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ABSTRACT 

The time course of photoabsorption of an aqueous suspension of titanium(IV) oxide (TiO2) 

particles was studied using photoacoustic (PA) spectroscopy.  In the absence of an electron 

acceptor and the presence of an electron donor, ultraviolet (UV) irradiation increased PA intensity 

because photoabsorption of the suspension increased due to trivalent titanium (Ti3+) species 

generated by electron accumulation in TiO2 particles.  In contrast, the addition of methylene blue 

(MB) as an acceptor caused a decrease in PA intensity, indicating that accumulated electrons were 
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consumed by reduction of MB to colorless leuco-MB.  The results for various TiO2 particles 

indicated that Ti3+ density is determined by this method.  Moreover, the measurement can be 

applicable to quantitative operando analysis for accumulated electrons in a photocatalytic reaction. 

 

INTRODUCTION 

Titanium(IV) oxide (TiO2) is a representative semiconductor photocatalyst that is used as a 

photofunctional material for environmental remediation.1,2  A photocatalytic reaction using 

bandgap excitation is induced by excited electrons and positive holes.  Both of these species are 

often assumed to be consumed simultaneously by a redox reaction or recombination.  However, 

excited electrons and positive holes are not always consumed at the same time if excited electrons 

or positive holes are stabilized in a certain state and accumulated in the semiconductor.  Some 

metal oxide semiconductors, including TiO2, tungsten(VI) oxide (WO3) and molybdenum(VI) 

oxide, are known to have electron accumulation properties.  Electron accumulation is induced by 

electron trapping at a metal ion with an oxygen vacancy in the semiconductor.  For example, a 

possible structure of electron accumulation in TiO2 is thought to be trivalent titanium (Ti3+) species, 

and it is considered that defective sites can be empirically measured by evaluation of Ti3+.3  In the 

absence of electron acceptors, the accumulated electrons continues to be stabilized unless positive 

holes are generated.  On the other hand, in the presence of electron acceptors electrons that have 

accumulated on the surfaces of particles can react with the acceptors if the accumulated electrons 

are trapped in a shallow energy level that is more negative than the redox potential of the acceptor.  

Thus, only reduction proceeds in the dark while oxidation reaction by positive holes does not take 

place.  Such a photocatalytic reaction has been studied as a reductive energy storage system using 
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TiO2-WO3
4-7 and as hydrogenation of carbonyl compounds by accumulated electrons8-11.  

However, there has been no quantitative analysis of electrons that accumulated on semiconductor 

particles during the photocatalytic reaction, though reduced products have been analyzed in most 

studies. 

For a TiO2 sample, accumulated electrons, i.e., Ti3+ are known to show photoabsorption in the 

visible to near-infrared region.  Therefore, absorption spectroscopy enables operando analysis of 

Ti3+ under a photocatalytic condition.  We carried out quantitative analysis of photogenerated Ti3+ 

in TiO2 particles under gas phase using photoacoustic spectroscopy (PAS).12-15  PAS is one type 

of absorption spectroscopy that is applicable to even opaque and strongly scattering materials 

because it detects photoabsorption indirectly through photothermal waves generated by relaxation 

of the photoexcited states.16,17  However, observation of Ti3+ in a photocatalytic suspension 

reaction has not been achieved using PAS because volatile components from the suspension can 

negatively affect the microphone as a detector of PAS.  Recently, we have developed a PAS system 

for photoabsorption of a suspension using a corrosion-resistant photoacoustic (PA) cell, which 

enables evaluation of a suspension under various conditions.18 

In the present study, we studied the time course of accumulation of electrons in an aqueous 

suspension of TiO2.  Accumulation of electrons was observed by changes in PA intensity attributed 

to Ti3+ species.  Moreover, we showed that the PA method used in the present study is applicable 

to operando analysis of accumulated electrons in a photocatalytic reaction. 

 

EXPERIMENTAL 
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Materials 

Ten kinds of TiO2 powder samples from commercial sources, ST-21, ST-41, CR-EL (Ishihara 

Sangyo Co.), AMT-100, AMT-600, MT-150A (TAYCA Co.), super-titania F6A, super-titania G1 

(Showa Denko Co.), commercial brookite (Kojundo Chemical Laboratory Co.) and reference 

catalyst JRC-TIO-1 supplied by the Catalysis Society of Japan were used.  The crystal structures 

of ST-21, ST-41, AMT-100, AMT-600, super-titania F6A, and JRC-TIO-1 are mainly anatase, 

while those of MT-150A, CR-EL, super-titania G1 are mainly rutile powders.  Analytical-grade 

reagents including methylene blue (MB), ethanol, and other chemicals were used without further 

purification.  Aqueous suspensions were prepared by adding 200 mg of TiO2 to 10 mL of aqueous 

ethanol solution (50 vol %).  The suspensions were then treated by ultrasound for 30 min.  Then 

1.5 mL of the suspension was transferred into the cuvette of the PA cell and air was purged off 

from the cuvette by passing argon through the suspension for 15 min. 

 

PAS measurements 

Detailed setups for PAS measurements were reported previously.18  A homemade PA cell with 

an acrylic body and a quartz window was used.  For measurements in a suspension sample, the PA 

cell was attached to a UV-transparent disposable cuvette with a 6 mm hole, which was covered 

with a cover glass (Matsunami glass, 0.04-0.06 mm).  The setup is shown in Fig. 1.  A laser diode 

emitting light at 532 nm (Edmund Optics, 84-930, 15 mW) was used as the probe light for detection 

of Ti3+ species, and its output intensity was modulated by a function generator (NF, DF1906) at 

2.6 Hz.  As with the aforementioned experiments, the illumination pathway to the sample was 

through the window on top of the PA cell, and the illumination continued during measurements.   
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In addition to the illumination, the sample was illuminated with ultraviolet (UV) irradiation for 

excitation of TiO2 through the cuvette, which was on the opposite side of the probe light, using a 

light-emitting diode (Nichia NCSU033B, emitting around 365 nm, 8.7 mW cm-2).  During 

measurements, the headspace of the cuvette was purged using argon and the suspension was 

magnetically stirred. 

The digital PA signal was acquired by a digital MEMS microphone (STMicroelectronics Inc., 

STEVAL-MKI155V2) buried in the cell and recorded using a PC equipped with a digital I/O 

interface.  Time-series data were acquired by analog conversion of the digital PA signal followed 

by Fourier transform with a Hamming window function.  The time-course data were obtained at 

ca. 20-s intervals. 

 

Figure 1.  Schematic illustration of the PA cell. 

 

RESULTS AND DISCUSSION 

Increase in PA intensity due to electron accumulation in a time-course curve 
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Figure 2a shows time-course curves of PA intensity of the aqueous TiO2 suspension containing 

ethanol under an argon atmosphere.  Before UV irradiation, a trace of PA intensity attributed to 

background photoabsorption by the inner wall of the cell was observed, and its intensity was 

constant regardless of time.  This is reasonable because the color of the suspension used in the 

experiments was white, and color change did not occur without UV irradiation.  After UV 

irradiation, PA intensity increased and approached saturation with longer irradiation.  Actually, 

the color of the suspension changed from white to gray-blue.  The most probable candidate for the 

color change is Ti3+ generated by electron accumulation as a counterpart of hole consumption by 

ethanol.  A similar result was obtained in previous PAS measurement of TiO2 powders in a gaseous 

atmosphere containing argon and methanol vapor.13  However, the time taken for reaching a 

saturation limit in the present study was longer despite high intensity of UV light than that in the 

previous study (saturation time of over 15 min, UV light intensity of 2.8 mW cm-2)13.  One 

possibility is due to difference of electron donor.   Another possibility is that a larger amount of 

TiO2 particles was irradiated by UV light with stirring, and the number of producible Ti3+ species 

in the present study was larger than that in the previous study13. 
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Figure 2.  Time-course curves of PA intensity of aqueous TiO2 (brookite) suspensions (a) 

containing ethanol under an argon atmosphere, (b) containing ethanol under an oxygen atmosphere, 

and (c) with no ethanol under an argon atmosphere. 

 

In order to confirm that the increase in PA intensity is due to Ti3+, a control experiment was 

carried out.  In the presence of oxygen, saturated PA intensity was much smaller than that measured 

in the absence of oxygen (Fig. 2b).  This is presumably due to retardation of Ti3+ generation by 

oxygen, which works as an electron acceptor.  Such saturation of PA intensity can be explained by 

the balance of generation and extinction of Ti3+ by electron accumulation and oxidation by O2, 

respectively.  A trace of PA intensity suggests that the extinction of Ti3+ is faster than generation 

of Ti3+, and extinction of Ti3+ is promoted due to efficient diffusion of O2 by magnetic stirring.  In 

the absence of ethanol (Fig. 2c), PA intensity was also small compared to that in the presence of 

the donor because hole consumption as a counterpart reaction of electron accumulation hardly 

occurs in the absence of ethanol.  A trace of PA intensity is presumably due to contaminated 

organic compounds on the surface of TiO2, which works as an electron donor. 

 

Time-course curves of PA intensity of various TiO2 samples 

  In order to discuss the dependence of time-course curves on the kind of TiO2, various TiO2 

samples were measured.  Figure 3 shows time-course curves of representative TiO2 samples.  All 

of the samples showed similar curves, though their saturation limits and rate constants of increase 

in PA intensity were different.  Saturation tendency of PA intensity suggests that the number of 
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sites giving Ti3+ is limited depending on the kind of TiO2 sample.  Therefore, saturated PA intensity 

was estimated from the time-course curves to discuss Ti3+ density.  Figure 4 shows the relationship 

between saturated PA intensity and Ti3+ density determined in previous studies13,15.  The 

relationship seems to show a positive correlation, but saturated PA intensity was not proportional 

to Ti3+ density.  This is probably because not only Ti3+ density but also optical properties have an 

influence on PA intensity.  Therefore, another experiment is required to estimate Ti3+ density from 

the time-course curve of PA intensity. 

 

Figure 3.  Time-course curves of PA intensity of (a) JRC-TIO-1, (b) brookite, and (c) super-titania 

G1 suspensions containing (a) ethanol under an argon atmosphere. 
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Figure 4.  Relationship between saturated PA intensity and Ti3+ density reported in ref. 13 and ref. 

15. 

 

Decrease in PA intensity due to electron transfer in a time-course curve 

  Figure 5 shows time-course curves of PA intensity of an aqueous TiO2 suspension containing 

ethanol under an argon atmosphere after UV turn-off.  The PA intensity was constant after UV 

turn-off because there are no acceptors that can be reduced by accumulated electrons in the 

suspension.  Thus, accumulated electrons are stabilized permanently unless an electron acceptor is 

added to the suspension.  In contrast, PA intensity rapidly decreased after addition of MB, and the 

blue color due to MB also disappeared.  It is well known that leuco-methylene blue (LMB), which 

is a colorless product with an absorption peak at 256 nm, is generated in the absence of oxygen 

via reduction through the following mechanism.19,20 

MB + H+ + 2e− = LMB, 0.532 V vs. NHE    (1) 
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Since TiO2 has a conduction band with a more negative potential than that for reduction of MB to 

LMB, some of the accumulated electrons possibly reduce MB to LMB.  Therefore, the decay in 

PA intensity is attributed to the consumption of Ti3+ through electron transfer from Ti3+ to MB.  

Actually, the gray-blue color of the suspension faded when MB was added.  Some studies have 

shown that surface Ti3+ behaves as a reaction site as well as an adsorption site via electron donation 

and that its efficiency depends on the energy levels of accumulated electrons.21-28  Therefore, the 

approach of PA intensity to the initial value by addition of MB as shown in Fig. 5 may indicate 

that accumulated electrons in a shallow energy level react with electron acceptors.  In contrast, 

some sample showed PA intensity around the equivalence point, which is much different from the 

initial value.  This indicates that accumulated electrons are stabilized in the bulk and/or deep 

energy level.  Such a difference is possibly reasonable because the energy levels of Ti3+ depends 

on kind of the sample15  though adsorption properties of MB on Ti3+ site may have an influence 

on such a difference. 

 

Figure 5.  Time-course curve of PA intensity of an aqueous TiO2 (brookite) suspension containing 

ethanol under an argon atmosphere after UV turn-off.  The arrows denote addition of MB (10 

mmol L-1), and numbers under the arrows are amounts of MB. 
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The addition of more than the equivalence point of MB conversely increased PA intensity, while 

a blue color attributed to MB was observed in the suspension.  This indicates that an excess amount 

of MB was maintained in the suspension without being reduced to LMB.  Thus, PA intensity at 

this time is attributed to absorption of not Ti3+ but MB around 532 nm. 

 

Estimation of Ti3+ density 

  Figure 6 shows PA intensity of the suspension after addition of MB as a function of MB amount.  

This relationship can be used as not only a calibration curve for obtaining the amount of 

accumulated electrons from PA intensity but also the equivalence point for determination of Ti3+ 

density.  From data around the equivalence point in this figure, the equivalence point can be 

estimated using the flowing equations, 

���� = �−���� − ���� + ���        (� < ���)��(� − ���) + ���           (� ≥ ���)    (2) 

where s1 and s2 are the slope, v (L) is the amount of MB added, vEP (L) is the equivalence point, 

I is PA intensity after addition of v of MB, and IEP is PA intensity at the equivalence point.  With 

consideration of two-electron reduction for MB to leuco-MB as shown in eq. 1, Ti3+ density can 

be calculated from the vEP value as follows, 

� = 2 ∙ ��� ∙ �/	    (3) 

where D (mol g-1) is Ti3+ density, M (mol L-1) is the concentration of MB, and w (g) is the weight 

of TiO2 included in the suspension.  Ratio of the vEP value obtained using 20 g L-1 of TiO2 (Fig. 
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6a) to that obtained using 10 g L-1 of TiO2 (Fig. 6b) was about 2.4 though it should be 2 according 

to Eq. 3.  This is presumably attributed to experimental error for the νEP value obtained using 10 g 

L-1 of TiO2 due to small PA intensity. 

 

Figure 6.  PA intensity of the suspension containing (a) 20 g L-1 and (b) 10 g L-1 of TiO2 after 

addition of MB as a function of MB amount.   

 

Figure 7 shows the relationship of D with Ti3+ density obtained by the photochemical method, 

which uses the surface reaction of Ti3+ with methyl viologen to generate its cation radical, in 

previous studies13,15. The D values are nearly proportional to Ti3+ density obtained in both studies, 

suggesting that assignment of the PA signal to Ti3+ is reasonable.  Slope of extrapolation line in 

Fig. 7 was about 0.7.  This indicate that the D values estimated from the present study is smaller 

than that of previous study.  Plausible reason for it is that stronger electron donor, i.e., methanol 

and triethanolamine were used as hole scavenger in the previous study. 

The PAS technique used in the present study has advantages over the photochemical method3: 

(A1) the time required for estimation is shorter than that for estimation by the photochemical 
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method, which needs more than 1 day, and (A2) the time course of Ti3+ accumulation can be 

monitored.  In comparison to PAS measurement in gas phase13, (B1) calibration using standard 

TiO2 powder of which the Ti3+ density has already been quantified is not needed because Ti3+ 

density can be directly calculated from the equivalence point, and (B2) pH control of the 

suspension and utilization of various acceptors is possible. 

 

Figure 7.  Relationship of D with the Ti3+ density reported in ref. 13 and ref. 15. 

 

CONCLUSION 

We have proposed a method for operando analysis of electron accumulation and transfer under 

a photocatalytic suspension condition using the PA technique.  This method enables further 

analysis of the kinetics of accumulation of electrons on TiO2 particles included in the suspension 

by changing pH and acceptors with various redox potentials.  Moreover, the PA technique is an 

alternative method for easy and precise estimation of Ti3+ density on TiO2 powders.  Therefore, 
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we believe that this method has a potential for operando analysis of photocatalytic particles 

including TiO2 and other semiconductor particles. 

 

AUTHOR INFORMATION 

Corresponding Author 

Naoya Murakami (murakami@life.kyutech.ac.jp) 

 

ACKNOWLEDGMENT 

This work was supported by Grant-in-Aid for Scientific Research(C) (Grant Number 

17K06019) and Grant-in-Aid for Scientific Research on Innovative Areas “Innovations for Light-

Energy Conversion (I4LEC)” (Grant Number 18H05172). 

 

REFERENCES 

(1) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of 

Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69−96. 

(2) Fujishima, A.; Rao, T. N.; Tryk, D. A. Titanium Dioxide Photocatalysis. J. Photochem. 

Photobiol. C: Photochem. Reviews 2000, 1, 1−21. 

(3) Ikeda, S.; Sugiyam, N.; Murakami, S.; Kominami, H.; Kera, Y.; Noguchi, H.; Uosaki, K.; 

Torimoto, T.; Ohtani, B. Quantitative Analysis of Defective Sites in Titanium(IV) Oxide 

Photocatalyst Powders. Phys. Chem. Chem. Phys. 2003, 5, 778–783. 



 15

(4) Tatsuma, T.; Saitoh, S.; Ohko, Y.; Fujishima, A. TiO2-WO3 Photoelectrochemical 

Anticorrosion System with an Energy Storage Ability. Chem. Mater. 2001, 13, 2838–2842. 

(5) Tatsuma, T.; Saitoh, S.; Ngaotrakanwiwat, P.; Ohko, Y.; Fujishima, A. Energy Storage of TiO2-

WO3 Photocatalysis Systems in the Gas Phase. Langmuir 2002, 18, 7777–7779. 

(6) Ngaotrakanwiwat, P.; Tatsuma, T.; Saitoh, S.; Ohko, Y.; Fujishima, A. Charge–discharge 

Behavior of TiO2–WO3 Photocatalysis Systems with Energy Storage Ability. Phys. Chem. Chem. 

Phys. 2003, 5, 3234-3237. 

(7) Ngaotrakanwiwat, P.; Tatsuma, T. Optimization of Energy Storage TiO2–WO3 Photocatalysts 

and Further Modification with Phosphotungstic Acid. J. Electroanal. Chem. 2004, 573, 263–269. 

(8) Kohtani, S.; Yoshioka, E.; Saito, K.; Kudo, A.; Miyabe, H. Adsorptive and Kinetic Properties 

on Photocatalytic Hydrogenation of Aromatic Ketones upon UV Irradiated Polycrystalline 

Titanium Dioxide: Differences between Acetophenone and Its Trifluoromethylated Derivative, J. 

Phys. Chem. C 2012, 116, 17705−17713. 

(9) Kohtani, S.; Kamoi, Y.; Yoshioka, E.; Miyabe, H. Kinetic Study on Photocatalytic 

Hydrogenation of Acetophenone Derivatives on Titanium Dioxide. Catal. Sci. Technol. 2014, 4, 

1084–1091. 

(10) Kohtani, S.; Kurokawa, T.; Yoshioka, E.; Miyabe, H. Photoreductive Transformation of 

Fluorinated Acetophenone Derivatives on Titanium Dioxide: Defluorination vs. Reduction of 

Carbonyl Group. Appl. Catal. A: Gen. 2016, 521, 68–74. 



 16

(11) Kohtani, S.; Kawashima, A.; Miyabe, H. Reactivity of Trapped and Accumulated Electrons 

in Titanium Dioxide Photocatalysis. Catalysts 2017, 7, 303. 

(12) Murakami, N.; Mahaney, O.O.P.; Torimoto, T.; Ohtani, B. Photoacoustic Spectroscopic 

Analysis of Photoinduced Change in Absorption of Titanium(IV) Oxide Photocatalyst Powders: 

A Novel Feasible Technique for Measurement of Defect Density. Chem. Phys. Lett. 2006, 426, 

204–208. 

(13) Murakami, N.; Mahaney, O.O.P.; Abe, R.; Torimoto, T.; Ohtani, B. Double-Beam 

Photoacoustic Spectroscopic Studies on Transient Absorption of Titanium(IV) Oxide 

Photocatalyst Powders. J. Phys. Chem. C 2007, 111, 11927–11935. 

(14) Maeda, K.; Murakami, N.; Ohno, T. Dependence of Activity of Rutile Titanium(IV) Oxide 

Powder for Photocatalytic Overall Water Splitting on Structural Properties. J. Phys. Chem. C 2014, 

118, 9093–9100. 

(15) Murakami, N.; Shinoda, T. Mid-infrared Absorption of Trapped Electrons in Titanium(IV) 

Oxide Particles Using a Photoacoustic FTIR Technique. Phys. Chem. Chem. Phys. 2018, 20, 

24519–24522. 

(16) Rosencwaig, A.; Gersho, A. Theory of the Photoacoustic Effect with Solids. J. Appl. Phys. 

1976, 47, 64–69. 

(17) Tam, A.C. Applications of Photoacoustic Sensing Techniques. Rev. Mod. Phys. 1986, 58, 

381–431. 



 17

(18) Murakami, N.; Maruno, H. In Situ Photoacoustic Spectroscopic Analysis on Photocatalytic 

Decolorization of Methylene Blue over Titanium(IV) Oxide Particles. RSC Adv., 2016, 6, 65518–

65523. 

(19) Mills, A. An Overview of the Methylene Blue ISO Test for Assessing the Activities of 

Photocatalytic Films. Appl. Catal. B: Environ. 2012, 128, 144–149. 

(20) Impert, O.; Katafias, A.; Kita, P.; Mills, A.; Pietkiewicz-Graczyk, A.; Wrzeszcz, G. Kinetics 

and Mechanism of a Fast Leuco-methylene Blue Oxidation by Copper(II)–halide Species in Acidic 

Aqueous Media. Dalton Trans. 2003, 348–353. 

(21) Lu, G.; Linsebigler, A.; Yates Jr., J. T. Ti3+ Defect Sites on TiO2(110): Production and 

Chemical Detection of Active Sites. J. Phys. Chem. 1994, 98, 11733–11738. 

(22) Rodriguez, J. A.; Jirsak, T.; Liu, G.; Hrbek, J.; Dvorak, J.; Maiti, A. Chemistry of NO2 on 

Oxide Surfaces:  Formation of NO3 on TiO2(110) and NO2↔O Vacancy Interactions. J. Am. Chem. 

Soc. 2001, 123, 9597–9605. 

(23) Shiraishi, Y.; Togawa, Y.; Tsukamoto, D.; Tanaka,S.; Hirai, T. Highly Efficient and Selective 

Hydrogenation of Nitroaromatics on Photoactivated Rutile Titanium Dioxide. ACS Catal. 2012, 2, 

2475−2481. 

(24) Shiraishi, Y.; Hirakawa, H.; Togawa, Y.; Sugano, Y.; Ichikawa, S.; Hirai, T. Rutile 

Crystallites Isolated from Degussa (Evonik) P25 TiO2: Highly Efficient Photocatalyst for 

Chemoselective Hydrogenation of Nitroaromatics. ACS Catal. 2013, 3, 2318−2326. 



 18

(25) Shiraishi, Y.; Hirakawa, H.; Togawa, Y.; Hirai, T. Noble-Metal-Free Deoxygenation of 

Epoxides: Titanium Dioxide as a Photocatalytically Regenerable Electron-Transfer Catalyst. ACS 

Catal. 2014, 4, 1642−1649. 

(26) Hirakawa, H.; Katayama, M.; Shiraishi, Y.; Sakamoto, H.; Wang, K; Ohtani, B.; Ichikawa, 

S.; Tanaka, S.; Hirai, T. One-Pot Synthesis of Imines from Nitroaromatics and Alcohols by 

Tandem Photocatalytic and Catalytic Reactions on Degussa (Evonik) P25 Titanium Dioxide. ACS 

Appl. Mater. Interfaces 2015, 7, 3797−3806. 

(27) Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Selective Nitrate-to-Ammonia 

Transformation on Surface Defects of Titanium Dioxide Photocatalysts. ACS Catal. 2017, 7, 

3713−3720. 

(28) Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Photocatalytic Conversion of Nitrogen 

to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. J. Am. Chem. Soc. 

2017, 139, 10929−10936. 

 

 


