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The depairing current density in superconductors is theoretically investigated for 

magnetization and transport currents. It is found that the depairing current densities in 

both cases are higher than those predicted by Tinkham. One of the reasons for the 

higher current densities is that those are obtained at the transition point to the normal 

state, while Tinkham obtained in the superconducting state far from the transition 

boundary. Another reason is that the order parameter is larger than the equilibrium value, 

which contributes not only directly to a higher current density but also to a lower kinetic 

energy due to the current. 
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Recently, artificial pinning centers have been commonly introduced into REBa2Cu3O7-δ 

(REBCO) superconducting films to improve the critical current density.1) In this case, of 

great interest is the attainable critical current density, and the observed results are 

frequently compared with the depairing current density.2) 

The depairing current density is the maximum microscopic current density 

attained in superconductors with transverse sizes smaller than the coherence length. 

Hence, the spatial variation in the order parameter can be neglected. Using the London 

model the depairing current density was theoretically determined at the transition point 

to the normal state, at which the kinetic energy density due to the current is equal to the 

absolute value of the condensation energy density.3) The predicted depairing current 

density is given by 

 

(1) 

 

Here, 𝐻c is the thermodynamic critical field and 𝜆 is the penetration depth given by 

 

(2) 

 

where −2𝑒(𝑒 > 0) and 𝑚∗ are the electric charge and mass of a superconducting 

electron, respectively, and |𝛹∞|2  is the equilibrium value of the order parameter. 

Tinkham4) estimated the depairing current density assuming the velocity of a 

superconducting electron 𝑣s as one of the internal variables and obtained 

 

(3) 

 

The reduction from the result in Eq. (1) was attributed to the decrease in the order 

parameter |𝛹|2  from |𝛹∞|2 . These results are applicable to the case of induced 
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magnetization current. In the case of transport current, the Gibbs free energy density 

was considered and Tinkham again obtained Eq. (3). 

The depairing current density may be attained only for very thin superconductors 

such as nanowhiskers, and it is difficult to obtain sufficiently large superconducting 

currents because of the limited cross-sectional areas. The mechanism of the limiting 

current is completely different from that of the macroscopic critical current density for 

practical applications based on the flux pinning mechanism. Thus, the attainable value 

of the pinning critical current density for superconductors with much larger 

cross-sectional areas was theoretically investigated. The obtained result was5) 

 

(4) 

 

which is larger than that in Eq. (3). However, it is difficult to understand why the 

obtained critical current density at which the resistive flux flow state starts can be higher 

than the microscopic critical current density at which the superconductivity is destroyed. 

In the theoretical treatment in Ref. 4, the order parameter was smaller than the 

equilibrium value, as mentioned above. This is disadvantageous, however, since it 

reduces the current density and increases the kinetic energy. On the other hand, the 

higher maximum pinning critical current density than that predicted by Tinkham is 

attributed to the larger order parameter. In this paper, therefore, the theoretical treatment 

in Ref. 4 is reexamined in detail in the cases of both magnetization and transport 

currents. 

     Since the spatial variation in the order parameter can be neglected in the thin 

superconductor, the Ginzburg-Landau energy density is simply given by 

 

(5) 

 

𝐽c = 0.6712
𝐻c

𝜆
, 

ℱ = 𝛼|𝛹|2 +
1

2
𝛽|𝛹|4 +

𝑚∗𝑗2

8𝑒2|𝛹|2
. 



4 

 

The third term is the kinetic energy density due to the current. The reason why the 

description of the energy density is different from that in Ref. 4 will be discussed later. 

Minimizing ℱ with respect to |𝛹|2 under a given current density 𝑗, we obtain 

 

(6) 

 

Using the relationships |𝛹∞|2 = −𝛼/𝛽 and (|𝛼|/𝑚∗)1/2 = 𝑗d0/2𝑒|𝛹∞|2, Eq. (6) is 

reduced to 

 

(7) 

 

This shows that the order parameter takes a value larger than the equilibrium value 

(|𝛹|2 ≥ |𝛹∞|2), the same trend as in the case of the macroscopic pinning current 

density5) but this trend is opposite to that obtained from the theoretical treatment in Ref. 

4. Since the order parameter increases monotonically from the equilibrium value with 

increasing current density, resulting in an increase in negative condensation energy 

density, which is equal to the sum of the first and second terms in Eq. (5), the maximum 

superconducting current density is considered to be obtained at the transition to the 

normal state (ℱ =0). This condition is written as 

 

(8) 

 

From Eqs. (7) and (8), the maximum current density is obtained at |𝛹|2/|𝛹∞|2 = 4/3. 

That is, the depairing current density is 
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This is exactly twice the value given by Eq. (3). 

     In the case of transport current, the Gibbs energy density 

 

(10) 

 

must be treated under a given current density 𝒋, where 𝑨 is the vector potential. Since 

the spatial variation in the phase of the order parameter can be neglected, from the 

Ginzburg-Landau equation we have 

 

(11) 

 

Thus, the Gibbs free energy density is given by 

 

(12) 

 

Minimizing ℊ with respect to |𝛹|2, we obtain 

 

(13) 

 

The order parameter again takes a value larger than the equilibrium value. The 

maximum current density is similarly expected to be obtained at the transition point to 

the normal state. Since the magnetic condition does not change at the transition, the 

Legendre term, −𝑨 ∙ 𝒋, is unchanged. This will be shown below. 

     We assume for simplicity that a current is applied to a very thin superconductor 

(−𝑑 ≤ 𝑥 ≤ 𝑑) along the 𝑧-axis. In the superconducting state, the current is distributed 

in the superconductor with a density of 
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(14) 

 

where 𝜆′ is the penetration depth given by 

 

(15) 

 

Note that 𝜆′ is not equal to the London penetration depth given by Eq. (2). Hence, 

using the Maxwell equations, the magnetic flux density has the 𝑦-component 

 

(16) 

 

which leads to 

 

(17) 

 

Then, from the relationship 

 

(18) 

 

the vector potential is obtained as 

 

(19) 

 

This is the same as Eq. (11). Because 𝑑 ≪ 𝜆′, the current density and vector potential 

are almost spatially uniform inside the superconductor. The nonuniformity of each 

quantity is on the order of (𝑑/𝜆′)2 in magnitude and we can safely neglect such 

nonuniformities. When the current density on the surface of the superconductor reaches 
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the critical value 𝑗d, the transition to the normal state occurs. 

     In the normal state, the current density is completely uniform inside the 

superconductor and this is almost equal to that in the superconducting state. As a result, 

the resultant magnetic flux density and vector potential are also almost the same as 

those in the superconducting state. In fact, from Eq. (16), the magnetic flux density is 

 

(20) 

 

From Eq. (18), the vector potential is obtained as 

 

(21) 

 

where 𝐾 is a constant value. We can assume 𝐾 to be equal to the constant value in the 

superconducting state with a suitable gauge. The nonuniformity given by the second 

term is relatively on the order of (𝑑/𝜆′)2 in magnitude and can be safely neglected. 

Hence, the vector potential is substantially the same as that in the superconducting state. 

This is natural since the current distribution does not change appreciably upon the 

transition to the normal state. Thus, it can be concluded that the Legendre term is 

continuous at the transition point. 

Hence, the transition occurs when ℱ  reaches zero. This is similar to the 

transition to the normal state at the upper critical field,6) 𝐻c2. This condition is given by 

Eq. (8). From Eqs. (8) and (13), we obtain |𝛹|2/|𝛹∞|2 = 8/5 and the depairing 

current density 

 

(22) 

 

This value is slightly smaller than that in Eq. (9) but is larger than that in Eq. (3). 
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     Here we discuss the obtained results. First, we focus on the result for the 

magnetization current. In Ref. 4, the Ginzburg-Landau energy density was described as 

 

(23) 

 

in terms of the order parameter |𝛹|2 and the velocity of a superconducting electron, 𝑣s, 

which are independent of each other. The velocity of a superconducting electron is 

related to the current density as 

 

(24) 

 

Minimizing Eq. (23) with respect to |𝛹|2 leads to 

 

(25) 

 

This shows that |𝛹|2 is smaller than |𝛹∞|2. Equation (25) is written as 

 

(26) 

 

In Ref. 4, the maximum current density given by Eq. (3) was obtained at |𝛹|2/|𝛹∞|2 =

2/3 under the condition of Eq. (26). 

Figure 1 shows a contour map of the normalized Ginzburg-Landau energy density 

given by 

 

(27) 
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on the normalized order parameter (|𝛹|2/|𝛹∞|2) vs velocity ((𝑚∗/|𝛼|)1/2|𝑣s|) plane 

that was treated in Ref. 4. This clearly shows that there is no true local minimum point 

of the energy density. That is, although the energy density has a minimum value on the 

line given by Eq. (26) when the order parameter changes under a fixed velocity value, 

the free energy density monotonically decreases when the velocity decreases along this 

line. Hence, there is no reason to restrict ourselves only to the superconducting states on 

the line when searching for the maximum current density. The minimization of the 

energy density given by Eq. (23) is meaningless for this purpose. On the other hand, this 

theoretical process is useful for investigating the value of velocity. In fact, (𝑚∗/

|𝛼|)1/2|𝑣s| takes a value from 0 to √2, the maximum value, along the broken line 

determined by Eq. (26). 

The maximum current density must be searched for throughout the area of the 

superconducting state, which is the region to the left of the line 𝑓 = 0 in Fig. 1. Note 

that the value of the normalized velocity is the same ((𝑚∗/|𝛼|)1/2|𝑣s| = (2/3)1/2) for 

the present critical point corresponding to Eq. (9) and that in Ref. 4. The difference in 

depairing current density by a factor of 2 directly originates from the difference in the 

order parameter. The discussion in the previous paragraph indicates that it is not 

necessary to restrict the combination of variables to the order parameter and velocity, 

which are independent of each other, to describe the Ginzburg-Landau energy density. 

For this purpose, each local minimum condition of the energy with respect to |𝛹|2 

should be searched for a given 𝑗 value, then, the maximum 𝑗 value should be found 

among the local minimum conditions. This is the reason why we used the 

Ginzburg-Landau energy density given by Eq. (5). If we minimize Eq. (23) with respect 

to 𝑣s under the condition of Eq. (24), we have the same result as Eq. (6). 

Figure 2 shows a contour map of the normalized Ginzburg-Landau energy density 

on the normalized order parameter (|𝛹|2/|𝛹∞|2) vs current density (𝑗/𝑗d0) plane. It is 



10 

 

found that the superconducting state is extended to a higher current density for a larger 

order parameter, which is opposite to the trend shown in Fig. 1. The procedure of 

minimizing the Ginzburg-Landau energy density given by Eq. (5) is useful for 

determining the maximum value of 𝑗. In fact, Fig. 2 clearly shows that the normalized 

current density ranges from 0 to 2(2/3)3/2 along broken line 1 given by Eq. (7). The 

value given by Eq. (9) is the maximum in the region of the superconducting state. The 

critical points of the present analysis and the Tinkham and London models are shown in 

the figure for comparison. The higher depairing current density than that obtained from 

the London model is also attributed to the larger order parameter. 

Next, we discuss the result for the transport current. The Gibbs free energy 

density assumed in Ref. 4 is 

 

(28) 

 

Hence, the Legendre term for the transformation is  

 

(29) 

 

However, this should be −𝑨 ∙ 𝒋. This simple mistake led to the underestimation of the 

depairing current density. 

Figure 3 is a replot of Fig. 1 to show the variation in the Ginzburg-Landau energy 

density 𝑓 as a function of the order parameter at various values of the current density. 

It was concluded in Ref. 4 that the critical current density of 𝑗/𝑗d0 = (2/3)3/2 is 

obtained at |𝛹|2/|𝛹∞|2 = 2/3. The normalized Ginzburg-Landau energy density at 

this point shown by the open circle is 𝑓 = −2/9. On the other hand, we have a lower 

energy of 𝑓 = −0.3605 at |𝛹|2/|𝛹∞|2 = 1.1184, as shown by the asterisk in Fig. 3, 

even though the current flows with the same density (𝑗/𝑗d0 = (2/3)3/2). In more detail, 

ℊ = 𝛼|𝛹|2 +
1

2
𝛽|𝛹|4 −

𝑚∗𝑗2

8𝑒2|𝛹|2
. 

−
𝑚∗𝑗2

4𝑒2|𝛹|2
= 𝑨 ∙ 𝒋. 



11 

 

the normalized condensation energy density 𝑓c  and kinetic energy density 𝑓k  are 

compared between the two cases in Table 1. These energy densities are given by 

 

(30) 

 

and 

 

(31) 

 

This clearly shows that the condition in the present analysis is much more convenient 

from the energetic viewpoint. That is, the degradation of the condensation energy 

density from the equilibrium value (−1/2) is smaller and the kinetic energy density is 

lower even for the same current density. This is the reason why the higher depairing 

current density is obtained. Figure 3 also clearly shows the reason why the obtained 

depairing current density is even higher than that predicted by the London model. 

The locus of the minimum point of the Ginzburg-Landau energy density is 

obtained by substituting Eq. (7) into Eq. (27) as 

 

(32) 

 

Using Eqs. (13) and (27), the locus of the minimum point of the Gibbs free energy 

density is 

 

(33) 

 

The broken and dot-dashed lines in Fig. 3 are 𝑓m  and 𝑓m′ , respectively. These 

minimum points move to a larger order parameter as the current density increases. The 
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respective critical points given by Eqs. (9) and (22) are also shown in the figure. In the 

case of transport current, the deviation from the locus of the minimum 

Ginzburg-Landau energy density causes a lower depairing current density.  

     The theoretical treatment in this study clarifies that the true depairing current 

densities are higher than the maximum pinning current density. Hence, the results 

obtained in this study are reasonable. 

     In summary, the depairing current density was theoretically investigated for 

magnetization and transport currents in this study. The depairing current density was 

found to be 2(2/3)3/2𝐻c/𝜆 and 4(2/5)3/2𝐻c/𝜆, for the magnetization and transport 

currents, respectively. Both of them are higher than that theoretically predicted by 

Tinkham and even that by London. Under the condition of Tinkham, the 

Ginzburg-Landau energy density is negative, indicating that the superconductor is in the 

superconducting state. On the other hand, the present results were obtained at the 

transition point to the normal state, and hence the above current densities are indeed the 

depairing current densities. The enhancement of the order parameter from the 

equilibrium value contributes to the higher depairing current density. The obtained 

results are reasonable since the obtained depairing current densities are higher than the 

maximum pinning current density of 0.6712𝐻c/𝜆.   
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Table 1. Comparison of the normalized energy densities.  Two cases are compared at 

𝑗/𝑗d0 = (2/3)3/2 . 𝑓c  and 𝑓k  are the normalized condensation energy density and 

kinetic energy density, respectively. 

 

 |𝛹|2/|𝛹∞|2 𝑓c 𝑓k 𝑓 

Present 1.1184 −0.4930 0.1325 −0.3605 

Ref. 4 0.6667 −0.4444 0.2222 −0.2222 
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Figure captions 

 

Fig. 1. Contour map of the normalized Ginzburg-Landau energy density 𝑓 on the order 

parameter (|𝛹|2/|𝛹∞|2) vs superconducting electron velocity ((𝑚∗/|𝛼|)1/2|𝑣s|) plane. 

The broken line shows the equilibrium condition given by Eq. (26). The critical point of 

the present analysis (|𝛹|2/|𝛹∞|2 = 4/3, (𝑚∗/|𝛼|)1/2|𝑣s| = (2/3)1/2) and that of the 

Tinkham model (2/3, (2/3)1/2) are shown. 

 

Fig. 2. Contour map of the normalized Ginzburg-Landau energy density 𝑓 on the order 

parameter (|𝛹|2/|𝛹∞|2) vs superconducting current density (𝑗/𝑗d0) plane. Broken lines 

1 and 2 show the equilibrium conditions of Eq. (7) and (13), respectively, and the 

dot-dashed line shows the equilibrium value of the order parameter (|𝛹|2/|𝛹∞|2 = 1). 

The critical points of the present analysis (|𝛹|2/|𝛹∞|2 = 4/3, 𝑗/𝑗d0 = 2(2/3)3/2) and 

(8/5, 4(2/5)3/2)  are shown by the solid circles. Those of the Tinkham model 

(2/3, (2/3)3/2) and London model (1,1) are also shown by the open circle and 

triangle, respectively. 

 

Fig. 3. Normalized Ginzburg-Landau energy density 𝑓 as a function of the order 

parameter (|𝛹|2/|𝛹∞|2) at various values of the current density (𝑗/𝑗d0). 𝑓m and 𝑓m′ 

are the loci of the minimum points of the Ginzburg-Landau and Gibbs free energy 

densities, respectively. The respective critical points of the depairing current density 

given by Eq. (9) and (22) are shown by the solid circles. The critical points of the 

Tinkham and London models are also shown by the open circle and triangle, 

respectively. The asterisk shows the condition in the present analysis for which current 

density is the same as the result in Ref. 4. 
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