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ABSTRACT

Bifurcation-diagram reconstruction estimates various attractors of a system without observing all of them but only from observing several
attractors with different parameter values. Therefore, the bifurcation-diagram reconstruction can be used to investigate how attractors change
with the parameter values, especially for real-world engineering and physical systems for which only a limited number of attractors can be
observed. Although bifurcation diagrams of various systems have been reconstructed from time-series data generated in numerical exper-
iments, the systems that have been targeted for reconstructing bifurcation diagrams from time series measured from physical phenomena
so far have only been continuous-time dynamical systems. In this paper, we reconstruct bifurcation diagrams only from time-series data
generated by electronic circuits in discrete-time dynamical systems with different parameter values. The generated time-series datasets are
perturbed by dynamical noise and contaminated by observational noise. To reconstruct the bifurcation diagrams only from the time-series
datasets, we use an extreme learning machine as a time-series predictor because it has a good generalization property. Hereby, we expect that
the bifurcation-diagram reconstruction with the extreme learning machine is robust against dynamical noise and observational noise. For
quantitatively verifying the robustness, the Lyapunov exponents of the reconstructed bifurcation diagrams are compared with those of the
bifurcation diagrams generated in numerical experiments and by the electronic circuits.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5119187

Many real-world systems exhibit attractors with different param-
eter values of the system. We hope to estimate such attrac-
tors, although the system itself is usually unknown. By using
bifurcation-diagram reconstruction, we can estimate these attrac-
tors if several time-series data can be generated by the target
system at different parameter values. The purpose of this paper
is to show that the bifurcation-diagram reconstruction method
that Itoh et al. have already proposed1 is robust against dynam-
ical and observational noise because time-series data measured
from physical phenomena are always influenced by dynamical
and observational noise. We therefore demonstrate the results
of reconstructing bifurcation diagrams only from time-series
data generated by electronic circuits in discrete-time dynamical

systems. Herein, we expect that a filtering effect is obtained by
using an extreme learning machine as a time-series predictor,
which has a good generalization property.

I. INTRODUCTION

Attractors in real-world systems can be measured as time-series
data. If the system is exhibiting deterministic chaos, for example,
then the data can be predicted in the short term by using a predic-
tor that is trained to model the measured time-series data, although
a target dynamical system itself is usually unknown. If the target
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system has bifurcation parameters and we wish to estimate its bifur-
cation diagram (BD), then doing so requires a large number of data
that are measured while changing the parameter values that can
be controlled.2 However, if cost and time are limited, then a suf-
ficient amount of data often cannot be obtained. To address this
problem, in 1994, Tokunaga et al.3 proposed a method of BD recon-
struction, whereby the BD of the target system is estimated only
from a few time-series datasets measured at different parameter val-
ues; by numerical experiments, Tokunaga et al. reconstructed the
BDs of the Hénon map and coupled logistic/delayed-logistic maps
only from time-series data without dynamical and observational
noise. Tokuda et al.4 then reconstructed the BD of the Rössler equa-
tions only from time-series data with observational noise, and in
2000, Bagarinao et al.5 reconstructed the BDs of a cubic map and
the FitzHugh–Nagumo equations only from time-series data with
dynamical noise. In 2001, Small et al.6 estimated the BD of the
Rössler equations only from a time-series dataset with observational
noise. Here, the difference between their method and other meth-
ods is the time-series data used for modeling, because they used a
time-series dataset generated by a system with a changing param-
eter. After that, Small et al.7 estimated the BD during the onset of
human ventricular fibrillation.

Several research groups reconstructed BDs of several nonlinear
systems from time-series data by numerical experiments. However,
behavior of a real-world system cannot be faithfully reproduced on
digital computers, especially when a chaotic system is targeted. For
example, Shi reported that attractors of an extended logistic map sys-
tem are changed depending on computational precision.8 Therefore,
the effectiveness of the BD reconstruction against a real-world sys-
tem needs to be evaluated by real data. Obviously, it is necessary
to consider dynamical and observational noise in real-world prob-
lems. For these reasons, analog electronic circuits that have high
reproducibility of mathematical experiments and can easily control
experimental conditions are often used as experimental systems that
generate time-series data based on analog computation. Moreover,
analog electronic circuits operated by using physical characteris-
tics like transistor characteristics are incompletely known physical
systems, even if these are artificially designed. The characteristics
cannot be fully controlled because an impurity distribution in the
semiconductor causes fluctuations in physical properties like the
threshold voltage of transistors. On the other hand, digital com-
puters as well as application-specific integrated digital circuits are
complete known systems, because they are not affected by physi-
cal properties due to binarization and error correction. Therefore,
the analog electronic circuits are suitable to verify effectiveness of
a method against unknown physical systems. In 2004, Langer and
Parlitz9 reconstructed the BD of a Colpitts oscillator from time-
series data generated by electronic circuit, thereby showing that BDs
can be reconstructed for real-world systems subjected to intrinsic
noise. Langer and Parlitz used not only time-series datasets but also
the parameter values at which those datasets were generated. How-
ever, it is not always possible to know the parameter values at which
time-series data were generated. Nevertheless, in 2018, Itoh and
Adachi reconstructed the BD of the Rössler equations only from
time-series data generated by electronic circuit.10

In this paper, we verify that the BD reconstruction method
that Itoh et al. have already proposed1 is robust against dynamical

and observational noise using time-series data generated by elec-
tronic circuits that have high reproducibility of dynamical systems.
Therefore, we use the electronic circuits that can realize nonlin-
ear functions similar to nonlinear voltage waveforms inputted by
an arbitrary waveform generator,11 unlike general nonlinear analog
electronic circuits that generate chaos using the nonlinear charac-
teristics of devices. However, dynamical systems that can be realized
with this electronic circuits are discrete-time dynamical systems. In
addition, as far as we know, the systems that have been targeted
for reconstructing BDs from time-series data generated by elec-
tronic circuits have only been continuous-time dynamical systems.
For these reasons, we target discrete-time dynamical systems in this
paper. For clearly verifying the BD reconstructed from time series
influenced by dynamical and observational noise, we use the logis-
tic and sine maps as target systems that are simple discrete-time
dynamical systems. This is caused by the BD reconstruction that is
not always successful even when the target system is simple as shown
by Itoh and Adachi.12 In the paper, they have shown success rates for
reconstructing the BDs of logistic and sine maps.

In general, time-series data generated by electronic circuits
are contaminated by observational noise resulting from analog-to-
digital conversion and perturbed by dynamical noise peculiar to
the circuits. For qualitatively evaluating the influence of dynami-
cal noise, we compare between the BD of logistic map generated
by real data from the electronic circuit and that with dynamical
noise generated by a numerical experiment. In addition, the Lya-
punov exponents are compared between the BDs generated by data
from the electronic circuits and those by numerical experiments.
We use two methods to estimate the Lyapunov exponents for the
reconstructed BD, namely, with a high degree of accuracy from the
Jacobian matrix1 and from time-series data13 for the BD generated
by the electronic circuits.

Herein, we use an extreme learning machine (ELM)14 as a time-
series predictor for reconstructing BDs. Tokunaga et al.3 used a
neural network that was trained via the gradient decent learning
of synaptic weights and biases, but a neural network with iter-
ative learning has shortcomings such as sensitivity to dynamical
and observational noise. Because our generated time-series data are
influenced by dynamical and observational noise, we use an ELM,
which has a good generalization property. In addition, Itoh and
Adachi have shown previously that an ELM is suitable for the BD
reconstruction.1,12,15–17

The rest of this paper is organized as follows. In Sec. II, we
explain the algorithm for reconstructing BDs with Lyapunov expo-
nents using the ELM.1 In Sec. III, we describe the electronic-circuit
realization in discrete-time dynamical systems, and in Secs. IV
and V, we present our experimental results for the logistic map and
the sine map, respectively. Finally, we draw conclusions in Sec. VI.

II. ALGORITHM FOR RECONSTRUCTING BIFURCATION

DIAGRAMS WITH LYAPUNOV EXPONENTS USING AN

EXTREME LEARNING MACHINE

Because we use an ELM as a time-series predictor for recon-
structing BDs, we begin by explaining the ELM. We then explain
BD reconstruction briefly. The following explanations assume that
the ELM has one input neuron and one output neuron because the
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FIG. 1. Structure of the extreme learning machine used in the present study.

target systems herein are the logistic and sine maps, which are both
one-dimensional maps.

A. Extreme learning machine

In 2004, Huang et al.14 proposed an ELM, which is a feed-
forward neural network consisting of three layers. Figure 1 shows
the structure of the ELM used in the present study. The training
targets in the ELM are the synaptic weights of only the output neu-
ron, which are trained by linear regression. The training of the ELM,
therefore, avoids local minima and is extremely fast. We use an ELM
in this study because of its good generalization property, which is
required in BD reconstruction to estimate various attractors.

The output hi ∈ R of hidden neuron i is described by

hi(t) = s
(

wiy(t)+ bi

)

, (1)

where wi ∈ R and bi ∈ R are the synaptic weight and bias, respec-
tively, of hidden neuron i, y(t) ∈ R is the input value, t is the
discrete-time, and s(·) is a standard sigmoidal function. The value
of the output neuron is given by

y(t + 1) = βTh(t), (2)

where β ∈ R
V is the synaptic weight vector of the output neuron and

h(t) =
[

h1(t), h2(t), . . . , hV(t)
]T

is the output vector of the hidden
neurons.

The synaptic weights of the output neuron are calculated by

β = H†d, (3)

where H† is the Moore–Penrose generalized inverse of the out-
put matrix H = [h(1), h(2), . . . , h(L)]T of the hidden neurons,

d =
[

d(1), d(2), . . . , d(L)
]T

is the desired output vector, and L is the
number of training patterns.

B. Bifurcation-diagram reconstruction based on the

method proposed by Tokunaga et al.

In 1994, Tokunaga et al.3 proposed the reconstruction of BDs
that estimate attractors in parameter space when parameter values
change. The BD reconstruction requires several time-series datasets
generated from a system with different parameter values. There are
three steps to our BD reconstruction process. First, we train the
synaptic weights of the output neuron in the ELM to model the given
time-series datasets. Next, we apply principal component analysis
(PCA) to the trained synaptic weights to estimate parameter space
corresponding to the original parameter space. Finally, we plot the
BD using the PCA results.

Herein, we define a nonlinear map for the input–output rela-
tions of the target system as

x(t + 1) = f
(

pn, x(t)
)

, (n = 1, 2, . . . , P), (4)

where x(t) ∈ R and x(t + 1) ∈ R are the state values of the tar-
get system of the one-dimensional map at t and t + 1, respectively,
pn ∈ R

C is a parameter vector, and f(·, ·) is a nonlinear map. Here, C
is the dimension of the parameter space. The time-series datasets
generated by the system with parameter vectors p1, p2, . . ., pP are
defined as S1, S2, . . ., SP, respectively.

The first step of the BD reconstruction is to generate time-series
predictors

y(t + 1) = g
(

βn, y(t)
)

, (n = 1, 2, . . ., P) (5)

to model the time-series datasets Sn(n = 1, 2, . . ., P), where g(·, ·)
is a nonlinear function. Here, the trained synaptic weight vec-
tors β1, β2, . . . , βP are trained to model the time-series datasets
S1, S2, . . ., SP, respectively.

The second step of the BD reconstruction is to apply PCA to
the trained synaptic weight vectors. To do so, deviation vectors of
the synaptic weight vectors are calculated by

δβn = βn − β0, (n = 1, 2, . . ., P), (6)

where β0 ∈ R
V is the mean vector of the synaptic weight vectors.

We then apply PCA to the deviation vectors δβ1, δβ2, . . . , δβP and
obtain their eigenvalues and eigenvectors. Sorted in the descending
order, the eigenvalues are φ1 ≥ φ2 ≥ · · · ≥ φV, and the eigenvec-
tors vi ∈ R

V(i = 1, 2, . . . , V) correspond to φi(i = 1, 2, . . . , V). The
deviation vectors are represented by

δβn = [v1, v2, . . . , vV]γ̄ n, (n = 1, 2, . . ., P), (7)

where γ̄ n ∈ R
V is the estimated vector. Herein, as in our previous

study,1 we assume that the eigenvalues φ1,φ2, . . .,φE contain enough
information when the Eth cumulative contribution ratio exceeds
80%.

The third step of the BD reconstruction is to plot the BD. The
deviation vectors can be approximated as

δβ̂n ' [v1, v2, . . ., vE]γ n, (n = 1, 2, . . ., P), (8)

where γ n ∈ R
E(n = 1, 2, . . ., P) are the estimated parameter vectors.

The estimated parameter vector corresponding to the time-series
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dataset Sn is calculated by

γ n = ([v1, v2, . . . , vE])−1 δβn, (n = 1, 2, . . ., P). (9)

The sequence of estimated parameter vectors γ 1 → γ 2 → · · · →

γ P corresponds to the sequence of parameter vectors p1 → p2 →

· · · → pP of the target system. Here, the sequence of estimated
parameter vectors is referred to as a bifurcation locus, and the
sequence of parameter vectors of the target system is referred to as
a bifurcation path. It is via the relationship between the bifurcation
path and locus that the estimated parameter space is viewed as cor-
responding to the parameter space of the target system. Therefore,
we reconstruct the BD using

y(t + 1) = g
(

δβ̂ + β0, y(t)
)

, (10)

while changing the estimated parameter vector γ in the estimated

parameter space. Here, δβ̂ is calculated by Eq. (8) with γ . We obtain
the reconstructed BD by gradually changing γ from γ n to γ n+1;
this range corresponds to a parameter range [pn, pn+1] of the orig-
inal BD. It must be noted that this method can be extended to
extrapolation of the reconstruction of BDs.1

C. Estimation of Lyapunov exponents for

bifurcation-diagram reconstruction

Herein, we use two methods to estimate Lyapunov exponents.
We begin by explaining how to estimate Lyapunov exponents from
time-series data. Although this method is relatively imprecise, it can
be used to estimate Lyapunov exponents for BDs generated by elec-
tronic circuits. Herein, we use the method proposed in 2012 by Yao
et al.13 for estimating the largest Lyapunov exponent. In particular,
this estimation method can be used with time-series data that are
influenced by dynamical and observational noise. The other method
involves estimating Lyapunov exponents from the reconstructed
BD1 using the Jacobian matrix of the time-series predictor.18–20

Consequently, the second method estimates Lyapunov exponents
more precisely. However, because the present target systems are
one-dimensional maps, instead of the Jacobian matrix we use the
derivative of nonlinear function of the predictor.

We begin by explaining the method for estimating Lyapunov
exponents from time-series data. This method measures directly
the extension rates of the distances between points on pairs of 2Np

orbits, where 2Np is the number of points falling into an ε neigh-
borhood of a point on the target orbit. Herein, we take ε = 0.025
and use the orbit of embedded time-series data with an embedding
dimension of one. The algorithm of this estimation method is as
follows:

1. Select an initial point p(target)(t) ∈ R.

2. Take all points p(ε)i (t), (i = 1, 2, . . ., 2Np) falling into the ε neigh-
borhood of p(target)(t).

3. Form the pairs of p(ε)i (t), (i = 1, 2, . . ., Np) and p(ε)i+Np
(t).

4. Calculate the mean vector d(ε)(t) of the distance between the
pairs by

d(ε)(t) =
1

Np

Np
∑

i=1

∣

∣

∣
p(ε)i (t)− p(ε)i+Np

(t)
∣

∣

∣
, (11)

where | · | is the absolute value.
5. Calculate the mean vector d(ε)(t + 1) of the distance between

the pairs from p(ε)i (t + 1), (i = 1, 2, . . ., 2Np).
6. Repeat steps 2–5 until t = ψ + 1.
7. Estimate the Lyapunov exponent by

µ =
1

ψ

ψ
∑

t=1

ln
d(ε)(t + 1)

d(ε)(t)
. (12)

Herein, we use time-series data with no transients; therefore, this
method cannot estimate Lyapunov exponents from periodic time
series because d(ε)(t) = 0. Consequently, we set the Lyapunov expo-
nents of periodic time series estimated by this method to zero.

Next, we explain the method for estimating Lyapunov expo-
nents by using the derivative of nonlinear function g(·, ·) in Eq. (10).

FIG. 2. Circuit principle of voltage waveform sampling. (a) Main circuit. (b) Timing
diagram of nonlinear transformation.
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FIG. 3. The bifurcation path and locus
for the logistic map. (a) Bifurcation path.
(b) Bifurcation locus.

In this method, the Lyapunov exponent is obtained by

µ =
1

ψ

ψ
∑

t=1

dy(t + 1)

dy(t)
. (13)

III. ELECTRONIC-CIRCUIT REALIZATION IN

DISCRETE-TIME DYNAMICAL SYSTEMS

We generate time-series data for discrete-time dynami-
cal systems by using a CMOS (complementary metal-oxide-
semiconductor) integrated circuit with pulse-width modulation
(PWM).11,21 The circuit achieves arbitrary discrete-time non-
linear dynamics by voltage waveform sampling for nonlinear
transformation.22,23 Figure 2 shows the principle of the voltage
waveform sampling, where τ , Vx(t), Vnon(τ ), and Vrmp(τ ) are the

continuous-time, the state-variable voltage, the nonlinear voltage
waveform, and the ramped reference voltage for voltage to PWM
conversion, respectively. Here, Vx(t)(∝ x(t)) is transformed into a
PWM signal with a pulse width Tx(t)(∝ Vx(t)) by comparing Vx(t)
with Vrmp(τ ), as shown in Fig. 2(b). The nonlinear voltage waveform
Vnon(τ ) is sampled with this PWM signal, which is given by

Vc = Vnon(Tx(t)), (14)

where Vc is the voltage that is sampled to capacitor C. By considering
Vc as Vx(t + 1) at the next time step t + 1, arbitrary discrete-time
nonlinear dynamics can be achieved.

In this study, the target systems are the logistic map and the sine
map. To realize the dynamics of these maps, we generate the follow-
ing nonlinear voltage waveforms V(l)

non(τ ) and V(s)
non(τ ), respectively,

FIG. 4. Bifurcation diagrams (BDs) of
the logistic map. (a) BD without dynamical
noise generated by MATLAB. (b) BD with
dynamical noise generated by MATLAB.
(c) BD generated by electronic circuit. (d)
Reconstructed BD.
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FIG. 5. Return plots of the logistic map.
Here, “+” and “·” are points of time series
generated by MATLAB and the electronic
circuit, respectively, and “×” are points of
time-series predictors. (a) The path and
locus numbers are one; i.e., p(l) = 3.55
and γ1 ' −779. (b) The path and locus
numbers are five; i.e., p(l) = 3.85 and
γ1 ' 909.

by using an arbitrary waveform generator:

V(l)
non(τ ) = p(l)a1τ(1 − b1τ)+ Vnonbt0

[V], (15)

V(s)
non(τ ) = c1

(

sin(c2p
(s)
1 τa2)+ p(s)2

)

+ Vnonbt0
[V]. (16)

Here, p(l) is a bifurcation parameter of the logistic map; p(s)1 and p(s)2

are bifurcation parameters of the sine map; a1, a2, and b1 are coef-
ficients for converting the numerical model into nonlinear voltage
waveforms; c1 and c2 are coefficients for adjusting the maximum
value of the sine map; and Vnonbt0

is a bias voltage for the non-
linear voltage waveforms. We adjust the maximum value of the
sine map to be 0.8 in Eq. (16) because V(s)

non(t) must be less than
unity in this electronic circuit; i.e., c1 = 0.8 and c2 = 1.25. We set
a1 = 2.88 × 106, a2 = 5 × 105, b1 = 0.38 × 106, Vnonbt0

= 1.2, and
Vrmp(τ ) = 0.414 × 106τ + 0.6 [V].

We measure time series of Tx(t) for various values of the bifur-
cation parameters and normalize the time series to have values
between zero and unity before analyzing them. The analyzed results

FIG. 6. Enlargement of a portion in Fig. 5(b).

of data obtained from circuit experiments are presented in Secs. IV
and V.

IV. EXPERIMENTAL RESULTS: LOGISTIC MAP

In this section, we present the results of reconstructing BDs
from time-series data generated by the electronic-circuit realization
of the logistic map. We begin by describing the experimental condi-
tions, then we show the BDs generated by MATLABr , the electronic
circuit, and the reconstructed BD. We then compare the return plots
between the time-series datasets generated by MATLAB and those
generated from the electronic circuit and the time-series predictor.
Finally, we show the Lyapunov exponents for these BDs.

A. Experimental conditions

The logistic map is given by

x(l)(t + 1) = p(l)x(l)(t)
(

1 − x(l)(t)
)

, (17)

where p(l) is the bifurcation parameter value of the logistic map. We
use p(l)(n) as the value of p(l) to generate the time-series dataset Sn.
Here, we set p(l)(n) as

p(l)(n) = −0.15 cos(2π(n − 1)/8)+ 3.7 (n = 1, 2, . . . , P = 9).
(18)

The length of each time-series dataset is 1000, and we use an ELM
that has four neurons in its hidden layer.

B. Results of bifurcation-diagram reconstruction

First, we estimate the dimension of the parameter space from
the contribution ratio. From the PCA results, the estimated dimen-
sion is unity because the contribution ratio of the first principal
component is around 100%. Next, we show the bifurcation path and
locus in Figs. 3(a) and 3(b), respectively. These figures correspond
to each other because the parameter-value relations of the bifurca-
tion path and locus are the same. Therefore, we consider that the
estimated bifurcation parameter space corresponds to the parameter
space of the target system.
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FIG. 7. Lyapunov exponents of the
logistic map using the estimation method
with time-series data. (a) Generated by
the electronic circuit. (b) Reconstructed.

Figures 4(a) and 4(b) show the BDs without and with dynam-
ical noise generated by MATLAB, respectively. Figure 4(c) shows
the BD generated by the electronic circuit, and Fig. 4(d) shows the
reconstructed BD. The difference between Figs. 4(a) and 4(c) is that
the latter is influenced by dynamical and observational noise and
its fine bifurcation structure cannot be seen; in particular, the win-
dow around p(l) = 3.85 disappears because of dynamical noise, and
the fluctuations of time series are observed because of observational
noise. Furthermore, the maximum state values of each parameter
value in Fig. 4(c) are smaller than those in Fig. 4(a); for example,
the maximum state values with p(l) = 4.0 in Figs. 4(a) and 4(c) are
around 1.0 and 0.9, respectively. Here, Fig. 4(b) shows the BD gen-
erated by Eq. (17) with added dynamical noise; that is, x(l)(t + 1)
= p(l)x(l)(t)

(

1 − x(l)(t)
)

+ ξ , where ξ is Gaussian noise whose mean
and standard deviation are zero and 10−3, respectively. Because
comparing Figs. 4(c) and 4(b) shows that these BDs have similar-
ity, we see that Fig. 4(c) is the BD of the logistic map perturbed by
dynamical noise in the electronic circuit.

Figure 4(d) shows the results of reconstructing the BD from
time-series datasets generated by the electronic circuit. The bifurca-
tion structure in Fig. 4(d) is quite clear, including the windows. We
see that Fig. 4(d) is more similar to Fig. 4(a) than it is to Fig. 4(c) even
though time-series datasets used to generate Fig. 4(c) are also used
to produce Fig. 4(d). However, the maximum state values for each
parameter value in Fig. 4(d) are approximately the same as the ones

in Fig. 4(c). We therefore obtain the filtered BD by using time-series
data influenced by dynamical and observational noise to reconstruct
the BD.

C. Comparison of return plots

We consider why the filtered BD is obtained only from time-
series data influenced by dynamical and observational noise. In
this section, we compare the return plots between the time-series
datasets generated by MATLAB, the electronic circuit, and the time-
series predictor, and we show the return plots when the path and
locus numbers are one (i.e., p(l) = 3.55 and γ1 ' −779) and five (i.e.,
p(l) = 3.85 and γ1 ' 909) to confirm the apparent difference in the
return plots of these numbers.

Figures 5(a) and 5(b) show the return plots when the path and
locus numbers are one and five, respectively. Here, “+” and “·” are
points of time series generated by MATLAB and the electronic cir-
cuit, respectively, and “×” are points of time-series predictors. First,
we compare “+” with “·” for both cases. Although these dynamics
and parameter values are the same, the attractors and the dynam-
ical ranges are different. For example, in Fig. 5(a), “+” is period-8
but “·” is chaotic. Note that as estimated in Sec. IV D, the Lya-
punov exponent of “·” with this parameter value is positive. Next,
we compare “×” with “·” as well. In Fig. 5(a), we see that the output
of the time-series predictor is period-4 even though the predictor

FIG. 8. Lyapunov exponents of the
logistic map using the estimation method
with derivative. (a) Generated by MAT-
LAB. (b) Reconstructed.
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FIG. 9. The bifurcation path and locus of the sine map. (a) Bifurcation path. (b)
Bifurcation locus.

was trained to model the “·” time series, which is chaotic. For this
parameter value, we consider that the periodic time series is cor-
rect because the dynamical pattern of “·” is changed by dynamical
noise.24 The time-series predictor has a filtering effect and models
period-4 according to the good generalization of ELM. Comparing
“×” with “·” in Fig. 5(b), we see that “×” and “·” almost overlap.
Figure 6 shows the enlargement of a portion in Fig. 5(b). From
the enlarged figure, we see that “·” is influenced by dynamical and
observational noise, whereas “×” might be filtered by the good gen-
eralization of the ELM. Therefore, we see that using a time-series
predictor that has good generalization produces a filtered BD.

D. Results of estimating Lyapunov exponents

We compare the Lyapunov exponents estimated using the
following two methods:

• the estimation method with time series for the BD generated by
the electronic circuit and the reconstructed BD and

• the estimation method with the derivative for the BD generated
by MATLAB and the reconstructed BD.

Figures 7(a) and 7(b) show the Lyapunov exponents for the BD
generated by the electronic circuit and the reconstructed BD from
time-series data, respectively. Comparing Figs. 7(a) and 7(b), we see

FIG. 10. BDs of the sine map. (a) Generated by MATLAB. (b) Generated by
electronic circuit. (c) Reconstructed.

that the Lyapunov exponents for the reconstructed BD are close to
those for the BD generated by the electronic circuit, except for the
windows of the BD. Therefore, reconstructing the BD from time
series influenced by dynamical and observational noise is successful
to some extent.

Figures 8(a) and 8(b) show the Lyapunov exponents for the BD
generated by MATLAB and the reconstructed BD using the deriva-
tive, respectively. We obtain more-precise estimates of the Lyapunov
exponents in Fig. 8 than we do in Fig. 7. Comparing Figs. 8(a)

Chaos 30, 013128 (2020); doi: 10.1063/1.5119187 30, 013128-8

© Author(s) 2020

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 11. Lyapunov exponents of the
sine map using the estimation method
with time-series data. (a) Generated by
electronic circuit. (b) Reconstructed.

and 8(b), the numbers of windows and the maximum values of
the Lyapunov exponents agree closely. From this result, we see that
the BD reconstructed from time series influenced by dynamical and
observational noise is also quantitatively close to the BD generated
by MATLAB.

V. EXPERIMENTAL RESULTS: SINE MAP

In this section, as with the results for the logistic map, we
present the BDs reconstructed from time-series data generated by
the electronic-circuit realization of the sine map, along with the
associated Lyapunov exponents.

We begin by describing the experimental conditions, then we
show the BD generated by MATLAB, the one produced by the
electronic circuit, and the reconstructed BD. Finally, we show the
Lyapunov exponents for these BDs.

A. Experimental conditions

The sine map in this study is given by

x(s)(t + 1) = c1 sin
(

c2p
(s)
1 x(s)(t)

)

+ p(s)2 , (19)

which corresponds to the arbitrary waveform generator in Eq. (16),

where p(s)1 and p(s)2 are the bifurcation parameter values of the sine

map and p(s)2 is fixed as zero in these numerical experiments. We use

p(s)1 (n) as the parameter value p(s)1 to generate the time-series dataset

Sn. Here, we set p(s)1 (n) as

p(s)1 (n) = −0.1 cos(2π(n − 1)/8)+ 2.7, (n = 1, 2, . . ., P = 9).
(20)

The length of each time-series dataset is 1000, and we use an ELM
that has four neurons in its hidden layer.

B. Results of bifurcation-diagram reconstruction

First, we estimate the dimension of the parameter space from
the contribution ratio. From the PCA results, we estimate that the
dimension is one because the contribution ratio of the first principal
component is around 100%. Next, we show the bifurcation path and
locus in Figs. 9(a) and 9(b), respectively. We see that these figures
correspond to each other because the parameter-value relations of
the bifurcation path and locus are the same. Therefore, the estimated
bifurcation parameter space corresponds to the parameter space of
the target system.

Figures 10(a) and 10(b) show the BDs generated by MAT-
LAB and the electronic circuit, respectively, and Fig. 10(c) shows
the reconstructed BD. Comparing Figs. 10(a) and 10(b), the latter
is clearly influenced by dynamical and observational noise that is
obscuring its bifurcation structure; in particular, the large window
around p(l) = 2.96 disappears. In addition, the state values of each
parameter value in Fig. 10(b) are generally smaller than those in
Fig. 10(a).

FIG. 12. Lyapunov exponents of the
sine map using the estimation method
with derivative. (a) Generated by MAT-
LAB. (b) Reconstructed.
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TABLE I. Bifurcation parameters for reconstructing two-dimensional BD of the sine

map.

n

1 2 3 4 5 6

p(s)1 (n) 2.700 2.700 2.700 2.800 2.800 2.800

p(s)2 (n) 0.000 0.050 0.095 0.000 0.050 0.095

Figure 10(c) shows the results of reconstructing the BD from
time-series data sets generated by the electronic circuit. The bifurca-
tion structure in Fig. 10(c) is quite clear, including the windows. We
see that Fig. 10(c) is more similar to Fig. 10(a) than it is to Fig. 10(b)
even though time-series datasets were used to generate Fig. 10(b) are
also used to produce Fig. 10(c). However, the maximum state values
for each parameter value in Fig. 10(c) are approximately the same
as the ones in Fig. 10(b). We, therefore, again obtain the filtered BD
by using time-series data influenced by dynamical and observational
noise to reconstruct the BD.

C. Results of estimating Lyapunov exponents

As in Sec. IV D, we compare the Lyapunov exponents obtained
using two estimation methods.

Figures 11(a) and 11(b) show the Lyapunov exponents for
the BD generated by the electronic circuit and the reconstructed
BD from time-series data, respectively. Comparing Figs. 11(a)
and 11(b), we see that the Lyapunov exponents for the reconstructed
BD are close to the ones for the BD generated by the electronic cir-
cuit, except for the windows of the BD. Therefore, reconstructing
the BD from time series influenced by dynamical and observational
noise is again successful.

Figures 12(a) and 12(b) show the Lyapunov exponents for the
BD generated by MATLAB and the reconstructed BD using the
derivative, respectively. Here, we obtain more-precise estimates of
the Lyapunov exponents in Fig. 12 than in Fig. 11. Comparing
Figs. 12(a) and 12(b), the numbers of windows and the maximum
values of the Lyapunov exponents agree well. From this result, we
see that the BD reconstructed from time series influenced by dynam-
ical and observational noise is also quantitatively close to the BD
generated by MATLAB.

D. Results of reconstructing a two-dimensional

bifurcation diagram

In this section, we reconstruct the two-dimensional BD of the
sine map. We use p(s)1 (n) and p(s)2 (n) as the parameter values p(s)1 and

p(s)2 , respectively, to generate the time-series dataset Sn. Here, we set

p(s)1 (n) and p(s)2 (n) as given in Table I. The other experimental con-
ditions are the same as those in the numerical experiments for the
one-dimensional BD of the sine map.

We show the results of reconstructing the two-dimensional BD
of the sine map. First, we estimate the dimension of the parame-
ter space from the contribution ratio. From the PCA results, we
estimate that the dimension is two because the cumulative contri-
bution ratio of the first and second principal components is around

FIG. 13. Two-dimensional BDs of the sine map. (a) Generated by MATLAB. (b)
Reconstructed.

100%. Figures 13(a) and 13(b) show the BD generated by MATLAB
and the reconstructed BD, respectively. In the figures, periodicities
in each time-series data are indicated by a color bar. Here, the yel-
low points represent period-20 or greater, including chaos. We see
that the estimated parameter space is partially expanded and con-
tracted, but these figures have similarity nevertheless. In particular,
we obtain the bifurcation structure in the global area of the two-
dimensional parameter space, even though we used only time-series
datasets generated with Table I.

VI. CONCLUSION

Whereas the target systems of previous studies were lim-
ited to continuous-time dynamical systems, we have now recon-
structed BDs from time-series data generated by electronic circuits
in discrete-time dynamical systems. We obtained a clear bifurcation
structure from the reconstructed BD. Comparing the reconstructed
BD with the BDs generated by MATLAB and the electronic circuit,
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the reconstructed BD is more similar to the BD generated by MAT-
LAB than it is to the BD generated by the electronic circuit. From
these results, we obtained the filtered BD by reconstructing the BD
using time-series data influenced by dynamical and observational
noise. In addition, we also reconstructed a two-dimensional BD that
was not reconstructed in previous studies, only from time-series data
generated by the electronic circuit.

Moreover, we estimated the Lyapunov exponents of the BDs
using two methods. We compared the Lyapunov exponents of the
reconstructed BD with those of the BD generated by the electronic
circuit and using the estimation method from time-series data. We
also compared the Lyapunov exponents of the reconstructed BD
with those of the BD generated by MATLAB using the estimation
method with the derivative. By comparing the Lyapunov exponents,
we think that reconstructing the BD from time series influenced by
dynamical and observational noise is successful because the Lya-
punov exponents of the reconstructed BD are approximately the
same as those of the other BDs well.

From these results, we confirmed that our BD reconstruc-
tion is robust against dynamical and observational noise. Here, the
results may be obtained with the gradient decent learning such
as the method proposed by Tokunaga et al.3 However, we think
that the ELM is suitable for the BD reconstruction since the ELM
has better generalization property, faster learning speed, and fewer
parameters than networks trained with the gradient decent learning.
This is because the BD reconstruction is not always successful even
when the target system is simple, and the parameter tuning for the
time-series predictor is required.12

Consequently, the method used in this study is useful to analyze
measured time-series data influenced by dynamical and observa-
tional noise obtained from unknown dynamical systems. Here, it
is significant that we use the noisy time-series data because time-
series data measured from physical phenomena including opera-
tion of electronic circuits are always influenced by dynamical and
observational noise.

In the future work, we will reconstruct the BDs from time-
series generated by electronic circuits of non-autonomous systems
that exhibit deterministic chaos.

ACKNOWLEDGMENTS

This research is partially supported by JSPS KAKENHI (No.
15H05707), AMED (No. JP19dm0307009), WPI, MEXT JAPAN,
and NEC Corporation.

REFERENCES
1Y. Itoh, Y. Tada, and M. Adachi, “Reconstructing bifurcation diagrams with Lya-
punov exponents from only time-series data using an extreme learning machine,”
Nonlinear Theory Appl. IEICE 8, 2 (2017).
2M. Casdagli, “Nonlinear prediction of chaotic time series,” Physica D 35, 335
(1989).

3R. Tokunaga, S. Kajiwara, and S. Matsumoto, “Reconstructing bifurcation dia-
grams only from time-waveforms,” Physica D 79, 348 (1994).
4I. Tokuda, S. Kajiwara, R. Tokunaga, and T. Matsumoto, “Recognizing chaotic
time-waveforms in terms of a parametrized family of nonlinear predictors,”
Physica D 95, 380 (1996).
5E. Bagarinao, K. Pakdaman, T. Nomura, and S. Sato, “Reconstructing bifurcation
diagrams of dynamical systems using measured time series,” Methods Inf. Med.
39, 146 (2000).
6M. Small, D. Yu, and R. G. Harrison, “Non-stationarity as an embedding
problem,” in Space-Time Chaos: Characterization, Control and Synchronization
(World Scientific, 2001).
7M. Small, D. Yu, and R. G. Harrison, “Observation of a period doubling bifurca-
tion during onset of human ventricular fibrillation,” Int. J. Bifurcat. Chaos 13, 743
(2003).
8P. Shi, “A relation on round-off error, attractor size and its dynamics in driven
or coupled logistic map system,” Chaos 18, 013122 (2008).
9G. Langer and U. Parlitz, “Modeling parameter dependence from time series,”
Phys. Rev. E 70, 056217 (2004).
10Y. Itoh and M. Adachi, “Reconstruction of bifurcation diagrams using time-
series data generated by electronic circuits of the rössler equations,” in 2018
International Symposium on Nonlinear Theory and Its Applications (NOLTA)
(IEICE, 2018), p. 439.
11S. Uenohara, D. Atuti, K. Matsuzaka, H. Tamukoh, T. Morie, and K. Aihara, “A
CMOS circuit for PWM-mode nonlinear transformation robust to device mis-
matches to implement coupled map lattice models,” Nonlinear Theory Appl.
IEICE 6, 570 (2015).
12Y. Itoh and M. Adachi, “Reconstruction of bifurcation diagrams using an
extreme learning machine with a pruning algorithm,” in International Joint
Conference on Neural Networks (IJCNN) (IEEE, 2017), p. 1809.
13T. L. Yao, H. F. Liu, J. L. Xu, and W. F. Li, “Estimating the largest
Lyapunov exponent and noise level from chaotic time series,” Chaos 22,
033102 (2012).
14G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: Theory
and applications,” Neurocomputing 70, 489 (2006).
15Y. Itoh and M. Adachi, “A quantitative method for evaluating reconstructed
one-dimensional bifurcation diagrams,” J. Comput. 13, 271 (2018).
16Y. Itoh and M. Adachi, “Bifurcation diagrams in estimated parameter space
using a pruned extreme learning machine,” Phys. Rev. E 98, 013301 (2018).
17Y. Itoh and M. Adachi, “Reconstructing bifurcation diagrams of induction
motor drives using an extreme learning machine,” in Proceedings of ELM-2017,
edited by J. Cao, C. Vong, Y. Miche, and A. Lendasse (Springer, 2019), p. 58.
18I. Shimada and T. Nagashima, “A numerical approach to ergodic problem of
dissipative dynamical systems,” Prog. Theor. Phys. 61, 1605 (1979).
19M. Sano and Y. Sawada, “Measurement of the Lyapunov spectrum from chaotic
time series,” Phys. Rev. Lett. 55, 1082 (1985).
20M. Adachi and M. Kotani, “Identification of chaotic dynamical systems with
back-propagation neural networks,” IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. E77-A, 324 (1994).
21S. Uenohara, T. Morie, H. Tamukoh, and K. Aihara, “A pulse-width-
modulation mode CMOS integrated circuit implementation of threshold-coupled
map,” Nonlinear Theory Appl. IEICE 9, 268 (2018).
22D. Atuti, T. Morie, and K. Aihara, “A current-sampling-mode CMOS arbitrary
chaos generator circuit using pulse modulation approach,” IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. 92, 1308 (2009).
23T. Morie, D. Atuti, K. Ifuku, Y. Horio, and K. Aihara, “A CMOS nonlinear-
map circuit array for threshold-coupled chaotic maps using pulse-modulation
approach,” in European Conference on Circuit Theory and Design (ECCTD)
(IEEE, 2011), p. 126.
24J. P. Crutchfield, J. D. Farmer, and B. A. Huberman, “Fluctuations and simple
chaotic dynamics,” Phys. Rep. 92, 45 (1982).

Chaos 30, 013128 (2020); doi: 10.1063/1.5119187 30, 013128-11

© Author(s) 2020

https://aip.scitation.org/journal/cha
https://doi.org/10.1587/nolta.8.2
https://doi.org/10.1016/0167-2789(89)90074-2
https://doi.org/10.1016/S0167-2789(05)80014-4
https://doi.org/10.1016/0167-2789(96)00063-2
https://doi.org/10.1055/s-0038-1634278
https://doi.org/10.1142/S0218127403006911
https://doi.org/10.1063/1.2866487
https://doi.org/10.1103/PhysRevE.70.056217
https://doi.org/10.1587/nolta.6.570
https://doi.org/10.1063/1.4731800
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.17706/jcp.13.3.271-278
https://doi.org/10.1103/PhysRevE.98.013301
https://doi.org/10.1143/PTP.61.1605
https://doi.org/10.1103/PhysRevLett.55.1082
https://doi.org/10.1587/nolta.9.268
https://doi.org/10.1587/transfun.E92.A.1308
https://doi.org/10.1016/0370-1573(82)90089-8

	I. INTRODUCTION
	II. ALGORITHM FOR RECONSTRUCTING BIFURCATION DIAGRAMS WITH LYAPUNOV EXPONENTS USING AN EXTREME LEARNING MACHINE
	A. Extreme learning machine
	B. Bifurcation-diagram reconstruction based on the method proposed by Tokunaga et al.
	C. Estimation of Lyapunov exponents for bifurcation-diagram reconstruction

	III. ELECTRONIC-CIRCUIT REALIZATION IN DISCRETE-TIME DYNAMICAL SYSTEMS
	IV. EXPERIMENTAL RESULTS: LOGISTIC MAP
	A. Experimental conditions
	B. Results of bifurcation-diagram reconstruction
	C. Comparison of return plots
	D. Results of estimating Lyapunov exponents

	V. EXPERIMENTAL RESULTS: SINE MAP
	A. Experimental conditions
	B. Results of bifurcation-diagram reconstruction
	C. Results of estimating Lyapunov exponents
	D. Results of reconstructing a two-dimensional bifurcation diagram

	VI. CONCLUSION
	ACKNOWLEDGMENTS

