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    This paper investigates the gains and losses in terms of power, area, reliability, and speed when applying time 

redundancy fault tolerance techniques on single core designs compared to space redundancy fault tolerance techniques 

applied to multi-core designs. The system is developed on the virtex5 FPGA from Xilinx, it uses 65nm technology with a 

relatively moderate to high static power consumption. The system consists of two design alternatives. The first is a single 

core embedded processing system that applies time redundancy fault tolerance through execution repetition to perform 

self-check pointing through consensus. The second system is built from 3 soft IP core processors which perform a space 

redundancy approach through Triple-Modular-Redundancy (TMR) with feedback among the processors. The performance 

of both systems is evaluated in terms of the execution speed and latency due to fault tolerance techniques compared to the 

non-fault tolerant system. 
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1.  Introduction 

 

  Developing robust space avionics systems is a challenging 

task. As the missions diverse and increase their data 

processing requirements, the need for fast and reliable data 

processing systems emerges. Nevertheless, a balance should 

be hit between four main parameters: the power, the 

processing speed, the mass, and the reliability. It is required to 

optimize the design to have a reliable system with low power 

consumption and low mass while having high processing 

capabilities.  

  Nowadays, modern Field Programmable Gate Arrays 

(FPGA) provides the opportunity to develop complex digital 

designs with high speed and at moderate power consumption 

[1][2]. Single and multi-core processor systems are integrated 

with custom designed logic cores to serve the different design 

needs [3].   

  In developing space systems, several design techniques are 

commonly used to design reliable systems. Fault tolerance and 

fault avoidance are the common techniques [4-6]. Fault 

avoidance depends on preventing the faults from occurring in 

the functioning design. Fault tolerance depends on tolerating 

the effects that faults might introduce to the design in a way 

that keeps it functioning in an accepted performance. The 

concept of redundancy is the base for fault tolerant designs. 

Redundancy can take place in repeating the functioning design 

units all or in part with the same or diverse designs; in this 

case it is called space redundancy. A voter is used to judge 

between the results of the redundant units. Time redundancy is 

about repeating the execution of some of the program critical 

functions several times to reach a consensus among the results. 

Data redundancy is to add additional data bits to the original 

data where the additional bits will carry the Error Detection 

And Correction (EDAC) code that can be used to detect and 

correct faults in the data stream.  

  Software is a basic counterpart in developing complex 

system. Fault tolerant techniques are developed for software 

protection. N-version programming, N-copy programming, 

recovery blocks, and check-pointing  are among the common 

techniques [7]. To protect the operation of a system, a hybrid 

of the techniques is used [8]. Fault injection and radiation 

testing are used to test the system robustness to bit flips  

  In this paper we present a comparative study between using 

single core processor in carrying the system tasks and using 

triple core redundancy. The comparison takes place in terms 

of power, speed, resources utilization and reliability. Both 

systems are implemented in a Static Random Access Memory 

(SRAM) based FPGA. The systems were designed using the 

Xilinx FPGA Virtex 5 LX50T. It is a 65nm FPGA. The 

Embedded Development Kit (EDK) tool from Xilinx was used 

to design a single processor system and a triple processor 

system. Bubble sort algorithm was implemented and run on 

both systems to detect the average speed when applying 

redundancy in implementing the algorithm. The power 

consumption and resources utilization were estimated and the 

total system reliability is calculated in both cases.  

  The objective of this work is to clearly understand the 

advantages and disadvantages of using space and time 

redundancy in 65nm FPGAs. The trade-offs in selecting either 

of the two techniques are: selecting a design that is economic 

in its power consumption, provides high reliability, performs 

in a high standard, and achieves reasonable utilization of the 

FPGA resources. 
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  The paper proceeds as follows: Section 2 presents the 

different architecture alternatives when developing an 

embedded processor system. The systems designs are 

presented in section 3. The results of testing the systems are 

presented and discussed in section 4. The conclusion and 

future work are presented in section 5.  

 

2.  Architecture Alternatives 

 

  When developing an embedded system, the main variant for 

the different architectures is about how the processor and 

memory are interfaced. The simple embedded processor 

system as shown in figure 1, consists of a system bus a 

microprocessor or microcontroller and other peripherals 

connected to the bus. The peripherals might contain timers, 

interrupt controllers, Input/Output processors, Direct Memory 

Access (DMA) controllers, and custom logic that implements 

specific functions. The memory and the system bus are crucial 

parts in the architecture when many processors are to be 

integrated together. They define how the processors access the 

memory for data storage and retrieval and/or instructions 

fetching.  

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

Fig. 1. Simple embedded system architecture. 

 

 

  In our previous paper [10] we have shown that four general 

architectures do exist when classifying the memory and 

processor interfaces: 

1- Multi-Processor-Multi-Memory (MPMM)  

2- Multi-Processor-Single-Memory (MPSM) 

3- Single-Processor-Single Memory (SPSM) 

4- Single-Processor-Multi-Memory (SPMM) 

The difference among the four architectures is in the number 

of processors and memories which are interfaced together. 

The system reliability is also affected with the architecture. 

Assuming that (Rp) is the processor reliability and that (Rm) 

is the memory reliability, Table 1 [10] shows the different 

architectures with the estimation of the reliabilities formulas. 

  The calculation of the system reliability depends on the 

reliability of the attached memory and processors. The 

configuration through which the system components are 

connected leads to the form of the reliability formula. It is 

important to notice that single processor system whether 

connected to single memory or multiple memories is used 

when time redundancy in executing the software that runs on 

the processor will be adopted. In the case of the single 

memory the data can be stored in multiple buffers to provide 

redundancy in the storage. Multiple-Memory systems 

maintain an exact copy of all memory contents between the 

redundant units. The system can still have an additional form 

of redundancy by storing data in a redundant form in each 

memory while still having each memory repeated in a space 

redundancy. 

  The Multi-Processor systems have two conditions: the 

shared memory and the non-shared memory. In the shared 

memory systems the processors share the memories where 

they store and retrieve the data as well as the code memories 

from which they fetch the instructions. The MPSM and the 

MPMM with shared memories are examples of a tightly 

coupled multiprocessor system. The MPSM (non-shared) and 

the MPMM (non-shared) are examples for the loosely coupled 

multiprocessor systems. 

  The design of a fault tolerant embedded system usually 

merges different techniques together. The use of redundant 

memories and processors adds to the reliability as well as 

increasing the complexity of the system and its power 

consumption. A system that contains reasonable number of 

units in space redundancy, to maintain the power consumption 

and reliability, while adopting time redundancy techniques, is 

the ultimate choice. The reliability formulas which are shown 

in table 1, are estimated based on the processor reliability and 

the memory reliability. The processor reliability is estimated 

based on the FPGA reliability and the Failure In Time (FIT) 

for the design [9]. One FIT is calculated as 1 failure per 1 

billion device hours (109 hours). The FIT for the Virtex-5 

family at 65nm technology is 165 FIT/Mb[9]. The calculation 

of the FIT depends on the occupied device slices. The design 

is stored in the form of binary stream in the internal SRAM of 

the FPGA. The size of the design multiplied by the FIT per 

Mbit of the specific device being used gives the total FIT for 

that design. The FIT can be used as the failure rate (λ) to 

calculate the reliability over a period of time (T). 

 
TeR                     (1.) 

 

  In our designs we test the SPSM architecture and the 

MPSM (non-shared) architectures. The SPSM makes use of 

repetition of execution over the time and storage of results in 

extra copies.  

 

  The MPSM makes use of the space redundancy concept 

where three processors operate in parallel to calculate the 

same operations to reach a consensus.  Both systems run a 

bubble sort algorithm for comparing their performances. The 
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test is run for 100 times and each time a vector of length 100 

words is randomly generated. The time histogram for sorting 

the vector and performing the fault tolerance check of the 

results voting is plotted for the non-fault tolerant system, the 

space and time redundancy systems.  

 

Table 1.  Architecture alternatives and reliability estimations [10]. 

  
Type Architecture Reliability Formula 
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3.  System Design 

 

  Two separate systems were implemented to test the 

trade-offs of using time and space redundancy in the Virtex 

5LX50T FPGA: single processor system and Multi-Processor 

system.  In the single processor system as shown in figure 2a, 

a MicroBlaze Processor is connected to a Local Memory Bus 

(LMB) where a local Block Random Access Memory 

(BRAM) is attached. The processor is connected to other 

peripherals through the Processor Local Bus (PLB). A watch 

dog timer is used to reset the system in case the processor 

stopped working. The processor receives an interrupt from the 

Interrupt Controller (INTC) that the watch dog timer finished 

counting and should be reinitialized. If the processor was 

working and did not hang up, it will respond to the watch dog 

timer interrupt and will reset it. In case the processor stopped 

working for any reason it will not respond to the watch dog 

timer interrupt. The watch dog timer will send a reset request 

to the reset module. The reset module will then reset the 

whole system including the processor. The system contains a 

system control processor which handles the correction of 

single bit errors that might happen in the configuration bit 

stream through reading the configuration frames via the 

Internal Configuration Access Port (ICAP) core. The 

communication between the system control processor and the 

Microblaze processor takes place through the mailbox IP core. 

A timer is included in the system to provide the ticks needed 

for an operating system to operate such as the Xilinx Kernel. 

Two Timers exist in the same IP core , one of them is used for 

measuring the execution time of the code in this experiment. 

The Microblaze Debug Module (MDM) port is used to debug 

the software application running on the Microblaze processor 

and the system control processor. The peripherals are 

connected to the PLB. Xilinx General Purpose Input Output 

(XGPIO) is used to input and output digital signals. It 

provides a control interface to the outside world. The 

Universal Asynchronous Receiver Transmitter (UART) is 

used to send and receive serial streams to and from the 

processor.  

  When three processors are used their data will be 

exchanged among them after each execution cycle. Therefore 

they should have an inter-processor communication 

mechanism. This mechanism is provided through the mailbox 

IP core. As shown in figure 2b, the three processors send the 

data to each other. Each processor would perform voting on its 

own locally generated data and the data provided by the other 

two processors. The voting takes place on bit level where: 

 

      CBCABAV ...              (2.) 

 

A, B, C are binary words and the logic operations are the 

logical (AND) and logical (OR). (V) is the voting result. The 

results of the voting are then used by each processor in its 

operation.  

  This scheme we call it Cross-voting as each processor 

makes voting with the other processors. The operation concept 

of the system is shown in figure 2c, a random number stream 

of specified length, in this case it is 100 words, is generated by 

random number generation in MATALB. It is then sent to the 

processors through the serial ports RS232 interface. The 

processors save the received vector and wait for a signal to 

start the bubble sort algorithm. When the start signal is issued 

by the MATLAB script, the processors start the timers and 

initiate the Bubble sort algorithm after the bubble sort finishes 

the processors exchange the values among each other and 

carry on the cross voting. The voting results are sent to the 

MATLAB script, the test cycle continues until the required 

numbers of experiments are executed. The timers are stopped 

whenever the execution of the bubble algorithm finishes 

together with the data exchange between the processors and 

the voting mechanisms. The results are then sent to the 

MTALAB script for statistical analysis. In case of single 

processor no data exchange takes place. The processor stores 

three copies of the data vector in its local memory. The bubble 

sort function runs three times and the results are stored in 

three different vectors. The voting takes place between the 

vectors stored in the local memory. The results are then sent to 

the MATLAB script for statistical analysis. Figure 3, shows 

the flowchart of the algorithm in case of single processor and 

triple processors. 
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Fig. 2a. Single Processor System. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2b. Inter-processor communication mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2c. System operation concept. 

Fig. 2. Single and Multi-core system design and operation concept. 
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Fig. 3a. Flow chart of operation in case of 1 processor system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3b. Flow chart of operation in case of 3 processors system. 
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Fig. 3. Operation flow chart. 



 

 

 

7 

4.  Results and Discussion 

 

  The systems were tested using vectors of randomly 

generated data words. The time span of execution was 

collected for the non-fault tolerant system, the time redundant 

system and the space redundant system. Figure 4 shows the 

execution times histograms of the three cases.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Fig. 4a. Single processor time histogram without Software TMR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4b. Single processor time histogram with Software TMR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4c. Single processor time histogram with Hardware TMR. 

 

Fig. 4. Execution times histograms for single and multicore systems . 

  Each time a random sequence vector was generated based 

on the clock seed of the computer system running MATLAB 

to avoid repeating patterns of random sequences. The length 

of each vector was 100 words. The numbers of vectors applied 

during the test were 100 vectors. A normal distribution fit was 

applied to the histograms in figure 4. The statistical 

parameters of each histogram are shown in Table 2. 

  

Table 2. Single processor without software TMR statistics.  

 

Parameter No-Fault 

Tolerance 

Time 

Redundancy 

Space 

Redundancy 

Min 0.002354 0.007171 0.002463 

Max 0.002739 0.008326 0.002847 

Mean  0.002547 0.007749 0.002655 

Median  0.002547 0.007749 0.002655 

Mode  0.002354 0.007171 0.002463 

Std 0.0001129 0.0003386 0.0001127 

Range  0.0003852 0.001156 0.0003847 

 

  The mean execution time for the single processor without 

software TMR is about 2.55ms. It is almost the same as the 

mean execution time of the hardware TMR, space redundancy, 

which is 2.65ms. The mean execution time of the single 

processor with software TMR, time redundancy, is 7.75ms. 

almost 3 times higher than the non-fault tolerant and the space 

redundancy fault tolerance. This means that hardware 

redundancy is better in terms of execution time as it is as fast 

as the non-fault tolerant system which contains no overheads. 

However, we have to carefully notice that adding complicated 

data exchange protocols between the processors will add an 

execution overhead hence increasing the execution time 

significantly. If too much time is spent in handling the 

communication between the processors then the execution 

time might be close to the time redundancy case. 

  The power consumption varies between the single core and 

the multicore systems as shown in Table 3. The power 

consumption was estimated using the XPower Analyzer from 

Xilinx. The total power consumed by the multi-core system is 

1.26Watt which is only about 28% higher than the power 

consumed by the single core system. About 0.46Watt is 

dissipated in the form of leakage. . The leakage power is mainly 

due to the leakage current in the static power consumption of the 

FPGA transistors [11]. As the feature size of the transistors is 

minimized, the leakage current increases. 

  

Table 3. Power consumption in single and multi-core systems.  

 

On-Chip Single Core 

Power(W) 

Multi-core 

Power(W) 

Clocks 0.170 0.347 

Logic 0.003 0.007 

Signals 0.005 0.014 

BRAMs 0.010 0.096 

DSPs 0.000 0.000 

PLLs 0.263 0.263 

DCMs 0.068 0.068 

IOs 0.001 0.002 

Leakage 0.458 0.460 

Total 0.978 1.256 
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  The FPGA resources are almost utilized by the multi-core 

system while about less than one-third is utilized by the single 

core system as shown in Tables 4 and 5. 

 

Table 4. Resources utilization in single core system.  

 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 5,932 28,800 20% 

Number of Slice LUTs 6,866 28,800 23% 

Number of Occupied 
Slices 

3,337 7,200 46% 

Number of BRAM/FIFO 18 60 30% 

Total Memory Used (KB) 648 2,160 30% 

 

Table 5. Resources utilization in multi-core system.  

 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 16,362 28,800 56% 

Number of Slice LUTs 18,763 28,800 65% 

Number of Occupied 
Slices 

7,076 7,200 98% 

Number of BRAM/FIFO 42 60 70% 

Total Memory Used (KB) 1,512 2,160 70% 

 

  The multi-core system makes better use of the resources 

and it executes at almost triple the speed of the single core 

system while its power consumption is only 28% higher than 

it. The multi-core which uses the space redundancy for 

implementing fault tolerance in the 65nm Virtex 5 FPGA 

through repeating redundant hardware processor cores is more 

efficient and effective than the single core design. In terms of 

reliability the TMR design is better than the single core design 

as indicated in Table 1 [10]. 

 

5.  Conclusion and future work 

 

  This paper studied the effects of using hardware 

redundancy and software redundancy on the resources 

utilization, power consumption and execution speeds in single 

and multi-core designs of the Virtex-5 FPGA. It is 

recommended according to the obtained results to make use of 

space redundancy approaches when designing digital systems 

using the Xilinx Virtex5 65nm FPGA. This is valid due to the 

fact that considerable portion of the power consumed is 

dissipated in the form of leakage power. Adding extra logic 

did not add much to the total power consumed. The reliability 

of the space redundant system is higher and its execution 

speed is better as far as the communication protocol between 

the cores does not add much overhead. Resources are better to 

be utilized in the FPGA device rather than wasting them. The 

space redundant system makes higher utilization of the FPGA 

resources. 

  We recommend repeating the work in this paper on 

different algorithms and applying a more time consuming 

communication protocol. A comparative study between the 

65nm FPGA and other families such as the 28nm Virtex7 

would be beneficial as well.  
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