, we consider
the ideal time complexity, which is defined as the execution time under the
following assumptions: 1) The time required for an agent to move from a
node to its neighboring node or to wait until execution of the next action is
at most one, and 2) the time required for local computation is ignored (i.e.,
zero)1. For example, if some agent continues to move in the ring from the
beginning to the end of execution of the algorithm, the ideal time complex-
ity is equivalent to the number of moves for the agent. These assumptions
are introduced only to evaluate the time complexity, that is, algorithms are
required to work correctly without such assumptions. In the following, we
simply use terms “time complexity” and “time” instead of “ideal time com-
plexity”. Then, we can show the following theorem similarly to Theorem
1.

Theorem 2. A lower bound of the time complexity to solve the uniform
deployment problem (with or without termination detection) is Ω(n).

3. Agents with knowledge of k

In this section, we consider the uniform deployment problem for agents
with knowledge of k.2 We propose two algorithms to solve the uniform de-
ployment problem with termination detection. The first algorithm is native
one and requires O(k log n) memory space per agent, O(n) time, and O(kn)
total moves. The second algorithm reduces the memory space per agent to
O(log n), but uses O(n log k) time, and requires O(kn) total moves.

3.1. A native algorithm with O(k log n) agent memory

In this section, we propose an algorithm to solve the uniform deployment
problem with termination detection which requires O(k log n) memory space
per agent, O(n) time, O(kn) total moves. For simplicity, we assume n = ck
for some positive integer c, and we can remove this assumption in Section

1This definition is based on the ideal time complexity for asynchronous message-passing
systems [20].

2We assume agents with knowledge of k, but agents with knowledge of n can similarly
solve the problem.

13

3.1.1. The algorithm consists of the following two phases: the selection
phase and the deployment phase. In the selection phase, each agent travels
once around the ring and selects a base node as a reference node of uniform
deployment. In the deployment phase, based on the base node, each agent
determines a target node where it should stay and moves to the node.

In the selection phase, each agent ai firstly releases its token at its home
node vHOME(ai), and travels once around the ring. Note that since each agent
has knowledge of k, it can detect when it completes one circuit of the ring
(or when it returns to its home node). During the traversal, ai measures
the distance dis between every pair of adjacent token nodes, and stores dis
to an array D for memorizing the distance sequence. When completing one
circuit of the ring, ai gets the value of n and the distance sequence D =
(d0, d1, . . . , dk−1), where dj is the distance from the j-th token node it found
to the (j+1)-th token node. Note that ai’s home node vHOME(ai) is considered
as the 0-th token node. Let x be the minimum number such that shift(D, x) =
Dmin holds, where Dmin is the lexicographically minimum distance sequence
among {shift(D, x)|0 ≤ x ≤ k − 1}. Then, ai selects its base node vbase(ai)
as the home node of the x-th agent of ai. Note that the x-th agent has the
minimum distance sequence Dmin. If D is aperiodic, all the agents select the
same node as a base node. If D is periodic, multiple nodes are selected as
base nodes (Fig. 4 (a)).

In the deployment phase, each agent ai determines its target node and
moves to the node. First, ai considers that it is the rank-th agent (0 ≤
rank ≤ k′ − 1) to vbase(ai). Here, if ai is the rank-th agent, it means that
there exist rank−1 agents (or tokens) between vHOME(ai) and vbase(ai). Thus,
rank is equal to x in the previous paragraph. Note that agent ai staying
at vbase(ai) is considered as the 0-th agent. In Fig. 4 (a), agent a2 (resp.,
a5) is the 1-st agent since there exists no agent between a2 (resp., a5) and
vbase(a2) (resp., vbase(a5)). Similarly, a1 and a4 are the 2-nd agents. Let
disBase be the distance from its home node vHOME(ai) to vbase(ai). Note
that the value of disBase for the 0-th agent is 0. First, ai moves disBase
times and reaches vbase(ai). After this, ai moves to its target node by moving
rank × n/k times and terminates the algorithm. In Fig. 4 (b), the target
nodes of a0, a1, a2, a3, a4, and a5 are v0t , v

1
t , v

2
t , v

3
t , v

4
t , and v5t , respectively.

Note that if multiple base nodes are selected like Fig. 4, the following
properties are satisfied: 1) The distance between every pair of two adjacent
base nodes is identical, and 2) the number of agents and their locations
between every pair of adjacent base nodes are also identical. Thus, the base

14

����������	
���	���� ������ ������

� � �������������

� � �������������

� � �������������

�� ��

��

��

��

��

�� ��

��

��

��

��

��
�

��
�

��
�

��
�

��
�

��
�

��� ���

��	����	 ������

Figure 4: The base nodes and the target nodes

nodes can be reference nodes of uniform deployment, and each agent can
determine its base node and target node uniquely.

The pseudocode is described in Algorithm 1. We have the following the-
orem.

Theorem 3. For agents with knowledge of k, Algorithm 1 solves the uni-
form deployment problem with termination detection. This algorithm requires
O(k log n) memory space per agent, O(n) time, and O(kn) total moves.

Proof. It is obvious that Algorithm 1 solves the uniform deployment problem
with termination detection, and in the following we analyze the complexity
measures.

At first, we evaluate the memory requirement per agent. Each agent
eventually gets the distance sequence D = (d0, d1, . . . , dk−1). Since each di
is at most n, this sequence requires O(k log n) memory. Moreover, the other
variables require O(log n) bit memory. Therefore, the memory requirement
per agent is O(k log n).

Next, we analyze the time complexity and the total moves. In the selec-
tion phase, each agent travels once around the ring to get D, which takes n

15

Algorithm 1 A time optimal algorithm for agents with knowledge of k

Main behavior of Agent ai
1: /* selection phase */
2: j = 0
3: release a token at its home node vHOME(ai)
4: while j ̸= k do
5: move to the nearest token node and get the distance dis between two

token nodes
6: D[j] = dis
7: j = j + 1
8: end while
9: // ai completes travelling once around the ring and gets the number of

nodes
10: n = D[0] +D[1] + · · ·+D[k − 1]
11:

12: /* deployment phase */
13: let Dmin be the lexicographically minimum sequence among

{shift(D, x)|0 ≤ x ≤ k − 1}
14: rank = min{x ≥ 0|shift(D, x) = Dmin}
15: if rank = 0 then disBase = 0
16: if rank ̸= 0 then disBase = D[0] +D[1] + · · ·+D[rank− 1]
17: move disBase+ rank× n/k times
18: terminate the algorithm

time units and n moves. In the deployment phase, each agent moves to its
own target node, which takes at most 2n time units and 2n moves. Thus,
the time complexity is O(n) and the total number of moves is O(kn).

3.1.1. The uniform deployment for the case of n ̸= ck

To remove the restriction of n = ck imposed in Section 3.1, only the parts
for determining the target node and for moving to the target node should
be modified. In the case that n is not a multiple of k, the distance between
adjacent target nodes should be ⌈n/k⌉ or ⌊n/k⌋.

Since all the agents recognize a single base node or uniformly distributed
base nodes, they can determine the uniformly distributed target nodes using
the base nodes as reference nodes: Let b be the number of the base nodes, and
r = n mod k. The distance of every pair of adjacent base nodes is identical

16

even in the case of n ̸= ck, and is n/b = (⌊n/k⌋×k+r)/b = ⌊n/k⌋×k/b+r/b
(notice that k/b and r/b are integers). This implies that we should select
k/b − 1 target nodes between two adjacent base nodes so that the first r/b
intervals between adjacent target nodes should be ⌈n/k⌉ and others should
be ⌊n/k⌋. With considering the above, each agent can determine its own
target node by local computation so that all the agents can spread over the
ring to achieve uniform deployment.

3.2. An algorithm with O(log n) agent memory

In this section, we propose an algorithm to solve the uniform deployment
problem with termination detection which reduces the memory space per
agent to O(log n), but uses O(n log k) time, and requires O(kn) total moves.
The algorithm consists of two phases similarly to Algorithm 1 in Section
3.1: the selection phase and the deployment phase. The selection phase of
Algorithm 1 requires O(n log k) space per agent, so we modify the selection
phase to reduce the space. The deployment phase is also slightly modified so
that it can adapt to the modified selection phase. For simplicity we assume
n = ck for some positive integer c in the following description, and this
assumption is removed similarly to Section 3.1.1.

3.2.1. Selection phase

As in the selection phase of Algorithm 1, some of home nodes are selected
as the base nodes, and they are used as reference nodes for uniform deploy-
ment. Algorithm 1 achieves this by making each agent get the whole distance
sequence, which requires O(k log n) memory space, and determine the base
node independently. To reduce the memory space per agent, the criterion of
the base nodes is relaxed and agents cooperatively select the base nodes.

The base nodes are selected to satisfy the following three conditions called
the base node conditions: 1) There exists at least one base node, 2) the
distance between every pair of adjacent base nodes is the same, and 3) the
number of home nodes between every pair of adjacent base nodes is the
same. Compared to Algorithm 1, the last condition is relaxed in the sense
that locations of the home nodes are not considered. However, this condition
still guarantees that the number of the selected base nodes is a divisor of k.
For example, let us consider the initial locations of agents of Fig. 5. Then,
distances from vHOME(a1) to vHOME(a2), from vHOME(a2) to vHOME(a3), and
from vHOME(a3) to vHOME(a1) are all 6, and the number of home nodes be-
tween vHOME(a1) and vHOME(a2), between vHOME(a2) and vHOME(a3), and

17

��

��

��

�

�

�

�
�

�

Figure 5: An example of the base node conditions (n = 18, k = 9, d = 2)

between vHOME(a3) and vHOME(a1) are all 2. Thus, vHOME(a1), vHOME(a2),
and vHOME(a3) satisfy the base node conditions. Agents select such base
nodes with O(log n) memory. When the selection phase is completed, each
agent stays at its home node and knows whether its home node is selected
as a base node or not. We call an agent a leader (but probably not unique)
when its home node is selected as a base node, and call it a follower oth-
erwise. The state of an agent is active, leader or follower. Active agents
are candidates for leaders, and initially all agents are active. Once an agent
becomes a follower or a leader, it never changes its state. In the following,
we say that a node v is active (resp., a follower) when v is the home node of
an active (resp., a follower) agent.

Now, we explain the outline of the selection phase. In this phase, agents
get IDs from the distance between token nodes and decrease the number of
active agents using the IDs. We explain the detail of the IDs later. At the
beginning of the algorithm, each agent ai releases its token at its home node
vHOME(ai). The selection phase consists of at most ⌈log k⌉ sub-phases. At the
beginning of each sub-phase, each agent stays at its own home node. During
the sub-phase, if agent ai is a follower, it keeps staying at its home node. On
the other hand, each active agent ai travels once around the ring and gets its

18

��

��
���� � �����

��
�

�� ���������� �� ��	
��

Figure 6: An ID of an active agent ai

own ID by the method described later.3 Then, ai compares its own ID with
IDs of other agents and determines the next behavior. Briefly speaking, if
all active agents have the same IDs, it means that all the distances between
neighboring active nodes are the same, and home nodes of the active agents
satisfy the base node conditions. Hence, the active agents become leaders
and enter to the deployment phase. If all agents do not have the same IDs but
ai’s ID is the minimum, it remains active and executes the next sub-phase. If
ai does not satisfy any of the above conditions, it becomes a follower. Each
active agent executes such sub-phases at most ⌈log k⌉ times.

Now, we explain the detail of the ID. The ID (not necessarily unique)
of an active agent ai is given in the form of (di, fNumi), where di is the
distance from its home node vHOME(ai) to the next active node, say vnext, in
the sub-phase and fNumi is the number of follower nodes between vHOME(ai)
and vnext. For example, in Fig. 6 when agent ai moves from its home node
vj to the next active node v′j, it visits five nodes and observes two follower
nodes. Hence, ai gets its own ID IDi = (5, 2). We compare two IDs by
the lexicographical order: for ID1 = (d1, fNum1) and ID2 = (d2, fNum2),
ID1 < ID2 if (d1 < d2) ∨ ((d1 = d2) ∧ (fNum1 < fNum2)) holds. Each active
agent decides whether it remains active or not using such IDs. Notice that
an agent gets different IDs in different sub-phases since at least one of the
neighboring active agents becomes a follower in every sub-phase.

In the following, we explain the implementation of the sub-phase. In the
sub-phase, each active agent ai travels once around the ring. While traveling,

3Each agent can detect when it completes one circuit of the ring since it has knowledge
of k.

19

ai executes the following actions:

1. Get its own ID IDi = (di, fNumi):
Agent ai gets its own ID IDi by moving from its home node vHOME(ai)
to the next active node vnext with counting the numbers of nodes and
follower nodes (Fig. 6). Since all active agents are traversing the ring
and all follower agents are staying at their home nodes, ai can detect its
arrival at the next active node when it visits a node with a token but
with no agent. Note that this statement holds even in asynchronous
systems because active agents do not pass other active agents from the
FIFO property of links and the atomicity of execution.

2. Get the ID IDnext = (dnext, fNumnext) of its next active agent:
Similarly, with counting the numbers of nodes and follower nodes, ai
moves from vnext to the next active node (i.e., the node with a token
but with no agent). Then, ai gets the ID of ai’s next active agent and
stores it to IDnext.

3. Compare IDi with those of all active agents:
During the traversal of the ring, ai compares IDi with IDs of all active
agents one by one, and checks 1) whether IDi is the minimum and 2)
whether the IDs of all active agents are the same. To check these, agent
ai keeps boolean variables min (min = true means IDi is the minimum
among ever-found IDs) and identical (identical = true means that ever-
found IDs are the same), and it updates the variables (if necessary)
every time it finds an ID of another active agent.

When ai completes one circuit of the ring, it determines its state for the
next sub-phase. If identical = true holds, this means that all active agents
have the same IDs. In this case, ai (and all the other active agents) becomes a
leader and completes the selection phase. If identical = false, min = true and
IDi < IDnext hold, ai remains active and executes the next sub-phase. The
last condition means that, when active agents with the minimum ID appear
consecutively, only one of them (or the last agent in the consecutive agents)
remains active. This guarantees that the number of active agents is at least
halved in each sub-phase. If ai does not satisfy any of the above conditions,
it becomes a follower. By repeating such sub-phase at most ⌈log k⌉ times, all
the remaining active agents have the same IDs in some sub-phase and they

20

Algorithm 2 The behavior of active agent ai (selection phase)

Behavior of Agent ai
1: /*selection phase*/
2: phase = 1, identical = true, min = true
3: release a token at its home node vHOME(ai)
4: while phase ̸= ⌈log k⌉ do
5: move to the next active node and get its own ID IDi = (di, fNumi)
6: if ai is at vHOME(ai) then terminate the selection phase and start the

deployment phase with a leader state // only ai is active
7: move to the next active node and get ID IDnext = (dnext, fNumnext) of

the next active agent
8: if IDi ̸= IDnext then identical = false
9: if IDi > IDnext then min = false // there exists an agent having a

smaller ID
10: while ai is not at vHOME(ai) do
11: move to the next active node and get ID IDother = (dother, fNumother)

of the next active agent
12: if IDi ̸= IDother then identical =false
13: if IDi > IDother then min = false // there exists an agent having

a smaller ID
14: end while
15: if identical = true then terminate the selection phase and start the

deployment phase with a leader state // all active agents have the
same IDs

16: if (min = false) ∨ (IDi = IDnext)
then terminate the selection phase and start the deployment phase
with a follower state

17: phase = phase+ 1, identical = true, min = true
18: end while

are selected as leaders so that their home nodes (or the base nodes) should
satisfy the base node conditions.

The pseudocode is described in Algorithm 2. Note that in the first sub-
phase of Algorithm 2, each agent can get the number n of nodes when it
finishes traveling once around the ring, but we omit the description.

21

3.2.2. Deployment phase

As in Algorithm 1, each agent determines its target node and moves to
the node. From the base node conditions, the base nodes are first selected
as the target nodes. Hence, letting b be the number of the base nodes, other
k − b target nodes are selected so that the distance between two adjacent
target nodes should be n/k.

While the leaders know the completion of the selection phase, followers
do not know the fact. Hence, at the beginning of the deployment phase, each
leader notifies followers that the selection phase is completed. To do this,
each leader moves to the next base node. During the movement, if there
exists an agent, the leader informs the agent of the number of tokens (or
home nodes) tBase to the next base node. If the leader arrives at the next
base node, it terminates the algorithm there since the current base node is
its target node.

When each follower receives the value of tBase, it knows the completion
of the selection phase. Then, it starts the deployment phase. Each follower
moves in the ring until it observes tBase tokens, and then it reaches the
nearest base node. After this, the agent traverses the ring until it finds
a vacant target node: every time the agent moves n/k times, it reaches a
target node and stays there if the node is vacant (i.e., no agent is staying),
otherwise (i.e., when the target node is already occupied by another agent)
it keeps moving to the next target node by making another n/k moves. Note
that from the atomicity of execution, it does not happen that two follower
agents arrive at the same target node at the same time, that is, exactly one
follower stays at each target node. The pseudocode is described in Algorithm
3. We have the following theorem about the presented algorithm.

Theorem 4. For agents with knowledge of k, Algorithms 2 and 3 solve the
uniform deployment problem with termination detection. This algorithm re-
quires O(log n) memory space per agent, O(n log k) time, and O(kn) total
moves.

Proof. It is obvious that Algorithms 2 and 3 solve the uniform deployment
problem with termination detection even in periodic rings, and in the follow-
ing we analyze the complexity measures.

At first, we evaluate the memory requirement per agent. Each agent ai
has three variables IDi, IDnext, and IDother to store IDs, each of which requires
O(log n) memory. Since other variables require O(log n) or less memory, each
agent requires O(log n) memory.

22

Algorithm 3 The behavior of leader or follower agent ai (deployment phase)

Behavior of Agent ai
1: /*deployment phase*/
2: // the behavior of leader agents
3: if ai is in the leader state then
4: t = 0
5: while t ̸= fNumi do
6: move to the next node where a token exists // look for a follower

agent
7: send tBase (= fNumi − t) to the agent staying at the current node
8: t = t+ 1
9: end while

10: move to the next node where a token exists // move to the next base
node

11: terminate the algorithm
12: end if
13:

14: // the behavior of follower agents
15: if ai is in the follower state then
16: wait at the current node until ai receives the value of tBase
17: move until it observes tBase tokens // ai reaches the nearest base node
18: while true do
19: move n/k times // move to the next target node
20: if there exists no agent staying at the current node then terminate

the algorithm
21: end while
22: end if

Next, we consider the time complexity. The selection phase requires at
most n⌈log k⌉ time units because each sub-phase requires n time units and
agents execute at most ⌈log k⌉ sub-phases. In addition, the deployment phase
requires at most 2n time units. Hence, the time complexity is O(n log k).

Lastly, we consider the total moves. First, we consider the selection phase.
In each sub-phase, each active agent travels once around the ring, and then at
least half active agents become followers or all active agents become leaders.
Hence, in the beginning of the x-th sub-phase, the number of active agents
is at most k/2x−1. Since follower agents and leader agents never move in the

23

selection phase, the total number of moves in the selection phase is at most∑
1≤x≤log k(k/2

x−1)n ≤ 2kn. In the deployment phase, each leader moves
to the next base node and each follower moves to a target node to achieve
uniform deployment. Each leader obviously moves at most n times, and each
follower moves at most 2n times since it first moves to the nearest base node,
which requires at most n moves, and then moves to a vacant target node,
which requires at most n moves. Thus, the total moves in the deployment
phase is O(kn). Therefore, the total moves is O(kn).

4. Agents with no knowledge of k or n

In this section, we consider the uniform deployment problem for agents
with no knowledge of k or n. We consider cases with termination detection
and without termination detection in this order.

4.1. Uniform deployment problem with termination detection

When termination detection is required, we show that there exists no
algorithm to solve the problem. Intuitively, it is due to impossibility of
finding correct k or n when some part of the initial configuration has a
repeated distance sequence: due to this some agent in this part misestimates
k and n at smaller numbers than actual ones, it prematurely terminates and
uniform deployment cannot be achieved.

Theorem 5. There exists no algorithm to solve the uniform deployment
problem with termination detection if agents have no knowledge of k or n.

Proof. We use the similar idea to that in [16], which shows that for agents
without any knowledge there exists no algorithm to solve the rendezvous
problem with termination detection. For simplicity, we assume that agents
move in a synchrnous manner, that is, in each round agents move instanta-
neously and there is no agent in transit from some node vi to vi+1. We prove
the theorem by contradiction, that is, we assume that there exists algorithm
A to solve the uniform deployment problem with termination detection.

At first, let us consider n-node ring R and the initial configuration C0 such
that k agents a0, a1, . . . , ak−1 exist in this order. Let V = {v0, v1, . . . , vn−1}
and assume that d = n/k is a positive integer. From the hypothesis, there
is an execution ER of A to solve the uniform deployment problem in R. We
define T (ER) as the length (or the number of rounds) of ER and denote

24

��

��

��

����

��
�
��
�
��
�
����
�
��
�
����
�
����
�
�������
�

�����
�

��������
�

������

������′

��������	��	
�������������	�
�������	������ �	�������������

Figure 7: Comparison between R and R′

ER = C0, C1, . . . , CT (ER). Note that, in CT (ER) all agents are in the halt state
and every distance between two adjacent agents is d.

Next, let us consider a larger ring R′ consisting of 2qn+2n nodes, where
q is the minimum integer satisfying qn ≥ T (ER). The comparison between
R and R′ is shown in Fig. 7. Let V ′ = {v′0, v′1, . . . , v′2qn+2n−1}. We consider
the initial configuration C ′

0 such that kq + k agents a′0, a
′
1, . . . a

′
kq+k−1 exist

in this order in R′. Then, in R′ the interval of uniform deployment is 2d.
In addition, we define the initial position of each agent in R′ as follows.
Let vf(i) be the node where agent ai initially stays in R. Then, we assume
that agent a′i initially stays at node v′f(i mod k)+n·⌊i/k⌋. That is, the initial
positions for R are repeated from v′0 to v′qn+n−1, and there is no agent from
v′qn+n to v′2qn+2n−1. For each node v′j in R′, we define Cv(v

′
j) = vj mod n as

the corresponding node of v′j in R. In the following, we show that each agent
a′i (0 ≤ i ≤ k − 1) behaves in the exactly same way as agent ai in R and
a′i enters the halt state at the same time as ai. Then, the distance between
the two adjacent agents of them is d, which contradicts that the interval of

25

uniform deployment in R′ is 2d.
At first, we have the following lemma. We define the local configuration

of node v as the 2-tuple that consists of the state of v and the states of all
agents at v.

Lemma 1. Let us consider execution ER′ = C ′
0, C

′
1, . . . , C

′
T (ER), . . . for ring

R′. We define V ′
t = {v′t, v′t+1, . . . , v

′
qn+n−1}. For any t ≤ T (ER), configura-

tion C ′
t satisfies the following condition: for each v′j ∈ V ′

t , the local configu-
ration of v′j in C ′

t is the same as that of Cv(v
′
j) in Ct.

Proof. We prove Lemma 1 by induction on t. For t = 0, Lemma 1 holds
from the definition of R′. Next, we show that when Lemma 1 holds for
t (t < T (ER)), Lemma 1 holds also for t+ 1.

From the hypothesis, for each v′j ∈ V ′
t+1 the local configurations of v′j−1

and v′j in C ′
t are the same as those of Cv(v

′
j−1) and Cv(v

′
j) in Ct, respectively.

Hence, agents staying at v′j−1 and v′j in C ′
t behave in the exactly same way as

those at Cv(v
′
j−1) and Cv(v

′
j) in Ct. Since only agents staying at nodes v′j−1

and v′j can change the local configuration of v′j in unidirectional rings4, the
local configuration of v′j in C ′

t+1 is the same as that of Cv(v
′
j) in Ct+1.

Therefore, we have the lemma.

From Lemma 1, in C ′
T (ER) local configuration of each node in V ∗ =

{v′qn, v′qn+1, . . . , v
′
qn+n−1} ⊆ V ′

T (ER) is the same as that of the correspond-
ing node in CT (ER). Note that the set of nodes corresponding to nodes in
V ∗ is equal to V , and every agent in V ∗ also stops in the halt state in con-
figuration C ′

T (ER). Hence, in C ′
T (ER) there exist k agents in the halt state in

V ∗. Then, the distance between the adjacent agents in V ∗ is d, which is a
contradiction.

Therefore, we have the theorem.

4.2. Uniform deployment problem without termination detection

In this section, we propose an algorithm for agents without knowledge
of k or n to solve the uniform deployment problem without termination
detection which requires O((k/l) log(n/l)) memory space per agent, O(n/l)
time, and O(kn/l) total moves, where l is the symmetry degree of the initial
configuration. This result means that when the initial configuration has a

4Recall that there is no in-transit agent in the synchronous execution we are considering.

26

higher symmetry degree, agents can solve the problem more efficiently. At
first, we consider the case for aperiodic rings. After this, we show that our
proposed algorithm achieves uniform deployment also in periodic rings.

4.2.1. Case for aperiodic rings

In Section 3, an agent can detect using knowledge of k when it completes
one circuit of the ring. However, in this section agents cannot do this since
they have no knowledge of k or n. Hence, at first agents estimate the number
of nodes in the ring, and after this they move to their target nodes based
on the estimations. Concretely, the algorithm consists of three phases: the
estimating phase, the patrolling phase, and the deployment phase. In the
estimating phase, each agent ai moves in the ring and estimates the number
of nodes. At the end of this phase, at least one agent estimates the correct
number n of nodes as we show later. In the patrolling phase, ai moves in
the ring several times depending on its estimated number of nodes. During
the movement, if ai visits the node where another agent exists, this agent
may misestimate the number of nodes and prematurely stop at an incorrect
target node. Hence, ai sends its estimated number of nodes (with some
information) to the agent. By this behavior, every agent eventually gets the
correct number n of nodes and the location of its correct target node. In the
deployment phase, ai moves to its target node and enters a suspended state.
After this, if ai receives a message from another agent and recognizes that it
misestimates the number of nodes, ai determines its new target node from
the message and moves to the node. For simplicity we assume n = ck for
some positive integer c in the following description, and this assumption can
be removed similarly as in Section 3. In addition, for sequence Y we define
Y 1 = Y and Y l+1 = Y l · Y (or concatenation of (l + 1) Y s).

Estimating phase. In this phase, each agent ai firstly releases its token
at its home node vHOME(ai). After this, ai moves in the ring, measures the
distance dis between every pair of adjacent token nodes, and stores dis to
an array D for memorizing the distance sequence. Agent ai continues such a
behavior until it completes estimating the number of nodes. Concretely, ai
continues to move until it observes the same distance sequence repeateadly
four times. Let 4n′ be the number of nodes that ai ever visited by the time.
Then, ai considers it traveled four times around the ring and estimates the
number of nodes in the ring at n′. For example, let us consider Fig. 8. Each
number in the figure represents the distance between two adjacent token
nodes. Agent ai moves from node vj to v′j and gets the distance sequence

27

� � � �� � � �
�� ��

�

��

�� � �

�

�

Figure 8: An example that an agent estimates the number of nodes

Algorithm 4 The behavior of agent ai in the estimating phase

Behavior of Agent ai
1: /* estimating phase */
2: n′ = 0, k′ = 0, nodes = 0, j = 0
3: release a token at its home node vHOME(ai)
4: while n′ = 0 do
5: move to the next token node and get the distance dis between the two

token nodes
6: D [j] = dis, j = j + 1
7: if (j mod 4 = 0) ∧ (∀x (0 ≤ x ≤ j/4− 1)

D[x] = D[x+ j/4] = D[x+ 2× j/4] = D[x+ 3× j/4]) then
8: // completing the estimation of the numbers of nodes and tokens
9: k′ = j/4

10: n′ = D[0] +D[1] + · · ·+D[k′ − 1]
11: nodes = 4n′

12: end if
13: end while
14: change to the patrolling phase

D = (1, 3, 1, 3, 1, 3, 1, 3) = (1, 3)4. Then, ai estimates the number of nodes
at 4. By this behavior, we can show that 1) at least one agent estimates the
correct number n of nodes (in the aperiodic ring), and 2) if the estimated
number n′ is not correct, n′ ≤ n/2 holds. The pseudocode is described in
Algorithm 4. During the estimating phase, ai uses a variable k′ for storing
the estimated number of agents (tokens) and a variable nodes for storing the
number of nodes that ai has ever visited. These variables (including n′ and
D) are also used in the patrolling phase and the deployment phase.

28

Algorithm 5 The behavior of agent ai in the patrolling phase

Behavior of Agent ai
1: /* patrolling phase */
2: while nodes ̸= 12n′ do
3: move to the forward node
4: nodes = nodes+ 1
5: if there exists another agent ah then send (n′, k′, nodes, D) to ah
6: end while
7: change to the deployment phase

Patrolling phase. In this phase, ai moves 8n′ times. Then, ai considers
it traveled twelve times around the ring from the beginning with respect to
its estimated number of nodes n′. During the movement, ai may observe
some agent ah staying at some node. In this case, ah may misestimate the
number of nodes and prematurely stop at an incorrect target node. Hence
if ai observes such an agent, ai sends n′, k′, nodes, and D to ah. By this
behavior, every agent eventually gets the correct number n of nodes and the
location of its correct target node. The pseudocode is described in Algorithm
5.

Deployment phase. In this phase, ai selects its target node and moves
to the node as follows. Let D = (d0, d1, . . . , dk′−1)

4 be the distance sequence
that ai obtained in the estimating phase. Then, ai selects its base node sim-
ilarly to Section 3.1, that is, letting Dmin be the lexicographically minimum
distance sequence among {shift(D, x)|0 ≤ x ≤ k′ − 1}, ai selects its base
node vbase(ai) as the home node of the x-th agent of ai. Note that the x-th
agent has the minimum distance sequence Dmin. In addition, ai determines
its target node and moves to the node similarly to Section 3.1. First, ai con-
siders that it is the rank-th agent (0 ≤ rank ≤ k′ − 1) to vbase(ai), where the
rank-th agent ai means that there exist rank− 1 agents (or tokens) between
vHOME(ai) and vbase(ai). Note that agent ai staying at vbase(ai) is considered
as the 0-th agent. Let disBase be the distance from its home node vHOME(ai)
to vbase(ai). Then, ai firstly moves disBase times and reaches vbase(ai). After
this, ai moves to its target node by moving rank × n′/k′ times and enters a
suspended state. When all agents enter suspended states, agents solve the
uniform deployment problem.

However, ai may stay at an incorrect target node when it misestimates
the number of nodes. In this case, ai eventually receives a message from

29

Algorithm 6 The behavior of agent ai in the deployment phase

Behavior of Agent ai
1: /* deployment phase */
2: let Dmin be the lexicographically minimum sequence among

{shift(D, x)|0 ≤ x ≤ k′ − 1}
3: rank = min{x ≥ 0|shift(D, x) = Dmin}
4: if rank = 0 then disBase = 0
5: if rank ̸= 0 then disBase = D[0] +D[1] + · · ·+D[rank− 1]
6: move disBase times
7: nodes = nodes+ disBase
8: move rank× n′/k′ times
9: nodes = nodes+ rank× n′/k′

10: change its state to a suspended state
11:

12: /* behavior in the suspended state */
13: wait at the current node until ai receives (n′

ℓ, k
′
ℓ, nodesℓ, D) from some

agent aℓ
14: if (n′ ≤ n′

ℓ/2) ∧ (there exists t such that (∀j (0 ≤ j ≤ 4k′ − 1)
D[j] = Dℓ[j + t]) ∧ (Dℓ[0] + · · ·Dℓ[t− 1] = nodesℓ − nodes) holds) then

15: // ai recognizes that it misestimates the number of nodes
16: n′ = n′

ℓ, k
′ = k′

ℓ, D = shift(Dℓ, t)
17: move 12n′ − nodes times
18: nodes = 12n′

19: go to line 2
20: end if

another agent aℓ. Let n′
ℓ, k

′
ℓ, nodesℓ, and Dℓ be the estimated number of

nodes, the estimated number of agents, the number of nodes ever visited,
and the distance sequence included in the message from aℓ, respectively. If
n′ ≤ n′

ℓ/2 holds and there exists t such that (∀i (0 ≤ i ≤ 4k′ − 1) D[i] =
Dℓ[i + t]) ∧ (Dℓ[0] + · · ·Dℓ[t − 1] = nodesℓ − nodes) holds, it means that aℓ
estimates at least twice number of nodes than ai and memorizes ai’s whole
distance sequence D as a part of Dℓ. Then, ai recognizes that it misestimates
the number of nodes and resumes its behavior. Concretely, ai firstly moves
12n′

ℓ − nodes times. We can show that 12n′
ℓ − nodes is always positive, as

proved in the proof of Lemma 5. Then, ai considers it traveled twelve times
around the ring from the beginning with respect to the new estimated number

30

1

1

3 11

3 3
1

1

3

��

��

��

��

(a)

�

�

� ��

�
�

�

�

��

��

��

�� � ���
�

�� � �

�

(b)

1

1

3 11

3
31

1

3

��

��

��

�� ��
�

(c)

�

�

� ��

�
�

�

�

�

��

��

��
�

��

� � ��

(d)

Figure 9: An example in the ring having some periodic subsequence (n = 27, k = 9, d = 3)

of nodes n′
ℓ. After this, it determines the new base node and its new target

node from n′
ℓ, k

′
ℓ, nodesℓ and Dℓ, moves to its new target node as mentioned

before, and enters a suspended state again. The pseudocode is described
in Algorithm 6. When all agents enter suspended states, agents solve the
uniform deployment problem.

An example As an example, let us consider the ring in Fig. 9. This ring
is aperiodic but has some periodic subsequence, that is, some agent observes a
4-times repeated subsequence before it travels once around the ring. In such
a ring, some agent misestimates the number of nodes and enters a suspended
state at an incorrect target node. However, in this case we can show that
at least one agent ai estimates the correct number n of nodes and informs
prematurely suspending agents of n during the patrolling phase. Let us
consider the behavior of agents a1 and a2. For simplicity, we assume that
they behave in a synchronous manner. In the estimating phase, agent a2
gets the distance sequence D = (1, 3, 1, 3, 1, 3, 1, 3) = (1, 3)4 and estimates
the number of nodes at 4, which is incorrect (Fig. 9 (a) to Fig. 9 (b)). After
this, a2 executes the patrolling and the deployment phases, and enters a
suspended state at incorrect target node v′j (Fig. 9 (b) to Fig. 9 (c)). On
the other hand, agent a1 is still in the estimating phase. When a1 observes
D = (11, 1, 3, 1, 3, 1, 3, 1, 3)4, it completes the estimating phase and estimates
the correct number of nodes 27. After this, in the patrolling phase a1 observes
a2 at v′j, sends its estimated number of nodes with other information to a2
(Fig. 9 (c) to Fig. 9 (d)), and moves to its target node. When a2 receives the
message from a1, it recognizes that it misestimates the number of nodes and

31

resumes its behavior.
In the following, we show that every agent eventually gets the correct

number n of nodes and its correct target node. To show this, we use the
following lemma.

Lemma 2. [16] Consider an p-length sequence A = a0, . . . , ap−1 and an p′-
length sequence B = b0, . . . bp′−1 such that p′ < p holds. If B3 is the prefix of
A3, either p′ ≤ p/2 holds or B is periodic.

Then, we have the following lemmas.

Lemma 3. If agent aℓ estimates the incorrect number of nodes nℓ (i.e.,
nℓ ̸= n holds), nℓ ≤ n/2 holds.

Proof. Let kℓ (< k) be the number of agents (tokens) estimated by aℓ. Since
aℓ observes 4kℓ tokens in the estimating phase, it stores the same distance
sequence (D[0], . . . , D[kℓ − 1]) four times, that is, (D[0], . . . , D[4kℓ − 1]) =
(D[0], . . . , D[kℓ − 1])4 holds. Then, nℓ = D[0] + · · · + D[kℓ − 1] holds. On
the other hand since the number of tokens in the ring is k > kℓ, sequence
(D[0], . . . , D[kℓ − 1])4 is the prefix of (D[0], . . . , D[k − 1])4. Note that, n =
D[0]+ · · ·+D[k−1] holds. Then from Lemma 2, (D[0], . . . , D[kℓ−1]) is peri-
odic or kℓ ≤ k/2 holds. If D([0], . . . , D[kℓ−1]) is periodic, there exists k′

ℓ < kℓ
such that (D[0], . . . , D[4k′

ℓ−1]) = (D[0], . . . , D[k′
ℓ−1])4 holds. This is a con-

tradiction because aℓ should estimate the number of nodes at nℓ. Hence, kℓ ≤
k/2 holds. Then since (D[0], . . . , D[kℓ−1]) is the prefix of (D[0], . . . , D[k−1]),
(D[0], . . . , D[k−1]) = (D[0], . . . , D[kℓ−1], D[0], . . . , D[kℓ−1], D[2kℓ], D[2kℓ+
1], . . .) holds. Thus, (D[0]+ · · ·+D[kℓ−1]) ≤ (D[0]+ · · ·+D[k−1])/2 holds,
that is, nℓ ≤ n/2 holds. Therefore, we have the lemma.

Lemma 4. If ring R is aperiodic, at least one agent estimates the correct
number n of nodes and gets distance sequence D of the initial configuration
in R.

Proof. We show that at least one agent estimates the correct number n of
nodes. Then, from Algorithms 4 to 6 the agent clearly gets the distance
sequence D for the initial configuration in R. We prove the lemma by con-
tradiction, that is, we assume that the number of nodes estimated by each
agent is less than n. We assume that in the initial configuration agents
a0, a1, . . . , ak−1 exist in this order. We define ni as the number of nodes es-
timated by ai and Di as the distance sequence observed by ai. In addition,
let Si be the distance sequence such that Di = S4

i holds.

32

Let am be the agent that estimates the maximum number of nodes nm (<
n) among all agents, and let ℓ = |Sm| (< k). We assume that the dis-
tance sequence am observes in Algorithm 4 is Dm = (dm0 , . . . , d

m
ℓ−1, d

m
ℓ , . . .

, dm2ℓ−1, d
m
2ℓ, . . . , d

m
3ℓ−1, d

m
3ℓ, . . . d

m
4ℓ−1) = (dm0 , . . . , d

m
ℓ−1)

4 = S4
m. Note that, Sm =

(dm0 , . . . ,d
m
ℓ−1) is aperiodic and ∀j (0 ≤ j ≤ ℓ− 1) dmj = dmj+ℓ = dmj+2ℓ = dmj+3ℓ

holds.
Next, let us consider the agent am+ℓ. Then, either nm+ℓ < nm or nm+ℓ =

nm holds because nm is the maximum. We show that nm+ℓ = nm always holds
by contradiction, that is, we assume that nm+ℓ < nm holds. Then, |Sm+ℓ| <
|Sm| clearly holds. Consequently, S3

m+ℓ is the prefix of S3
m because am+ℓ

gets the distance sequence (dmℓ , . . . , d
m
2ℓ−1) = Sm when it observes ℓ tokens.

Then, from Lemma 2 either |Sm+ℓ| ≤ |Sm|/2 holds or Sm+ℓ is periodic. If
|Sm+ℓ| ≤ |Sm|/2 holds, agent am observes S4

m+ℓ before observing S4
m because

(dm0 , . . . , d
m
2ℓ−1) = (dmℓ , . . . , d

m
3ℓ−1) contains S4

m+ℓ as its prefix. Consequently,
am estimates the number of nodes at nm+ℓ < nm, which is a contradiction.
If Sm+ℓ is periodic, Sm+ℓ = (S ′

m+ℓ)
t holds for some distance sequence S ′

m+ℓ

and some positive integer t (S ′
m+ℓ is aperiodic and |S ′

m+ℓ| ≤ |Sm+ℓ|/2 holds).
Hence, am observes (S ′

m+ℓ)
4 before observing S4

m and the number of nodes am
estimates is less than nm, which is also a contradiction. Therefore, nm+ℓ = nm

holds.
Let m(i) = m + iℓ and Am = {am(i)| i ≥ 0}. As mentioned above,

nm = nm+ℓ and Sm(0) = Sm(1) = Sm hold. In addition, am(1) observes the
same distance sequence of length 4|Sm| as am(0). Hence, recursively am(i+1)

observes the same distance sequence of length 4|Sm| as am(i) and consequently
each agent in Am observes Sm as the first ℓ consecutive distances. When k
is divided by ℓ, since every agent am(i) observes Sm as the first ℓ consecutive
distances and ℓ < k holds, the ring is periodic, which is a contradiction.
In the following, we consider the case that k is not divided by ℓ and show
that Sm(0)(= Sm) is periodic in this case. When k is not divided by ℓ,
k = αℓ + β (0 < β < ℓ) holds for some positive integers α and β. Then, the
prefix of Sm(0) is identical to the suffix of Sm(α) because the trajectories of
am(0) and am(α) include the same part of the ring. We assume that t elements

are overlapped, that is, (d
m(0)
0 , . . . , d

m(0)
t−1) = (d

m(α)
ℓ−t , . . . , d

m(α)
ℓ−1) holds. Let T be

the sequence consisting of the t overlapped elements and T ′
0 (resp., T

′
α) be the

sequence consisting of the other (ℓ−t) elements in Sm(0) (resp., Sm(α)). Then,
Sm(0) = TT ′

0 (resp., Sm(α) = T ′
αT) holds (Fig. 10). In addition, T ′

0 = T ′
α holds

because agent am(α) observes S
4
m(α) = (T ′

αT)
4 and T ′

α that am(α) observes for

33

�
����

�

�
����

��
�

�

�
�

�
�

�
�

�

Figure 10: An examples of Sm(0) and Sm(α)

the second time is equivalent to T ′
0 that agent am(0) observes for the first time.

Then, since Sm(0) = Sm(α) holds, shift(S(m(0)), t) = T ′
0T = T ′

αT = Sm(α) =
Sm(0) holds. Therefore, Sm(0) is periodic since 0 < t < ℓ holds. However, this
contradicts the assumption that Sm(0) (= Sm) is aperiodic.

Therefore, we have the lemma.

Lemma 5. If ring R is aperiodic, every agent eventually gets the correct
number n of nodes and distance sequence D of the initial configuration in R.

Proof. We show that all agents eventually get the correct number n of nodes.
Then, from Algorithms 4 to 6 all agents can clearly get distance sequence D
of the initial configuration in R. We prove the lemma by contradiction, that
is, we assume that when all agents are in the suspended states, there exists at
least one agent ah whose estimated number of nodes n′ is less than n. Then
from Lemma 3, n′ ≤ n/2 holds. On the other hand, from Lemma 4 at least
one agent ac estimates the correct number n of nodes. In the following we
show that ac observes ah during the patrolling phase and sends its estimated
number of nodes n to ah, which contradicts the assumption of n′ < n.

At first, let us consider the number of nodes ah visits. Let n1 be the
number of nodes ah estimates in the estimating phase. From Algorithms 4 to
6, ah moves at most 14n1 times by the time ah enters a suspended state for
the first time. After this, we assume that ah receives messages and updates
its estimated number of nodes to n2, n3, . . . , nl = n′ in this order. When
ah updates its estimated number of nodes to n2, ah’s total moves at that
point (i.e, nodes) is at most 7n2 since n1 ≤ n2/2 holds. Hence, 12n2 − nodes
is clearly positive. Then, ah firstly moves in the ring until its total moves
becomes 12n2 by moving 12n2 − nodes times. After this, ah moves to a new

34

target node and enters a suspended state again. This requires at most 14n2

total moves. Then since n2 ≤ n3/2 holds from Algorithm 6, nodes is at
most 7n3 and 12n3−nodes is clearly positive. Thus recursively, we can show
that 12ni − nodes is always positive (2 ≤ i ≤ l) and ah’s total moves is at
most 14n′ ≤ 7n unless it does not get the correct number n of nodes. On the
other hand, agent ac moves 8n times in the patrolling phase. Thus, ac clearly
observes ah during the patrolling phase and sends its estimated number n of
nodes to ah suspended at some node, which is a contradiction.

Therefore, we have the lemma.

Then, we have the following lemma for aperiodic rings.

Lemma 6. When ring R is aperiodic, agents solve the uniform deployment
problem without termination detection.

Proof. From Lemma 5, all agents eventually get the correct number n of
nodes and distance sequence D for the initial configuration in R. Then, each
agent can find its correct target node from D and move to the node. Thus,
we have the lemma.

4.2.2. Case for periodic rings

Next, we consider the case for periodic rings. Let R′ be a periodic ring
and D′ be the distance sequence of the initial configuration in R′. We say
R′ is a (N, l)-node ring if there exists an aperiodic distance sequence D such
that D′ = Dl holds and the total sum of elements of D is N . Then, n = Nl
holds and l is equivalent to the symmetry degree of the initial configuration
in R′. We call the ring R with the distance sequence D the fundamental ring
of R′ (e.g., Fig. 11 (a), (b)). Note that an aperiodic ring can be denoted by
a (n, 1)-node ring. In addition, for each agent ai in R there exist l agents in
R′ such that the distance sequence of each agent is l-times repetition of the
distance sequence of ai. We say such agents in R′ are corresponding agents
of agent ai in R and denote by aji (0 ≤ j ≤ l − 1). We assume that agents
a0i , a

1
i , . . . , a

l−1
i exist in this order and operations to the above index of aji

assume calculation under modulo l. Then, the distance from aji to aj+1
i is N .

In this case, all agents eventually estimate the incorrect number N = n/l of
nodes, but we can show that agents can achieve uniform deployment similarly
to in R. Concretely, from algorithms in Section 4.2.1 each agent moves to its
target node after considering, based on the estimated number N of nodes, it
traveled twelve times around the ring. This means that each agent becomes

35

�

�

�

��

��

��

�

�

�

�

�

�

��

�

��

���

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��� ��� ���

�� � �����
�

�� � �

�� � �����
�

�� � �

������ ������′

Figure 11: An example for the periodic ring

suspended at its target node during its twelfth or thirteenth circulations in
the ring with respect to the estimated size N , which guarantees that when all
agents are in the suspended states, no agents stay at the same node and they
can achieve uniform deployment. For example, let us consider rings in Fig. 11.
Ring R′ is a (6,2)-node periodic ring and R is the fundamental ring of R′.
In R, each agent estimates the correct number 6 of nodes in the estimating
phase and moves to its correct target node (Fig. 11 (a)). On the other hand,
in R′ each agent also estimates the number 6 of nodes, which is incorrect
(Fig. 11 (b)). By algorithms in Section 4.2.1, each agent moves to its target
node after considering, based on the estimated size 6, it traveled twelve times
around the ring, that is, after each agent moves 72 times (actually, each agent
traveled six times around ring R′). This guarantees that when all agents are
in the suspended states, no agents stay at the same node and they can achieve
uniform deployment (Fig. 11 (c)).

Now, we have the following lemmas, which can be proved similarly to the
case of aperiodic rings.

Lemma 7. Let R′ be a (N, l)-node periodic ring and R be the fundamental
ring of R′. Let ai in R be the agent estimating the number N of nodes in the
estimating phase. Then, in R′ agent aji (0 ≤ j ≤ l − 1) corresponding to ai
also estimates the number N of nodes.

36

Proof. From the definition of R′, aji observes the same distance sequence as
that of ai. In addition, since agents have no knowledge of k or n, agents
determine their estimated number of nodes depending only on the distance
sequence they observe. Thus, aji estimates the same number of nodes as that
of ai.

Lemma 8. Let R′ be a (N, l)-node periodic ring and R be the fundamental
ring of R′. Then, in R′ every agent eventually gets the number N of nodes
and distance sequence D of the initial configuration in R.

Proof. We show that all agents eventually get the number N of nodes. Then
from Algorithms 4 to 6, all agents can clearly get distance sequence D of the
initial configuration in R. We prove the lemma by contradiction, that is, we
assume that when all agents are in the suspended states, there exists at least
one agent ah whose estimated number of nodes n′ is less than N . On the
other hand, from Lemma 7 there exists agent ajc (0 ≤ j ≤ l − 1) estimating
the number N of nodes in the estimating phase. Let Ac = {a0c , a1c . . . , al−1

c }.
In the following, we show that some agent in Ac observes ah suspended at
some node during the patrolling phase and sends its estimated number N of
nodes to ah, which contradicts the assumption of n′ < N .

At first, let us consider the number of nodes ah visits. Similarly to the case
for aperiodic rings, when ah updates its estimated number of nodes from n′′

to n′, it firstly moves in the ring until its total moves becomes 12n′ by moving
12n′ − nodes times. After this, ah moves to a new target node and enters a
suspended state again. This requires at most 14n′ total moves. Hence unless
ah gets the number N of nodes, its total moves is at most 14n′ ≤ 7N .

On the other hand, from Lemma 7 there exists agent ajc in Ac such that
it estimates the number of nodes at N and the distance from vHOME(a

j
c) to

vHOME(ah) is less than N . Recall that, vHOME(a) is the home node of agent
a. Then, let us consider the behavior of agent aj−4

c . Agent aj−4
c firstly moves

4N times and finishes the estimating phase at node vHOME(a
j
c). After this,

aj−4
c moves 8N times from vHOME(a

j
c) in the patrolling phase. On the other

hand, ah moves at most 7N times from vHOME(ah). Since the distance from
vHOME(a

j
c) to vHOME(ah) is less than N , aj−4

c observes ah suspended at some
node during the patrolling phase and sends the number N of nodes to ah,
which is a contradiction.

Therefore, we have the lemma.

Lemma 9. Even when ring R′ is periodic, agents solve the uniform deploy-
ment problem without termination detection.

37

Proof. From Lemma 8, all agents eventually get the number N of nodes and
distance sequence D of the initial configuration in R, where R is the fun-
damental ring of R′. From Algorithm 6, when agent aji gets the number
N of nodes it firstly moves in the ring until its total moves becomes 12N .
Then, aji is at vHOME(a

j+12
i). After this, aji finds its target node from D and

moves to the node, which requires at most 2N moves. Hence, aji eventu-
ally stays between vHOME(a

j+12
i) and vHOME(a

j+14
i). This means that letting

vbase(a
j
i) (resp., v

′
base(a

j
i)) be the base node existing between vHOME(a

j+12
i) and

vHOME(a
j+13
i) (resp., vHOME(a

j+13
i) and vHOME(a

j+14
i)) aji eventually stays be-

tween vbase(a
j
i) and v′base(a

j
i). Moreover, it clearly holds the total moves of

each of aji (0 ≤ j ≤ l − 1) are the same. Thus when all agents are in the
suspended states, no agents stay at the same node and agents can achieve
uniform deployment.

Therefore, we have the lemma.

Finally, we have the following theorem for (N, l)-node rings.

Theorem 6. For agents with no knowledge of k or n, the proposed algorithm
solves the uniform deployment problem without termination detection. This
algorithm requires O((k/l) log(n/l)) memory space per agent, O(n/l) time,
and O(kn/l) total moves.

Proof. From Lemmas 6 and 9, agents solve the uniform deployment prob-
lem without termination detection. In the following, we analyze complexity
measures.

At first, we evaluate the memory requirement per agent. Each agent
eventually gets the distance sequence D = (d0, d1, . . . , d(4(k/l))−1). Since each
di is at most n/l, this sequence requires O((k/l) log(n/l)) memory. Moreover,
the other variables require O(log(n/l)) bit memory. Therefore, the memory
requirement per agent is O((k/l) log(n/l)).

Next, we analyze the time complexity. Let Acorrect be the set of agents
that estimate the number n/l (= N) of nodes in the estimating phase. Each
agent ac ∈ Acorrect finishes its patrolling phase in 12n/l time units, and moves
to its correct target node, which requires at most 14n/l time units from the
beginning of the algorithm. In addition, from the proof of Lemmas 5 and 8
each agent ah /∈ Acorrect gets the number n/l of nodes within 12n/l time units
since each ac ∈ Acorrect finishes its patrolling phase in 12n/l time units. After
this, ah requires at most 14n/l time units to moves to its correct target node
from the beginning of the algorithm. Thus, the time complexity is O(n/l).

38

At last, we analyze the total number of agent moves. Each agent requires
at most 14n/l moves to move to its target node. Thus, the total number of
agent moves is O(kn/l).

5. Conclusion

In this paper, we considered the uniform deployment problem of mobile
agents in asynchronous unidirectional ring networks. The uniform deploy-
ment problem, which is a striking contrast to the rendezvous problem, is
interesting to investigate. We proposed three algorithms to solve the uni-
form deployment problem from any initial configuration such that all agents
are in the initial state and placed at the distinct nodes. These algorithms
utilize the essential characteristic of the uniform deployment problem: the
problem aims to attain the symmetry, and these algorithms solve the prob-
lem without breaking symmetry that the initial agent locations have. Such
an approach in designing mobile agent algorithms seems to be applicable to
other problems that aim to attain the symmetry.

As a future work, we will consider the uniform deployment problem in
networks other than rings, such as tree networks and general networks. This
problem may be solved by embedding a ring in the networks [12, 13] and
applying the idea in this paper. Concretely, for tree networks agents embed
the ring by the Euler tour technique, that is, if an agent moves in the tree
network by the depth-first manner and visits 2(n−1) nodes, the agent can see
the nodes as a virtual ring of with 2(n−1) nodes. For general network, agents
can embed a ring by constructing a spanning tree and embedding a ring in
the spanning tree. Since an embedded ring consists of 2(n− 1) nodes for an
original network with n nodes, we can show that the total moves between
the embedded ring and the original network is asymptotically equivalent.

References

[1] D. Kotz S. R. Gray, G. Cybenko, A.R. Peterson, and D. Rus. D’agents:
Applications and performance of a mobile-agent system, Software: Prac-
tice and Experience. 32(6):543–573, 2002.

[2] J. Baumann, F. Hohl, K. Rothermel, and M. Straßer. Mole–concepts of
a mobile agent system. world wide web, 1(3):123–137, 1998.

39

[3] D.B. Lange and M. Oshima. Seven good reasons for mobile agents,
Communications of the ACM. 42(3):88–89, 1999.

[4] G. Cabri, L. Leonardi, and F. Zambonelli. Mobile agent coordination
for distributed network management. Journal of Network and Systems
Management, 9(4):435–456, 2001.

[5] B. Pagurek A. Bieszczad and T. White. Mobile agents for network
management. IEEE Communications Surveys, 1(1):2–9, 1998.

[6] E. Kranakis and D. Krizanc. An algorithmic theory of mobile agents.
International Symposium on Trustworthy Global Computing, Vol. 4661.
pages 86-97, 2006.

[7] S. Lipperts and B. Kreller. Mobile agents in telecommunications net-
works - a simulative approach to load balancing. Proc. of 5th Information
systems analysis and synthesis, pages 231–238, 1999.

[8] X Wang SK Das J Cao, Y Sun. Scalable load balancing on distributed
web servers using mobile agents. Journal of Parallel and Distributed
Computing, 63(10):996–1005, 2003.

[9] P. Flocchini, G. Prencipe, and N. Santoro. Self-deployment of mobile
sensors on a ring, Theoretical Computer Science. 402(1):67–80, 2008.

[10] Y. Elor and A.M. Bruckstein. Uniform multi-agent deployment on a
ring, Theoretical Computer Science. 412(8):783–795, 2011.

[11] L. Barriere, P. Flocchini, E. Mesa-Barrameda, and N. Santoro. Uniform
scattering of autonomous mobile robots in a grid, International Journal
of Foundations of Computer Science. 22(03):679–697, 2011.

[12] S. Dolev. Self-stabilization. MIT press, 2000.

[13] Y. Yamauchi, T. Masuzawa, and D. Bein. Preserving the fault-
containment of ring protocols executed on trees. The Computer Journal,
52(4):483–498, 2008.

[14] E. Kranakis, N. Santoro, C. Sawchuk, and D. Krizanc. Mobile agent
rendezvous in a ring, Proc. of the 23rd International Conference on
Distributed Computing Systems. pages 592–599, 2003.

40

[15] P. Flocchini, E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk. Mul-
tiple mobile agent rendezvous in a ring, Proc. of the 6th Latin American
Theoretical Informatics, LNCS, Vol. 2976. pages 599–608, 2004.

[16] S. Kawai, F. Ooshita, H. Kakugawa, and T. Masuzawa. Randomized
rendezvous of mobile agents in anonymous unidirectional ring networks,
Proc. of the 19th International Colloquium on Structural Information
and Communication Complexity, LNCS, Vol. 7355. pages 303–314, 2012.

[17] E. Kranakis, D. Krozanc, and E. Markou. The mobile agent rendezvous
problem in the ring, Synthesis Lectures on Distributed Computing The-
ory, Vol. 1. pages 1–122, 2010.

[18] D. Baba, T. Izumi, F. Ooshita, H. Kakugawa, and T. Masuzawa. Linear
time and space gathering of anonymous mobile agents in asynchronous
trees, Theoretical Computer Science. 478:118–126, 2013.

[19] Y. Dieudonné and A. Pelc. Anonymous meeting in networks. Algorith-
mica, 74(2):908–946, 2016.

[20] G. Tel. Introduction to distributed algorithms. Cambridge university
press, 2000.

41

