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Motor-skill learning for complex robotic tasks is a challenging problem due to the high task variability.
Robotic clothing assistance is one such challenging problem that can greatly improve the quality-of-
life for the elderly and disabled. In this study, we propose a data-efficient representation to encode
task-specific motor-skills of the robot using Bayesian nonparametric latent variable models. The effec-
tivity of the proposed motor-skill representation is demonstrated in two ways: 1) through a real-time
controller that can be used as a tool for learning from demonstration to impart novel skills to the robot
and 2) by demonstrating that policy search reinforcement learning in such a task-specific latent space
outperforms learning in the high-dimensional joint configuration space of the robot. We implement
our proposed framework in a practical setting with a dual-arm robot performing clothing assistance
tasks.
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1. Introduction

Recently, there has been a tremendous increase in the elderly population of the world leading
to a shortage of caregivers and therapists. To address this issue, we need a greater presence of
ICT and assistive robotics. One of the major problems that arise due to aging is the loss of
motor functions to perform dexterous tasks such as putting on clothes. Patients with bone and
muscle related diseases find it difficult to move their arms beyond a certain range and are not
able to wear clothes by themselves. Similarly, patients with conditions like Alzheimers disease
face difficulty in performing fine movements such as putting on buttons and are dependent on
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Figure 1. Clothing assistance setting: Dual-arm robot clothing soft-mannequin with T-shirt.

the caregiver. Although in most cases, the patient is not entirely dependent on the caregiver and
can perform the tasks requiring some assistance. Service robots could ideally perform this task.

On the other hand, an area of active research in the domain of robotics is motor-skills learning
that enables robots to perform complex tasks [1, 2]. However, existing methods require a large
number of interactions to learn the optimal behavior which is not suitable in practical scenarios
such as in the field of assistive robotics. Clothing assistance is one such task which is a necessity
in the daily life of the elderly and disabled people. Design of a practical framework involves
cloth state estimation in real-time and a learning framework that can detect and adapt to
various failure scenarios. A promising approach is to formulate robotic clothing assistance as a
reinforcement learning (RL) problem wherein the robot learns to recover from failure scenarios
and adapt to new settings from experience.

An RL framework for clothing assistance was proposed by Tamei et al. [3] where a dual-arm
robot was the agent, and a mannequin was used as the subject. Policy search is performed
in a kinematic space which is considerably high dimensional for a 7 degree of freedom (DOF)
dual-arm robot. The policy was represented using via-points extracted using a minimum jerk
criterion. To ensure tractable learning time, policy update was done using the finite difference
policy gradient algorithm applied to a single via-point of a single joint in each robot arm. This
severely constrained the generalization capability to very different environmental settings such
as significant changes in the subject’s posture or using a different clothing article.

In this study, we propose an efficient representation of motor-skills that relies on the use
of Bayesian Gaussian Process Latent Variable Model (BGPLVM) [4]. BGPLVM is capable of
learning a data-efficient latent space for clothing tasks performed by a dual-arm robot. We
present two applications with the BGPLVM latent space as shown in Figure 2. Firstly, a user-
friendly interface to impart novel motor-skills to a bulky dual-arm robot. We present a real-time
controller with input from the latent space that can be used as a user-friendly tool for LfD.
Second, we propose a novel RL framework where the BGPLVM latent space is used as a search
space in combination with an unbiased policy gradient algorithm, Policy learning by Weighted
Exploration with Returns (PoOWER) [5]. We demonstrate that the learned latent space generates
robot trajectories that maintain task space constraints required for clothing tasks. We apply our
proposed method in a practical setting of robotic clothing assistance as shown in Figure 1. The
experimental results indicate a promising representation with reinforcement learning that can
be used for robotic tasks with complex motor-skills.

The rest of the paper is structured as follows. Section 2 provides an overview of related studies.
The proposed framework is presented in Section 3. Section 4 includes experimental results and
Section 6 concludes the paper with directions for future work.
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Figure 2. Overview of proposed framework presented as a flowchart. Figure on left shows human demonstration of clothing
assistance used to learn a low-dimensional latent space (figure in middle) which is used for controlling the robot (figure on
right) in two different ways.

2. Related Work

In this section, we present the related work in three subcategories: application of Latent Variable
Models (LVM) to robotics, motor-skills learning, and robotic clothing assistance.

2.1 Latent Variable Models for Robotics

Robotic tasks have high-dimensional observations obtained using noisy sensors. One approach
is to use dimensionality reduction and obtain a low-dimensional manifold that efficiently cap-
tures the task representation as well as variability in different settings. Principal Component
Analysis (PCA) [6] is commonly used with applications including robot localization [7], LfD in
humanoid robots [8], robotic hand grasp planing [9] and EMG-based robot arm control [10].
With the increasing popularity of deep learning, there have been several studies that use neural
network based autoencoders in various robotics applications. Watter et al. [11] used variational
autoencoders and a locally linear approximation of nonlinear dynamical systems to generate
high-dimensional image trajectories given current observations. Van Hoof et al. [12] proposed
the use of autoencoders to learn a low dimensional feature space of high dimensional tactile
and visual information. Linear models such as PCA are not suitable to handle the nonlinear
dynamics of clothing articles. On the other hand, methods such as variational autoencoders are
capable of learning complex non-linear mappings but are not sample-efficient.

There have been several studies that use Gaussian process latent variable model (GPLVM)
and their extensions to perform dimensionality reduction in various settings. Shon et al. [13]
proposed an LVM formulation to learn a shared latent space between human joints and humanoid
degrees of freedom which enabled robotic imitation of the human poses. Ko et al. [14] extended
Bayes filters using Gaussian process (GP) based observation, prediction models and applied it
to various robotic applications. Wang et al. [15] proposed a dynamical extension to GPLVM
and applied it to predict human intention during a human-robot interaction task. Nakamura
et al. [16] performed segmentation of human motion capture data using a hidden semi Markov
model where the emission distributions were modeled using a GP. Koskinopoulou et al. [17]
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performed LfD using GPLVM where the mapping is learned using human demonstrations. Some
of these studies use GPLVM which relies on a Maximum-A-Posteriori (MAP) estimate of the
latent space, and so the models tend to overfit to the training data and do not generalize well
to drastic changes in the task settings.

2.2 Motor-skill Learning using RL and LVMs

In recent years, RL has been successfully applied to various robotic tasks [1]. Several studies
have proposed motor skills learning specifically for cloth manipulation to handle the inherent
non-rigidity. Doumanoglou et al. [18] formulated a Partially Observable Markov Decision Process
(POMDP) framework for cloth unfolding along with the use of random forests for cloth classi-
fication. Huang et al. [19] used depth and appearance features for detecting graspable regions
and generated trajectories through a warp function to bring clothes to the desired configuration.
Yang et al. [20] proposed a deep learning based framework for autonomous cloth folding. They
relied on a convolutional autoencoder for task-specific feature extraction from raw images and
a time-delayed neural network to learn the dynamics of cloth folding.

Balaguer et al. [21] proposed a reinforcement learning framework that exploits the dynamics of
clothing articles to perform a high momentum folding task. They used a motion capture system
for real-time cloth state estimation as the clothing article did not undergo much occlusion.
Another closely related application is the manipulation of deformable objects such as ropes
and soft objects. Monso et al. [22] proposed a probabilistic motion planning framework for cloth
separation by formulating the problem as a POMDP to handle uncertainty during manipulation.
They defined a low-dimensional state representation to ensure fast and efficient learning of the
task. Lee et al. [23] proposed a force-based manipulation framework for applications such as
knot tying. They rely on the use of non-rigid registration to modify expert demonstrations to
the current environmental setting. Hu et al. [24] proposed a visual-servo based control framework
using online GP regression where uninformative observations are removed for real-time control.

Few studies have handled sample-efficiency explicitly which is crucial for our assistive robotics
task. Deisenroth et al. [25] proposed a model-based RL framework that relies on a GP transition
model along with explicit incorporation of uncertainty in long-term predictions. This framework
suffers from computational intractability for high-dimensional applications. RL usually suffer
from the curse of dimensionality and a possible solution is the use of dimensionality reduction
(DR). Some studies use DR as a preprocessing step and perform RL in the reduced search
space [26]. Others inherently combine DR and RL wherein the dimensionality reduction is moti-
vated by the rewards obtained during the learning phase [27, 28]. However, these studies either
use linear models for DR limiting the modeling capability or rely on a MAP estimate of the
latent space which tends to overfit to the training data.

2.3 Robotic Clothing Assistance

Recently, there have been several promising studies that tackle this challenging problem. For
people with cognitive impairments, dressing assistance mainly involves providing social cues
rather than physical support. Burleson et al. [29] proposed a framework to detect abnormal
dressing states by tracking clothing articles that have fiducial markers. Orr et al. [30] developed a
multi-agent system that relied on sensor fusion to provide recommendations for clothing when the
users were about to leave their house. Klee et al. [31] proposed a clothing assistance framework
to communicate and coordinate with a human to complete clothing tasks.

Conducting clothing assistance experiments and future real-world implementations need to
be safe and efficient. One approach to sidestep this problem is to develop a realistic simulator
and use this as a testbed. Clegg et al. [32] developed a framework to synthesize dressing motion
performed by animated human characters. Erickson et al. [33] relied on simulations of dressing
a human hand in a shirt to infer the forces felt by the human from the end effector forces of
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Figure 3. Graphical model of BGPLVM [4]. ® are the model hyper parameters that need to be optimized.

the robot. They generated large amounts of data and used it to train deep neural networks for
force estimation. Yu et al. [34] used haptic information obtained from a simulation of dressing
assistance to train a classifier that could predict failure scenarios in a real-world implementation
of the same task.

Yamazaki et al. [35] proposed an end-to-end framework for bottom-dressing that relies on
proprioceptive and visual information to detect failure scenarios. Colomé et al. [36] relied on a
friction-based complaint controller to perform a scarf wrapping task. Kapusta et al. [37] used
hidden Markov models to detect failure scenarios for the task where a linear actuator clothes
human subjects with a hospital gown. Gao et al. [38] proposed a path optimization approach that
relies on robot proprioceptive information for assisting human users with dressing. These studies
have handled various aspects of the problem. However, they do not handle the scenarios where
there is a tight coupling between the human and clothing article. Furthermore, the emphasis
was not motor-skills learning, and they usually perform point-to-point motion planning.

In our previous work, we demonstrated the applicability of BGPLVM for real-time cloth state
estimation [39, 40]. We performed multi-view learning using Manifold Relevance Determina-
tion (MRD) [41] and perform accurate human-cloth relationship estimation from very high-
dimensional and noisy point cloud data. In this study, we propose the use of BGPLVM to learn
a low-dimensional latent space for encoding motor-skills. The focus of this study is to design an
efficient action representation for RL of clothing assistance. The advantage of BGPLVM is that
it relies on variational inference to learn a posterior distribution on the latent space rather than
a MAP estimate as in GPLVM [42]. This avoids overfitting to the training data, thereby, im-
proving the generalization capability of the model to unseen environmental settings. We further
explore various feature representations and their effect on the resultant latent space, specific
to clothing assistance tasks. We implement our framework on a practical setting of clothing
assistance as formulated by Tamei et al. [3] that involves tight coupling between human and the
clothing article along with high variability in policy depending on the task settings.

3. Methods

In this section, we present our formulation to encode motor-skills and a generic learning frame-
work that relies on this formulation. Section 3.1 provides the mathematical formulation of BG-
PLVM. Section 3.2 provides the application of BGPLVM to encode motor-skills for clothing
assistance task. Finally, Section 3.3 describes the reinforcement learning framework which relies
on BGPLVM latent space to perform policy search.

3.1 Bayesian Nonparametric Dimensionality Reduction

BGPLVM is a dimensionality reduction technique proposed by Titsias et al. [4] derived from
the generative model shown in Figure 3. The model assumes that the high-dimensional observed

data, Y = {y; € RP}N_, is generated from low-dimensional latent inputs X = {x; € RI}_,
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through a noisy process,
yi = f(xi) +€ e~ N(0,87'D) (1)

where ( is the inverse variance for noise random variable €. The mapping function f is modeled
using a GP which has several useful properties. GP performs data-efficient learning as it can
learn informative mappings with few samples and capable of learning complex mappings using
non-linear kernel functions. The conditional likelihood for the generative model is given by:

D
p(YX,®) = [[N(Y.q0,K+ 871 (2)
d=1

where Y is the observed data and X, ® are the unknown latent points, hyperparameters for the
GP mapping that need to be inferred. The conditional likelihood is factorized with respect to the
output dimensionality D with independent GP mapping for each output dimension d. K is the
kernel matrix constructed from the latent points. In the generative model, the latent positions
need to be marginalized out for having a purely Bayesian treatment,

N
p(X) = [V (xx]0,1),
n=1 (3)

p(Y|®) = / p(Y|X, ®)p(X)dX

Variational inference is used to compute a tractable lower bound for the marginalization thereby
inferring a posterior distribution on the latent space which avoids the problem of overfitting.

For performing the automatic model selection of the latent space dimensionality, the Automatic
Relevance Determination (ARD) Kernel [43] can be used in the GP mapping:

1 q
Kara(xi,%5) = UZrd exp <—2 Z g (i — xj,k)2> (4)

k=1

The ARD weights ay describe the relevance of each dimension and zero weight indicates com-
plete irrelevance. Maximizing the marginal likelihood w.r.t. these weights allows the inference of
latent space dimensionality. The inference for unseen test data can now be performed through a
Bayesian formulation instead of relying on a MAP estimation of the latent space. The predictive
distribution is given by the ratio of two marginal likelihoods, both of which can be approximated
using the variational inference technique:

_ [ p(y*, Y|x*, X)p(x*, X)dXdx*

P = T T N p(X)ax )

3.2 Motor-skills Representation using BGPLVM

Motor-skills for robotic clothing assistance is given by joint angle trajectories of a dual-arm
robot that lie in a high-dimensional space. The robot also has to maintain several task space
constraints such as coupling with a clothing article along with safe human-robot interaction as
shown in Figure 2. To address these problems, we propose the use of BGPLVM for learning
a low-dimensional latent space through a nonlinear mapping to the kinematic space. There
are several motivating factors for this choice. The Bayesian treatment avoids overfitting to the
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Figure 4. Interface for imparting motor-skills. Left: Simulator to plan trajectory, Right Top: Robot performing trajectory.
Right Bottom: BGPLVM latent space to control robot.

training data, and the use of an ARD kernel in the GP mapping leads to the inference of the
inherent dimensionality to encode motor-skills.

In this section, we present the formulation used to apply BGPLVM to clothing assistance
skills. We consider the clothing task where a dual-arm robot dresses a soft mannequin in a
T-shirt which is initially resting on the mannequin’s arms. The training dataset is given by
human demonstration through kinesthetic movement while controlling the robot under gravity
compensation mode. The BGPLVM model learns a mapping from the low dimensional latent
space to the robot kinematic space such that a trajectory of points in the latent space generates
a trajectory on the dual-arm robot. The GP mapping leads to data-efficient learning, thereby
requiring few demonstrations, possibly one, for task generalization.

The latent features learned by BGPLVM depend on the input dataset provided. We consider
two alternate representations i.e. 1) kinematic representation (JA) given by joint angles of 7
DoF dual-arm robot D = 14 and 2) task space representation (EE) given by the end-effector
pose of both arms with Cartesian position Py, Py, Pz € R3 and orientation with quaternion
representation Ox,Oy,0z,0, € R* forming a 14-dimensional space Dy = 14. We set the
dimension of the latent space as ¢ = 10 for all our experiments. However, the dimensionality is
eventually inferred through the training of the ARD kernel weights as explained in Section 3.1.

There can be several types of failure scenarios when the robot performs clothing tasks. To
recover from these failures, not only is the trajectory of the robot important, but also the
speed of execution. Typically such trajectories are provided to the robot through kinesthetic
demonstrations where a person holds the robot arms and physical moves them. Imparting these
skills through kinesthetic movement can be difficult for inexperienced users especially when the
robot is bulky and with specific kinematic constraints. Inexperienced users could impart noisy
demonstrations which could lead to suboptimal performance and in some cases unsafe movements
as well.

To address this problem, we implemented a user interface that uses BGPLVM. Our interface
involves interaction with a BGPLVM latent space trained using expert demonstrations displayed
in a 2D space. A real-time controller is implemented as shown in Figure 12 that maps the cursor
coordinates from the BGPLVM latent space to a pose of dual arm 7-DoF robot. This interface
can be used as a tool for LfD where the necessary clothing skills are imparted to the robot by
using cursor control over the latent space. This can be a user-friendly interface where the user
need not physically interact with the robot and can control the robot through intuitive interfaces
such as a mouse or even a touchpad.

Real-time implementation of the controller was designed using the Robot Operating System
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(ROS) software framework. A pipeline was formed where cursor coordinates in the latent space
were mapped through BGPLVM to generate a robot joint angle pose which was provided as
input to the low-level controllers of the robot. Using this interface, a path traced in the latent
space converts to a trajectory performed on the dual-arm robot in real-time. The implementa-
tion of the latent space controller along with the user-friendly interface is provided as an open
source repository at https://github.com/Shibatalab/cloth_assist_framework for further
reference. An example scenario for this interface is care-givers imparting motor-skills to assistive
robots in a real-world health care facility.

3.3 Latent Space Reinforcement Learning

In this section, we formulate a policy search framework in the BGPLVM latent space. The ob-
jective is to learn a high-dimensional robot trajectory for performing the clothing task on an
unseen posture of the mannequin by searching within this latent space. Firstly, a dataset of
successful clothing assistance trajectories is used to train a latent space that encodes the motor-
skills. Each of the trajectories is now transformed into a sequence of points in the latent space
forming latent space trajectories. The policy search is performed using POWER [5] which is a
commonly used policy search algorithm. PoOWER can be considered reward-weighted recombi-
nation of previous experience. It has an Expectation-Maximization like formulation where the
policy is given by a weighted summation of basis functions with state-dependent exploration
noise 7(az|st, t) = 07 u(s,t) + e(u(s, t)) and the policy parameters are updated as follows:

T -1 T
4 :6+E{ZW(st,t)Q”(st,at,t)} E{ZW(St,t) € Q”(st,at,t)} (6)
t=1

t=1

where 6 are the policy parameters, W (s, t) is the basis function matrix and €, is a time-dependent
exploration noise term. Q™ (s, a¢, t) is the value function which is approximated using an unbiased
estimator, Q”(s,a,t) = Z{T:t""(sfv as ).

We consider Dynamic Movement Primitives (DMP) [44] as policy representation. It is the
combination of a point attractor dynamical system, and a non-linear forcing term (f(s)) learned
using Locally Weighted Regression (LWR) [45]:

78 =K(g9g—x)— Dz + (g —x0)f,
> withi(s)s

f(s) = =————", where 7§ = —as

(7)

where K, D are the coefficients for the point attractor system, xg,g are the initial and goal
positions. The non-linear forcing term is described using another canonical system (s) given by
a weighted summation (w;) of basis functions (¢;(s)). The weight parameters, w;, are treated
as the policy parameters in this study where these weights need to be estimated to generate the
desired robot trajectory.

We train a DMP on the latent points corresponding to one of the training trajectory, and
the LWR weight coefficients are used as policy parameters which are modified to generalize
to unseen environmental settings. The cost function for policy improvement is designed in the
high-dimensional action space. In the current setting, we obtain a demonstration for the unseen
posture and consider this as an optimized trajectory that needs to be learned by the DMP
controller. The optimized trajectory is efficiently encoded by via-points extracted using the
minimum jerk criterion [46] that the robot needs to pass through. The cost function is given by
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most significant dimension ordered using either eigen-values or the ARD kernel weights.

the sum of all errors between the current policy and the desired via-points:

Ndims Mvia

R(r) =Y > IIVij —ai“ (t:5)]” (8)

i=1 j=1

where R(7) is the total reward for trajectory 7, Vj; is the 4 via-point of i*® dimension and
xS (¢) is the value at time ¢ for i*" dimension of reconstructed trajectory. The number of
via-points nyia was estimated such that the reconstruction error for the generated trajectory is
lower than a user-specified threshold.

4. Results

In this section, we present the performance of our proposed framework in a practical setting
of robotic clothing assistance. The experimental setup includes Baxter research robot, a soft
mannequin as the subject and a T-shirt as the clothing article. We consider the performance
of the clothing and unclothing tasks of the T-shirt. These tasks follow different dynamics and
running a clothing demonstration backward for unclothing usually leads to failure. The evalua-
tion dataset contains demonstrations performed by three experienced users interacting with the
Baxter robot. For each demonstrator, clothing and unclothing demonstrations were recorded for
6 different postures of the mannequin wherein the pair of shoulder elevation and head elevations
were as follows {(65°,30°), (70°,30°), (75°,30°), (70°,45°), (75°,45°), (80°,45°)}. These postures
cover the entire range for which the robot can successfully perform clothing tasks thereby span-
ning all feasible postures.

4.1 Comparison of Latent Variable Models

In this experiment, we inspect the motor-gkills, i.e. latent features learned by BGPLVM and
evaluate the predictive performance in comparison to other LVMs such as Principal Component
Analysis (PCA) [6] and GPLVM [42]. PCA is a linear dimensionality reduction technique where
the observations Y are assumed to be generated from the following generative process:

Y = WX (9)

where X is the unobserved latent position and W € RP*? comprises of a set of orthonormal basis
vectors that maximizes the scatter of latent points. On the other hand, GPLVM has a similar
generative process to BGPLVM given in Equation 1. However, the unknown latent positions X
are evaluated using Maximum-A-Posteriori (MAP) estimation along with jointly maximizing the
hyperparameters. The objective function for optimizing the latent positions X is derived from
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Figure 6. Comparison of ARD weights and latent space for different feature representations

the conditional log-likelihood given in Equation 2:

DN
———1In

L=
2

D 1
(2m) = 5 In|K| - 5mr(K*YYT) (10)

Firstly, we consider the dataset of demonstrations from the evaluation dataset for both clothing
and unclothing tasks. For each task, six-fold cross-validation was performed where demonstra-
tions for four postures were used as training data and for two postures were used as test data
in each fold. BGPLVM models were trained for both the kinematic space (JA) and task space
(EE) representations. The ARD weights for BGPLVM on training resulted in the varying num-
ber of active latent dimensions for different feature representations as shown in Figure 6. For
the clothing task, the JA representation resulted in three active latent dimensions on average
and two dimensions for the EE representation. This implies that the encoded motor-skills varies
depending on the input observations and can be an essential design consideration depending on
the task.

It was observed that the latent space varied for different LVMs. Latent spaces learned for the
clothing task, and JA representation is shown in Figure 5. The grayscale background for GPLVM
and BGPLVM indicate the predictive variance of the GP mapping which can be considered as
a measure of uncertainty of the model. In general, all the LVMs resulted in latent trajectories
for the training data which correspond to the demonstrations. There is a considerable difference
in the predictive variance where BGPLVM is more confident than the GPLVM model assigning
lower predictive variance over a larger region and hence effectively using the latent space.

BGPLVM can be used to automatically infer the dimensionality of the latent space through
the ARD kernel weights. This can be very useful for complex tasks such as clothing assistance

10
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Figure 7. Comparison of LVMs as a dependence on number of active dimensions used for reconstruction.

where it is difficult to estimate the inherent dimensionality given high dimensional trajectories of
the robot performing the task. Although GPLVM also uses an ARD kernel, the reconstruction
error remains high on using only the active dimensions as shown in Figure 7. This indicates
that Bayesian inference proves useful in jointly learning the model hyperparameters along with
optimizing the latent positions. On the other hand, MAP inference used by GPLVM leads
to poor learning of the kernel hyperparameters such as the ARD relevance weights. The EE
representation required more latent dimensions in comparison to JA representation, this could
indicate that the variability to adapt to different postures could not be captured in the EE
representation.

The predictive performance of BGPLVM was evaluated by comparing the reconstruction error
with two other LVM, i.e. PCA and GPLVM. For each demonstrator, six-fold cross-validation was
performed where four demonstrations were used as training data. The remaining two demon-
strations (Test Pose) along with demonstrations from an unseen demonstrator (Test Demo) were
used as test data. To evaluate generalization capability, we evaluated reconstruction error given
by comparing the input data and the reconstructed data from the latent points corresponding
to the input,

Err = Hyorg - yprede (1)

Ypred = fmodel (f;cl)del (yorg ) )

where yorg is an input sample from dataset, ypreq is the predicted value after reconstruction and
fmodel 18 the forward mapping from latent space to observation space.

The results for reconstruction error are provided in Figure 8. We evaluated Normalized Root
Mean Square Error (NRMSE) and Pearson correlation as the metrics. The Wilcoxon signed
rank sum test [47] was used to assess the statistical significance and the p-value was evaluated
for a one-sided test. It can be seen that BGPLVM has the best predictive performance which
can be considered as a measure of generalization capability of BGPLVM latent space to unseen
environmental settings.

4.2 FEvaluation of Latent Space Controller

In this experiment, we evaluate the latent space controller for imparting motor-skills to the robot.
For the evaluation, BGPLVM models were trained on kinesthetic demonstrations of performing
clothing and unclothing task for a given posture of the mannequin. The model is used as an
interface to control the robot and reproduce the task by performing cursor control on the latent
space of the demonstration. An instance of performing cursor control to generate a different

11
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e Expert Demo

e Cursor Control

Figure 9. Example of using latent space controller to perform clothing assistance trajectory. Red trajectory indicates path
traced by user with cursor control.

trajectory is shown in Figure 9. It can be seen that tracing a trajectory different from the
expert demonstration used to train the model still leads to the successful execution of the
clothing assistance trajectory. Furthermore, the latent trajectory for test data that minimizes
reconstruction error could be discontinuous as shown in Figure 5 but tracing a smooth trajectory
with cursor control still leads to successful execution. A video demonstration with the exploration
of the latent dimensions is also available at https://youtu.be/bul51lq44rus.

The latent dimensions learned by BGPLVM capture a specific aspect of the clothing motor-
skills. For the joint angle scenario, the most significant dimension captured the horizontal motion
of the arms along the mannequin while maintaining the constraints for clothing. The second
dimension captured various vertical motions of pulling up the T-shirt in the beginning and
pulling it down along the torso at the end. The third dimension captured variations in joint
configurations across the demonstrations and could explain the constraint of safe human-robot
interaction. This makes the interface intuitive to the users for planning a desired alteration to
the robot trajectory. The robot trajectories generated corresponding to a trajectory along each
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Figure 11. Robot trajectory generated corresponding to vertical latent dimension.

latent dimension is shown in Figures 10,11.

Five subjects without prior experience of interacting with the robot were asked to use the
interface to reproduce the tasks. The joint angles along with proprioceptive information were
recorded while the interface was used. In general, the subjects were able to reproduce the clothing
demonstration even when the latent trajectory was different from the training latent points. The
subjects had fast learning curves with the execution time for performing the demonstration
decreasing drastically within five trials of using the interface as shown in Figure 12a. There were
also instances where the execution was slower as the subject felt that the T-shirt was stuck on
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Figure 12. Evaluation of latent space controller: a) Variation in dynamics of performing clothing task using latent space
controller, b) Execution time of five novice users interacting with the latent space controller over five trials.

the mannequin’s head. This indicates that the controller can be used to modulate the dynamics
of the task depending on the current setting. A video demonstration of an inexperienced subject
interacting with the real-time controller is available at https://youtu.be/bul5lq44rus.

The subjects also learned to modulate the dynamics of performing the task wherein crucial
parts were performed slowly and parts without much human-cloth interaction being performed
quickly. Figure 12b shows the modulation in the dynamics of performing the task for one of the
subjects. The time normalized trajectories for a single joint of the robot is shown for five trials of
using the interface along with the original kinesthetic demonstration. For the regions indicated
in the blue squares, it can be seen that the trajectories through the interface vary drastically
from the original demonstration. This indicates that novel motor-gkills for performing complex
tasks can be imparted by inexperienced users as well.

4.3 Latent Space Reinforcement Learning

In this section, we demonstrate the effectivity of performing policy search in the BGPLVM
latent space by comparison with search in the high-dimensional action space and latent spaces
learned using PCA and GPLVM. PoWER algorithm was implemented with the same state and
reward representations, and only the policy search space varied depending on the scenario. For
each demonstrator, six-fold cross-validation was performed where three demonstrations of the
clothing task were used as training data for learning latent spaces. The latent space of each
LVM was used as a search space for reinforcement learning to learn the policy corresponding
to the remaining three unseen demonstrations. Policy search was run for 1000 iterations where
20 rollouts with the best overall rewards were used to update the policy in each iteration. The
initial policy was generated from DMP that is fit on a latent space trajectory of one of the
human demonstrations used to train the latent space.

The performance of using BGPLVM as a search space was exhaustively evaluated by con-
sidering the complete dataset. The average learning curves over the entire dataset are shown
in Figure 13. It can be seen that BGPLVM scenario outperforms all other search spaces. This
indicates that BGPLVM captures the necessary motor-skills most efficiently and also has the
best generalizability in comparison to other LVMs.

5. Discussion

In Section 4, we demonstrated the applicability of using BGPLVM to learn meaningful latent
representations for the task of robotic clothing assistance. The results in Section 4.1 indicate
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Figure 13. Comparison of different search spaces for policy search shown as a bar plot over the evaluation dataset.

that non-linear mapping and Bayesian inference are necessary for the most efficient encoding
of motor-gkills. PCA relies on a linear model thereby constraining its capability. GPLVM has
performance similar to PCA as it relies on a MAP estimate of the latent space and it seems to
be overfitting to the training data. Overfitting of the GP hyperparameters could lead to worse
performance on using a non-linear mapping. GPLVM could achieve better performance over
PCA on the careful tuning of the hyperparameter values. On the other hand, BGPLVM relies on
full Bayesian inference where a posterior distribution on the latent space is learned. This leads
to superior performance as a model of the appropriate complexity can be learned automatically,
and the advantage of using a non-linear mapping can also be utilized. This validates our hypoth-
esis that encoding motor-skills using Bayesian nonparametric latent variable models is a useful
parametrization for learning.

The results in Section 4.2 indicate that BGPLVM is also able to learn interpretable latent
features which are very useful for skill-transfer. In the coming years, there will be an increasing
presence of assistive robots in healthcare facilities, and it is essential to design user-friendly
interfaces for the caregivers to adapt to such technologies. The interface presented in this study
could have several extensions making it suitable for other assistive tasks. It could include the
pose of the assisted person which can be obtained using skeleton tracking. Section 4.3 presents
the feasibility of using BGPLVM latent space as a search space for reinforcement learning.
Policy search is performed using the POWER algorithm which has been shown to perform well
in several applications. Currently, dimensionality reduction (DR) and policy search (RL) are
performed independently, and the latent features do not adapt to the rewards obtained during
policy search. Luck et al. [27] proposed an Expectation Maximization (EM) formulation which
inherently combines DR with policy search. However, they relied on a linear mapping from the
latent space to observation space. Interesting future work will be to combine policy search with
BGPLVM through such an EM-like formulation.

Recently, there has been an increasing emphasis on Deep Learning which is capable of solving
complex tasks. However, these methods usually fail when presented with small datasets. The
primary advantage of using a nonparametric method is its efficiency in the low data regime.
This is crucial for assistive robotics due to the difficulty in collecting large datasets. BGPLVM
is a memory-based method and has prohibitive training costs. The computational complexity to
train a model scales with the size of the training dataset (n) and the number of inducing points
used to approximate the dataset (m), i.e. O(nm?) [4]. However, both the applications of using
BGPLVM proposed in this study relies on the inference of high-dimensional joint angles given a
latent position. The latent position is specified from a human in LfD and through policy search
in RL. During test inference, the training dataset remains fixed and so precomputed values of the
kernel matrix can be used to reduce time-complexity to O(n) which makes it much smaller than
training instance and suitable for real-time implementation. The focus of this study is on the
policy or action representation used for learning clothing assistance skills. A trajectory-centric
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reward function is used to perform the policy update. This method can be combined along with
our previous work [39, 40] which focuses on efficient state estimation to formulate an entire RL
framework. The human-cloth relationship estimated by our framework can be used as the state
representation. A reward function defined in this state space will be used to perform policy
update in the BGPLVM action space proposed in this study.

Our proposed framework could also be extended to other tasks that involve complex motor-
skills and require data-efficiency for practical implementation. Related tasks such as dressing of
other clothing articles, cloth folding, non-rigid object manipulation and so on can be potential
applications. The primary requirement to apply our framework is expert demonstrations which
can be used to learn efficient latent space representations. A limitation of the current study is that
a soft mannequin is used as a subject. However, a concurrent study [48] evaluated the usability
of performing clothing assistance using the latent space controller with ten subjects and was able
to demonstrate its applicability. This framework can be extended towards a practical scenario
of robotic dressing assistance implemented in a nursing care facility. A shared mobile and dual-
arm dressing robot can be made accessible to about 20 residents of the care home. End-to-end
dressing tasks can be performed by integrating related methods such as cloth extremity [49] and
cloth grasp point detection [50]. Factors such as sociability and personalization to each user will
also be considered in the implementation.

6. Conclusion

In this study, we have presented the use of BGPLVM as a representation for encoding motor-
skills to perform clothing assistance task. We demonstrated the applicability of this framework
as an intuitive and user-friendly tool for LfD. The experimental results indicate our method
as a promising approach for learning in combination with RL. There can be several extensions
to this work. A latent space representation can be learned from multiple observation spaces
using Manifold Relevance Determination (MRD) [41]. Our future work will be to learn models
that incorporate visual information about the relationship between human and cloth. The long
term goal is to develop a data-efficient policy search RL framework that unifies learning the
latent space simultaneously with policy learning. We will also evaluate our learning framework
on human subjects along with a real-world implementation of RL.
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