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It is well known that severe plastic deformation (SPD) produces ultrafine-grained structures in bulk metallic materials. The SPD process
becomes more versatile when it is performed under high pressure as high-pressure torsion (HPT) and high-pressure sliding (HPS). Not only the
grain size is more refined but also the process is applicable to hard-to-deform materials such as intermetallics, semiconductors and ceramics,
leading to enhancement of functional properties as well as structural properties. The major drawback is that the sample size is small so that the
applicability is limited to a laboratory scale and it is an important subject to increase the sample dimensions. This paper presents an overview

describing efforts devoted thus far to deal with this upscaling issue.
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1. Introduction

Severe plastic deformation (SPD) is a useful process for
microstructural refinement to the submicrometer and/or
nanometer range in bulk metallic materials."? When the
SPD process is performed under high pressure through high-
pressure torsion (HPT)® and high-pressure sliding (HPS)* as
illustrated in Fig. 1(a) and (b), respectively, its applicability
is further extended in comparison with other SPD processes
such as equal-channel angular pressing (ECAP)® and
accumulative roll bonding (ARB).® This is because the
sample is better constrained due to the application of high
pressure. The SPD process under high pressure thus permits
not only (1) grain refinement but also (2) fragmentation of
second phase particles to a fine dispersion of nanosized
particles,” (3) dissolution of the second phase particles in
the matrix,3'? (4) consolidation of powders, chips and layers
to attain alloying through solid-state reaction,''=% (5)
fabrication of metal-matrix composites without sintering
process,>>*) (6) nanostructure control through subsequent
combination with annealing or aging,*>” (7) pressure-
and/or strain-induced phase transformation.**3-69 With
such peculiar features, it is possible to enhance mechanical
properties such as strength and ductility®”"" and function-
ality of materials such as hydrogen storage capability,’>7®
electrical conductivity,”’* superconductivity,**® photo-
catalytic ~ activity,®"  photoluminescence,®*°?  thermo-
electrical property,”>*% dielectrical properties,” magnetic
properties”®?” and biocompatibility®® including materials
with high radiation resistance’” and corrosion resistance.'”)
Despite the versatility of the HPT and HPS processes, the
sample size is rather limited to a laboratory scale. It is thus
an important subject to scale up the sample dimensions and/
or to make the processes continuous so that a large quantity
with high performance retained can be produced for practical
applications.
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Fig. 1 Schematic illustrations of severe plastic deformation (SPD) under
high pressure through (a) high-pressure torsion (HPT) and (b) high-
pressure sliding (HPS).

In July and August, 2019, a special issue was edited in
Materials Transactions under the title of “Severe Plastic
Deformation for Nanomaterials with Advanced Function-
ality”.''D A total of 41 articles was published, including
Review, Overview and Regular articles, covering recent
studies on structural and functional properties, historical
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studies of SPD,!%? modeling and simulation,®*!%3) materials
synthesis,*>* roles of lattice defects,!**1%) grain refinement
and microstructural evolution,'?-'2) applications to poly-
mers''® and metallic grasses,!'® surface and microstructural
modifications by SPD.''’5'') However, no article was
concerned with the subject of scaling up using SPD process
under high pressure except one regular article where the
capacity of HPT process was increased to 500 ton and
applied to Mg alloys for enhancement of mechanical
properties.'?” Therefore, this paper intends to present an
overview describing efforts devoted thus far to deal with
such difficulties.

2. High-Pressure Torsion (HPT)

2.1 Principle and advantage of HPT

Bridgman is the first to introduce the process of HPT.>
Many materials including metals, alloys, polymers, ceramics,
rocks, and even woods were applied with this HPT process as
reviewed recently.!?! In the HPT processing, a disk is placed
in the central shallow hole on a lower anvil which is then
raised to contact the upper anvil as illustrated in Fig. 1(a).
While applying a high pressure with normally more than
1 GPa, the upper and lower anvils are rotated with respect to
each other. An advantage of the HPT process is that the grain
size is reduced more finely than other SPD processes. It was
reported that the grain size was reduced to ~90nm by the
HPT process'?? while it was ~270nm by ECAP on an Al-
3%Mg alloy.'? Further advantage is that the HPT process is
applicable to hard-to-deform materials and/or low ductility
materials: 24129 for example, processing of Mg alloys by
HPT is achieved at room temperature,'?*127-129) but raising
temperature at least as 100°C or higher is required for the
ECAP processing.'30-137)

2.2 Limitation of HPT

Despite the advantage of HPT processing, a major
drawback is that the sample size is limited to disks with
dimensions typically as 10mm in diameter. Recently, the
machine capacity was scaled up from 50 to 500 ton,'?? and
this increase then allowed to enlarge the sample dimensions
from 10 to 30mm in diameter under the same applied
pressure of 6 GPa.'?” The sample size can be increased to
70 mm diameter for the applied pressure of 1 GPa which may
be sufficient for processing soft materials as pure aluminum
and less-hardened aluminum alloys without causing slippage
between the sample and the anvil.'3® If the sample is harder,
the applied pressure should be increased to avoid the slippage
as inspected by Edalati er al.'*® Recently, the machine
capacity of 1000 ton is available in the Leoben’s group in
Austria.*® This machine was used to process a cupper disk
with 60 mm diameter and 12mm thickness. With this
machine, the dimeter could be increased to 100 mm for the
applied pressure of 1 GPa and be 45 mm for 6 GPa.

2.3 Application to rings

There is another drawback inherent in the HPT processing
using disk samples. That is inhomogeneous development of
microstructure and of related mechanical properties. Because
the strain (¢) is introduced through the equation &= r6/t,
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Fig. 2 Schematic illustration of HPT for ring and disk samples.'*”

where 7 is the distance from the disk center, 0 is the rotation
angle and ¢ is the thickness of the sample.” Thus, less strain
is generated around the center region (theoretically zero at
r=20). This inhomogeneity of strain distribution and
microstructural development may be useful when the effect
of strain is examined. However, the microstructure and
mechanical properties should be homogeneous throughout
the sample when practical application is the prime object.
Such a microstructural inhomogeneity including the draw-
back due to the limitation of sample size may be solved by
using ring sample instead of disk sample since the central part
is removed. In fact, the idea of using ring sample was implied
by Bridgman® with a statement that the use of a hollow tube
should be free from the inhomogeneity. Erbel realized later
the process using the ring form,'4?) and the processing with
ring was developed further by Saunders and Nutting to attain
fine microstructures in Cu despite the pressures rather low as
200-500 MPa.'*) Harai et al. demonstrated that the facilities
for the ring sample is simplified by modifying anvils used for
disk samples in the conventional HPT process as illustrated
in Fig. 2."*» The application using ring samples were made
with 20 mm in outer diameter with the ring width of 3 mm in
pure AL'*? and extended to the sample sizes with outer
diameters of 30 mm on Cu'4*!*Y and Fe'*> and of 40 mm on
an Al-3%Mg-0.2%Sc alloy.'*® Finally, as shown in Fig. 3 in
comparison with 10 mm and 20 mm diameter disks, it was
successful to process ring sample with a diameter of 100 mm
in pure ALY

It should be noted that increasing the sample diameter is
more favorable to establish a homogeneous microstructure.
Figure 4(a) shows that the hardness saturates as the distance
from the rotation center increases, which is more clearly
demonstrated when the hardness is plotted as a function of
equivalent strain as in Fig. 4(b).'*® This indicates that the
increase in the diameter provides a chance that a
homogeneous microstructure is more likely to develop.

3. High-Pressure Sliding (HPS)
3.1 Principle and advantage of HPS

While Bridgman rotated the anvils with respect to each
other to produce shear strain in a disk sample,® anvils may be
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Fig. 3 Appearance of 100 mm ring sample and comparison with 10 mm
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Fig. 4 Vickers microhardness plotted against (a) distance from rotation
center of disk and ring samples and (b) equivalent strain.

moved in a reciprocal way as illustrated in Fig. 1(b). In
practice, this was realized by introduction of the HPS
process.”) The HPS process was initially developed with a
rectangular sheet®!43-159 and later it was shown that it is also
applicable to rods.'>'"'3® The HPS process has such an
advantage that it is applicable to hard-to-deform materials
as the HPT process. The application was then made not only
to common metals and alloys such as pure Al and Al-Mg
alloys*!4815%) but also to high-strength age-hardenable Al
alloys, 149130154155 Jess ductile Mg alloys,' 31133159 3 two-
phase Ti alloy,"** a Ni-based superalloy (Inconel 718)">* and
a creep-resistant P62 steel.!>%!57) It is noted that a modified
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Fig. 5 Samples dimensions for 50 ton HPS (upper) and 500 ton HPS
(lower) under given pressures.

version of the HPS process was recently presented by Toth
et al.™® using pure Cu, where a significant fraction of
compression strain was introduced together with shear strain
during the HPS processing.

As in the HPT process, the increase in machine capacity
increases the dimensions of workpiece. The initial dimen-
sions with the rectangular sheets was of 3 (or 5) x 100 x
1 mm for the machine capacity of 50 ton® but the size was
increased to 30 (or 50) x 100 x 1 mm as illustrated in Fig. 5
as the machine capacity increased to 500 ton.'>® The size of
the workpiece was further increased by the combination with
feeding process, which was called the incremental feeding
HPS (IF-HPS).">%1%0) Further summary will be given later.

3.2 Application to rods

SPD Processing of rods is usually achieved through ECAP,
but nevertheless, Masuda et al. showed that the HPS process
is applicable to rod samples.'>'"'5) In the HPS process, a
rod sample is rotated along the longitudinal axis after each
sliding pass as illustrated in Fig. 6 where (a) is for 90°
rotation and (b) for 60° rotation so that homogeneity of
microstructure can be achieved throughout the cross section
of the rod. Examination revealed that at least a 60° rotation
was required for a homogeneous development of the
microstructure in a 10 mm diameter rod. This process was
called the multi-pass HPS (MP-HPS) and was applied not
only to pure Al and a superplastic Al-3%Mg—0.2%Sc
alloy'31%2) but also age-hardenable high-strength Al alloys
such as A2024 and A7075.>) The MP-HPS process was also
applied to a less ductile Mg alloy such as AZ61'31!15% and a
Ni-based superalloy (Inconel718) at room temperature under
a pressure of 1-2 GPa.'® A hardness variation throughout
the cross section of the Ni-based superalloy is shown in
Fig. 7, where MP-HPS-R represents the multi-pass HPS with
rotation. It should be noted that the shape of the cross section
is hexagonal, and this is due to the cross sectional shape of
the groove in the upper and lower anvils. Because of the
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Fig. 6 Processing approaches for rods through (a) 2 passes with 90° rotation around longitudinal axis and through (b) 3 passes with 60°
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Fig. 7 Hardness variations throughout cross section at center of sample
after MP-HPS-R processing with sliding distance of 15mm in Inconel
718, where MP-HPS-R represents the multi-pass HPS with rotation.'*

hexagonal shape, it is easy to rotate the rod sample by 60°
around the longitudinal axis. To increase the constrained
conditions, the grooves on the upper and lower anvils were
closed at both sides like a pocket as illustrated in Fig. 8.
For this case, a reciprocal forward and backward motion
was required to eliminate the gaps formed after forward
motion (i.e., to maintain the rod without the gaps) as in
Fig. 9. Observations by transmission electron microscopy
(TEM) showed that the grain sizes were significantly
reduced, and thus superplasticity was well attained in all
the alloys.!3!"13315%) Tang et al. showed that the micro-
structural homogeneity may also be achieved by shifting
upward and downward from the mid-height on the cross-
sectional plane'® as illustrated in Fig. 10. This process
was then designated as MP-HPS-S and distinguished from
MP-HPS-R, where S stands for sift and R for rotation. Most
recently, it was reported that the sample diameter can be
increased to 16 mm in diameter in the Al-3%Mg-0.2%Sc
alloy.'oV

3.3 Application to pipes (or tubes)
For processing of pipe samples, two approaches are

Upper Anvil

Sample

Plunger

Unit in mm
Lower Anvil

Fig. 8 Schematic illustration of multi-pass high-pressure sliding (M-HPS)
for rod samples, having pocket on each of upper and lower anvils with
half-hexagonal cross section.'*

(a) Forward sliding o

(b) » Backward sliding

Fig. 9 Schematic illustration of sliding directions for MP-HPS processing:
(a) forward sliding, and (b) backward sliding, of which combination
maintains original shape of sample.'>>

suggested as illustrated in Fig. 11.9? Placing a mandrel in
the center of the pipe, shear strain is introduced in the angular
direction through rotation of the mandrel with respect to the
anvils (lower left) and in the longitudinal direction through
reciprocal movement of the mandrel with respect to the anvils
(lower right). The former is the modification based on the
HPT process for rings with the rotation involved, whereas
the latter is the one based on the HPS process for rods with
the reciprocation involved. In fact, two groups of Toth
et al.'®1%9 and Wang er al.'%® utilized the rotation type
(called high pressure tube twisting (HPTT) for the former and
tube high pressure shearing (t-HPS) for the latter) and
showed that it was feasible to introduce intense shear strain
throughout the thickness of the pipe. Tang et al. processed
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the pipe using the reciprocation type to introduce intense
shear strain along the longitudinal direction of the pipe.'?
As schematically illustrated in Fig. 12, a pipe sample is
placed between the grooves with half circles in cross sections
made on the upper and lower anvils. A mandrel is inserted in
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the pipe to keep the inner hole unchanged when a pressure
is applied. Two approaches were proposed to introduce
intense shear strain in the pipe:'? one is to slide the lower
anvil with respect to the upper anvil under high pressure
while the mandrel was kept in the pipe as lower left of
Fig. 12 (called anvil sliding), and the other is to slide the
mandrel with respect to the upper and lower anvils under
high pressure where the mandrel is used as a plunger as lower
right of Fig. 12 (called mandrel sliding). Figure 13(a) and (b)
shows hardness variations after application of both the anvils
sliding and mandrel sliding, respectively,'®® to an Al-
3%Mg—0.2%Sc alloy which is known to exhibit superplastic
elongations when intense strain is introduced by SPD
processes. ' 3*133-167-169) Tt appears that the hardness variation
is not homogeneous after one sliding pass. More strain is
introduced around the horizontal sides of the cross section for
the anvil sliding and around the vertical sides for the mandrel
sliding. Analysis by finite element method (FEM) confirmed
this inhomogeneity in consistence with the hardness
variations.'®® Thus, to achieve a homogeneous development
of microstructure throughout the cross section, the pipe
sample is rotated, as the rod sample in Fig. 6, by 60° or 90°
around the longitudinal axis before the successive processing
for both the anvil sliding and mandrel sliding. Micro-
structural observation by TEM revealed that the grain
refinement was achieved throughout the pipe samples, and
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Press

r

Press

Fig. 12 Schematic illustrations of HPS for pipe samples: (upper) before and (lower) after sliding. (lower left) anvil sliding and (lower

right) mandrel sliding.'%?
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Fig. 13 Hardness variations throughout cross section of Al-3%Mg—
0.2%Sc pipe after HPS processing using (a) anvil sliding and (b) mandrel
sliding with sliding distances of 15 mm for single direction motion with
one pass.'?

tensile testing at higher temperature showed that super-
plasticity was well attained.'®?

4. Sample Thickness in HPT and HPS Processes

The HPT process generally uses sample thicknesses of
~1 mm and this is also the case for the HPS process. Sakai
et al.'"""!"") ysed cylindrical thick samples for the HPT
processing and it was reported that the strain was
preferentially introduced around the center of the cylinder
height!7%!71) and the corresponding area led to the advent of
superplasticity because of the grain refinement.'”® A similar
trend was observed when the HPS process was applied to
rods. 317153159 Thuys, to achieve a homogeneous development
of microstructure, Hohenwarter'”? moved the cylindrical
sample along the longitudinal direction after processing by
HPT and Masuda et al.'3'"'3% rotated the rod sample around
the longitudinal axis after processing by HPS as shown in
Fig. 6. Iwaoka ef al. examined how the strained region
changes with the number of revolution in the HPT processing
for ring samples'7417% and with the sliding distance in the
HPS processing'”® in terms of optical microscopy, trans-
mission electron microscopy and hardness measurement as
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Fig. 14 Directions and positions for optical microscopy and microhardness
measurement including TEM of (a) HPT-processed and (b) HPS-
processed thick samples.'”>

illustrated in Fig. 14. The width of the strained region
increased with increasing the number of the revolution as
shown in Fig. 15 and the sliding distance as shown in
Fig. 16. It appears that the strained region covers almost the
entire area of the cross section when the thickness is 2 mm
after revolution of N =10 (¢ =245) and after sliding of
X =30mm (¢ = 8.0). However, when the thickness is 4 mm,
the strained region saturates but does not reach the total
thickness of the sample as plotted in Fig. 17. By changing
the ratio of the thickness to the disk diameter, Hohenwarter
et al'’” examined the effect of the thickness on the
microstructural homogeneity and reported that there was a
thickness limitation for achieving homogeneous micro-
structure throughout the thickness direction. It appears that
the thickness limitation depends on the diameter of the disk
so that, as the disk diameter is larger, the critical thickness
may be increased.!”” More systematic studies are required
not only from the point of view of the sample geometry
but also of the metallic types with different work hardening
coefficients.

5. Scaling Up of Sample Dimensions

5.1 Using continuous process

Continuous processing is also an effective way to enhance
the quantity even though the machine capacity is small. Here,
the “continuous” for SPD is defined such that straining
through the SPD process is achieved without intermittence
as the conventional rolling process. An extensive review
was given by Faraji and Torabzadeh for the continuous SPD
processes.!’® This definition applies to the SPD processes
including the combination of conforming and ECAP
processing,!7*18D although it is difficult to apply high
pressure during the SPD processing. Edalati et al. proposed
a continuous process of HPT (CHPT) for both strip and
wire!®2-189) and with such methods, it is possible to apply
high pressure. Figure 18 schematically illustrates the facility
for wire!® and the same principle is applied to the form of
strip.'82183) The facility for the continuous HPT consists of
a lower anvil having a circular groove with the surface
roughened and an upper anvil having a half circular groove
with the surface smooth. Both grooves have circular cross
sections where the wire fits well with a slightly bigger
diameter. Either of the anvils may be fixed so that wire may
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Fig. 15 Optical micrographs of cross sections after HPT processing of ring samples with (a) 2mm thickness and (b) 4 mm thickness.

A: intensely strained region, B: less strained region.!”>

HPS (t=2mm)
X=5mm(e£=1.3)

Fig. 16 Optical micrographs of cross-sections after HPS processing of 2 mm thick samples.
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Fig. 17 Changes of strained areas with imposed (equivalent) strain by HPT
processing for ring samples with thicknesses of 2 and 4 mm.!7>

be fed during the processing. Since the surface roughness of
the groove on the upper anvil is intentionally reduced with
respect to the surface roughness of the groove on the lower

1mm

175)

anvil, a continuous flow of the material occurs in the rotating
direction because of the difference in slippage. The wire is
also bent slightly upward and pulled out in tension during the
process to maintain continuous flow of materials. Most
recently, Masuda ef al. further developed the CHPT process
for multi-wires.'®® As shown in Fig. 19 for the operation of
two wires, guiding holes for the wires were made on the
upper anvil at both entrance and exit sides of the grooves
so that no interference of the wires occurred. The grooves
were also made symmetrically with respect to the rotation
center and thus the CHPT process was able to be operated in
a stable geometry without causing damages or breaking of
the anvils. It was suggested that multi wires can be processed
simultaneously when the anvil diameter is expanded with the
groove length kept the same (r6; = 6, = r363) as depicted
in Fig. 20.!8¢)

5.2 Using incremental feeding process
5.2.1 For HPS

Although the increase in the machine capacity is a direct
solution for scaling up the sample dimensions, the HPS
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machine with the capacity of 500 ton may be still insufficient
for hard materials as the Ni-based superalloy because a
higher pressure is required to avoid slippage between the
sample and the anvil. The solution proposed to overcome this
difficulty is the introduction of a technique called incremental
feeding HPS (IF-HPS) as illustrated in Fig. 21.1%%10 Here,
the sliding for strain introduction is followed by feeding of

Upper Anvil

7

Out In

Lower Anvil

Fig. 19 Schematic illustration of continuous HPT (CHPT) developed for two wires with guiding holes with symmetrical operation.
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the sheet so that it is possible to increase the processed area as
illustrated in Fig. 22. An important requisite to carry out this
IF-HPS process is that the grooves to constraint the sample
is eliminated (i.e. with non-constrained conditions) but flat
anvils are used to permit the sample feeding possible without
making a large difference in thickness. This technique was
applied to a Ni-based superalloy (Inconel 718) and it was
possible to enlarge the SPD-processed area as large as
100 x 100 mm as shown in Fig. 23. This corresponds to the
machine capacity ten times as large as the area covered by a
single pass. A circular disk extracted from the sheet was then
subjected to cup forming at 1073K in air, and it was
successful as shown in Fig. 23 for the side and top views
while this forming was not possible when the sheet was not
processed by IF-HPS.
5.2.2 For HPT

Taking advantages of the ring processing, Shigeno et al.
showed that it was possible to increase the diameter of
the HPT-processed area without increasing the machine
capacity.'®” As illustrated in Fig. 24, a pair of upper and
lower anvils are used with the combination of disks and rings
with different diameters so that the total diameter of the
processed area is enlarged. This combined process was called
the incremental feeding HPT (IF-HPT) and was developed in
conjunction with the incremental feeding HPS (IF-HPS)
described above. Figure 25 is a sample configuration after
processing with three pairs of upper and lower anvils with
dimensions of 35 mm diameter for disk, of 35-50 mm inner-
and outer-diameter and 50—60 mm inner- and outer-diameter
for rings. It is important to note that neither anvils have holes
nor grooves to constrain the sample but they are used with
flat conditions as for the IF-HPS process. It was confirmed
that microstructure as well as the mechanical properties are
homogeneous across the diameter. Figure 26 shows (a) the
positions where the tensile specimens were extracted, (b) the
appearance of tensile specimens after tensile testing at 1073 K
with an initial strain rate of 2.0 x 1072s™! including the
specimen before testing and (c) stress-elongation curves after
testing at the corresponding conditions. The total elongation
exceeds more than 600% except the specimens taken from
the outer part. The reduced elongation at the outer part is
due to some slippage between the anvils and the sample so

—l
Pressure

< Roiation >

186)
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Fig. 20 Schematic illustration of continuous HPT (CHPT) for multi wires with same groove length (0, = 1,6, = r36;) at symmetric

positions on expanded anvil diameters.'%®
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direction to produce large SPD-processed sheet.'®?)

that less strain is introduced because the torques are higher
at the outer parts of the SPD area. Nevertheless, grain
refinement occurs to produce the total elongation of ~300%.

It should be noted that the use of this IF-HPT process is
equivalent to the machine capacity of 1,500 ton which is 3
times higher than the real capacity (500 ton) of the HPT
machine used for the process with a single pair of anvils.
Shigeno et al. further suggested that the SPD area is enlarged
by sequential movement of a sheet with respect to the upper
and lower anvils as illustrated by the arrows in Fig. 27,87

Sooess I

Illustration of IF-HPS process for extending SPD-processed areas not only by feeding in lateral direction but also in longitudinal

where the ring-type anvils are used in Fig. 27(a) and the
disk-type in Fig. 27(b). It should be noted that the use of
the ring-type anvils can cover a larger area than that of the
disk type when the applied pressure is the same. A similar
idea was also suggested by Hohenwarter and Pippan.!®)

6. Summary

The processes of severe plastic deformation (SPD) under
high pressure such as high-pressure torsion (HPT) and high-
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Fig. 23 Appearance of Inconel 718 sheet sample after 8 passes of IF-HPS
processing, and extracted circular area surrounded by dotted line (upper).
Side and top views after cup-forming of extracted circular disk (lower).'®?
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Fig. 24 Schematic illustration of IF-HPT: One disk plus 2 rings for
increasing SPD-processed area without increasing machine capacity.'®” Q)

—

pressure sliding (HPS) are promising for microstructural
refinement and materials synthesis as it is applicable to hard
and less ductile materials even including intermetallics,
ceramics and semiconductors. As a consequence, it has been
demonstrated that the functional properties as well as the 6)
structural properties are improved, and occasionally materials
with new functionalities are created. However, the sample
size is small so that the practical application has been limited.
This is an important subject to overcome as the practical
application of the SPD processes is strongly desired. This

¢ 35 + ¢ 35-50 + ¢ 50-60 mm

Fig. 25 Appearance after IF-HPT processing: One disk with 35mm
diameter plus 2 rings with 35-50mm inner- and outer-diameters and
50-60 mm inner- and outer-diameters.

187)

overview summarized recent attempts that dealt with the
subjects of upsizing the sample dimensions.

Scaling up the machine capacity is a direct solution but
it appears that there is a limitation for it. The maximum
capacity available at present is 1000 ton for the HPT
process and 500 ton for the HPS process, which allow
the SPD process with 120 mm diameter disks and
50 x 100 mm sheets, respectively, under 1 GPa.

For the HPT process, the use of ring samples is effective
to minimize the inhomogeneity inherent to the disk
sample where strain introduction is less near the center
but larger towards the edge of the disk. It is also
possible to increase the ring diameter by the amount
corresponding to the center area where the material
does not exist.

Combination with an incremental feeding (IF) tech-
nique should be a useful solution to increase the SPD-
processed area for a sheet form of materials. With this
IF technique incorporated in the HPT and HPS
processes as IF-HPT and IF-HPS, it is possible to
extend the SPD-processed area without increasing the
machine capacity.

As the thickness is thicker in the sheet samples, strain
introduction may not be homogeneous across the
thickness direction but be concentrated around the
thickness center. The thickness of ~2mm may be the
limitation to achieve the homogeneity in both the HPT
and HPS processing.

For processing rods under high pressures, homogeneous
straining may be achieved with the multi-pass HPS
process (MP-HPS) where the rod is rotated around the
longitudinal axis after each pass. At present, straining
of rods with a 16 mm diameter is feasible with the MP-
HPS process but more numbers of passes are required to
achieve the homogeneity throughout the cross section.
For processing pipes (or tubes) under high pressures,
two approaches are available: one is the rotation type
where the strain is introduced in the angular direction
by rotating the mandrel with respect to the outer anvils
and another is the reciprocation type where the strain is
introduced in the longitudinal direction by moving the
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Fig. 26 (a) Positions for extraction of tensile specimens, (b) appearance of
tensile specimens after tensile testing, (c) stress-elongation curves.'®”

mandrel with respect to the outer anvils in a direction
parallel to each other. For the reciprocation type, the
mandrel is moved (mandrel sliding) or the mandrel is
statically kept (anvil sliding) in the pipe while the
pressure is applied on the pipe wall through the mandrel
and the outer anvils. The MP-HPS process with rotation
as in rod samples is effective for both operations using
the mandrel sliding and anvil sliding.

(7) Continuous processing is a useful solution to increase
the quantity of the SPD-processed area. This is specially

1187

Fig. 27 (a) Sequential movement of sheet for increasing SPD-processed
area using ring type of anvils and (b) using disk type anvils. Note that
areas in (a) and (b) are depicted under same pressure.'®”

effective for wires because the form is good for
continuous use with a modification of the HPT process.
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