

1

Time and Space Redundancy Fault Tolerance Trade-offs for FPGA Based Single

and Multicore Designs

 By Mohamed Mahmoud Ibrahim, Kenichi Asami, and Mengu Cho

Kyushu Institute of Technology, Kitakyushu, Japan

 This paper investigates the gains and losses in terms of power, area, reliability, and speed when applying time

redundancy fault tolerance techniques on single core designs compared to space redundancy fault tolerance techniques

applied to multi-core designs. The system is developed on the virtex5 FPGA from Xilinx, it uses 65nm technology with a

relatively moderate to high static power consumption. The system consists of two design alternatives. The first is a single

core embedded processing system that applies time redundancy fault tolerance through execution repetition to perform

self-check pointing through consensus. The second system is built from 3 soft IP core processors which perform a space

redundancy approach through Triple-Modular-Redundancy (TMR) with feedback among the processors. The performance

of both systems is evaluated in terms of the execution speed and latency due to fault tolerance techniques compared to the

non-fault tolerant system.

Key Words: Multicore systems, Fault Tolerance, Space Redundancy, Time Redundancy, FPGA

1. Introduction

 Developing robust space avionics systems is a challenging

task. As the missions diverse and increase their data

processing requirements, the need for fast and reliable data

processing systems emerges. Nevertheless, a balance should

be hit between four main parameters: the power, the

processing speed, the mass, and the reliability. It is required to

optimize the design to have a reliable system with low power

consumption and low mass while having high processing

capabilities.

 Nowadays, modern Field Programmable Gate Arrays

(FPGA) provides the opportunity to develop complex digital

designs with high speed and at moderate power consumption

[1][2]. Single and multi-core processor systems are integrated

with custom designed logic cores to serve the different design

needs [3].

 In developing space systems, several design techniques are

commonly used to design reliable systems. Fault tolerance and

fault avoidance are the common techniques [4-6]. Fault

avoidance depends on preventing the faults from occurring in

the functioning design. Fault tolerance depends on tolerating

the effects that faults might introduce to the design in a way

that keeps it functioning in an accepted performance. The

concept of redundancy is the base for fault tolerant designs.

Redundancy can take place in repeating the functioning design

units all or in part with the same or diverse designs; in this

case it is called space redundancy. A voter is used to judge

between the results of the redundant units. Time redundancy is

about repeating the execution of some of the program critical

functions several times to reach a consensus among the results.

Data redundancy is to add additional data bits to the original

data where the additional bits will carry the Error Detection

And Correction (EDAC) code that can be used to detect and

correct faults in the data stream.

 Software is a basic counterpart in developing complex

system. Fault tolerant techniques are developed for software

protection. N-version programming, N-copy programming,

recovery blocks, and check-pointing are among the common

techniques [7]. To protect the operation of a system, a hybrid

of the techniques is used [8]. Fault injection and radiation

testing are used to test the system robustness to bit flips

 In this paper we present a comparative study between using

single core processor in carrying the system tasks and using

triple core redundancy. The comparison takes place in terms

of power, speed, resources utilization and reliability. Both

systems are implemented in a Static Random Access Memory

(SRAM) based FPGA. The systems were designed using the

Xilinx FPGA Virtex 5 LX50T. It is a 65nm FPGA. The

Embedded Development Kit (EDK) tool from Xilinx was used

to design a single processor system and a triple processor

system. Bubble sort algorithm was implemented and run on

both systems to detect the average speed when applying

redundancy in implementing the algorithm. The power

consumption and resources utilization were estimated and the

total system reliability is calculated in both cases.

 The objective of this work is to clearly understand the

advantages and disadvantages of using space and time

redundancy in 65nm FPGAs. The trade-offs in selecting either

of the two techniques are: selecting a design that is economic

in its power consumption, provides high reliability, performs

in a high standard, and achieves reasonable utilization of the

FPGA resources.

2

 The paper proceeds as follows: Section 2 presents the

different architecture alternatives when developing an

embedded processor system. The systems designs are

presented in section 3. The results of testing the systems are

presented and discussed in section 4. The conclusion and

future work are presented in section 5.

2. Architecture Alternatives

 When developing an embedded system, the main variant for

the different architectures is about how the processor and

memory are interfaced. The simple embedded processor

system as shown in figure 1, consists of a system bus a

microprocessor or microcontroller and other peripherals

connected to the bus. The peripherals might contain timers,

interrupt controllers, Input/Output processors, Direct Memory

Access (DMA) controllers, and custom logic that implements

specific functions. The memory and the system bus are crucial

parts in the architecture when many processors are to be

integrated together. They define how the processors access the

memory for data storage and retrieval and/or instructions

fetching.

Fig. 1. Simple embedded system architecture.

 In our previous paper [10] we have shown that four general

architectures do exist when classifying the memory and

processor interfaces:

1- Multi-Processor-Multi-Memory (MPMM)

2- Multi-Processor-Single-Memory (MPSM)

3- Single-Processor-Single Memory (SPSM)

4- Single-Processor-Multi-Memory (SPMM)

The difference among the four architectures is in the number

of processors and memories which are interfaced together.

The system reliability is also affected with the architecture.

Assuming that (Rp) is the processor reliability and that (Rm)

is the memory reliability, Table 1 [10] shows the different

architectures with the estimation of the reliabilities formulas.

 The calculation of the system reliability depends on the

reliability of the attached memory and processors. The

configuration through which the system components are

connected leads to the form of the reliability formula. It is

important to notice that single processor system whether

connected to single memory or multiple memories is used

when time redundancy in executing the software that runs on

the processor will be adopted. In the case of the single

memory the data can be stored in multiple buffers to provide

redundancy in the storage. Multiple-Memory systems

maintain an exact copy of all memory contents between the

redundant units. The system can still have an additional form

of redundancy by storing data in a redundant form in each

memory while still having each memory repeated in a space

redundancy.

 The Multi-Processor systems have two conditions: the

shared memory and the non-shared memory. In the shared

memory systems the processors share the memories where

they store and retrieve the data as well as the code memories

from which they fetch the instructions. The MPSM and the

MPMM with shared memories are examples of a tightly

coupled multiprocessor system. The MPSM (non-shared) and

the MPMM (non-shared) are examples for the loosely coupled

multiprocessor systems.

 The design of a fault tolerant embedded system usually

merges different techniques together. The use of redundant

memories and processors adds to the reliability as well as

increasing the complexity of the system and its power

consumption. A system that contains reasonable number of

units in space redundancy, to maintain the power consumption

and reliability, while adopting time redundancy techniques, is

the ultimate choice. The reliability formulas which are shown

in table 1, are estimated based on the processor reliability and

the memory reliability. The processor reliability is estimated

based on the FPGA reliability and the Failure In Time (FIT)

for the design [9]. One FIT is calculated as 1 failure per 1

billion device hours (109 hours). The FIT for the Virtex-5

family at 65nm technology is 165 FIT/Mb[9]. The calculation

of the FIT depends on the occupied device slices. The design

is stored in the form of binary stream in the internal SRAM of

the FPGA. The size of the design multiplied by the FIT per

Mbit of the specific device being used gives the total FIT for

that design. The FIT can be used as the failure rate (λ) to

calculate the reliability over a period of time (T).

TeR  (1.)

 In our designs we test the SPSM architecture and the

MPSM (non-shared) architectures. The SPSM makes use of

repetition of execution over the time and storage of results in

extra copies.

 The MPSM makes use of the space redundancy concept

where three processors operate in parallel to calculate the

same operations to reach a consensus. Both systems run a

bubble sort algorithm for comparing their performances. The

3

test is run for 100 times and each time a vector of length 100

words is randomly generated. The time histogram for sorting

the vector and performing the fault tolerance check of the

results voting is plotted for the non-fault tolerant system, the

space and time redundancy systems.

Table 1. Architecture alternatives and reliability estimations [10].

Type Architecture Reliability Formula

SPSM

SPMM

))

MPSM

(shared

memory)

))

MPMM

(shared

memory)

)

)

MPSM

(non-shared

memory)

 ()

 P2
M2

P1
M1

P3
M3

P1

P1

M1

M1

M1

P1

M2

P2

M3

P3

4

MPMM

(non-shared

memory)

 ()

))

3. System Design

 Two separate systems were implemented to test the

trade-offs of using time and space redundancy in the Virtex

5LX50T FPGA: single processor system and Multi-Processor

system. In the single processor system as shown in figure 2a,

a MicroBlaze Processor is connected to a Local Memory Bus

(LMB) where a local Block Random Access Memory

(BRAM) is attached. The processor is connected to other

peripherals through the Processor Local Bus (PLB). A watch

dog timer is used to reset the system in case the processor

stopped working. The processor receives an interrupt from the

Interrupt Controller (INTC) that the watch dog timer finished

counting and should be reinitialized. If the processor was

working and did not hang up, it will respond to the watch dog

timer interrupt and will reset it. In case the processor stopped

working for any reason it will not respond to the watch dog

timer interrupt. The watch dog timer will send a reset request

to the reset module. The reset module will then reset the

whole system including the processor. The system contains a

system control processor which handles the correction of

single bit errors that might happen in the configuration bit

stream through reading the configuration frames via the

Internal Configuration Access Port (ICAP) core. The

communication between the system control processor and the

Microblaze processor takes place through the mailbox IP core.

A timer is included in the system to provide the ticks needed

for an operating system to operate such as the Xilinx Kernel.

Two Timers exist in the same IP core , one of them is used for

measuring the execution time of the code in this experiment.

The Microblaze Debug Module (MDM) port is used to debug

the software application running on the Microblaze processor

and the system control processor. The peripherals are

connected to the PLB. Xilinx General Purpose Input Output

(XGPIO) is used to input and output digital signals. It

provides a control interface to the outside world. The

Universal Asynchronous Receiver Transmitter (UART) is

used to send and receive serial streams to and from the

processor.

 When three processors are used their data will be

exchanged among them after each execution cycle. Therefore

they should have an inter-processor communication

mechanism. This mechanism is provided through the mailbox

IP core. As shown in figure 2b, the three processors send the

data to each other. Each processor would perform voting on its

own locally generated data and the data provided by the other

two processors. The voting takes place on bit level where:

 CBCABAV ...  (2.)

A, B, C are binary words and the logic operations are the

logical (AND) and logical (OR). (V) is the voting result. The

results of the voting are then used by each processor in its

operation.

 This scheme we call it Cross-voting as each processor

makes voting with the other processors. The operation concept

of the system is shown in figure 2c, a random number stream

of specified length, in this case it is 100 words, is generated by

random number generation in MATALB. It is then sent to the

processors through the serial ports RS232 interface. The

processors save the received vector and wait for a signal to

start the bubble sort algorithm. When the start signal is issued

by the MATLAB script, the processors start the timers and

initiate the Bubble sort algorithm after the bubble sort finishes

the processors exchange the values among each other and

carry on the cross voting. The voting results are sent to the

MATLAB script, the test cycle continues until the required

numbers of experiments are executed. The timers are stopped

whenever the execution of the bubble algorithm finishes

together with the data exchange between the processors and

the voting mechanisms. The results are then sent to the

MTALAB script for statistical analysis. In case of single

processor no data exchange takes place. The processor stores

three copies of the data vector in its local memory. The bubble

sort function runs three times and the results are stored in

three different vectors. The voting takes place between the

vectors stored in the local memory. The results are then sent to

the MATLAB script for statistical analysis. Figure 3, shows

the flowchart of the algorithm in case of single processor and

triple processors.

P1

M1

M2

M3

P2

M1

M2

M3

P3

M1

M2

M3

5

Fig. 2a. Single Processor System.

Fig. 2b. Inter-processor communication mechanism.

Fig. 2c. System operation concept.

Fig. 2. Single and Multi-core system design and operation concept.

 INTC

 MicroBlaze
Processor

MB(1)

 Timer XGPIO

 BRAM

 Watch Dog
Timer

Mailbox

 UART

 MDM Port

 Reset
Module

 PLB Bus
Arbiter

 JTAG

 PLB Bus

System Control

Processor

 BRAM

ICAP

PLB Bus

6

Fig. 3a. Flow chart of operation in case of 1 processor system.

Fig. 3b. Flow chart of operation in case of 3 processors system.

Initialize Platform

Receive Random Stream

Start Timer

Bubble Sort

Send Sorted Vector to other

Processors through Mailboxes

Receive Sorted Vectors of Others

through Mailboxes

Majority Voting

Stop Timer

Send Timing Vector to MATLAB

Repeat

Until no

other

Vectors

Fig. 3. Operation flow chart.

7

4. Results and Discussion

 The systems were tested using vectors of randomly

generated data words. The time span of execution was

collected for the non-fault tolerant system, the time redundant

system and the space redundant system. Figure 4 shows the

execution times histograms of the three cases.

Fig. 4a. Single processor time histogram without Software TMR.

Fig. 4b. Single processor time histogram with Software TMR.

Fig. 4c. Single processor time histogram with Hardware TMR.

Fig. 4. Execution times histograms for single and multicore systems .

 Each time a random sequence vector was generated based

on the clock seed of the computer system running MATLAB

to avoid repeating patterns of random sequences. The length

of each vector was 100 words. The numbers of vectors applied

during the test were 100 vectors. A normal distribution fit was

applied to the histograms in figure 4. The statistical

parameters of each histogram are shown in Table 2.

Table 2. Single processor without software TMR statistics.

Parameter No-Fault

Tolerance

Time

Redundancy

Space

Redundancy

Min 0.002354 0.007171 0.002463

Max 0.002739 0.008326 0.002847

Mean 0.002547 0.007749 0.002655

Median 0.002547 0.007749 0.002655

Mode 0.002354 0.007171 0.002463

Std 0.0001129 0.0003386 0.0001127

Range 0.0003852 0.001156 0.0003847

 The mean execution time for the single processor without

software TMR is about 2.55ms. It is almost the same as the

mean execution time of the hardware TMR, space redundancy,

which is 2.65ms. The mean execution time of the single

processor with software TMR, time redundancy, is 7.75ms.

almost 3 times higher than the non-fault tolerant and the space

redundancy fault tolerance. This means that hardware

redundancy is better in terms of execution time as it is as fast

as the non-fault tolerant system which contains no overheads.

However, we have to carefully notice that adding complicated

data exchange protocols between the processors will add an

execution overhead hence increasing the execution time

significantly. If too much time is spent in handling the

communication between the processors then the execution

time might be close to the time redundancy case.

 The power consumption varies between the single core and

the multicore systems as shown in Table 3. The power

consumption was estimated using the XPower Analyzer from

Xilinx. The total power consumed by the multi-core system is

1.26Watt which is only about 28% higher than the power

consumed by the single core system. About 0.46Watt is

dissipated in the form of leakage. . The leakage power is mainly

due to the leakage current in the static power consumption of the

FPGA transistors [11]. As the feature size of the transistors is

minimized, the leakage current increases.

Table 3. Power consumption in single and multi-core systems.

On-Chip Single Core

Power(W)

Multi-core

Power(W)

Clocks 0.170 0.347

Logic 0.003 0.007

Signals 0.005 0.014

BRAMs 0.010 0.096

DSPs 0.000 0.000

PLLs 0.263 0.263

DCMs 0.068 0.068

IOs 0.001 0.002

Leakage 0.458 0.460

Total 0.978 1.256

8

 The FPGA resources are almost utilized by the multi-core

system while about less than one-third is utilized by the single

core system as shown in Tables 4 and 5.

Table 4. Resources utilization in single core system.

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 5,932 28,800 20%

Number of Slice LUTs 6,866 28,800 23%

Number of Occupied
Slices

3,337 7,200 46%

Number of BRAM/FIFO 18 60 30%

Total Memory Used (KB) 648 2,160 30%

Table 5. Resources utilization in multi-core system.

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 16,362 28,800 56%

Number of Slice LUTs 18,763 28,800 65%

Number of Occupied
Slices

7,076 7,200 98%

Number of BRAM/FIFO 42 60 70%

Total Memory Used (KB) 1,512 2,160 70%

 The multi-core system makes better use of the resources

and it executes at almost triple the speed of the single core

system while its power consumption is only 28% higher than

it. The multi-core which uses the space redundancy for

implementing fault tolerance in the 65nm Virtex 5 FPGA

through repeating redundant hardware processor cores is more

efficient and effective than the single core design. In terms of

reliability the TMR design is better than the single core design

as indicated in Table 1 [10].

5. Conclusion and future work

 This paper studied the effects of using hardware

redundancy and software redundancy on the resources

utilization, power consumption and execution speeds in single

and multi-core designs of the Virtex-5 FPGA. It is

recommended according to the obtained results to make use of

space redundancy approaches when designing digital systems

using the Xilinx Virtex5 65nm FPGA. This is valid due to the

fact that considerable portion of the power consumed is

dissipated in the form of leakage power. Adding extra logic

did not add much to the total power consumed. The reliability

of the space redundant system is higher and its execution

speed is better as far as the communication protocol between

the cores does not add much overhead. Resources are better to

be utilized in the FPGA device rather than wasting them. The

space redundant system makes higher utilization of the FPGA

resources.

 We recommend repeating the work in this paper on

different algorithms and applying a more time consuming

communication protocol. A comparative study between the

65nm FPGA and other families such as the 28nm Virtex7

would be beneficial as well.

References

1)

2)

Xilinx website: http://www.xilinx.com

Actel website: http://www.actel.com

3) V. Asokan, “ Designing Multiprocessor Systems in Platform Studio,

White Paper,” Xilinx White Paper, WP262, vol. 262, 2007, pp. 1-18.

4) Israel Koren, Mani Krishna, “Fault Tolerant systems”, ElSEVIER

2007.

5) philip P. Shirvani, "Fault-Tolerant Computing for Radiation

Environments," Ph.D thesis, Center for reliable Computing,

Stanford University, June, 2001.

6) F.D. Lima and L. Carro, “Fault Tolerance Techniques for

SRAM-based FPGAs,” , Springer, 2006.

7) Laura L. Pullum, "Software fault tolerance techniques and

implementation, " Artech House, London, 2001.

8) Olga Goloubeva, “software implemented hardware fault

tolerance”, Springer 2006.

9) XILINX, “Device Reliability Report First Quarter 2012,”

XILINX UG116 (v9.0), 2012.

10) Ibrahim, M., Asami, K., and Cho, M., “Fault Tolerant

Architecture Alternatives for Developing Nano-Satellites Embedded

Computers”, Online Proc. of AIAA SPACE 2012 Conference &

Exposition, Pasadena, California, USA, September 11-13, 2012.

11) Derek Curd, "Power Consumption in 65 nm FPGAs,” Xilinx

Corporation, WP246, vol. 246, February 2007.

http://www.xilinx.com/
http://www.actel.com/

	QCMCProgramNumber:
	0:
	5458315908507667: 2013-j-20

