大腸用自走式カプセル内視鏡の走行性能に関する研究

九州工業大学 ○浅井 謙太,渡邉 翔太朗,一木 浩之,伊藤 高廣,村上 直 東京農工大学 勝田 ちひろ,田中 あかね,松田 浩珍 株式会社ロジカルプロダクト 辻 卓則

1. 緒言

1.1 研究背景

従来のチューブ型の内視鏡に代わる新しい内視鏡検査の手法と して、近年カプセル内視鏡が普及し始めている.カプセルは飲 み込むだけで体内の検査を行えるため、これまで困難であった 小腸の検査が容易である.また、長時間口または肛門に管を通 さなくて良いため、受診者への負担を軽減できる.しかし、消 化管内の移動を全て蠕動運動に依存しているため、検査に約8 時間を要する.また毎秒2枚撮影を行うため、医師は5万枚以 上の画像を見る必要があり、医師への負担が大きくなっている. これらの問題を解決するために、体内を傷つけずに走行できる 自走式カプセル内視鏡の研究を行った.コイルと磁石の振動を 利用したこの走行機構を搭載することで、検査時間の大幅な短 縮が見込める.また、無線カメラモジュールの搭載により、チ ューブ型の内視鏡のようにリアルタイムでの検査を行うこと が可能である.

1.2 目的

自走式カプセル内視鏡を構成する走行機構,外殻,プログラム の改良により自走を可能にし,その自走式カプセル内視鏡を用い た動物実験による,イヌの腸内での挙動の観察を目的とした.

2. 自走式カプセル内視鏡の構成

自走式カプセル内視鏡のモデル図と外観図を図1に示す.この 自走式カプセル内視鏡は、走行機構、制御基板、外殻、電源、カ メラで構成されており、以下に順を追って述べる.

2.1 走行機構

自走式カプセル内視鏡に搭載する走行機構のモデル図を図2に 示す.走行機構は、コイル、磁石、側壁の3つで構成される.

2.2 制御基板

自走式カプセル内視鏡の制御基板は、制御用のマイコンを始め とする多数の素子を有する一方で、カプセル内部には限られた空 間しかない. そこでフレキシブル基板を採用、走行機構を包むよ うにし、カプセル内部の限られた空間に構成部品を格納している.

2.3 無線給電コイル・キャパシタ

自走式カプセル内視鏡内部にキャパシタを搭載することで,外 部に設置された無線給電装置から供給された電力を蓄えることが 可能となる.これにより自走式カプセル内視鏡は,体内で無制限 に動作することが出来る.しかし,今回は無線給電と分けて走行 性能評価を行うため,市販のボタン型電池で電源を代替した.

2.4 無線カメラモジュール

無線カメラモジュールを搭載することで、リアルタイムで腸内 の様子を画像で取得、外部へ送信を行うことが出来る.画像取得 と無線給電を同時に行うことで、画像にノイズがのる可能性があ るため、リレー回路を用いて給電と画像取得を交互に行う.しか し、今回は走行性能の評価を行うために、無線カメラモジュール は自走式カプセル内視鏡に搭載していない.

3. 自走式カプセル内視鏡の走行原理

走行機構の動作の概略図を図4に示す.固定されたコイルに電 圧を印加し,電磁石となることで発生する磁界と,コイル内部 に位置する磁石の磁界が干渉することで生じる反発力により, 磁石が移動する.慣性反力によって側壁は磁石と逆方向へ移動 し,やがて磁石と側壁が衝突する.その際に発生する衝突力に よってカプセルは走行する.コイルに供給される電源の周波数 やデューティ比を変化させ,側壁に衝突した際の衝突力の大き さを変えることで,カプセルの走行速度や進行方向を任意に決 定することが可能である.

4. 制御プログラム

現在の自走式カプセル内視鏡の電源として、市販のボタン型電 池を使用している.従来の自走式カプセル内視鏡では、ボタン型 電池を電源とした際、走行機構の大きさによって異なるが、最短 20[min]程度しか動作しなかった.動作時間を延長するために、走 行機構の動作と停止を繰り返す間欠動作のプログラムを使用した.

間欠動作のフローチャートを図5に示す.

図5 間欠動作のフローチャート

5. 走行機構の動作パラメータ

ひだや溝に引っかかる,カプセル外殻と腸壁との摩擦力等の理 由により,自走式カプセル内視鏡がイヌの腸内で,走行できない 問題が生じた.自走式カプセル内視鏡本体を走行させるのに,走 行機構の駆動力が不十分であることが,走行できない原因として 挙げられた.先行研究で得られた走行機構の動作パラメータは, 走行機構単体での衝突力の最適値であった.そのため,自走式カ プセル内視鏡全体での最適動作パラメータの測定を行った.測定 から得られた自走式カプセル内視鏡全体における最適動作パラメ ータと,走行機構単体での最適動作パラメータを表1に示す.こ の結果を受け,自走式カプセル内視鏡の動作パラメータを変更し た.

	走行機構	
	単体	組込
周波数 [Hz]	33	16
Dutv比 [%]	30	35

6. 動物実験

東京農工大学で、イヌの肛門から自走式カプセル内視鏡を挿 入、腸内での挙動をチューブ型の内視鏡やX線撮影、聴診器を用 いて観察を行った.実験の概要図を図6に示す.また、実際の実 験の様子を図7に示す.

なお本実験は、東京農工大学動物実験倫理規定を遵守し、東京 農工大学動物実験小委員会の承認のもとに実施した(承認番号28-104).

図6 動物実験の概要図

図7 実際の実験の様子

7. 実験結果

内視鏡及びX線撮影により得られた,自走式カプセル内視鏡の 観察画像を図8に示す. 肛門から挿入した自走式カプセル内視鏡 は,肛門から約25[cm]の位置でX線撮影により確認された.ま た,同じく肛門から挿入したチューブ型の内視鏡により,自走式 カプセル内視鏡が腸内で走行する様子を確認した.

(a)内視鏡
(b)X線撮影
図8 自走式カプセル内視鏡の観察画像

8. 結言

既存のチューブ型の内視鏡及びカプセル内視鏡に代わる内視鏡 検査の手法として,自走式カプセル内視鏡を提案した.構成部品 の改良をし,動物実験により腸内での挙動を観察した.

今後は、無線カメラモジュールを搭載し、生体内での画像の取 得及び送信、無線カメラモジュールで取得した画像による自走式 カプセル内視鏡の走行性能の評価を行う.

謝辞

本研究の一部は,科学研究費助成金(JP18H01394,代表:伊藤 高廣)の助成を受けたものである.

参考文献

[1] T. Ito, T. Ogushi, T. Hayashi, Impilse-driven capsule by coilinduced magnetic field implementation, Mechanism and Machine Theory 45 (2010) 1642-1650

[2] K. Otonari, T. Ito, H. Ichiki, S. Murakami, T. Hayashi, Impulse-driven capsule for medical inspection, EMAP 2017 (2017)

[3] H. Ichiki, K. Asai, S. Watanabe, T. Ito, S. Murakami, Impulse-driven capsule for medical inspection, ICPE 2018 (2018)