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Abstract: In this paper, we address Zero-shot learning for sensor activity recognition using
word embeddings. The goal of Zero-shot learning is to estimate an unknown activity class (i.e.,
an activity that does not exist in a given training dataset) by learning to recognize components
of activities expressed in semantic vectors. The existing zero-shot methods use mainly 2 kinds of
representation as semantic vectors, attribute vector and embedding word vector. However, few
zero-shot activity recognition methods based on embedding vector have been studied; especially
for sensor-based activity recognition, no such studies exist, to the best of our knowledge. In this
paper, we compare and thoroughly evaluate the Zero-shot method with different semantic vectors:
(1) attribute vector, (2) embedding vector, and (3) expanded embedding vector and analyze their
correlation to performance. Our results indicate that the performance of the three spaces is similar
but the use of word embedding leads to a more efficient method, since this type of semantic vector
can be generated automatically. Moreover, our suggested method achieved higher accuracy than
attribute-vector methods, in cases when there exist similar information in both the given sensor data
and in the semantic vector; the results of this study help select suitable classes and sensor data to
build a training dataset.

Keywords: human activity recognition; Zero-shot machine learning; word embedding representation

1. Introduction

Human activity recognition using data obtained from wearable sensors is a technology necessary
for ubiquitous computing [1]. This technology is particularly useful in fields such as care-giving [2]
and manufacturing [3], while it also finds applications in security [4]. Most of the existing methods
are based on supervised machine learning and require training data to be collected, labeled with
correct activity annotations and times. The data collection and annotation task is quite laborous.
Moreover, defining all possible activities within a context and collecting data for each one of them
may be unreasonable as the definition of an activity is purely subjective. As an example, consider
activities of daily living: defining all possible activities and collecting data for each of them may not be
even feasible.

To eliminate the need for manual activity definition and data collection, zero-shot learning has
been proposed [5–10]. The goal of zero-shot learning is to estimate unknown classes that do not
appear in the training data. Almost all supervised learning methods require some sensor data to be
collected for all classes, but zero-shot learning enables us to introduce unknown classes and omit the
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data collection task for them. Activity recognition with zero-shot learning methods is therefore much
more efficient.

Two of the basic notions in zero-shot learning are the feature space and the semantic space.
See Figure 1. The feature space contains feature vectors, which are obtained from sensor data.
The semantic space contains semantic vectors, which are semantic representations of activity classes
generated by human general knowledge, such as a dictionary. As an example of semantic
representation, “run” can be explained as “foot moves up and down quickly, for a body to go ahead
fast”. A semantic vector transforms this knowledge into a vector representation, which can be
attribute-based, by manual transformation, or embedding-based, by using natural language processing
techniques. Since there is one semantic vector corresponding to one class, which means classification
in the semantic space is a one-to-one mapping. Therefore, in the estimation phase of zero-shot learning,
a feature vector is projected into the semantic space. The resulting semantic vector is then identified
as a class by searching nearest semantic vector belonging to an unknown classes. Learning known
activity classes through the semantic vector space enables us to identify unknown classes by sharing
semantic information from known to unknown classes.
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Figure 1. Overview of the zero-shot learning method. In the learning phase, we learn how to project
feature vectors (X) onto semantic vectors (Z) from training data (red arrow). In the testing phase,
we project test feature data onto the semantic space, and then identify the class (Y) to which the
estimated semantic vector belongs (green arrow). In this paper, we compare 3 methods with different
semantic spaces.

As semantic vector, existing research uses two main types: attribute vector and word embedding
vector, which are attribute vector [11] and embedding vector [5–10,12–15]. The attribute vector
is generated manually by human expert knowledge either by crafting the attribute for the task
or by using Wordnet. The embedding word vector is generated by natural language processing
using deep networks such as Word2vec and Glove, and is widely studied for image recognition and
natural language processing. We argue the embedding vector is important for activity zero-shot
recognition because using attribute vectors has the following limitations: they are non-scalable and
their recognition performance greatly depends on them being different for every class. In particular,
they are difficult to design since the attributes of each activity are different between users. For instance,
“cleaning” activity can be defined by the attribute “vaccum” for some users but perhaps for some
others the activity has a different attribute, such as“mop”. However, few zero-shot activity recognition
methods based on embedding vector have been studied [12,13]; especially for sensor-based activity
recognition, no such studies exist, to the best of our knowledge. Although word embedding can be
more efficient than attribute vectors, there are two concerns that require further study:

• Word embedding vector has meaning ambiguity and representation complexity and,
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• Word embedding vector is unstable depending on corpus and learning task used.

Therefore, we want to study whether the embedding vector is useful for sensor-based zero-shot
activity recognition performance, and which type of embedding (simple/expanded) is efficient for
the task.

In this paper, we compare three semantic representations for zero-shot sensor activity recognition:
(a) attribute vector, (b) word embedding, and (c) expanded word embedding to understand the
following aspects:

1. In the embedded word vector space, are the issues of meaning ambiguity and representation
complexity solved by expanding the region?

2. Do these issues affect negatively the performance of sensor-based zero-shot activity recognition?
3. Is the performance of embedded word vector increased when it closely represents the attributes

defined by human?

To answer these questions, we use three data sets to evaluate each semantic representations.
Our results show that using word embedding might be more efficient than using hand-generated
attribute vector. Word embedding performance is slightly better than attribute vector. Moreover, there
is a bigger correlation between sensor and semantic vectors when using embedding word vectors.
Surprinsingly, we also find that the performance of word embedding vectors is not related to the
correct meaning of words, nor to their similarity with the attribute vector. Considering these results,
for sensor-based zero-shot activity recognition, the zero-shot model should choose semantic vectors
considering the correlation with features of sensor data to classification.

The main contributions in this paper are summarized as follows:

• For the first time in the field of sensor-based activity recognition, we study zero-shot learning
using word embedding as semantic space. In particular, we expose the difficulties of handling
word embedding for human activity recognition, and study a solution via region expansion.

• We compare word embedding to the hand-crafted attribute vector in terms of accuracy
of recognition of unknown classes and similarity of the spaces. We demonstrate that the
automatically generated word embedding representation can perform as good as expert-designed
attribute vectors.

• We examine the impact of region expansion on the performance of zero-shot recognition, as well
as on the correctness of the meaning of the semantic vector. We demonstrate that there is no
correlation between correct meaning and recognition accuracy. Instead, the performance depends
on the correlation of the semantic space to characteristics measured by sensor data.

The organisation of the paper is as follows: we present related previous work in Section 2, while
in Section 3 we introduce zero-shot learning, semantic representation, word embedding, and area
expansion. In Section 4, we discuss how we evaluate the methods and we present the datasets used in
the evaluation, and in Section 5 we give the results of the evaluation. Finally, we discuss our results in
Section 6, and we conclude in Section 7.

2. Related Work

This section is organized as follows. We introduce activity recognition in Section 2.1 and zero-shot
learning in Section 2.2.

2.1. Sensor-Based Activity Recognition

Human activity recognition has its origins in the 1990s, and the literature [16] shows that the
data obtained from sensors attached to the human body provide sufficient information to detect
human movements. To recognize human activity, some researches have been using video [17].
These video based activity recognition researches have ability to detect human pose, but these are
not useful on private space and complicated space, such as living spaces. The sensor-based activity
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recognition researched can detect motion of human body parts while invading minimum privacy.
So the sensor-based activity recognition has been attentioned for activity recognition for life and
health care. Most of the existing methods use supervised machine learning algorithms, e.g., Bayesian
methods [18], SVM [19], decision trees [20] and also DNN recently [21,22].

Although these methods can achieve high accuracy in activity classification problems, they have
the shortcoming that they can estimate only activity classes that exist in the learning data. In other
words, it takes time and effort to collect sensor data for all activity classes that we want to estimate.
These problems pose a major obstacle when implementing an application system. For instance,
implementing a monitoring system for elders requires that we collect data for each living activity.
However, this task is difficult because it imposes limitations on elders while the data collection is
in progress.

To tackle this problem, researchers have proposed methods using unsupervised machine
learning [23] and transfer learning [24,25]. In [23], unsupervised learning for activity recognition
is proposed, assuming that the number of activities k is unknown. However, with this method it is
not possible to identify which are the classes. A different approach [25] uses the model learned from
data for some users to omit the collection of data for other users. In our case, we handle the collection
problem by omitting to collect data for some classes. zero-shot learning can omit to collect data for some
classes by setting them as unknown classes. This method promotes activity recognition technology.

2.2. Zero-Shot Learning

Interest on zero-shot learning has been increasing in recent years [26]. The main idea behind
zero-shot learning is to share semantic knowledge from the seen classes to the unseen classes [11].
In sensor-based activity recognition, the most used approach is using attribute vectors as a semantic
space to share this knowledge. In an attribute vector, values define if the class has or doesn’t have the
corresponding attribute. Each class is then represented by one vector.

However, using attribute vectors has some limitations because both the attributes and each class
representation are defined manually. For this reason, attribute vectors are non-scalable: we need
to define new attributes and vectors when new unknown classes appear. Moreover, recognition
performance of attribute vectors greatly depends on them being different for every class. It is
unreasonable to think that it is possible to define attributes for all possible classes. To overcome
these problems, some methods using word embedding instead of attribute vectors as semantic
space have been proposed [5–10,12–15]. To create the embeddings, unsupervised learning (such
as word2vec [27,28] and Glove [29]) is used with large text corpus (such as Wikipedia). Then,
the embedding vector representing the word associated with each unknown activity class is choosen
for the semantic space. Using the embedding vector instead of the attribute vector, the method
becomes more scalable because we can add unknown clasees by picking up new words from Wikipedia
embedding vectors. Also, we don’t need to define the semantic vector manually, because it is generated
automatically from the text corpus. Moreover, it is known that the methods using embedding vectors
address domain problem [7]. However, as mentioned before, word embedding are created from a large,
general domain text corpus, which implies that a lot of information is compacted into the embedding
vector. Therefore, word embedding vectors can be complicated and ambiguous. These problems
impact the accuracy of activity recognition.

Although the use of embeddings has been evaluated for object recognition in images, there are
few studies [12–14] on their use in activity recognition. Since the words for actions (verbs) can be
more complex than those for objects (noun) due to conjugations and other changes, it is necessary to
separately study their performance in zero-shot activity recognition. To solve the problems mentioned
above, it has been proposed to use exploding semantic vectors [13,14]. The aim of the exploding
semantic vectors is making the semantic vector make general by considering the similar ebbedding
vectors. An exploding semantic vector is an embedding vector calculated as the average of similar
embedding vectors [14], or learned by a neural network [13]. This is similar to our expanded word
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embedding vector, however, the difference lies in the fact that we use similar word embedding
vectors for each class as additional samples. Moreover, these studies are limited to video-based activity
recogntion, whereas we analyze the use of embedding vectors and expanded word embedding vectors
for sensor-based activity recognition. In particular, we analyze if the meaning of embedding vectors
is correct with human sense by comparing them to the human-made attribute vectors and if using
expanded word embedding vectors improves performance.

Previous studies for sensor-based zero shot activity recognition focus more on the use of attribute
vectors [15,30,31]. However, each research generates its own set of attributes according to the dataset
used, exposing one of the main shortcomings of this method. Each time, a new set of attributes has
to be created, and the set of attributes defined impact the performance of the method. In this paper,
we apply the methods to three datasets (simple activities, living activities, laboratory activities) and
use the attribute set defined by Wang at al. [15], which were custom made for the last two datasets,
to compare the attribute vectors to word embedding.

3. Zero-Shot Learning with Word Embedding

In this section, we explain the zero-shot learning method for activity recognition using word
embedding. We begin by introducing the zero-shot learning method in Section 3.1. Details about
the two stages of the method, the projection and the classification process, are given in Sections 3.2
and 3.3, respectively. We conclude with Section 3.4, where we discuss the zero-shot method using
word embedding.

3.1. Zero-Shot Learning Setting

We begin by explaining activity recognition with supervised machine learning methods. Let X ⊂
Rd be a feature vector space, and let Y be a set of activity classes. Then,

{(xtr
i , ytr

i )}Ntr

i=1 ⊆ X ×Y

denotes a training dataset, where the superscript tr stands for “training” and Ntr denotes the number
of training samples.

For supervised machine learning problems, the goal is to generate the function y = f (x) that
estimates {yts

i }Nts

i=1 ⊆ Y from test feature vectors {xts
i }Nts

i=1 ⊆ X . It denotes a testing dataset, where the
superscript ts stands for “testing” and Nts denotes the number of testing samples.

In zero-shot learning, we have semantic vectors in the form

{(ztr
i , ytr

i )}Ntr

i=1 ⊆ Z ×Y ,

where Z ⊂ Rt denotes a semantic vector space. The process of zero-shot learning is the same as
supervised machine learning where we generate the estimation function from the training dataset,
and then we estimate a class by using this function. The difference is that the test classes are unknown
in the zero-shot case. In this paper, we represent unknown classes as {yts

i }Nts

i=1 ⊆ Y . The zero-shot
learning method estimates using two functions (projection function z = g(x) and class-output function
y = h(z) by searching nearest vector). We discuss now the zero-shot learning method in detail, divided
into the learning phase and the test phase.

(1) Training phase (red dotted lines in Figure 2)

The projection function z = g(x) generates a semantic vector z from a feature vector xtr, ytr .
During the learning phase, it learns each instance that belong to same class ytr. Details about the
learning phase are given in Section 3.2.
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Figure 2. Overview of the zero-shot learning method. The top show the trainig phase and the
bottom show the testing phase. The blue part shows the projection phase, and the red part shows the
classification phase.

(2) Test phase (green dotted line in Figure 2)

In the test phase, we use two functions z = g(x) and y = h(z) . First, by using z = g(x),
we estimate ẑ from xts. Next, by using the classification function y = h(z), we estimate ŷ ∈ Y from ẑ.
Details about the classification function are given in Section 3.3.

Let yts ∈ U denote a set of test classes, and let ytr ∈ S denote a set of training classes; the important
point about zero-shot learning is that

U ∩ S = ∅.

3.2. Projection Model

In this section we describe how to project from the feature vector space to the semantic vector
spaceX → Z . Let xi ∈ Nd be a feature vector instance with d dimensions, and let zi ∈ Nt be a semantic
vector instance with t dimensions. We can also write zi = z1

i , z2
i , z3

i , . . . , zt
i . In training phase, for each

feature vector, we have an associated semantic vector. The semantic vector is associated based on
the class of the feature vector. Then, each dimension of zi is learned from the training feature vector
xi by using a linear regression algorithm. In this paper, we use SVR (Support Vector Regression) as
regression algorithm for evaluation, and we call this method SVRBM (SVR-classifier-baser method)
with SVR algorithm to project. In this process, we learn t regressions in one instance, one for each
dimension of zi. During the test phase, t real values ẑt

i are estimated from one instance xi, and then
one semantic vector ẑ is estimated by combining ẑt

i .

3.3. Class-Output Function

In this section, we explain how to estimate an unknown activity class y ∈ U from ẑ. We use the
nearest neighbor algorithm:

ŷ = arg min
yts

h(ẑ).

Recall that ẑ is projected in semantic space by the projection function g(x). If we can share
information between semantic vectors correctly, ẑ is projected near the semantic vector zi corresponding
to the class of yi. In this case, we can successfully estimate the unknown class by using the nearest
neighbor method.
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3.4. Word Embedding and Word Embedding Area Expansion

3.4.1. Word Embedding

The word embedding in this paper is a vector representation generated using word2vec,
which is word vector generation tool based on unsupervised learning, using Wikipedia as corpus.
The advantages of using word2vec is that (a) the word embedding can be automatically generated,
(b) no identical vectors are created, and (c) the word embedding is adequate as semantic embedding
space. Although existing methods use word embedding generated from word2vec as semantic vectors
for image recognition, in this paper we give a first attempt to use this technique in the context of sensor
activity recognition.

The word embedding generation method that we use consists in the following steps:

1. Generate a word vector Zall by using word2vec for all Wikipedia words.
2. Suppose that the required activity class is Y = y1, y2, . . . , yn which is including seen and unseen.
3. The set Zs = z1, z2, . . . , zn corresponding to Y = y1, y2, . . . , yn is extracted from Zall .

There are some activity classes that combine two or more words, such as “Open door”. In this
case, the vectors of each word (“Open” and “door”) are averaged for each dimension.

3.4.2. Expanded Word Embedding

This semantic space is generated from word embedding Zs = z1, z2, . . . , zn and Zall . For each
instance zn, we obtain k samples by calculating distances between semantic vectors in Zall . The samples
closest to the instance zn are considered as instances belonging to the class yn. For the purpose of
evaluation, the parameter k takes the values k = 5, 10, 20 in this paper. The motivation for this proposal
comes from cases in which words with equivalent meaning, such as “running” and “jog”, exist in the
text and there is a single activity class “run”. In order to take into account such fluctuation of words,
the vector close to “run” zrun is treated as the semantic vector of activity class “run”. In the process
of combining multiple words, we apply the method to only the verb part. For instance, the class
“Open door” has two words, “open” and “door”. In this case, we apply the method only to the
part “open”, because we focus on the verbs in the proposal. We show the similar words for each
activity class in each dataset in Appendix A.2. Words are assigned different colors depending on
their relationship, red for synonyms and blue for antonyms, based on “Reverso Synonyms” (https:
//synonyms.reverso.net/synonym/).

4. Evaluation

In this section, we describe the experiments conducted to evaluate the performance of word
embedding and expanded word embedding as semantic spaces for zero-shot activity recognition.
The evaluation is based on two metrics:

• The recognition accuracy for unknown classes using word embedding and expanded word
embedding as compared to the attribute vector, and

• The similarity between the word embedding semantic space/expanded word embedding semantic
space and the attribute vector semantic space.

We first describe the datasets used for evaluation in Section 4.1, and then detail each evaluation
method in Section 4.2.

4.1. Datasets

To evaluate the discussed methods, we use two public datasets and one proprietary dataset for
activity recognition. These datasets are different in terms of types of activity classes and sensor position.
A summary of these datasets is shown in Table 1 while more details are given in Section 4.1.1.

https://synonyms.reverso.net/synonym/
https://synonyms.reverso.net/synonym/
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Table 1. Activity classes and sensor types of each dataset 1–4.

Dataset Activity Class Type Sensor Type

HASC Basic (Walk, Run, Jog, Skip, Stair up and Stair
down)

Accelerometer worn on arm (including
acceleration sensor) on arm

OPP Middle (open door, close door, open fridge, close
fridge, open dishwasher, close dishwasher, open
drawer, close drawer, clean table, drink from cup
and toggle switch)

Ambient sensors and wearable sensors
(including IMUs and acceleration
sensor) on 7 points

PAMAP2 Living (watching TV, house cleaning, lying, sitting,
standing, walking, running, cycling, Nordic
walking, computer work, car driving, ascending
stairs, descending stairs, vacuum cleaning, ironing,
folding laundry, playing soccer and rope jumping)

Wearable sensors (including IMUs and
heart rate monitor sensor) on 3 points

We first describe the datasets and the pre-processing for each one of them in Section 4.1.1, and we
then describe the semantic vectors used in the evaluation in Section 4.1.2.

4.1.1. Sensor Dataset and Pre-Processing

To evaluate the accuracy of estimating unknown classes, we use three datasets: the OPP dataset,
the PAMAP2 dataset, and the HASC dataset (Table 1). For all three datasets, we first fill in zero-values
for missing data, and then we normalize in the range [0, 1] for each dimension. We use sliding windows
to create feature vectors which is traditional method for extracting features in the activity recognition
field. We now describe briefly each dataset.

OPP dataset [32] The Opportunity Activity Recognition Data Set (OPP) is a dataset that describes
the behavior of people in the morning at work. The sensor data is collected from 4 subjects at
a frequency of 30 Hz. This dataset is labeled with 4 different label types. We use the action label type
“middle level activity class labels” which contains 17 activities. For the sliding time-window feature
extraction, we use window time of 1 s and the slide time was set to 0.5 s by following what Hammerla
Nils Y. et al. did [33]. The “Drill runs” data is not used. During feature extraction, variances and
averages are extracted for each dimension. As a result of the pre-processing, we obtain 484 features in
each feature vector.

PAMAP2 dataset [34] The Physical Activity Monitoring Data Set (PAMAP2) contains data from
9 subjects and 18 activities. The heart rate monitor sensor has a frequency of 9 Hz, while the data
frequency of the other sensors is 100 Hz. The window time is set at 5.12 s and the slide time is
set at 1 s for the sliding window feature extraction by following what Roggen Daniel did [34].
The “3D accelerators with scale of ±6 g” files and orientation readings have been deleted, as per
the recommendations of the data provider. Extracting the variance and averages within each time
window as a result of pre-processing, we obtain vectors of dimension 69.

HASC dataset The Human Activity Sensing Consortium (HASC) aims to construct a large-scale
database of wearable sensors, and they run a challenge to collect acceleration sensor data from
smartphones for 6 specific actions [35]. For this paper, we use the dataset collected in our
laboratory according to the HASC challenge guidelines (http://hasc.jp/hc2010/HASC2010corpus/
hasc2010corpus-en.html). Sensor readings are obtained from a 3-axis accelerometer at a frequency of
100 Hz. The dataset was collected by a single subject who, for each activity, recorded 5 sets each one
lasting 20 s. The window time is set at 2 s and the slide time is set at 0.5 s for the sliding window feature
extraction. Extracting the variance, averages, minimum and maximum within each time window as
a result of pre-processing, we obtain vectors of dimension 12.

http://hasc.jp/hc2010/HASC2010corpus/hasc2010corpus-en.html
http://hasc.jp/hc2010/HASC2010corpus/hasc2010corpus-en.html
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4.1.2. Semantic Spaces

In this paper, we mainly evaluate and compare three kinds of semantic vector methods: attribute
vector, word embedding, and expanded word embedding. In the following we describe the attribute
vector and word embedding (which includes expanded embedding vector) used for the evaluation.

Attribute vectors For each of the evaluation datasets we define the attribute vectors shown in
Tables A1–A3 in Appendix A.1. These attribute vectors have been defined for the OPP and PAMAP2
dataset in [15] and we use the same attributes as the PAMAP2 dataset to create the attribute vector for
HASC dataset which was not previously defined. Note this attribute value is treated as real value.

Word embedding For word embedding, we use the model wiki2vec (https://github.com/
idio/wiki2vec), which is generated using English Wikipedia as corpus. This model provides
1000-dimensional vectors of all words created using word2vec. As mentioned before, the embedding
word vectors for the activity classes in the datasets are extracted from this model. We use PCA to
reduce the dimensions of the semantic vectors. As a result, it is 6 dimensions for HASCA dataset,
11 dimensions for OPP dataset and 18 dimensions for PAMAP2 dataset.

4.2. Method of Analysis and Evaluation Experiment

Having described the datasets and the semantic spaces used for the evaluation, we now explain
how we evaluated the zero-shot learning method using word embedding for activity recognition.
In this section, we explain the two evaluation contexts that were mentioned in the first part of Section 4

4.2.1. Evaluation of Unknown Class Estimation

To compare the performance of zero-shot Learning using the word embedding and the attribute
vectors, we measure the accuracy of estimating unknown classes of each method. For word embedding,
we prepare four methods: word embedding and extended word embedding with k = 5, 10 and 20.
In all cases, we use SVRBM as projection method, as described in Section 3.2.

As an evaluation method, we use cross-validation. Usually, cross-validation for zero-shot learning
evaluation considers different classes as unknown classes in each fold. We follow the procedure
described in [15] for the OPP and PAMAP2 datasets, so we set 5 folds, each one with 3 or 4 unknown
classes. For HASCA dataset, we set 2 unknown classes for each fold and prepare all possible pair
combinations as unknown classes. This dataset has 6 classes in total, so we evaluate with 15 folds.
The sets of unknown classes for each fold in each dataset are shown in Tables 2–4. The average number
of instances of unknown and known classes in each fold is shown in Table 5. For the OPP dataset and
PAMAP2 dataset. For HASCA dataset, the average number of instances is 1945. (2013 stay classes,
2014 walk classes, 1608 jog classes, 2010 skip classes, 2015 stair-up classes and 2012 stair-down classes.)

Table 2. Foldings of the OPP classes.

Fold Unknown Classes

fold 1 Close Drawer, Clean Table, Toggle Switch

fold 2 Open Fridge, Open Door, Close Drawer

fold 3 Drink from Cup, Open Drawer, Close Dishwasher

fold 4 Close Drawer, Close Door, Open Door

fold 5 Close Fridge, Open Dishwasher, Close Door

https://github.com/idio/wiki2vec
https://github.com/idio/wiki2vec
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Table 3. Foldings of the PAMAP2 classes.

Fold Unknown Classes

fold 1 watching TV, house cleaning, standing, ascending stairs

fold 2 walking, rope jumping, sitting, descending stairs

fold 3 playing soccer, lying, vacuum cleaning, computer work

fold 4 cycling, running, Nordic walking

fold 5 ironing, car driving, folding laundry

Table 4. Foldings of the HASC classes. The values in the parenthesis is number of instances of each class.

Fold Unknown Classes Fold Unknown Classes

fold 1 Stay (2013), Walk (2014) fold 9 Jog, Stair up

fold 2 Stay, Jog (1608) fold 10 Skip, Stair up

fold 3 Walk, Jog fold 11 Stay, Stair down (2012)

fold 4 Stay, Skip (2010) fold 12 Walk, Stair down

fold 5 Walk, Skip fold 13 Jog, Stair down

fold 6 Jog, Skip fold 14 Skip, Stair down

fold 7 Stay, Stair up (2015) fold 14 Skip, Stair down

fold 8 Walk, Stair up fold 15 Stair up, Stair down

Table 5. Statistics on the number of instances and classes that belong to seen and unseen classes in each
fold in the three datasets.

Fold Number of Instances Number of classes

OPP PAMAP2 OPP PAMAP2

Classes Seen Unseen Seen Unseen Seen Unseen Seen Unseen

fold 1 5868 1338 16377 3073 8 3 14 4
fold 2 4986 2220 13661 5789 8 3 14 4
fold 3 4647 2559 15770 3680 8 3 14 4
fold 4 5087 2119 14927 4523 8 3 15 3
fold 5 5525 1681 17065 2385 8 3 15 3

Finally, we use F-1 score as a metric to calculate the accuracy of the estimation. The formula for
the metric is the following:

F-score = 2× Precision× Recall/(Precision + Recall)

Precision = TP/(TP + FP), Recall = TP/(TP + FN)

In this formula, True Positive (TP) is the number of samples that belong to the target class and
estimate the target class. False Positive (FP) is the number of samples that do not belong to the target
class but estimate the target class. False Negative (FN) is the number of samples that do not belong to
the target class and do not estimate it.

4.2.2. Analysis of the Similarity of Semantic Spaces

The second evaluation objective is to compare the automatically generated word-embedding
spaces to the hand-made attribute spaces. In this section, we explain how we calculate the similarity of
these spaces.
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As a first step, we calculate the k-most-similar classes for each class, for all semantic spaces. In this
phase, we use a k-nearest neighbor algorithm. For the attribute vector space and the word embedding
space, we calculate the top-3 nearest classes. For the expanded word embedding, we calculate the
histogram of the nearest classes for each vector sample. Next, we calculate the degree of similarity
between the word embedding space (with and without expanding) and the attribute space. The degree
of similarity is calculated by examining the matching rate of nearest classes.

The reason for using this method is that the last step of the zero-shot method uses the nearest
neighbor method in the semantic vector space, therefore the class similarity relationship is an important
factor for the accuracy of the estimation.

5. Analysis and Experimental Results

5.1. Analysis of Projection Methods

Before evaluating the zero-shot learning method, we first evaluate the accuracy of the projection
method in a setting without unknown classes. We use 30% of all data as test data. Table 6 shows the
result of this non-zero-shot situation.

Table 6. Evaluation of the methods without unknown classes. F1-Score when using 30% as test data.

HASC OPP PAMAP2

supervised_SVM 0.84 0.85 0.92
ZSL_attribute 0.91 0.78 0.91
ZSL_embedding 0.92 0.92 0.91

From the results in Table 6, we conclude that the zero-shot learning method performs well with
the given datasets when there are no unknown classes. Moreover, the word embedding space has the
best average performance among all three datasets.

5.2. Results of Unknown Class Estimation

After confirming that the projection method and the semantic spaces are suitable for activity
classification, we evaluated the zero-shot learning scenario. As mentioned in Section 4.1.2, we use
cross-validation and F1-Score for this evaluation. Figure 3 and Table 7 show the F1-Score when
estimating unknown classes. Figure 3 shows the average F1-score for each class and Table 7 shows the
overall average for each method. Boldface indicates the best score for each dataset.

Table 7. Average F-score of the estimation of activity classes with 3 datasets. For each dataset we show
the 5 methods using different semantic spaces.

HASC OPP PAMAP2

attribute 0.35 0.11 0.13
semantic 0.32 0.27 0.09
semantic_top5 0.31 0.21 0.13
semantic_top10 0.36 0.21 0.15
semantic_top20 0.33 0.12 0.13

From Table 7, we understand that using word embedding vectors gives the highest performance
for all datasets. However, depending on the expanding parameter k, the performance can become
lower than using attribute vector. Therefore, this parameter must be optimized when using expanded
word embedding vector.

We now analyze the performance per class (Figure 3) focusing in the HASC dataset first. When the
attribute vector is used, the “walk” class is not estimated. On the other hand, the performance of
expanded word embedding for the classes “walk” and “stay” when k = 5 is lower than using word
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embedding without expansion but it then improves gradually as k becomes larger. Conversely,
the performance for the classes “Stair up” and “Stair down” is high initially, and then deteriorates
as k becomes larger. Additionally, the classes “Clean Table”, “Drink From Cup” and “Toggle Switch”
are not estimated by the attribute vector because their attributes are not shared with any known class
Table A3. On the other hand, the method with embedding word vector estimates “Drink From Cup”
and “Toggle Switch”.
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attribute semantic semantic top 5 semantic top 10 semantic top 20

Stay Walk Jog Skip Stair up Stair down

(a) HASC dataset
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(b) OPP dataset
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folding laundry house cleaning ironing lying rope jumping running
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(c) PAMAP2 dataset

Figure 3. Average F-score of estimation for unknown activity classes.

Focusing on the OPP data result, we understand that the number of unknown classes that can be
estimated differs between attribute and word embedding vectors. For attribute vectors, we can see that
only 3 classes can be estimated, but for word embedding 6 classes can be estimated from the Figure 3b.
However, we can see that this number decreases as we further expand the area of the embedding
vector, and only 4 classes can be estimated when k = 20. These four classes are similar to the estimated
classes when using attribute vectors. Among all classes, the ”Drink form Cup” class has the highest
F-score when using embedding vector until top10 expansion.

Finally, for the PAMAP2 data result, we understand that few classes are estimated by all methods.
When we focus on estimated classes, “vacuum cleaning” and “walking” are estimated with good
accuracy when using attribute vector and expanded embedding vector. In contrast to attribute
vector and embedding word vector, the “ironing” class is only estimated when using expanded
embedding vector.

Summarizing these results, we can achieve the highest average score when using embedding
vector for all datasets. Also, we can see that the method with embedded word vector can estimate the
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classes which were impossible to be estimated by attribute vectors because of non-learnable attributes,
which are not estimated. Focusing on class recognition accuracy, we observe that a different semantic
vector performs better for different classes. In the Discussion (Section 6), we analyze what kind of
word can be estimated and what is the impact of the choice of semantic vectors.

5.3. Correlation Analysis of Spatial Similarity

To further understand the accuracy results obtained, we calculated the similarity between the
attribute-space and the word embedding space with and without expanded as explained in Section 4.2.2.
Table 8 shows the top-3 most similar classes when using the attribute vector space and the word
embedding space for the HASC dataset, while Figure 4 shows the histogram of the most similar
classes for the expanded word embedding spaces. The same results for the OPP dataset and the
PAMAP2 dataset can be found in Table A7 and Figure A1, and Table A8 and Figure A2, respectively.
To summarize these results, Table 9 shows the degree of similarity between each word embedding
space and the attribute vector space.

Table 8. Top 3 nearest words in the attribute space (left) and the embedding space (right) for the
HASC dataset.

1st 2nd 3rd 1st 2nd 3rd

1 Stay Walk Jog Stair down Walk Jog Stair up
2 Walk Jog Stair down Stair up Jog Stay Stair down
3 Jog Skip Walk Stair down Walk Stay Stair up
4 Skip Jog Stair up Stair down Walk Jog Stay
5 Stair up Stair down Skip Jog Stair down Jog Stay
6 Stair down Stair up Skip Jog Stair up Jog Walk

Figure 4. Histogram of the nearest classes appearing in HASC data for each sample in the set of
expanded word embedding vectors.
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Table 9. Degree of similarity between the embedding space and the attribute vector space, i.e., the ratio
of matching words in the nearest classes for each class in Figures 4, A1 and A2.

HASC OPP PAMAP2

word embedding 4/6 0/11 0/11 5/18

expanded word embedding 1/6 2/11 8/18

Now we analyze the similarity among spaces for each dataset. We first focus on the HASC dataset
(Table 8). When comparing the word embedding space to the attribute vector space, we can see that the
classes “Stay”, “Walk”, “Stair up” and “Stair down” share 2 similar classes in both spaces. So we can
consider them to be similar in both spaces. However, we observe that the classes “Jog” and “Skip” are
not similar because they share only 1 similar class in both spaces. In the expanded word embedding
space (Figure 4), all classes tend to be similar to the class “Skip”. Comparing among classes, in the
word pairs “Stay” and “Walk”, “Stair up” and “Stair down”, we can see that the nearest classes are the
same, so we can say that these classes are similar.

We now focus on the PAMAP2 dataset (Table A7 and Figure A1) to compare between the attribute
vector space and word embedding space. Only the classes “vacuum cleaning” and “house cleaning”
have two matching nearest words in both spaces, although for vacuum cleaning they match in
order also. We can consider that these classes are similar between the attribute space and the word
embedding space. Classes with only one matching nearest class are “descending stairs”, “ascending
stairs”, “vacuum cleaning”, “ironing” and “cycling”. Focusing on Figure A1, the classes with the
highest number of neighbors, are “vacuum cleaning” and “house cleaning”.

We now analyze the similarity between spaces in the OPP dataset. There are 11 action classes in
total in the OPP dataset: Table A8 shows the result of comparing attribute vector space and word
embedding. In this case, the attribute and the word embedding spaces differ greatly, as there are
no matching words between spaces in this result. It is interesting to analyze this difference. In the
OPP dataset, almost all classes are composed of a verb and an object. Focusing on each of these
words, determining which are the nearest words depends on whether we focus on the verb or on the
object. For instance, for the “Open Fridge” class, focusing on the verb “Open” gives nearest words in
the attribute vector space and expanded word embedding space with the keyword Open, like Open
Drawer and Open Door. However, in the word embedding space, the class nearest to the “Open Fridge”
class is the one including the object “Fridge”. Focusing on the similarity between spaces reported on
Table 9, we observe that the similarity between the word embedding space and the attribute space
for this dataset is 0. Nevertheless, this is the case in which we obtain the highest accuracy (Table 7).
From this result, we can see that there is no correlation between estimation accuracy and spatial
similarity. Also, we can see why the automatically generated space can provide better accuracy than
the hand-made attributes.

5.4. Summary of Results

We conclude with a summary of this section. This evaluation focused on analyzing the suitability
of using word embedding vectors in Zero shot learning for sensor-based activity recognition. In three
datasets featuring different types of activities, we found that using word embedding achieves
equivalent or higher accuracy than the attribute vector. Moreover, we can see that the method
with embedded word vector can estimate the classes which are impossible to be estimated by attribute
because of non-shared attributes. However, the expanded embedding vector parameter k needs to be
selected for each task.

When comparing the semantic spaces, we observed that the word embedding semantic space
becomes more similar to the attribute vector space when we use expanded word embedding. From this
result, it can be inferred that expanded word embedding brings the semantic space closer to the
attribute vector space. However, in the OPP dataset, our results show we can get the best performance
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when using the word embedding without expanding. From this result, we observe the possibility to
improve the accuracy of zero-shot sensor based activity recognition with word embedding.

6. Discussion

In this section we discuss the factors that influence the performance of word embedding vectors in
zero-shot learning for sensor-based activity recognition. Particularly, we focus on 3 aspects: correctness
of the meaning of embedded words, the impact of the choice of semantic vector and the effect of
compound words.

6.1. Word Meaning in Word Embedding Vector

We discuss the relationship between the meaning of a word and performance based on the
accuracy results reported in Section 5.2 and the analysis of the additional vectors included in the
expanded word embedding space as reported in Appendix A.2. The relationship is based in the
hypothesis that the performance improves when the expanded word embedding captures synonym
words correctly. By analyzing the words of the top 5 expansion for the HASC dataset, we understand
that embedding words are synonyms of the original activity word. However, the performance,
compared to no expansion, decreases slightly. Interestingly, for the class “stay”, we find some vectors
with opposite meaning (“go”, “leave”) in the expanding space but its score improves. Therefore,
we conjecture that there is no correlation between meaning and performance. From the Figure 4
“Skip ” expanding word vector has the highest number of similar vectors for every class. From these
results, the expanding word vectors might not work because the original words are close for each
embedding vector.

For the OPP dataset, discussion is difficult because almost all activity classes are compound words.
As mentioned before, the similarity of compund words can be given either by the verb or the object
part. Suppose that we focus on the class “drink from cup”, we cannot see the relationship between the
words easily. We will discuss the effect of compound words in Section 6.3.

For PAMAP2 dataset, the classes “cleaning” and “work” have 13 synonym words among the
20 words of the expanded semantic vector space. Although this is a lot for this dataset, we observe
that the performance is not related to this since the classes “house cleaning” and “work” are not
recognized. On the other hand, “vacuum cleaning”, “lying” and “walking” have better performance
when expanding ( Table 3) even if the latter two have fewer synonym words in the expansion. Therefore,
we cannot find a correlation between meaning and performance for the PAMAP2 dataset neither.

In summary, we cannot observe any relation between correctness of the meaning of the semantic
vector and the performance of the recognition.

6.2. Effect of the Choice of Semantic Space on the Performance

To discuss the relationship between the similarity of the word embedding semantic spaces with
the attribute space and performance, we focus on Tables 7 and 9. We understand that the performance
on the OPP dataset declines by expanding, but for PAMAP2 and HASCA dataset we can see the
opposite. However, for HASCA dataset the similarity with the attribute space was reduced with
expanding whereas for the OPP and PAMAP2 datasets the similarity increased with expanding.
However, the similarity with the attribute space seems to be not related with a better performance.
In fact, this is observed with the OPPortunity Dataset. The word embedding space without expansion
has 0 similarity with the attribute space, yet it has the best performance among all spaces. As the
space becomes more similar to the attribute space, the performance decreases until it reaches a similar
performance as the attribute space. This result suggests that the word embedding may be able to
capture better characteristics about each activity than it was possible to describe with the attributes.

In contrast, in PAMAP2 dataset, becoming more similar to the attribute space implies a better
performance. In fact, we can see the similarity between “walking” and “house cleaning” in the
embedding space is the same as in the attribute space (Table A1). We observe that the attributes
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designed for PAMAP2, are detailed and include specific body postures and limbs movements combined
with objects, whereas the attributes of the OPP dataset are just decomposition of the activity words.
These results suggests that the word embedding may be able to capture some of these details.

6.3. Compound Words

We have seen that in the OPP dataset, the word embedding has a better performance than the
attribute space and that, as the word embedding space becomes more similar to that of the attribute
space, the performance is reduced. We now analyze this result in the light of the nature of the action
words in this dataset which, as we have mentioned before, are compound words.

Before we examine each part separately, let us review the activity classes of the OPP dataset.
These classes are all in the form “verb” + “object”, and many activity classes differ only in combination.
For example, “open door” and “close door” are classes that share objects, while “open door” and
“open fridge” are classes sharing their verbs.

In the word embedding method, we usually focus on the “object” part when classifying an activity.
However, applying the idea of expanded word embedding gives rise to many patterns in which area
vectors focus on the “verb” parts. This is also the focus of the attribute space, as was seen in Table A8.

To visualize this, see Figure 5. As mentioned in Section 4.1.2, for labels composed of two or more
words, the semantic vector takes the average of the corresponding word vectors. For this reason, in the
word embedding space, the word vector for the class “Open Door” is closer to the word vector of
the class sharing the object part, “Close Door”, than to the words sharing the verb part like “Open
Fridge” (left part of Figure 5). However, applying the expanded word embedding technique reduces
the distance between the classes “Open Door” and “Open Fridge” (right part of Figure 5).

Open Close

Door

Open Door Close Door

Open Close

Door

Open Door Close Door

FridgeFridge
Open Fridge

Close Fridge

Open Fridge
Close Fridge

Close

Close

Embedding vector Embedding region vector

Figure 5. Difference between embedding vector and embedding region vector.

Therefore, when we search in the neighborhood of a vector in the word embedding space, its
nearest neighbors tend to focus on the “object” part of the class, while in the space of word embedding
area expansion, the focus is around the verb part (Table A8 and Figure A2). We observe that in the
sensor vector space, the distance between classes using the same object is closer than that of the classes
with the same motion. For instance the movement sensor readings and object sensor measurements of
“open Door” and “close Door” are more similar than those of “open Door” and “open Dishwasher”.
Therefore, for sensor activity recognition, the embedding vector is more efficient and it is more sensible
to apply it as semantic vector.

Based on this analysis, we discuss now the impact of knowledge on the accuracy of zero-shot
activity recognition. As we have observed, in the OPP dataset, the word embedding space offers
better performance than both the attribute space and the expanded word embedding space. In other
words, using a semantic vector that focuses on the “object” part leads to better performance. This is
owed to the fact that the OPP dataset includes object sensor information in the feature vector, which
is very important for class identification. This information is translated to the semantic vector space.
We conclude therefore that when similar information that is crucial for class identification exists both



Sensors 2019, 19, 5043 17 of 26

in the feature and semantic spaces, then the impact on performance is positive. This knowledge
is valuable for future research in zero-shot learning for sensor activity recognition. Consider as an
example the fact that, prior to gathering data, we must determine in advance the activity classes and
the sensor types of the dataset. Apart from considering the requirements best suited for the application
system at hand, with this knowledge we can also a priori aim for better performance.

6.4. Future Work

It is also possible that the test set contains instances from both known and unknown classes.
In this paper, we did not evaluate this situation but this situation is important for applications [5].
There are researches in this situation, so we will evaluate this situation as the future work.

Although the performance of unknown class prediction is not as high as expected, predicting
complex activity, even in a traditional supervised setting, is a difficult task, like house activities and
working activities. There are many factors that difficult this recognition, for example, different place
layout, different objects, or different people even if we try to predict the same activities. We think that
the technology of activity recognition needs zero-shot learning approach which estimates attribute
classes or semantic meaning to get general knowledge about the activities. Also collecting training data
is too tough and difficult process for application, especially for complex activities, so it is important to
consider how to make this process efficient.

We can argue that the expanding word vector is the same as the embedding vector. This is because
the expanding word embedding vectors are selected around the embedding vector, so their values
are very similar and the closest vector would have been from the same class if no expansion had been
done. However, our assumption is that the feature vectors have similar motions in multiple classes
difficulting the projection task. This is why we need to make semantic vector general by expanding
word embedding to help the projection task from feature vector into semantic vector.

7. Conclusions

In this paper, we compared three semantic representations for zero-shot sensor-based activity
recognition: attribute vector, embedding vector and expanded word embedding vector. To solve
complications that arise due to the use of word embedding as semantic vector, we introduced the
expanded word embedding. We evaluated word embeddings with three datasets by performing:
(a) a comparison of the accuracy of the estimation of unknown classes between the attribute vector
method and the word embedding methods; and (b) an analysis of the similarity between the semantic
spaces obtained with each method.

Our results demonstrate that using word embedding vector with expanded word embedding has
advantages over attribute vectors. First, we achieved the highest average score when using embedding
vector for all datasets. Also, the method with embedded word vector can estimate the classes which
are impossible to be estimated by with the attribute vector since some of their attributes are not
represented in the training classes. For zero-shot learning, the correlation between the space of sensor
feature vector and the space of semantic vector has a big impact on performance. As an advantage, this
correlation is larger when by using embedding word vector than when using attribute vector. These
results indicate that, compared to the hand-generated attribute vector, the use of word embedding is
potentially more efficient, as it is generated automatically.

Also we obtained some useful knowledge for activity recognition. The set space of expanded
word embedding, compared to the set space of expanded word embedding, is closer to the attribute set
space. This result means expanding brings the semantic space closer to human knowledge. However,
in this result, we see that the attribute vector does not always improve the accuracy of Zero-shot
learning. This result is the answer of the first and second questions raised in the introduction section.

With respect to the performance of the semantic spaces, being similar to human-made attributes
should not be the goal when generating the embedding vector. These results are essential for selecting



Sensors 2019, 19, 5043 18 of 26

which activity classes and sensor data to include in learning and testing datasets when applying the
zero-shot method for activity recognition.

Due to the efficiency of the method that we discussed in this paper, the direction of our future
research will align with the promising zero-shot learning for activity recognition based on word
embedding generated from text data.
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Appendix A

Appendix A.1. Attribute Vectors

In this section, we show 3 attribute vectors for each dataset.

Table A1. Attribute vectors of the HASC dataset.
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Table A2. Attribute vectors of the PAMAP dataset from [15].
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14 ironing 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0
15 folding laundry 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0
16 house cleaning 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0
17 playing soccer 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
18 rope jumping 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1
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Table A3. Attribute vectors of the OPP dataset from [15].
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1 Open Door 1 0 0 0 0 1 0 0 0 0 0 0
2 Close Door 0 1 0 0 0 1 0 0 0 0 0 0
3 Open Fridge 1 0 0 0 0 0 1 0 0 0 0 0
4 Close Fridge 0 1 0 0 0 0 1 0 0 0 0 0
5 Open Dishwasher 1 0 0 0 0 0 0 1 0 0 0 0
6 Close Dishwasher 0 1 0 0 0 0 0 1 0 0 0 0
7 Open Drawer 1 0 0 0 0 0 0 0 1 0 0 0
8 Close Drawer 0 1 0 0 0 0 0 0 1 0 0 0
9 Clean Table 0 0 1 0 0 0 0 0 0 1 0 0

10 Drink from Cup 0 0 0 1 0 0 0 0 0 0 1 0
11 Toggle Switch 0 0 0 0 1 0 0 0 0 0 0 1

Appendix A.2. Similarity Words for Each Activity Classes

Table A4. Top 20 most similar words for each activity class in the HASC dataset. The symbol **
indicates that “DBPEDIA_ID/” has been omitted. The color of red represent synonyms and blue
for antonyms.

Activity Class Top 5 Top 10 Top 20

down back, down”, down),
down;, off away, cut, down?, shut, upside backwards, dragged, falling, finally, off;,

out, slid, slowly, up, up”

jog jogged, jogging, jogs,
stroll, walk

bends, detour, half-mile,
north-northwesterly, walking

driveway, eastbound, intersecting,
intersects, lope, nap, ramp, straightens,
swerves, veers

skip go, miss, skipped,
skipping, skips Brier, curling, get, ignore, repeat

**the_Brier, Parsoid, Scribunto, append,
editpreview, manually, redo, start, try,
unwatch

stay go, leave, remain,
staying, stays

continue, settle, spend, wait,
stayed

agrees, come, decide, decides, get, kept,
marry, move, sit, vacation

up back, up”, up:, up;,
up? down, forth, off, start, up) 0:), aside, carrots→, finally, just, out,

quickly, start, them, up!

walk path, stroll, walked,
walking, walks

**20_kilometres_walk, go, jump,
trek, wander

barefoot, climb, distance, kilometres, pull,
relax, sit, strolling, swim, throw

Table A5. Top 20 most similar words for each activity class in the OPP dataset. The symbol ** indicates
that “DBPEDIA_ID/” has been omitted. The color of red represent synonyms and blue for antonyms.

Activity Class Top 5 Top 10 Top 20

clean cleaning, cleans,
messes, tidy, wash

fixing, remove, rinse,
scrubbing, washing

bring, clean-up, cleanup, fix, lighten, mess,
recycle, soak, tidying, trash

close closer, closest, closure,
proximity, strong

busy, closes, contact,
relative, ties

another, clear, closing, connection, friend,
friends, keep, move, nearer, reopen

toggle buttons, on/off, switch,
toggled, toggles

disable, double-click, knob,
right-click, show/hide

“Cite”, Rightclick, button, button;,
doubleclicking, joystick, right-clicking,
scrollbars, tabs, touchpad

drink
beer, beverage,
beverages, drinks,
nonalcoholic

carbonated, drank, soda,
sodas, vodka

**soft_drink, **soft_drinks, caffeinated,
coffee, cola, fizzy, juice, juices, lemonade,
non-carbonated

open **open_source, access,
enclosed, space, spaces

“open, allow, doors,
**open_plan,
**open_source_software

Access, **Open-source_software,
**open_content, accessible, create, door,
extension, internal, opening, repository
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Table A6. Top 20 similar words for each activity class in the PAMAP2 dataset. The symbol ** indicates that “DBPEDIA_ID/” has been omitted; * indicates that
“_New_York_State_Legislature” has been omitted. The color of red represent synonyms and blue for antonyms.

Activity Class Top 5 Top 10 Top 20

ascending ascend, ascends, descending, dhaivatam,
panchamam madhyamam, parallage, pentatonic, phthongos, scale) (ascending, **chromatic_scale, **swara, arching, kaisiki,

nishadham, rishabham, sadharana, shuddha, tetrachord

cleaning clean, cleaners, cleans, laundry, washing drying, polishing, repairing, scrubbing, vacuuming Cleaning, cleanup, cleaner, dishwashers, ironing, plumbing,
rinse, tidy, tidying, wash

cycling
Cycling, **2013_in_women’s_road_cycling,
**2014_in_women’s_road_cycling,
**Road_bicycle_racing, **track_cycling

**2013_UCI_Road_World_ Championships_Women’s_road_race,
**List_of_women’s_road_bicycle_ races, **road_cycling , UCI, bicycle

BMX, **BMX_racing, **Mountain_bike_racing, **Track_cycling,
**cyclocross, **race_stage, **road_bicycle_racing,**stage_race,
cyclocross, cyclocross

descending ascend, ascending, ascends, descend, downwards climbs, descends, parallage, phthongos, scale) (ascending, climb, descents, dhaivatam, downward, panchamam,
steep, steeper, tetrachord, upward

driving car, car’s, driver, drove, speeding cars, drive, driver’s, drivers, stickshift braking, burnouts, cornering, driver’s, drives, driving), motor,
parked, vehicle, vehicle’s

folding Folding, fold, folded, removable, sliding adjustable, backrest, foldable, hinged, onepiece Dbox, **protein_folding, armrests, chamferboards, folds,
footrests, helical, laminated, nonslip, rearwards,

ironing laundry, pillows, sewing, towels, washing cleaning, dryer, mattresses, utensils, wash **clothes_dryer, bathroom, clothes, cloths, dishwashers, dryers,
napkins, towel, vacuuming, washable

jumping **show_jumping, Jumping, dressage, ski, skiing **eventing, **ski_jumping, Ski, downhill, eventing
**Show_jumping, **Ski_jumping, **dressage, **ski_cross,
**ski_jumping_hill, jumper, leaping, paraNordic, snowboard,
snowboarding

lying bed, crying, dragged, lie, sleeping beside, bluff, hiding, lied, scared asleep, cheating, dragging, dumped, hugging, knees, pillow,
screaming, slept, telling

playing Playing, performing, play, played, plays **full_back_(association_football), footballing, player, semiprofessional,
singing

**Full_back_(association_football), **forward_(football),
**midfield, career, club, midfield, playes, professionally,
semiprofessionally, touring

running cross, extending, ran, run, runs Running, line, operating, stretch, walking **road_running, **track_running, connecting, parallel, pulling,
stretched, stretching, switching, walk, winding

sitting **168th*, **169th*, **171st*, **172nd*, **176th* **166th*, **167th*, **170th*, **173rd*, **174th* 165th, 167th, 178th, **164th*, **165th*, **175th*, **177th*, **178th*,
**179th*, **180th*

standing holding, kneeling, seated, stands, stood crouching, dressed, modified, sitting, stand facing, hands, hangs, hung, ovation, resting, sits, smiling, unless,
wearing

walking jogging, trail, trails, walk, walks accessible, bicycling, biking, hiking, strolling **walking, barefoot, bike, distance, horseback, picnicking,
rollerblading, sidewalk, stroll, walked

watching enjoy, enjoying, laughing, watch, watched chatting, crazy, listening, seeing, viewing crying, enjoys, fun, kid, kids, loved, noticing, scared, screaming,
staring

work work:, work;, working, works, work endeavors, job, necessary, studies, work) Work, creations, efforts, endeavor, endeavours, experience,
expertise, focus, oeuvre, research
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Appendix A.3. Spatial Similarity

Table A7. Top 3 nearest words in the attribute space (left) and the embedding space (right) for the PAMAP2 dataset.

1st 2nd 3rd 1st 2nd 3rd

1 lying standing sitting watching TV descending stairs car driving ascending stairs
2 sitting standing computer work watching TV descending stairs ascending stairs standing
3 standing sitting lying watching TV descending stairs ascending stairs sitting
4 walking Nordic walking running descending stairs descending stairs watching TV playing soccer
5 running walking Nordic walking cycling standing descending stairs sitting
6 cycling running Nordic walking walking running standing vacuum cleaning
7 Nordic walking walking running descending stairs watching TV descending stairs walking
8 watching TV computer work sitting lying car driving sitting computer work
9 computer work watching TV sitting standing playing soccer descending stairs car driving

10 car driving sitting computer work standing descending stairs ascending stairs lying
11 ascending stairs descending stairs walking Nordic walking descending stairs folding laundry sitting
12 descending stairs ascending stairs walking Nordic walking ascending stairs car driving sitting
13 vacuum cleaning house cleaning folding laundry ironing house cleaning folding laundry sitting
14 ironing folding laundry vacuum cleaning house cleaning folding laundry ascending stairs standing
15 folding laundry ironing vacuum cleaning house cleaning ascending stairs ironing descending stairs
16 house cleaning vacuum cleaning folding laundry ironing vacuum cleaning sitting folding laundry
17 playing soccer rope jumping vacuum cleaning house cleaning descending stairs computer work ascending stairs
18 rope jumping playing soccer house cleaning ascending stairs standing sitting descending stairs

Table A8. Top 3 nearest words in the attribute space (left) and the embedding space (right) for the OPP dataset.

1st 2nd 3rd 1st 2nd 3rd

1 Open Door Open Drawer Open Dishwasher Open Fridge Close Drawer Close Door Open Fridge
2 Close Door Close Drawer Close Dishwasher Close Fridge Open Door Clean Table Drink from Cup
3 Open Fridge Open Drawer Open Dishwasher Open Door Close Fridge Open Door Open Drawer
4 Close Fridge Close Drawer Close Dishwasher Close Door Open Fridge Close Drawer Open Door
5 Open Dishwasher Open Drawer Open Fridge Open Door Close Dishwasher Open Drawer Toggle Switch
6 Close Dishwasher Close Drawer Close Fridge Close Door Open Dishwasher Close Drawer Close Fridge
7 Open Drawer Open Dishwasher Open Fridge Open Door Close Drawer Open Dishwasher Open Fridge
8 Close Drawer Close Dishwasher Close Fridge Close Door Open Drawer Open Door Close Dishwasher
9 Clean Table Toggle Switch Drink from Cup Close Drawer Close Door Drink from Cup Open Fridge

10 Drink from Cup Toggle Switch Clean Table Close Drawer Close Door Open Fridge Open Door
11 Toggle Switch Drink from Cup Clean Table Close Drawer Open Dishwasher Close Dishwasher Drink from Cup
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Figure A1. Result of the histogram of the nearest classes appearing in PAMAP2 data for each samples
set for the word embedding area expansion.
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Figure A2. Result of the histogram of the nearest classes appearing in OPP data for each samples set
for the word embedding area expansion.
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