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    This paper presents a complete design and implementation of a Single Event Upset (SEU) emulation system that can 

be used to inject faults in Static Random Access Memory (SRAM) based Field Programmable Gate Array (FPGA). The 

FPGA is used to implement an avionics system for a small satellite. The fault injector emulates the expected Single Event 

Upset (SEU) rate as it would be in the Low Earth Orbit (LEO) of the polar orbiting satellites at inclinations close to 98° 

deg., and altitude of about 670 km. The emulator injects faults in the configuration bit-stream of the FPGA without 

stopping its operation. It makes use of the partial reconfiguration feature of today’s FPGAs. This provides a facility to 

assess the design performance in space even if radiation testing will not be conducted before launching. Also, it simulates 

the expected upset rate and hence calculates the corresponding data failure rates for Triple Modular Redundancy (TMR) 

fault tolerant designs. The system was implemented using the Xilinx Virtex- LX50T FPGA. The FPGA suffered system 

failures during the fault injection test. It recovered about 50% of the failures. TMR simulation at an upset rate of 0.1 upsets 

(per bit per second) for a data size of 2048 bits showed that about 33% of the faults will be fully corrected.  
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1.  Introduction 

 

  Design of fault tolerant systems for space applications uses 

redundancy in implementation. Redundancy can be in 

software code, hardware units, and time of execution and data 

bits. The protection techniques can be used individually or 

concatenated. They add to the improvement of the system 

capability in detecting and correcting faults hence increasing 

its reliability, however, they also add overhead. 

  It is often required to assess the reliability of fault tolerant 

systems in operating conditions close to the environment 

where they will be used. Satellites are tested in electrical, 

thermal vacuum, mechanical and radiation conditions as close 

as possible to the target orbit.  

  Radiation testing at proton accelerators is expensive, not 

readily available and needs complicated setups. The purpose 

of radiation testing is to evaluate how the design will perform 

in the space radiation environment. The common tests include 

Single Event Upsets (SEE) and Total Ionization Dose (TID). 

The Single Event Upset (SEU) is part of the SEE where the 

logic values of the bits stored in the processor registers and 

memory cells are altered. This might lead to malfunctions and 

inappropriate operations. In SRAM-based FPGAs, where the 

design is stored in the internal SRAM after being loaded from 

the boot-up flash, bit alteration due to SEU can be severe. It 

might lead to changing the functioning logic and complete 

failure of the system. 

  This paper emulates and simulates the effects of SEUs as 

they would be found in LEO orbits at an altitude of 

approximately  670 km and inclination of about 98° deg. The 

purpose is to develop a complete LEO SEU radiation 

environment emulator that can be used in fault injection in 

SRAM-based FPGA avionic systems designs. We hope that 

this work would save the proton accelerator tests and provide 

simple and confident test techniques. 

  In the following sections the paper introduces the SEU fault 

injection concept in section 2, the SEU fault injector is 

presented in section 3, the emulation results and discussion are 

presented in section 4, and the conclusion and future work are 

presented in section 5.    

 

2.  SEU Fault Injection Concept 

 

  Fault injection in functioning systems is a technique used to 

insert deliberate faults at selected and/or random units of the 

design to assess its sensitivities. This technique is 

implemented by adding additional hardware and software to 

the system to handle the insertion of faults, monitoring of 

performance and collection of results. Figure 1, shows the 

architecture of a fault injection system.  

   The design under test is interfaced to a faults insertion unit 

which has access to the design units where faults are to be 

injected. The faults vector calculation and generation unit 

prepares faults vectors that match the required test objectives. 

The fault insertion unit can be a combination of hardware and 

software. It handles the overriding of the normal operation 

into a faulty one. For example, the fault insertion unit can be a 

code that reads back a previously calculated value by the 

normal DUT code and then overwrites with a faulty value to 

simulate a specific condition. The insertion can be done 

without stopping the main operation. In some designs it might 

be inevitable to interrupt the normal operation flow by 

suspending it and then resuming after the injection takes place. 

The function monitoring and control unit takes care of 

monitoring the operation of the DUT. It stops the DUT 

operation in case of noticing an emergency and provides a 

control path to set the DUT in specific operating modes and 
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operation settings. The performance of the DUT is statistically 

analyzed to detect anomalies in normal operation as faults are 

injected. The feedback about how the DUT behaves while in 

fault injection mode is provided to the faults vector calculation 

and generation unit. It uses that information in generating new 

fault vectors. For example, the feedback statistical information 

might show that there is a repetitive pattern in the output when 

certain fault sequence is followed. The faults vector 

generation and calculation unit might repeat the vectors with 

different variations to study the statistical dependence between 

injected faults and output vectors. Fault monitoring and 

control unit also feedback the faults vector calculation and 

generation with information about the behavior of the DUT 

during the fault injection process. For example, it might be 

necessary to feedback the faults vector calculation and 

generation unit with the moments where the system 

completely stopped working and needed a deep reset. This 

information can be used in detecting the types of faults that 

lead to total failure. 

   

 

 

 

 

 

 

 

 

 
Fig. 1.  Fault injection cycle. The faults are injected to the DUT and 

statistical results are issued as a feedback to the injecting machine for test 

vectors adjustment. 

 

  The SEUs which occur in space are probabilistic. Poisson 

distribution is used to estimate the expected number of upsets (k) 

which happens in the time interval (T) with an average number of 

upsets (μ) according to the probability density function shown in 

Eq. (1) [1][2]. The exponential distribution is used to estimate the 

expected time between upsets (τ) with an average number of 

upsets in unit time interval (λ) as shown in Eq. (2). The 

relationship between both distributions can be set as (μ = λT). 

 

                   (1.) 

              (2.) 

 

  The SEU rate can be estimated using the Cosmic Ray Effects 

on Micro Electronics (CREME) model [3]. The Space 

Environment Simulator web tool [4] is used to draw the 

estimations [4]. Figure 2, shows the SEU estimation for a 670 km 

with an inclination of 98° deg. The peaks in the figure are related 

to upsets taking place at the South Atlantic Anomaly (SAA). The 

upset rate estimation is based on the values of the radiation testing 

of the Xilinx Virtex 5 LX50 FPGA [5-8]. Fault Injection rate is 

estimated by using the per bit upset rate from the SPENVIS 

simulation shown in Figure 2. Faults are injected to the FPGA 

design using an IP core provided by Xilinx called the SEU 

controller [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  SEU rate during 1 day of flight. The peaks are orbital positions 

corresponding to the South Atlantic Anomaly. 

 

3.  SEU Fault Injector 

 

  The fault Injector that is used during the test setup is shown 

in Figure 3. The injector uses an internal hardware unit that 

can reconfigure the FPGA bit stream, the SEU controller. It is 

an IP core that is provided by Xilinx which can be controlled 

from outside the FPGA to produce faults in the form of bit 

flipping in the FPGA configuration frame. The control of the 

SEU controller is through serial communication over the 

RS232 channel to send commands to it and receive response . 

  The fault injector system contains 3 external computers to 

support its function. The fault injector computer which runs 

MATLAB script to generate random faults based on the 

Poisson distribution of the SEUs in the target orbit. It 

generates the timing at which faults will be injected which 

follows the exponential distribution as described earlier.  

  Another computer is used for configuring the FPGA with 

the bit-stream which contains the hardware design. The design 

that is being used here consists of four cores of the Microblaze 

processor which runs together to form the avionics system of a 

small satellite. The cores exchange data with each other 

through the Fast Simplex Link (FSL) bus. This a peer to peer 

direct communication between the Microblaze processors.  

  The function monitoring of the processors is done through 

sending the processors status and results of executing a simple 

counter program to the UART interfaces which are monitored 

by an external computer to collect the results and analyze 

them. The system runs the simulation for number of times and 

it generates a new fault injection vector at each time. the fault 

injection vector contains the bit location that will be flipped 

which is a random number from (0 t0 1311) and the frame 

number where flipping will take place which is a random 

number from (1 to 8662). The faults are accumulated and their 

effects are watched as they are injected. At the end of the 

injection cycle an auto correction mode is enabled to recover 

the injected faults and restore the operation of the cores. The 

flow chart in Figure 4, shows the test flow. The detection 

mode is used during accumulated fault injection. 
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Fig. 3.  SEU Fault Injector Setup. 
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Fig. 4.  Test flow Setup. The faults are injected using the commands over 

serial interface with the SEU controller. The results are collected over the 

serial interface with the processors cores. The auto-correction mode is 

enabled at the end of operation to recover all the injected faults. 

 

4.  The emulation Results and Discussion 

 

  The results of running the simulation for 10 times in two 

sizes of batches: 50 accumulated errors and 100 accumulated 

errors are shown in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.  Fault Injection Results. 

 

  Three types of correction can take place: the full 

reconfiguration, the partial reconfiguration and the Software 

resynchronization. The full reconfiguration is the mode where 

the FPGA stopped working due to fault injections. The entire 

bit-stream of the design should be reloaded to the internal 

SRAM in order to restore the correct operation. The partial 

reconfiguration is the mode where one or more processor 

stopped working but not the whole system. The system can be 

partially reconfigured without stopping the other processors to 

restore the operation. The Software resynchronization is the 

mode where the software of the working processors need to be 

resynchronized to the same operation after one or more 

processors stop working and then resumes again. 

  The results show that about 10% of the injected faults in the 

50 faults batch and 10% of the 100 faults batch needed full 

reconfiguration. Another 10% of the faults in the 50 faults 

batch needed partial reconfiguration while 30% of the faults 

injected in the 100 faults batch needed partial reconfiguration. 

This means that in the 50 faults batch, only 80% of the 

injected faults where totally recovered through the 

auto-correction mode without the need for partial or full 

reconfiguration. In the case of the 100 faults batch, 60% of the 

injected faults were fully recovered with no need of any 

reconfiguration. The software resynchronization takes place 

whenever a partial reconfiguration is initiated or a processor 

stops operation then resumes after the auto-correction mode 

has been enabled.  

  Figure 6-8, shows the results of applying the fault injection 

over a packet size of 2048 bits in a TMR operation. The 

packet contained a random vector of data and the vector is 

compared between three of the operating cores after faults 

were injected randomly in it. The vectors are compared value 

by value in an TMR operation through a voter in the fourth 

processor. The results shown in figure 6, are the log plot for 

the different upset rates versus the residual failures. This is the 

condition where the data from the three processors is 

indifferent and no consensus can be found among it or it is 

similar but still incorrect.
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Fig. 6.  Log plot of the residual failure versus the upset rate. The residual failures are the failures which still remain in the data even after being corrected 

or the failures that can not be corrected at all. Failures can still be remaining in the data even after correction when the faults are injected in the same bit 

positions in different words giving mistakenly similar data values in two or more data sets out of the three data sets to be compared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Histogram of faults injection in the data vector. 
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Fig. 8.  Histogram of the residual failures after applying the TMR voting and correction procedure. 

 

  

5.  Conclusion and Future Work 

  This paper presented a fault injection emulator that can be 

used for injecting random faults in the FPGA bit-stream to 

simulate the effects of the space environment. About 10% of 

the injected faults in the hardware bit-stream needed full 

reconfiguration. In the case of data fault injection at an upset 

rate of 0.1 upsets per bits per second, more than 50% of the 

data will have residual failures. We recommend to study the 

effects of faults injection on many fault tolerant designs to 

asses their reliability and improve the injector by having more 

injection capabilities. 
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