

1

LEO Single Event Upset Emulator for Validation of FPGA Based Avionics Systems

 By Mohamed Mahmoud Ibrahim, Kenchi Asami, and Mengu Cho

Kyushu Institute of Technology, KitaKyushu, Japan

 This paper presents a complete design and implementation of a Single Event Upset (SEU) emulation system that can

be used to inject faults in Static Random Access Memory (SRAM) based Field Programmable Gate Array (FPGA). The

FPGA is used to implement an avionics system for a small satellite. The fault injector emulates the expected Single Event

Upset (SEU) rate as it would be in the Low Earth Orbit (LEO) of the polar orbiting satellites at inclinations close to 98°

deg., and altitude of about 670 km. The emulator injects faults in the configuration bit-stream of the FPGA without

stopping its operation. It makes use of the partial reconfiguration feature of today’s FPGAs. This provides a facility to

assess the design performance in space even if radiation testing will not be conducted before launching. Also, it simulates

the expected upset rate and hence calculates the corresponding data failure rates for Triple Modular Redundancy (TMR)

fault tolerant designs. The system was implemented using the Xilinx Virtex- LX50T FPGA. The FPGA suffered system

failures during the fault injection test. It recovered about 50% of the failures. TMR simulation at an upset rate of 0.1 upsets

(per bit per second) for a data size of 2048 bits showed that about 33% of the faults will be fully corrected.

Key Words: FPGA, SEU, Avionics Systems, TMR, Fault Tolerance

1. Introduction

 Design of fault tolerant systems for space applications uses

redundancy in implementation. Redundancy can be in

software code, hardware units, and time of execution and data

bits. The protection techniques can be used individually or

concatenated. They add to the improvement of the system

capability in detecting and correcting faults hence increasing

its reliability, however, they also add overhead.

 It is often required to assess the reliability of fault tolerant

systems in operating conditions close to the environment

where they will be used. Satellites are tested in electrical,

thermal vacuum, mechanical and radiation conditions as close

as possible to the target orbit.

 Radiation testing at proton accelerators is expensive, not

readily available and needs complicated setups. The purpose

of radiation testing is to evaluate how the design will perform

in the space radiation environment. The common tests include

Single Event Upsets (SEE) and Total Ionization Dose (TID).

The Single Event Upset (SEU) is part of the SEE where the

logic values of the bits stored in the processor registers and

memory cells are altered. This might lead to malfunctions and

inappropriate operations. In SRAM-based FPGAs, where the

design is stored in the internal SRAM after being loaded from

the boot-up flash, bit alteration due to SEU can be severe. It

might lead to changing the functioning logic and complete

failure of the system.

 This paper emulates and simulates the effects of SEUs as

they would be found in LEO orbits at an altitude of

approximately 670 km and inclination of about 98° deg. The

purpose is to develop a complete LEO SEU radiation

environment emulator that can be used in fault injection in

SRAM-based FPGA avionic systems designs. We hope that

this work would save the proton accelerator tests and provide

simple and confident test techniques.

 In the following sections the paper introduces the SEU fault

injection concept in section 2, the SEU fault injector is

presented in section 3, the emulation results and discussion are

presented in section 4, and the conclusion and future work are

presented in section 5.

2. SEU Fault Injection Concept

 Fault injection in functioning systems is a technique used to

insert deliberate faults at selected and/or random units of the

design to assess its sensitivities. This technique is

implemented by adding additional hardware and software to

the system to handle the insertion of faults, monitoring of

performance and collection of results. Figure 1, shows the

architecture of a fault injection system.

 The design under test is interfaced to a faults insertion unit

which has access to the design units where faults are to be

injected. The faults vector calculation and generation unit

prepares faults vectors that match the required test objectives.

The fault insertion unit can be a combination of hardware and

software. It handles the overriding of the normal operation

into a faulty one. For example, the fault insertion unit can be a

code that reads back a previously calculated value by the

normal DUT code and then overwrites with a faulty value to

simulate a specific condition. The insertion can be done

without stopping the main operation. In some designs it might

be inevitable to interrupt the normal operation flow by

suspending it and then resuming after the injection takes place.

The function monitoring and control unit takes care of

monitoring the operation of the DUT. It stops the DUT

operation in case of noticing an emergency and provides a

control path to set the DUT in specific operating modes and

2

operation settings. The performance of the DUT is statistically

analyzed to detect anomalies in normal operation as faults are

injected. The feedback about how the DUT behaves while in

fault injection mode is provided to the faults vector calculation

and generation unit. It uses that information in generating new

fault vectors. For example, the feedback statistical information

might show that there is a repetitive pattern in the output when

certain fault sequence is followed. The faults vector

generation and calculation unit might repeat the vectors with

different variations to study the statistical dependence between

injected faults and output vectors. Fault monitoring and

control unit also feedback the faults vector calculation and

generation with information about the behavior of the DUT

during the fault injection process. For example, it might be

necessary to feedback the faults vector calculation and

generation unit with the moments where the system

completely stopped working and needed a deep reset. This

information can be used in detecting the types of faults that

lead to total failure.

Fig. 1. Fault injection cycle. The faults are injected to the DUT and

statistical results are issued as a feedback to the injecting machine for test

vectors adjustment.

 The SEUs which occur in space are probabilistic. Poisson

distribution is used to estimate the expected number of upsets (k)

which happens in the time interval (T) with an average number of

upsets (μ) according to the probability density function shown in

Eq. (1) [1][2]. The exponential distribution is used to estimate the

expected time between upsets (τ) with an average number of

upsets in unit time interval (λ) as shown in Eq. (2). The

relationship between both distributions can be set as (μ = λT).

 (1.)

 (2.)

 The SEU rate can be estimated using the Cosmic Ray Effects

on Micro Electronics (CREME) model [3]. The Space

Environment Simulator web tool [4] is used to draw the

estimations [4]. Figure 2, shows the SEU estimation for a 670 km

with an inclination of 98° deg. The peaks in the figure are related

to upsets taking place at the South Atlantic Anomaly (SAA). The

upset rate estimation is based on the values of the radiation testing

of the Xilinx Virtex 5 LX50 FPGA [5-8]. Fault Injection rate is

estimated by using the per bit upset rate from the SPENVIS

simulation shown in Figure 2. Faults are injected to the FPGA

design using an IP core provided by Xilinx called the SEU

controller [6].

Fig. 2. SEU rate during 1 day of flight. The peaks are orbital positions

corresponding to the South Atlantic Anomaly.

3. SEU Fault Injector

 The fault Injector that is used during the test setup is shown

in Figure 3. The injector uses an internal hardware unit that

can reconfigure the FPGA bit stream, the SEU controller. It is

an IP core that is provided by Xilinx which can be controlled

from outside the FPGA to produce faults in the form of bit

flipping in the FPGA configuration frame. The control of the

SEU controller is through serial communication over the

RS232 channel to send commands to it and receive response .

 The fault injector system contains 3 external computers to

support its function. The fault injector computer which runs

MATLAB script to generate random faults based on the

Poisson distribution of the SEUs in the target orbit. It

generates the timing at which faults will be injected which

follows the exponential distribution as described earlier.

 Another computer is used for configuring the FPGA with

the bit-stream which contains the hardware design. The design

that is being used here consists of four cores of the Microblaze

processor which runs together to form the avionics system of a

small satellite. The cores exchange data with each other

through the Fast Simplex Link (FSL) bus. This a peer to peer

direct communication between the Microblaze processors.

 The function monitoring of the processors is done through

sending the processors status and results of executing a simple

counter program to the UART interfaces which are monitored

by an external computer to collect the results and analyze

them. The system runs the simulation for number of times and

it generates a new fault injection vector at each time. the fault

injection vector contains the bit location that will be flipped

which is a random number from (0 t0 1311) and the frame

number where flipping will take place which is a random

number from (1 to 8662). The faults are accumulated and their

effects are watched as they are injected. At the end of the

injection cycle an auto correction mode is enabled to recover

the injected faults and restore the operation of the cores. The

flow chart in Figure 4, shows the test flow. The detection

mode is used during accumulated fault injection.

Design Under Test

(DUT)

Function

Monitoring and

Control Unit

Faults Insertion

Unit

Statistical Analysis

of Performance

Faults Vector

Calculation and

Generation

3

Fig. 3. SEU Fault Injector Setup.

SEU

Controller

MicroBlaze

System

MB0

MicroBlaze

System

MB1

MicroBlaze

System

MB2

MicroBlaze

System

MB3

Fault Injector

PC running

MATLAB

Script

Processors

Function

Monitoring

PC

Processors

StatusRandomly Generated Faults

Configuration

Frames in

FPGA SRAM

Faults Injection

FPGA

Configuration

XILINX-ISE

PC

System

Reconfiguration

XC5VLX50

FSL Bus

XILINX

Platform

Cable USB II

USB/JTAG

50 MHz

4

Fig. 4. Test flow Setup. The faults are injected using the commands over

serial interface with the SEU controller. The results are collected over the

serial interface with the processors cores. The auto-correction mode is

enabled at the end of operation to recover all the injected faults.

4. The emulation Results and Discussion

 The results of running the simulation for 10 times in two

sizes of batches: 50 accumulated errors and 100 accumulated

errors are shown in Figure 5.

Fig. 5. Fault Injection Results.

 Three types of correction can take place: the full

reconfiguration, the partial reconfiguration and the Software

resynchronization. The full reconfiguration is the mode where

the FPGA stopped working due to fault injections. The entire

bit-stream of the design should be reloaded to the internal

SRAM in order to restore the correct operation. The partial

reconfiguration is the mode where one or more processor

stopped working but not the whole system. The system can be

partially reconfigured without stopping the other processors to

restore the operation. The Software resynchronization is the

mode where the software of the working processors need to be

resynchronized to the same operation after one or more

processors stop working and then resumes again.

 The results show that about 10% of the injected faults in the

50 faults batch and 10% of the 100 faults batch needed full

reconfiguration. Another 10% of the faults in the 50 faults

batch needed partial reconfiguration while 30% of the faults

injected in the 100 faults batch needed partial reconfiguration.

This means that in the 50 faults batch, only 80% of the

injected faults where totally recovered through the

auto-correction mode without the need for partial or full

reconfiguration. In the case of the 100 faults batch, 60% of the

injected faults were fully recovered with no need of any

reconfiguration. The software resynchronization takes place

whenever a partial reconfiguration is initiated or a processor

stops operation then resumes after the auto-correction mode

has been enabled.

 Figure 6-8, shows the results of applying the fault injection

over a packet size of 2048 bits in a TMR operation. The

packet contained a random vector of data and the vector is

compared between three of the operating cores after faults

were injected randomly in it. The vectors are compared value

by value in an TMR operation through a voter in the fourth

processor. The results shown in figure 6, are the log plot for

the different upset rates versus the residual failures. This is the

condition where the data from the three processors is

indifferent and no consensus can be found among it or it is

similar but still incorrect.

Seed setting of the random

number generator seed using

internal clock

Serial Port Settings

Start Injection Cycle

Random Generation of Frame

number (1 to 8662)

Calculation of Hex Frame

Address

Random Generation of Bit

number (Hex) to be flipped

Sending `*` command to start

UART control mode

Sending `d` command for

Detection Only Mode

Injecting Fault Through by

sending a string

`t-frame address-bit no`

Send `a` command to start

Auto Correction Mode

Receive Status Reports and

make Decision

YES

5

Fig. 6. Log plot of the residual failure versus the upset rate. The residual failures are the failures which still remain in the data even after being corrected

or the failures that can not be corrected at all. Failures can still be remaining in the data even after correction when the faults are injected in the same bit

positions in different words giving mistakenly similar data values in two or more data sets out of the three data sets to be compared.

Fig. 7. Histogram of faults injection in the data vector.

6

Fig. 8. Histogram of the residual failures after applying the TMR voting and correction procedure.

5. Conclusion and Future Work

 This paper presented a fault injection emulator that can be

used for injecting random faults in the FPGA bit-stream to

simulate the effects of the space environment. About 10% of

the injected faults in the hardware bit-stream needed full

reconfiguration. In the case of data fault injection at an upset

rate of 0.1 upsets per bits per second, more than 50% of the

data will have residual failures. We recommend to study the

effects of faults injection on many fault tolerant designs to

asses their reliability and improve the injector by having more

injection capabilities.

References

 [1] Actel website: http://www.actel.com

[2] Xilinx website: http://www.xilinx.com

[3] Adams, J. H., Jr., Cosmic Ray Effects on
MicroElectronics, Part IV, NRL Memorandum Report
5901, 1986.

[4] SPENVIS website: http://www.spenvis.oma.ba

[5] Quinn, H.; Morgan, K.; Graham, P.; Krone, J.; Caffrey,
M.; , "Static Proton and Heavy Ion Testing of the
Xilinx Virtex-5 Device," Radiation Effects Data
Workshop, 2007 IEEE , vol.0, no., pp.177-184, 23-27
July 2007.

[6] Ken Chapman, "New Generation Virtex-5 SEU
Controller," Xilinx, Version A.2 – s4th November
2009.

[7] Xilinx, Virtex-5 FPGA Configuration User Guide, Xilinx
UG191 (v3.10), 2011.

[8] Ken Chapman, "SEU Strategies for Virtex-5 Devices,"
Xilinx, XAPP864, April, 2010.

http://www.actel.com/
http://www.xilinx.com/
http://www.spenvis.oma.ba/

	QCMCProgramNumber:
	0:
	8570865263517505: 2013-f-11

