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Abstract—To develop a new generation ADAS that avoids
a dangerous condition in advance, we need to predict driving
behaviors. Since a nonparametric Bayesian method with a two-
level structure successfully predicted the symbolized behaviors
only, we applied a nonparametric Bayesian method with linear
dynamical systems to predict the driving behavior. The method
called the beta process autoregressive hidden Markov model (BP-
AR-HMM) segments driving behaviors into states each of which
corresponds to an AR model and it predicts future behaviors
using the estimated future state sequence and the dynamical
systems therein. Here, the segmentation as well as the parameters
of the dynamical systems are determined using given training
data in an unsupervised way. We carried out experiments with
real driving data and found that the BP-AR-HMM predicted
driving behaviors better than other methods.

Index Terms—Bayesian nonparametrics, driving behavior
modeling, autoregressive hidden Markov model.

I. INTRODUCTION

ECENT advanced driver assistance systems (ADASSs)

such as automatic braking system [1], [2], adaptive
cruise control or lane-keeping system [3]-[5] and pedestrian
protection [6]-[8] have reduced the number of traffic accidents
[9]. These systems detect a dangerous condition and warn the
driver of the condition. This means that the driver falls into
the dangerous condition once, which should be avoided in
advance.

To prevent a car from a dangerous condition, the future
movement of the car must be estimated, which results in the
prediction of driving behaviors since the car is operated by
a driver (Fig. 1). Some systems have successfully predicted
specific behaviors, for example, braking behaviors [10], “ap-
proaching a traffic light” behaviors [11], lane departure behav-
iors [12], and behaviors at intersections [13], [14]. Although
they successfully predict specific behaviors in a short time
scale, few systems have achieved to predict general behaviors
in a longer time scale.
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To treat general behaviors, a prediction system must divide
a sequence of behaviors into segments and extract sequences
of segments. Taniguchi et al. [15] formulated this problem as
a two-level structure and solved it based on an analogy with
language (letters/words) by a nonparametric Bayesian method
called the nested Pitman-Yor language model (NPYLM) [16].
They modeled driving behaviors by the NPYLM and predicted
sequences of segments that corresponded to more than eight
seconds. However, they predicted only symbolized behaviors,
not driving behaviors themselves, that are necessary to predict
the future movement of the car.

Inspired by the success of the NPYLM in predicting driving
behaviors, in this paper, we proposed to apply a nonparametric
Bayesian method with dynamical systems to predicting driving
behaviors, not the sequence of symbols. Driving behaviors are
well modeled by a set of linear dynamical systems called
a hybrid dynamical system (HDS), wherein the dynamics
switches from one to another [17], [18]. The HDSs have some
variants depending on the switching method and the dynamical
systems therein such as the Markov dynamic model [18], the
switching linear dynamical systems [19] and the autoregressive
hidden Markov model (AR-HMM) [20]. In this study, the AR-
HMM was employed because it is a simplest model to express
dynamics although more complicated models were employed
in the literature [21], [22]. The AR-HMM must determine the
number of AR models (the number of kinds of behaviors in
driving) in advance. To avoid this difficulty, we incorporated
the nonparametric Bayesian technique into the AR-HMM,
which was proposed as the beta process autoregressive hidden
Markov model (BP-AR-HMM) [23].

The BP-AR-HMM divides a sequence of behaviors into seg-
ments (called driving letters in [15]) in an unsupervised way
and assigns an AR dynamical system to each segment. When
given a sequence, the BP-AR-HMM is trained by alternatively
carrying out the segmentation of the sequence according to
the estimated dynamical systems and the identification of the
dynamical system in each segment. After trained, the BP-AR-
HMM predicts a sequence of segments (driving letters) using
the state transition probability of the HMM and then predicts
the behaviors using the AR model in each segment.

In the following, we show the soundness of the BP-AR-
HMM for prediction of driving behaviors using the real driving
data obtained by the authors’ group. Note that a part of
behavior prediction of Dataset 1 (Sec. III. B) was reported
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Fig. 1: Typical application of driver assistance system.

in a conference [24].

II. MATERIALS AND METHODS

A. Generative model

We used the BP-AR-HMM to model driving behaviors [23].
This is an extension of the AR-HMM to a nonparametric
Bayesian method with beta processes and the AR-HMM is
a combination of the HMM and autoregressive processes. The
HMM assigns a hidden state at each time point according to
the state-transition probability and generates observable vari-
ables from a certain (usually Gaussian) distribution associated
with the hidden state. The AR-HMM assigns a hidden state in
the same way but generates observable variables by using a
vector-autoregressive (VAR) model associated with the hidden
state. The VAR model with the hidden state z; produces
the observable variables ygz) at time ¢ of the ith time series
according to

Y = A,y + e, (1)

where A, is the VAR coefficient matrix and ¢, is the Gaussian
noise at time t.

The BP-AR-HMM assigns a hidden state (VAR model) in
the same way as the AR-HMM. Differently from the AR-
HMM, the BP-AR-HMM makes a new state not assigned so
far in a certain probability according to a beta process. Thus,
the beta process generates a prior probability of emergence wy
of state & according to

B = Zwk(S@m (2)
k=1

where B is a draw of the beta process, dp, is a Dirac
measure at state k, and 6 is a VAR parameter including
the VAR coefficients Aj;. The AR coefficients are chosen
according to a predefined base measure By, which is typically
a matrix Gaussian distribution (Fig. 2) [23]. Accoridng to the
formulation above, the posterior probability given the N time
series is expressed as

(V)
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B ‘ y(l;’%’layg;%’y'"ay1;TNaBO>C ~

> my C
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where my, is the count that the state k£ emerges in IV time series
and c is a positive constant that controls the probability a new

Fig. 2: Graphical model of BP-AR-HMM. y'!”), observable
variable; th), hidden state at time point ¢ in time series %; 6,
VAR parameters of state k; (9 state transition probabilities;
fi,» emergence of the states in time series i; k,7, hyper-
parameters; By, base measure [23].
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Fig. 3: A typical example of BP-AR-HMM applied to driving
behaviors.

state appears. This model can produce an infinite number of
states in principle and determines the total number of states
according to the intrinsic complexity of given data.

The behavior vector ygi) in this paper consisted of the
accelerator opening rate, the brake pressure and the steering

angle (Fig. 3).
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B. Training and prediction

When sequences of behaviors were given, the unknown
variables are the state (AR model) at each time step and the
AR coefficients of the AR model. To estimate them from the
given sequence, the BP-AR-HMM assigns a state to each time
step using the current criterion for assignment and updates the
estimates of the AR coefficients in the states and the state
transition probability using the assigned data, and iterates this
procedure until the estimates satisfy a certain condition [23].

The BP-AR-HMM code in [25] was used in our ex-
periments, where the parameters were estimated using a
Markov chain Monte Carlo (MCMC) sampling with a sum-
product algorithm [26] and reversible jump MCMC [27].
Their hyper-parameters, v and x, were assumed to have
gamma-distribution priors and the other parameters were set
as follows: The order of the VAR processes, one; the prior
distribution of observation noises, Gaussian with mean zero
where the variance was the covariance of the observed data
multiplied by 0.75. In the experiments for Dataset 2 (See
the next subsection), the parameters were estimated using the
Viterbi algorithm [28] according to the past driving behaviors
to reduce the computational complexity.

The BP-AR-HMM can predict how the states and the
behaviors change in the future. First, the trained BP-AR-
HMM made a sequence of states according to the estimated
state transition probability. Since each state expressed a VAR
process, behaviors in the future were predicted using the VAR
process of the state at each time point.

For the prediction of the state sequences, we took two
different methods. The first method chose the most probable
state as the predicted state (Fig. 4(a)). This method is easy to
implement with less computational complexity. The second
method predicted the states successively according to the
Bayesian inference, using the Viterbi algorithm with the state
transition probability, the AR coefficients, and a batch of
past behaviors (Fig. 4(b)). The Viterbi algorithm calculates
the maximum joint probability of the state sequence for state
k=1,2,....K,

(k) =
omax p(eP 2t = k), @
Zt—l"'”ztfl
by using the recursive equation
(k) = max o7, () map(wl | Ayl )

where [ is a length of time window, and give the estimate as

zt(i) = argmax wgi)(k). (6)
k

C. Datasets

We used two datasets. Dataset 1 was the same dataset as
Driving Data in Factory Course in [15], where one participant
drove our experimental car along two courses in a factory
five laps for each (Fig. 5). Dataset 2 was the same dataset
as Driving Data on Public Road also in [15], where one
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Fig. 5: Courses 1 and 2 of a short track experiment. Subject
was instructed to drive car clockwise along course 1, and
counterclockwise along course 2.

participant drove our experimental car along a course in a
public road in Japan for nine roundtrips (Fig. 15 in [15]).
The eighteen runs took 42.9 minutes in average with standard
deviation 6.6 minutes. During the experiments, the accelerator
opening rate, the brake pressure, the steering angle, and the
speed of the car were measured through control area network
(CAN) at a sampling rate of 10 Hz.

D. Evaluation

We compared the prediction performance of our model, the
BP-AR-HMM, with the simple HMM, the sticky hierarchical
Dirichlet process HMMs (HDP-HMMs), the AR-HMM and
the HDP-AR-HMM to see the effectiveness of introducing AR
models and beta processes. The evaluation was done in two
ways using the five-fold (Dataset 1) or nine-fold (Dataset 2)
cross validation method. The one is the correspondence ratio
of states between the predicted and the reference sequences
as in [15], where the reference sequence was determined by
another BP-AR-HMM trained using all data. The other is the
accuracy of the behaviors, that is, the accelerator opening
rate, the brake pressure and the steering angle, by calculating
the mean absolute error (MAE) between the measured and
predicted driving behaviors.
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ITI. RESULTS
A. State sequence prediction

1) Dataset 1: Given the whole data with Courses 1 and
2 in Dataset 1, the BP-AR-HMM produced seven states (AR
models) and assigned one of them to each time point (Fig. 6).
Although several disturbances occurred such as a pedestrian
crossing a road and another vehicle in front of the experimental
car, the assignment of the states was consistent and 76.9% of
the states at the same position were coincident in three or more
laps among five (Fig. 7). Moreover, the same state sequence
frequently appeared in the same situations. For example, when
the driver turned left, the sequence of states, 3-7-1, appeared
in Course 2, which was analyzed hereafter.

To evaluate the prediction ability of our model, the BP-
AR-HMM predicted the state sequence of a lap in the cross
validation procedure. The model trained with the rest correctly
predicted the state sequence of a lap for 23.4 time points (2.34
seconds) on average (Fig. 8).

2) Dataset 2: Given the whole data (nine go-runs and nine
return-runs) in Dataset 2, the BP-AR-HMM produced eight
states (AR models) and assigned one of them to each time
point (Fig. 9). Here, we concentrated the driving behaviors at
the left-turns in an intersection because the driving behaviors
in other situations widely diverged. For example, the driver
changed the lane in some runs and did not in others.

For Dataset 2, the state sequences are not consistent as the
case for Dataset 1. However, they seem to be classified to four
classes (Fig. 9, leftmost) and the class depends on the vehicle’s
speed of the car. Note that the state sequences were estimated
using the Viterbi algorithm because the estimation of driving
states is not so easy task compared with a short track case.

B. Behavior prediction

1) Dataset 1: Using the predicted states and the corre-
sponding AR models, the BP-AR-HMM predicted the behav-
iors of the driver (the brake pressure and the steering angle)
during left-turn corners in Course 2 in Dataset (Fig. 6), where
the initial state was set to State 3 since the sequence of states,
3-7-1, frequently appeared in left-turn corners.

The BP-AR-HMM had a smaller mean absolute error
(MAE) in the brake pressure than the other models but did
not have a significantly smaller MAE in the steering angle
(Fig. 10), where the accelerator opening rates were omitted
because they almost always took the value of 0% during
the corners. This is because the BP-AR-HMM predicted the
sudden decrease in brake pressures in four laps in the five
although it did not predict the gradual increase in steering
angles except for one lap (Fig. 11). Note that the HMM
without AR models could not predict any of the above.

2) Dataset 2: Since the driving behaviors were strongly
affected by the vehicle’s speed, we included the vehicle’s
speed to the state variables, that is, each state consisted of
the accelerator opening rate, the brake pressure, the steering
angle and the vehicle’s speed. The HMM with AR models, i.e.,
AR-HMM, HDP-AR-HMM and BP- AR-HMM, had smaller
MAE in predicting the vehicle’s speed but they didn’t have
significant difference in the driving behaviors (Fig. 12). Here,
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the numbers of states of HMM and AR-HMM were selected
so that their MAEs took minimum. This means that nonpara-
metric Bayesian methods were comparative in performance
without model selection.

IV. DISCUSSION

In our experiments using real driving data, the BP-AR-
HMM successfully predicted not only states but also driving
behaviors themselves for Dataset 1.

The duration time successfully predicted was shorter than
the double articulation analyzer [15] (Fig. 8). This is because
the BP-AR-HMM did not treat the states as sequences ex-
plicitly as the language model does [15], [16]. Nonetheless, it
could predict the sequences of states by virtue of the dynamics
(AR model) in each state and this implies the soundness of
introducing AR models to HMM models.

The prediction accuracies of the modeling methods for
driving behaviors were compared in terms of MAE and the
BP-AR-HMM outperformed the other models that do not have
dynamics such as the HMM and the HDP-HMM (Fig. 10).
In addition, the BP-AR-HMM showed a little smaller MAE
than the AR-HMM and the HDP-AR-HMM that include AR
models. The HDP-AR-HMM is a nonparametric Bayesian
method of the AR-HMM as the BP-AR-HMM. One property
of the HDP-AR-HMM is to share a state transition probability
among sequences [29] although the BP-AR HMM assigns a
different one to each state. This may be the reason why the
BP-AR-HMM would work better since the driving behaviors
were not homogeneous but heterogeneous due to the variety
of road conditions.

For Dataset 2, however, the models had comparable MAE
(Fig. 12). This may be because the driving behaviors at
intersections are not the same (Fig. 9). Although we succeeded
to predict the vehicle’s speed by including the speed to the
measurement, we need to study more to improve the behavior
prediction.

V. CONCLUSION

We showed the BP-AR-HMM successfully predicted the
driving behaviors. The BP-AR-HMM automatically segmented
the past driving behaviors into discrete states each of which
corresponded to an autoregressive dynamical model and pre-
dicted the state sequences as well as the driving behaviors
better in our experiments. Although the BP-AR-HMM fails to
predict in some cases, the AR models are found to be effective
to predict the driving behaviors that might be useful for a
new type of advanced driver assistance systems that predict
dangerous conditions in advance.
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Fig. 10: MAE:s of the models for brake pressures (left) and steering angles (right). Wilcoxon rank-sum test, Bonferroni corrected,
p < 0.05.
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shows the same run.
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Fig. 12: MAEs of the models for the accelerator opening rate (upper right), the brake pressure (upper right), the steering angles
(lower left) and the vehicle’s speed (lower right). Wilcoxon rank-sum test, Bonferroni corrected, p < 0.05.
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