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Abstract

A method to efficiently map the distribution of Cobalt-rich Manganese Crusts (Mn-
crust) using data collected by autonomous underwater vehicles and remotely operated
vehicles is developed. Volumetric measurements of Mn-crusts are made using a high-
frequency sub-surface sonar and a 3D visual mapping instrument mounted on these
vehicles. This thesis proposes a fully automated algorithmic approach to estimate Mn-
crust distribution by combining the continuous sub-surface thickness measurements
with the exposed surface area identified in the 3D maps. This method is applied to
data collected from field surveys in the deep sea and the results are validated using
physical samples.

Manganese crusts (Mn-crust) are a type of mineral deposit commonly found on
seamounts and guyots at depths varying from 800𝑚 to 5500𝑚. They are precipitated
from ambient seawater creating deposits up to 250𝑚𝑚 in thickness. Mn-crusts are
rich in Cobalt, Nickel, other rare minerals and rare earth metals, making it a potential
target for deep sea mining. Since they contain the historical record of millions of years
of ocean conditions and fossils of ancient crustaceans, it is of high scientific interest.

The present methods of studying Mn-crusts by collecting physical samples provides
a low spatial resolution of the order of several km and cannot thus capture the local
variability of its distribution. Since the deposits are thin compared to the typical
resolutions of sub-bottom sonars, in-situ surveys using dedicated sensors are required
to accurately measure the Mn-crust thickness. Towed camera surveys and ROV video
feeds have been used by researchers to visually confirm the presence of Mn-crusts,
but cannot be used to make accurate thickness or volume measurements. Automated
methods for classification is suitable for analyzing large volumes of seafloor data to
create estimates of Mn-crust coverage. 3D colour seafloor maps are more suitable to
distinguish the unique texture and shape of Mn-crust deposits. The proposed method
creates volumetric distribution estimates of Mn-crusts using data collected using a
high-frequency sub-surface sonar and a 3D visual mapping instrument mounted on
an underwater robot suitable for surveying Mn-crusts.
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The proposed sensor fusion method consists of 3 algorithms for measuring the
percentage cover (lateral coverage), thickness and unit mass coverage (mass of crust
per unit area) of Mn-crusts respectively and can be scaled to large regions of seafloor.
3D colour reconstructions made by the visual mapping instrument is analyzed by using
a Support Vector Machine classifier to identify Mn-crusts and other seafloor types
present and estimate a percentage cover value. In the areas covered with exposed Mn-
crust, the sub-surface sonar data is analyzed to measure the continuous thickness of
Mn-crust. These thickness measurements are then extrapolated into the entire region
containing exposed Mn-crust. From the extrapolated thickness map, the total volume
of crust is calculated and the mass coverage estimates are calculated by integrating
the thickness values over an area of influence. The density of Mn-crusts measured
from samples is used in the mass calculations.

This method is applied to field data collected from three expeditions at Takuyo
Daigo seamount in the northwestern Pacific ocean at depths ranging from 1350𝑚 to
1600𝑚. The total transect lengths add to about 11 𝑘𝑚 with 12, 510𝑚2 mapped. The
results showed that 52 % of the surveyed area is covered by Mn-crusts with a mean
thickness of 69.6𝑚𝑚. The mean Mn-crust occurrence is 69.6 𝑘𝑔/𝑚2 with a maximum
of 204 𝑘𝑔/𝑚2 in the mapped region. In order to validate the proposed approach, the
results of thickness were compared to Mn-crust samples retrieved from the surveyed
area by researchers. The results generated by the method agree with estimates made
from samples retrieved from the area, and shows more detailed distribution patterns.
By looking at the variability of crust coverage in different transects, it is seen that the
coverage of crust can vary by a large margin. Therefore, a continuous in-situ survey
is required to accurately assess the distribution of Mn-crust over large regions. The
proposed method is therefore effective for efficiently estimating Mn-crust distributions
and inventories at hectare scale areas.

This is the first method suitable for estimating volumetric distribution estimates
of Mn-crust for hectare-scale or larger areas at centimeter resolution. A method for
sensor fusion using a 3D map and secondary sensor data and a method for high
accuracy classification of seafloor 3D colour point clouds are developed. The informa-
tion generated can provide valuable insights into the study of Mn-crust distribution,
the ocean processes of Mn-crust formation and inputs for making policy decisions
regarding deep sea mining and planning future courses of action.

Keywords
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Chapter 1

Introduction

1.1 Motivation

The immensity and grandiosity of the ocean has amazed human beings since ancient

times. People worshipped ocean as god since it was incomprehensible to their minds.

It is interesting to note that even now, with all the advancement of technology, we

know very little about this magnificent blue world.

From what we know, the ocean covers 71% of the earth’s surface area and holds

97% of water present on earth. The longest mountain range, most active volcanoes,

the highest peak (when measured w.r.t. the base) and the largest among animals are

inside this. Nations around the world rely on the ocean for food, transportation, oil,

communications and entertainment. Behind the scenes, the ocean play an even bigger

role in sustaining human life. Algae in ocean absorbs carbon dioxide and produces

about half the oxygen we breath. Top 10 meters of these waters hold as much heat

as the atmosphere and controls the climate around the world and its balance (or the

lack of it).

Still, a large portion of the ocean remains unexplored; only around 10% of seafloor

has been surveyed by shipboard sonar systems (Becker et al. 2009). We have higher

resolution maps of the moon than we have of the deep seabed XPRIZE (2019). En-

tire mountains have been discovered in the sea which previously unknown Wessel

et al. (2010). Thousands of ships have sank since ancient times; a large number of
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them were never recovered (Michel & Ballard n.d.). Life on earth was thought to

be impossible without oxygen until large colonies of animals were discovered around

hydrothermal vents (Hashimoto et al. 2001, Ramirez-Llodra et al. 2007). On average,

two new species of animals are getting discovered every month (Ramirez-Llodra et al.

2007). More and more mineral resources, petroleum and natural gas reserves are be-

ing identified on the ocean floor on a regular basis. Figure 1-1 shows an illustration

of the earth’s crust which indicates the diverse nature of ocean bed.

Figure 1-1: A cross-section through the Earth’s crust showing the different types of
plate boundary, the topography of the ocean floor and the distribution of the major
metal-rich deep-ocean mineral deposits. Image: Ian Longhurst (Copyright British
Geological Survey © UKRI 2018) is licensed under CC-BY 3.0 Lusty & Murton
(2018).

The stunning lack of knowledge regarding the oceanic environments is a result of

the challenging nature of this environment. Human divers cannot dive beyond a few

hundred meters, considering the extreme cases. The pressure increases with depth

specially built high pressure containers are needed which get bulkier as the depths

increase. The seawater and winds corrode metals faster and damages equipment.

Electromagnetic waves get attenuated fast making radio communication impossible

in deep waters. The fastest wireless communication uses acoustic waves giving a few

kbps of bandwidth at best. Ships and specially built underwater vehicles and sensors

are needed for exploring the deep sea, which are very expensive. Surveys are therefore

limited to a few hours per day and a few days per year and is always at the mercy of

the fast changing weather of the ocean.

2
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1.2 Deep sea mineral deposits

The challenging and hard to access deep seabed, which was once thought to be full

of monsters was later revealed to be a hotbed of resources. As seen in Fig. 1-1,

the deep seafloor, which is defined as depths exceeding 200m, is an active landscape

with volcanoes, tectonic plate boundaries, and relatively undisturbed seamounts and

plains. This complex geomorphology of the seabed produces a wide variety of seabed

containing different types of mineral deposits (Micallef et al. 2018).

Figure 1-2: Global distribution of the three primary classes of metal-rich deep-ocean
mineral deposits: seafloor massive sulfides (SMS); ferromanganese (Fe–Mn) nodules;
and ferromanganese (Fe–Mn) crusts. Spreading ridges and other plate boundaries
are shown. Abbreviations: CCZ = Clarion–Clipperton Zone; CIB = Central Indian
Ocean Basin; PB = Peru Basin; PCZ = Prime Crust Zone; PYB = Penrhyn Basin.
Map created using the NOAA National Geophysical Data Center and redrawn from
multiple sources, including Murton et al. (2000), Beaulieu et al. (2013), and Hein
et al. (2013). Copyright British Geological Survey, National Oceanography Centre
©UKRI 2018. Image from Lusty & Murton (2018) is licensed under CC-BY 3.0

3
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Weathering from continents accumulated on the seabed over millions of years gives

rise to the seabed deposits close to continental shelves, whereas plate tectonics and

minerals from the earth’s crust and mantle are responsible for the farther and deeper

deposits (Lusty & Murton 2018). Recently, researchers of University of Tokyo has dis-

covered a huge accumulation of rare earth metal deposits in the Pacific Ocean (Takaya

et al. 2018). Gas hydrates and methane cold seeps are other deep sea deposits (Wakita

2010). However, three types of mineral deposits are of high interest to the academia,

the industry and governments. These are seafloor massive sulfides, ferromanganese

nodules (Mn-nodules) and ferromanganese crusts (Mn-crust). Figure 1-2 shows the

distribution of these minerals around the world. They are distinct from each other in

the methods of formation, compostion, geology, exploration challenges and economic

potential.

Metal rich fluids seep out from the seafloor in tectonically active areas forming

hydrothermal vents or chimneys (Halbach et al. 1993). These get deposited in nearby

areas forming deposits which grow at a fast rate being replenished from below the

earth’s crust. Although they were discovered only in 1977 (Corliss et al. 1979), the

research interest grew and several sites were found around the world. They host a very

active benthic ecosystem under extreme conditions furthering the interest of biologists

and other researchers (Bodenmann, Thornton, Nakajima & Ura 2017, Thornton et al.

2015, Yoshino et al. 2018).

Minerals in the seawater precipitate on a hard nucleus such as a small piece of

rock, bone or old mineral deposit fragment, potato-like structures, rich in minerals are

formed over millions of years. They are called ferromanganese nodules or polymetallic

nodules (Mn-nodules). They are variable in sizes and shapes with dimensions ranging

from 1 cm to 12 cm in diameter (Lusty & Murton 2018). A hypothesis suggests

that Mn-nodules are formed by absorption of Mn by nodule substance, which is

subsequently oxidized by bacteria resulting in a nodule matrix. They are formed on

flat seafloor basins at depths exceeding 4000m (Weydert 1985, Bunchuk et al. 1995,

Kalyan et al. 2017).

4



Cobalt-rich manganese crusts (Mn-crusts) are formed in a process similar to Mn-

nodules formation, but on existing seabed rock formations around seamounts. They

are discussed in detail in the following section.

Metals such as manganese, cobalt, copper, aluminium, zinc, nickel and lithium

are uniquely important in sustainable technologies such as solar cells, greener smart

phones and batteries. Table 1.1 below summarizes applications of important miner-

als available in the seabed. The richness of minerals in these deposits have sparked

interest in commercially exploiting them (Hein et al. 2013). The efforts in this di-

rection, although started in 1970s, has been slow. Factors such as the availability of

metals from land based mines, increasing costs and ecological concerns delayed the

development of deep sea mining and exploration. Recently, a number of issues such

as child labor in mining communities in undeveloped countries, population growth,

political tensions and high demand for minerals caused a renewed interest in deep sea

minerals.

Table 1.1: Uses of important minerals obtained by deep sea mining

Mineral Uses

Manganese (Mn) Construction industry (Sulfur fixing, Deoxidizing,
Alloying properties with low-cost production)

Iron (Fe) Steel manufacturing
Various alloys

Cobalt (Co) Production of aircraft parts and
super alloys (high temperature resistance)
Cathode in Li-ion batteries

Rare earth elements Green/carbon-reducing technologies
(Yb, Ym etc.) Energy efficient lighting, Catalysis
Copper (Cu) Electricity, Communication
Silver (Ag) Electronic gadgets, batteries, jewellery
Gold (Au) Jewellery, Electricity as alloys
Zinc (Zn) Production of brass, bronze, paint

Galvanizing iron
Tin (Sn) Component of solder in high-tech industries

(smart phones, laptops)

Seabed mining has several advantages over terrestrial mining. They have higher

ore grades and more minerals present than terrestrial mines. No local human pop-
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ulation will be disturbed or displaced and permanent installations are not neces-

sary (Lodge & Verlaan 2018).

However, the impact of seabed mining also needs to be considered before disrupt-

ing these ecosystems. Various aspects are being studied by researchers and there is

a significant lack of information (Miller et al. 2018). The impacts include the per-

manent removal of top hard substrates, effects of sediments and wastes in the water

column, noise, vibration and lights due to the mining equipment (Lodge & Verlaan

2018). Whether the seabed communities can repopulate or relocate once the activity

has been completed is also a pertinent question Jones et al. (2018).

The ocean and its resources are considered to be “the common heritage of mankind”

(United Nations Law of the Sea Convention). An international authority under the

United Nations, called International Seabed Authority (ISA), is tasked with the re-

sponsibility of governing the deep seabed, including mining. by considering environ-

mental, economic and other factors, they issue licenses for exploration and mining for

deep sea mineral deposits to parties around the world (ISBA 2018, Lodge & Verlaan

2018, International Seabed Authority 2012).

1.3 Cobalt-rich manganese crusts

Cobalt-rich Manganese crusts (Mn-crust) are hydrogenetic deposits that form on the

slopes and shoulders of seamounts and guyots in geologically stable regions. They

are an important class of seafloor deposits and is considered to be the most difficult

to estimate and exploit. They are also called as ferromanganese crusts or simply

manganese crusts. These deposits contain Cobalt and Nickel in addition to various

rare earth elements such as Tellurium and Platinum, making them a potential target

for mining (He et al. 2011, Hein et al. 2013, Yeo et al. 2018). Due to the high Cobalt

content, which is twice that of land based deposits, they are called Cobalt-rich crusts.

Figure 1-3 shows the mechanism of formation of Mn-crusts. The Mn-crust layer

grows over millions of years by precipitation of metals and other elements dissolved

in the ambient seawater (Clark et al. 2013, Usui et al. 2017, Usui & Someya 1997).
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Figure 1-3: Mn-crust is formed by precipitation from the ambient seawater.Image
from Clark et al. (2013) copyright Secretariat of the Pacific Community (SPC) 2013.

Manganese and iron oxides function as a platform for these dissolved minerals to get

adsorbed on their surfaces and in the course of time forming Mn-crusts. The deposits

spread over several hundreds of square kilometers (Usui et al. 2007, Yamazaki et al.

1994, Yamazaki & Sharma 1998, Lusty et al. 2018) and can be up to 250mm in

thickness. The depths ranges from 800m to 2400m, with reports of Mn-crusts found

as deep as 5500m.

However, they are also very hard to survey and exploit. Since crust is strongly

attached to the base, it is more difficult to extract them. Since the thickness varies,

accurate estimates cannot be made from a visual survey or acoustic multibeam

surveys. This is the primary difference that makes surveys of Mn-nodules easier

than Mn-crusts. Nodule surveys were conducted from shipboard multibeam sur-

veys (Chakraborty et al. 2003)or using acoustic backscatter measured from a deep

tow vehicle (Weydert 1991, 1985, 1990). Other researchers used Autonomous Under-

water Vehicle (AUV) or Remotely operated vehicle based (ROV) photogrammetry

and sidescan sonar imagery to estimate the distribution of seafloor polymetallic nod-

ules (Hari et al. 2018, Schoening et al. 2017, Alevizos et al. 2018). However, these

methods cannot be applied to Mn-crusts since their thickness cannot be determined
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Figure 1-4: Image of Mn-crust deposits seen at Takuyo Daigo seamount in the north-
western Pacific ocean. This image is captured from the video feed of ROV Hyper-
Dolphin during the NT13-13 cruise (JAMSTEC 2013).

from their surface appearance alone. Therefore, almost all current studies of Mn-crust

relied on samples to estimate the tonnage Hein et al. (2013), Du, Ren, Yan, Shi, Liu

& He (2017), Du, Wang, Du, Yan, Ren, Shi & Hein (2017).

1.4 Scope of the research proposed

Figure 1-5 show image of a Mn-crust sampled by an ROV. Figure 1-4 shows Mn-crusts

spread on the seafloor as seen from ROV Hyper-dolphin JAMSTEC (2013). It can be

seen that in order to create volumetric estimates of Mn-crust, which are essential for

making informed decisions regarding mining or modeling the distribution, we need to

estimate the thickness of these layers and the area of deposition.

The thickness of Mn-crust varies due to factors such as slope, seawater conditions,

depth, historical landslides and sediment cover (Usui et al. 2017). This makes it

difficult to make reliable thickness estimates for large areas by using the existing

method of sampling. This difficulty can be overcome by in-situ measurements using

sub-bottom sonars (Gaowen et al. 2005). This was first demonstrated by Thornton

et al. (2009).
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Figure 1-5: Cross-section of a Mn-crust sample, showing crust (black colour) de-
posited as a layer over a substrate rock (brown with intrusions). The sample has a
thickness of 38mm. This sample was collected by researchers during the NT13-13
cruise (JAMSTEC 2013).

The lateral distribution measurements can be done using a variety of sensors such

as multibeam sonars or 3D mapping systems. Acoustic mapping is widely used for

other seafloor surveys, because they can cover large areas at lower resolutions (Brown

et al. 2011, Chakraborty & Paula n.d.). However, they provide less information for the

task at hand. Since experts rely on ROV video feeds to manually locate Mn-crusts,

visual mapping systems are a natural choice. By automating the detection of crusts

using machine learning algorithms, large datasets can be analyzed quickly. Carrying

both these sensors on a single robotic vehicle and conducting surveys together is

further advantageous.

Having different sensors onboard is not sufficient without efficient algorithms. In

addition, this gives rise to a new challenge in sensor fusion. The data from different

sensors must be fused in a meaningful way so that maximum information regarding

the distribution of Mn-crusts can be extracted. This is the focus of the current thesis.

A visual summary of the research background is provided in Fig. 1-6. The primary

method for studying deep seafloor resources in the past was physical sampling done

using big bulky vehicles such as ROVs. It costs time and money, yet provides low spa-

tial resolution information. In the present, continuous surveys using different sensors

mounted on robots such as AUVs are gaining popularity. In order to fully utilize the
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Figure 1-6: A summarizing illustration showing the background and scope for the
proposed research

potential of such surveys, data fusion methods that combine different sensor data into

meaningful information relevant for the survey being conducted is essential. In the

proposed research, visual 3D data collected by a light-sectioning camera system and

acoustic data collected by a subbottom acoustic probe are combined into volumetric

distribution estimates of Cobalt-rich Manganese crust deposits.

1.5 Organizaton of dissertation

Chapter 1 provides an introduction to the importance of Mn-crusts and the oppor-

tunities and challenges in getting accurate information about their local distribution.

Chapter 2 details the relevant literature regarding past deep-sea mineral surveys and

other relevant technologies which can be utilized for accurately surveying Mn-crusts.
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The proposed work is outlined addressing the identified challenges using available

technologies.

Chapter 3 describes the methods and algorithms in the proposed work in detail. The

various assumptions, parameter selection and an estimate of errors is also explained.

Chapter 4 describes the results from implementing the proposed method on a large

volume of seafloor data obtained from field trials. The results are analyzed in detail

to observe the performance of the method and derive insights into the data.

Chapter 5 summarizes the contents of the dissertation, outlines the advantages,

scope for future research in this direction and provides concluding remarks.

Appendix A provides a description of the underwater robots used to collect the

data used in this dissertation.
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Chapter 2

Literature Review and Research

Objectives

This chapter describes the past efforts to study and survey Mn-crusts and identifies

the objectives of the proposed research. From the point of view of exploiting these

resources, it is necessary to find accurate volumetric distribution estimates. This in

turn requires both the subsurface thickness of the crust layer and their lateral %

coverage to be known (Glasby et al. 2015).

2.1 Past surveys of Mn-crusts

In order to compare different surveys of Mn-crust, from the perspective of volumetric

estimation, Fig. 2-1 shows the survey resolution (number of measurements in fixed

area) for different studies (not to scale). This is important because, although some

studies collected large number of samples from seamount scale areas, they are not

sufficient to study the Mn-crust variation in a given area. So the mere number of

samples collected without regard to the area of survey is not enough.

Initial surveys of Mn-crusts were done using dredging from a ship (Hodkinson &

Cronan 1991, Aplin & Cronan 1985), but samples recovered using this method are

often damaged and cannot provide information about how representative the samples

obtained are of the actual distribution since the method is inherently biased towards
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Figure 2-1: Timeline of Mn-crust exploration

loose rocks and edges that are more likely to be snagged. More recently, core drilling

and sampling from ROVs has been shown to be effective to collect information about

the thickness and elemental composition of samples whose context is understood from

camera footage (Usui & Someya 1997, Usui et al. 2007, 2017). However, obtaining

samples using this approach is time consuming, and the spatial resolutions that can

be achieved through pointwise sampling is limited. Regarding the lateral distribution

of exposed crusts, many studies have been carried out using video or still cameras

mounted on towed sleds or ROVs, where the footage is manually labelled by human

experts into categories such as Mn-crusts, nodules or sediment deposits, which are

compiled into qualitative estimates of distribution (He et al. 2011, Yamazaki et al.

1994). However, manual labelling is time consuming, making it difficult to scale the

operations to larger regions. In addition, measurements of distances within video

streams or photos (without a reference measure in the image) is inaccurate due to

perspective effect.
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Mn-crust estimation at seamount scale regions have been attempted by researchers

(Du, Ren, Yan, Shi, Liu & He 2017). Recently, efforts are underway to replicate the

acoustic sub-bottom thickness measurement system from other countries around the

world Hong, Feng, Huang, Wang & Xia (2019), Hong, Feng, Huang & Wang (2019).

Figure 2-2 shows the sampling of a Mn-crust from the ocean bed using an ROV

and robotic arm.

Figure 2-2: Sampling of Mn-crust from an ROV

2.1.1 In-situ Measurements of Mn-crust

In order to realise high resolution, scalable estimation of Mn-crust distribution, it

is necessary to develop in-situ methods to determine the lateral distribution and

thickness of Mn-crusts without physical sampling, and further develop algorithms to

extract information concerning their distribution and abundance. Since Mn-crusts

form a layer of deposit on top of a substrate rock, it is possible to distinguish the

layers using acoustic methods and measure their thickness as long as the Mn-crusts

and their substrates have distinct acoustic impedances (Thornton et al. 2009, 2013).

An AUV was developed for continuous in-situ survey of Mn-crusts (Nishida et al.

2016). The AUV is called Boss-A and is shown in figure A-1. It uses acoustic sub-
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bottom sonar sensors (Thornton et al. 2013) and a structured light 3D mapping

system using a single camera and sheet laser (Bodenmann et al. 2012, Bodenmann,

Thornton & Ura 2017, Bodenmann, Thornton, Nakajima & Ura 2017). This includes

a real-time feedback of a double-gimbal system that orients the acoustic probe used

to make measurements of crust thickness to be normal to the seafloor by analysing

the 3D visual mapping data in real time (Sato et al. 2013). This allows acoustic

measurements to be made on steeply sloped areas and over complex terrains. The

3000m rated AUV weighs 600 kg and has successfully conducted several dives in the

northwestern Pacific ocean. The data collected during these dives is analysed in the

proposed research work.

2.1.2 Seafloor Classification

While acoustic methods are effective for determining subsurface structure, it can be

difficult to determine if the signals obtained are of Mn-crust or different type of lay-

ered seafloor. Since one of the distinguishing features of Mn-crusts is their colour,

visual methods can be effective to clarify this uncertainty as long as the process of

identification can be automated. Automatic classification of seafloor imagery has been

demonstrated for a variety of applications such as identifying coral species (Mehta

et al. 2007, Stokes & Deane 2009, Friedman 2013, Gomes-Pereira et al. 2016, Alonso

et al. 2019, Bongiorno et al. 2018) and seafloor fauna (Lüdtke et al. 2012, Lim 2017).

In other studies of seafloor classification, researchers have attempted to classify the

seafloor roughness using shipboard multibeams using neural networks (Chakraborty

et al. 2003). Other researchers have attempted classification based on acoustic map-

ping data (Hamilton & Parnum 2011).

In Thornton et al. (2013), classification of Mn-crust covered seafloor was attempted

for volumetric estimation. In this work, the seafloor was segmented into regions of

crust, sediment and a mix of the two using Gaussian Mixture Models (GMM) and an

average of acoustic measurements made was taken within each segment to estimate

the abundance of crust in each region. A limitation of this approach is that the

resolution of the volumetric distribution maps generated is dependent on the size of
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individual segments found in the data. Furthermore, the computational cost of the

segmentation technique used is high and does not readily scale to the 2 orders of

magnitude larger regions mapped in this work. However, this method requires the

seafloor to be segmented into arbitrary sized patches, which is time consuming. A

new method was proposed whose performance does not deteriorate as the seafloor

area increases by the author in Neettiyath et al. (2015). The method segments the

seafloor uniformly and uses a Support Vector Machine (SVM) for classification (Kubat

2015). The seafloor classes were expanded to include Mn-nodules as proposed by He

et al. (2011) and transition regions were eliminated by increasing the resolution of

segmentation.

2.1.3 Volumetric Estimation

The volume of Mn-crust present in the mapped area was estimated by combining the

thickness measurements with the visual classification. In locations where Mn-crust

is detected, a thickness value was estimated using the algorithms developed by the

author (Neettiyath et al. 2017), building upon the algorithms developed by Thornton

et al. (2013). This information was then extrapolated into areas where acoustic

measurements were not made, but are identified to be crust using an inverse distance

weighted averaging (Neettiyath et al. 2019). A percentage cover value was estimated

from the classification information. Using the density of crust samples collected from

the area in past ROV based surveys, a mass estimate can be calculated. This process

is then repeated over other surveyed areas to cover large areas.

Mn-crust deposits are located thousands of metres below the sealevel as thin

deposits only a few cm thick. Therefore, accurate measurements cannot be made

from shipboard surveys or high-altitude cruising vehicles. A specialized sensor suite,

nicknamed CRC system (Cobalt-Rich Crust mapping system) was developed for this

task. Figure 2-3 shows a typical mapping scenario by the CRC system. The sensors

which are part of the CRC system are described in section 2.2. The underwater robots

which carried these sensors to the survey location is described in section A.
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Figure 2-3: Mn-crusts are surveyed by acoustic and visual systems mounted on an
underwater robot hovering at about 1.5m above the seafloor.
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2.2 Sensor suite for Mn-crust survey

The volumetric distribution of Mn-crusts can be estimated by measuring the thickness

of the deposits and their lateral coverage. Section 2.2.1 describes the design and

construction of the acoustic sub-bottom sonar developed for determining the Mn-

crust thickness. The 3D mapping system described in section 2.2.2 generates a 3D

mosaic of the seafloor, which was analysed to determine the lateral coverage.

2.2.1 Acoustic system

The acoustic system is built around a high intensity parametric sub-surface sonar that

records sub-surface reflections of the seafloor. Figure 2-4 shows a typical measurement

scenario on a Mn-crust sample. The recorded signal, in an ideal scenario, will consist

of two major reflections, one from the top of the seafloor (i.e. top of the Mn-crust)

and another from the interface between the Mn-crust and the substrate rock on which

it is formed. The time delay between the reflections is twice the thickness of the crust

multiplied by the velocity of sound in Mn-crust. Using the velocity measured in prior

studies Thornton et al. (2009, 2011), the thickness is calculated.

The acoustic probe consists of a 5 channel annular array of 2MHz piezoelectric

transducers for transmission and a 200 kHz piezoelectric transducer in the centre for

reception Thornton et al. (2013). The probe is dynamically focused on the seafloor

at altitude ranges from 0.5m up to 2.5m. It focuses with a -3 dB footprint of 20mm

diameter on a target 1.5m away. The probe has a vertical spatial resolution of about

1.4mm and penetrates approximately 30 cm below the top-surface of the crust.

The measurements required the probe to be orthogonal to the measured surface

for best results. This was achieved by mounting the probe on a two axis gimbal

frame Sato et al. (2013). Using the light sectioned images recorded by the camera

and DVL measurements of altitude, the slope of the seafloor is calculated in real-

time. The optimal angle of the gimbals are calculated and transmitted to the gimbal

actuators so that the beam is oriented normal to the seafloor. The processing of the

18



Figure 2-4: The acoustic subsystem works by calculating the time of flight between
the reflections from the top and bottom of the crust layer. The deatiled description
of the thickness measurement algorithm is described in section 3.3.
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Table 2.1: Specifications of the acoustic sub-bottom probe

Frequency 2MHz (carrier)
200 kHz (signal)

Footprint < 2 𝑐𝑚 (dynamic focusing)
Operating altitude range 1.5 ± 0.5𝑚
Mounting 2-axis gimbal
Range (roll gimbal) ±15∘

Range (pitch gimbal) ±45∘

Ping rate 20Hz

recorded signals for calculating Mn-crust thickness is explained in detail in section

3.3.

2.2.2 Visual system

The visual system uses a light sectioning based 3D mapping system to generate 3D

colour maps the seafloor using a single camera, a sheet laser and LEDs for illumina-

tion. The color 3D maps of the seafloor generated is analysed using the algorithm

described in section 3.2 to calculate a lateral coverage of Mn-crusts.

The principle of operation of the visual system is shown in Fig. 2-5 Bodenmann,

Thornton & Ura (2017). The images captured by the camera, which operates at

15 fps, consist of an illuminated section on the bottom and a dark section on the top.

The sheet laser is configured so that the line falls into the dark section of the image

at the operating altitude of the acoustic probe. The deformation of the laser line,

which corresponds to the bathymetry of seafloor, can be used to calculate the xyz

coordinates of the points that fall on the line, provided the position and orientation

of the AUV and the accurate position and alignment of the sensors within the AUV

are known. As the AUV moves, these points will come in the illuminated region of

the image; the RGB color values of the point can then be identified. Thus, a point

cloud containing the coordinates of the points on the seafloor and their RGB colour

values can be generated for the region surveyed by the AUV.

Table 2.2 lists the specifications of the visual system. The swath of the transect

(width of the 3D map) is a function of the camera opening angle and the altitude from
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Figure 2-5: The bathymetry is measured by calculating the deformation of a sheet
laser on the seafloor. When the same point comes into the illuminated part of the
camera image, the colour values are measured.

Table 2.2: Specifications of the 3D visual mapping system

Type Monocular vision and structured light
using sheet laser

Illumination 2 x LED panels (20,000 lm/panel)
Laser power 120mW
Laser wavelength 532 nm
Camera resolution 1328 x 1048
Camera frame rate 15 fps
Laser to camera baseline 1.22m
Swath (at 1.5m) 1.5m
Bathymetry resolution (at 1.5m) 1.4mm (cross-transect)

6.7mm (along-transect)
3.0mm (depth)

Image resolution (at 1.5m) 1.4 mm
Target operating altitude 1.5 ± 0.5𝑚
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which the survey was conducted. From an altitude of 1.5m and a camera opening

angle of 60∘, the system used in this paper generates a map of about 1.5m swath.

2.2.3 Navigational system

The navigational system supports the visual and acoustic systems by localizing the

measurements. In AUV Boss-A, the navigation data of the AUV is shared, whereas

for ROV, a separate dedicated set of sensors are mounted.

The navigational sensors include a Doppler Velocity Log (DVL), an Inertial Mea-

surement Unit (IMU), and a pressure (depth) sensor. The data from all the sensors

are combined using dead-reckoning to estimate the position of the robot. This po-

sition information is then used for processing the data generated by the visual and

acoustic systems.

2.3 Research Objectives

Create a sensor fusion method that can identify the presence of Mn-crusts from visual

3D maps, calculate their thickness from acoustic sub-surface reflections and combine

the two into volumetric estimates which can be used for studying distribution char-

acteristics of Mn-crusts.
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Chapter 3

Methods and Algorithms

This chapter describes the methods and algorithms developed for analyzing this large

data to come up with volumetric distribution estimates of Mn-crusts, an overview of

which is described in section 3.1. Three main algorithms were developed in this work

which perform classification of seafloor 3D maps, analyse sub-surface reflections to

calculate the thickness of the crust layer and extrapolate the thickness measurements

into larger areas to perform volumetric estimations. These algorithms are respectively

described in the following sections.

3.1 Overview of data analysis framework

The CRC system mounted on an AUV/ROV surveys the Mn-crust covered tops and

shoulders areas of seamounts and collects data, including images, acoustic reflections,

AUV navigational and other sensor logs and the metadata associated with them. A

typical dive gathers several tens of gigabytes of data per hour. The workflow for

processing the large amounts of data is explained in Fig. 3-1. The acoustic and visual

data are processed separately and then combined using localization information from

the navigation data.

The data generated by the systems is divided into seafloor sections of roughly 10m

length, processed separately and the results are compiled. This division limits the

process workload on the computer and allows for distributed processing. Visual data
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is processed to generate 3D maps and is then classified into sections of crust, nodule

and sediment to generate a class map, as described in section 3.2. The percentage cov-

erage of exposed crust can be calculated from this map. The acoustic measurements

over non-crust regions are discarded and crust reflections are processed to make fil-

tered thickness measurements, as described in section 3.3. These thickness values are

extrapolated into the available crust areas and the results are integrated to calculate

the total volume of crust present in the region, as described in section 3.4.

3.2 Visual data interpretation

The visual system described in section 2.2.2 captures light sectioned images of the

seafloors which are analysed to generate a 3D colour reconstruction of the seafloor as

a point cloud (Bodenmann, Thornton & Ura 2017). Each point in the point cloud will

have its position (xyz coordinates in cardinal directions) and colour (RGB values).

The 3D map is then classified into one of the 3 types of seafloor present in the

region - namely continuous Mn-crust deposits, manganese nodules (Mn-nodules) and

sediments (He et al. 2011). Examples of each type are shown in Fig. 3-2 and are

denoted as crust, nodules and sediment respectively. Identifying the type of seafloor

is usually performed by experts from the video streams generated by ROVs. A typical

dive of an AUV/ROV is several hours long and gathers several gigabytes of data per

camera per hour. Classifying all the data is a time consuming and repetitive task,

which is poised favourably for automation.

Researchers have attempted to classify the seafloor using GMMs into crusts, sedi-

ments and transition areas, which are a mix of crusts and sediments (Thornton et al.

2013). This method however suffered from several drawbacks. The classification

was performed of non-uniform sized segments extracted from the seafloor followed

by extracting the shape and colour parameters of each segment. Segmentation is

a computationally intensive process and the time increases exponentially w.r.t. the

seafloor area; hence this method is not scalable. Other attempts to classify Mn-crusts

into crusts and non-crust regions used Support Vector Machine (SVM) classifiers in
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Figure 3-2: Different types of seafloor present in the area. (a) Top view of a 21m
section, with insets showing different types. (b) Detailed views of each type. (c)
Bathymetric maps. The frames are colored as follows: (Red) Continuous Mn-crust
deposits. (Blue) Sediment covered areas. (Green) Nodules of varying sizes.

order to filter out non-crust measurements (Neettiyath et al. 2015). However, the

classification was restricted to small sections of seafloor where acoustic measurements

were made. In other applications, classifying seafloor images to identify various an-

imal, plant and coral species have been widely attempted (Friedman 2013, Lüdtke

et al. 2012, Stokes & Deane 2009, Schoening et al. 2012), but were limited to image

classification in the absence of bathymetric information. In terrestrial applications,

researchers have used SVM to classify 3D point clouds in order to identify broccoli

heads (Kusumam et al. 2017). Although neural networks are widely used in image

classification tasks (Marcos et al. 2005, Kubat 2015), SVMs were found to perform

better with well defined classes and large training datasets (Caruana & Niculescu-

Mizil 2006, Bongiorno et al. 2018). Since the SVM classification is faster, processing
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Figure 3-3: The seafloor map is divided into small sections called cells and the cells
are analysed further.

times are reduced with large datasets. In addition, SVM is conceptually simpler and

thus easier for post-analysis such as the impact of certain features on the classification.

A robust, high performance SVM classifier was constructed with a polynomial

kernel using python for identifying Mn-crust from seafloor bathymetry and colour

maps generated by the system (Unpingco 2016, Pedregosa et al. 2011). In order to

make the classification scalable to large areas, the seafloor was sampled into uniform

sections of 10 cm squares (called a cell) and classified, reducing the processing times

to be linearly proportional to the area of seafloor being classified. Further improve-

ments in processing times was achieved by rewriting the software to utilize parallel

processing capabilities of modern microprocessors. Two large datasets (see Table 3.2

for details) were selected as training and testing, and cross validation sets to ensure

that different variations of seafloor conditions are captured in the training data and

can result in a robust classifier by preventing overfitting to particular lighting condi-

tions or observation altitudes. By optimizing the cell size, choice of the feature vector

and hyper-parameters of the classifier function, further improvements in classification

performance was achieved.
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Table 3.1: List of features calculated for each cell (Bold font indicate the features
chosen for use in the final classifier based on the F1 scores calculated, see Fig. 3-7)

Bathymetric Features Image Features
𝑓1 Slope 𝑓5 Luminosity mean
𝑓2 Vertical standard deviation 𝑓6 Luminosity standard deviation

𝑓3 Roughness mean 𝑓7 Luminosity entropy

𝑓4 Roughness standard deviation 𝑓8 Red intensity mean

𝑓9 Green intensity mean
𝑓10 Blue intensity mean

𝑓11 Red intensity standard deviation

𝑓12 Green intensity standard deviation
𝑓13 Blue intensity standard deviation

A cell is defined as the unit seafloor area, which was classified into one of the 3

seafloor types. Each cell is an independent 3D point cloud with each point described

by its colour (RGB) and location (xyz) values, and has no overlap with adjacent cells.

Several parameters, called features, are calculated for each cell describing its colour

or texture. A list of all the calculated features are given in Table 3.1. If a set of

features (feature vector) that can accurately describe the cell can be identified, a high

performance classifier can be built to classify the seafloor.

Bathymetric features describe the shape of the point cloud and are calculated from

the xyz coordinates. The standard deviations in the vertical direction is a measure

of the spread of the point cloud (f2 ). The slope of the seafloor, independent of the

direction it is facing is represented by f1 (measured as the altitude angle or elevation

angle) and is calulated as the deviation of the normal of the seafloor (N, found by

using Principal Component Analysis (PCA) on the point cloud).

𝑓1 = 90 − cos−1(N ·V) (3.1)

WhereV = [0, 0,−1]𝑇 is the unit vector along Z axis facing away from the seafloor.

The seafloor is relatively smoother in sediment covered areas and is more rough for

crusts and nodules. This surface roughness is captured in two features, as defined

in the ISO 4287:1997 standard, mean deviation and the standard deviation of the

deviation from the plane of the cell in the normal direction (f3 and f4 ). Assuming
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that the cell consists of n points, with each point 𝑖 being (𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑅𝑖, 𝐺𝑖, 𝐵𝑖), the

deviation of each point can be calculated as

ℎ𝑖 = |N · [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]
𝑇 | (3.2)

f3 and f4 are then calculated as the mean and the standard deviation of all the

points within the cell respectively.

𝑓3 =

∑︀
𝑖 ℎ𝑖

𝑛
(3.3)

𝑓4 =

√︂∑︀
𝑖(ℎ𝑖)2

𝑛− 1
(3.4)

Image features represent the features calculated from the colour of the seafloor.

The simplest image features include the mean RGB values of the cell (f8 , f9 and f10 )

and their standard deviation (f11 , f12 and f13 ). Since crusts and nodules appear darker

than the sediment areas, a luminosity image of the cell is constructed. Luminosity of

a point 𝑖 is a measure of brightness of the point and can be calculated as

𝐼𝑖 = 0.21𝑅𝑖 + 0.72𝐺𝑖 + 0.07𝐵𝑖 (3.5)

The mean and standard deviation of luminosity for each cell are calculated as f5

and f6 respectively.

𝑓5 = 𝐼 =

∑︀
𝑖 𝐼𝑖
𝑛

(3.6)

𝑓6 =

√︂∑︀
𝑖(𝐼𝑖 − 𝐼)2

𝑛− 1
(3.7)

It can be seen that crust regions have a less uniform texture than the sediment

and nodule regions. This is represented by entropy, a measure of randomness of the

image. Entropy (f7 ) is calculated from the luminosity image using the below equation.
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Figure 3-4: Features used and their variation w.r.t. seafloor types. The values are
normalized to approximately zero mean and unit variance across the whole training
data for a cell size of 10 cm. The bold font indicates features chosen for use in the
final classifier based on the F1 scores calculated, see Fig. 3-7.

𝑓7 = −
∑︁
𝑗

𝑃 (𝐼𝑗) log(𝑃 (𝐼𝑗)) (3.8)

where 𝑃 (𝐼𝑗) is the probability that a random point 𝑗 will have a luminous intensity

𝐼𝑗.

The normalised values of all features can be compared using Fig. 3-4. It can be

noted that some features are good for identifying sediment cells (f6 , f7 , f11 , f12 , and

f13 ); f2 shows high variations for crust sections and f1 has high variation for all 3.

Further investigations showed that combining features into feature sets can accurately

distinguish between the three classes.

The size of the cell also plays an important role in accurately capturing the seafloor

features. A small cell will have high variations for different seafloor types, but cannot

capture large features of the seafloor, such as large rocks or low spatial frequency

textures. A large cell will cause dilution of small features, but can capture large
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Figure 3-5: The variation in features when the cell sizes change. While the absolute
values of the features vary, the relative difference between different seafloor types
remains largely unaffected. This shows that the choice of cell size does not have a
significant impact on the classification performance.

features. In order to check the effect of the size of cell w.r.t. the features, the training

data was sampled at different cell sizes and the variation of parameters are observed.

It can be seen that the size of the cell, though affects the absolute value of parameters,

does not change their relative value among crust, sediment and nodules. Therefore,

for the given resolution of seafloor 3D colour map data, classification can be performed

using the above parameters without significant regard to the cell size. Since using

a large cell will cause trimming larger areas near map edges, in order to maximise

the area covered for volumetric estimation, a smaller cell size of 10 cm is selected. A

representative set of features are shown in Fig. 3-5.

In order to identify the optimal feature vector, optimize the hyper-parameters and

train the classifier, two datasets are selected and manually labelled. A summary of

the two datasets is shown in Table 3.2. Dataset 1 consists of 58860 cells and dataset
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Table 3.2: Statistics of manually labelled datasets used in building the SVM classifier.

Dataset 1. Training and testing 2. Cross validation
Dive number BSA038 BSA031
Collected on 2017 January 21 2016 January 24
Crust area (𝑚2) 140 179
Sediment area (𝑚2) 164 107
Nodules area (𝑚2) 285 162

2 consists of 44830 cells. The training data was constructed by randomly selecting

5000 cells from dataset 1. The testing data for the classifier, whose results were used

to tune the SVM, was constructed by randomly selecting a different set of 5000 cells

from dataset 1. The entire dataset 2 was used as the cross validation dataset and was

used in the final step for selecting the best performing feature set. Since the datasets

are constructed from dives conducted at different times in different locations, the

robustness of the classifier would be higher.

In order to select the optimal classifier, it is important to choose the right set of

performance measures for the application (Kubat 2015, Stehman 1997). For example,

Fig. 3-6(a) shows the confusion matrix of the classifier before optimization. Although

the overall accuracy of the classifier is 84.3%, only 76.0% of the crust cells are classi-

fied accurately. This is not desirable since the objective of the proposed algorithm is

to accurately determine Mn-crusts distribution. Therefore, the weight of the crust

cells is increased to twice as that of nodules or sediments during training so that

the classifier prefers crusts over other seafloor types. Also, F1 score is used as the

measure of performance instead of accuracy. Also, better measures of classification

performance of crust as compared to overall accuracy was selected - precision and

recall. Precision is a measure of the fraction of Mn-crust among all cells that was

predicted as Mn-crust. Precision for class 𝑖 is calculated as

𝑃𝑟𝑖 =
𝑁 𝑖

𝑖∑︀3
𝑗=1 𝑁

𝑗
𝑖

(3.9)

Where 𝑁 𝑗
𝑖 is the number of cells of class 𝑖 classified as class 𝑗.
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(a) (b)

Figure 3-6: Confusion matrix of classifier a) before optimisation b) after optimisation.

Recall is a measure of the fraction of Mn-crust that was identified correctly. Recall

for class 𝑖 is calculated as

𝑅𝑒𝑖 =
𝑁 𝑖

𝑖∑︀3
𝑗=1𝑁

𝑖
𝑗

(3.10)

F1 score combines Precision and Recall with equal consideration to both and is

used as the single performance parameter objective for the classification task consid-

ered in this paper. Since accurately identifying crusts is important, F1 score for class

1 (Crust) is calculated and optimized.

𝐹 𝑖
1 =

2
1

𝑃𝑟𝑖
+ 1

𝑅𝑒𝑖

(3.11)

The feature set with the best classification performance was identified by doing an

extensive search of all possible feature vectors falling under three categories - image

features only (𝐶1, which is the traditional image classification problem), bathymetric

features only (𝐶2) and a combination of both image and bathymetric features (𝐶3).

An exhaustive list of feature vectors are constructed and the classifiers with the

highest F1 -scores are selected. Feature vectors from 𝐶3 performed better than others

indicating the usefulness of additional bathymetric data. Fig. 3-7 shows the accuracy
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values for the best two classifiers for each feature vector length from 𝐶3. It can be seen

that the score increases as the number of features increase. However this could also

happen due to overfitting the classifier. To verify this, cross validation accuracy using

dataset 2 is plotted alongside for each candidate. The classifier 𝜁9, with 9 features (f1 ,

f3 , f4 , f6 , f7 , f8 , f10 , f11 , and f13 ), has both the highest CV scores of 90.0% accuracy

and 87.7% F1 -score. This feature vector was selected for the SVM classifier and is

highlighted in bold in Fig. 3-7. Although only the red and blue channel features are

present in the final feature vector, by looking at all the feature vectors in Fig. 3-7,

the performance of the classifier appears to be mostly unaffected by the hue of the

image. The decision boundary of the classifier 𝜁9 shows that crust is more prevalent

in steeper areas. The mean roughness value is higher than the standard deviation of

roughness for nodules indicating an undulating texture. These results along with the

high accuracy indicates a classifier suitable for classifying seafloor 3D colour point

clouds.

The classifier was further tuned by optimizing the hyper-parameters which influ-

ence the SVM decision function. Two methods are typically used by researchers- grid

search and random search (Bergstra & Bengio 2012). Grid search is exhaustive, time

consuming, and limited in range of values, but provides accurate results; whereas

random search is relatively faster, but gives approximate results over larger range

of values. The best values were chosen by conducting a random search over a large

range of parameter values followed by a extensive grid search in the vicinity of the

best performing parameter values calculated by the random search. 3 kernel functions

(Radial Basis Function - RBF, polynomial and linear) were considered in each case.

This process was repeated for each kernel type and a polynomial kernel of 2nd degree

was chosen for the final classifier.

Using the selected classifier, the seafloor data is classified and crust sections are

identified. A thickness value is identified in the crust regions.
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Figure 3-7: Performance of the feature vector size on classification. Beyond 7 features,
increasing the number of features increases scores by a minimal amount. However,
on cross-validation, the higher results turn out to be due to overfitting. The selected
classifier (𝜁9) is highlighted.

3.3 Acoustic data interpretation

Figure 3-8 shows the operation of the double gimbal used to orient the beam normal

to the seafloor.

Using the data acquired by the probe, the thickness of the crust layer can be deter-

mined from the acoustic signals based on the acoustic velocity. However, automated

and reliable extraction of this information in the presence of noise due to scattering,

multi-path reflections, local inclusions inside the crust layer, fluctuating signal levels

and signal attenuation is not trivial. In order to constrain the outputs of algorithms

to extract the thickness of exposed crust layers, the fact that the thickness of the

layers is typically locally continuous is leveraged (Neettiyath et al. 2015). The pro-

posed method uses a combination of image processing and acoustic signal processing,

and instead of considering signals individually, translates successive measurements

into a spatial frame and applies image processing techniques to find layers that are
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Figure 3-8: Operation of gimbal on AUV BOSS-A.

consistent, and that exposed crusts are more easily confirmed using visual rather than

acoustic methods.

Acoustic reflections made over seafloor sections classified as crust are selected and a

thickness value is estimated using an improvised version of the algorithm described in

3.2. The acoustic measurements are corrupted by noise generated by scattering, multi-

path reflections, and local inclusions in the crust layer (Jackson & Richardson 2007).

In order to identify a continuous layer of Mn-crust from successive measurements,

spaced approximately one cm apart, a 4-step algorithm is used which is a combination

of several image processing and signal processing tools. The 4 steps are filtering

individual pulses, extracting signal boundaries, re-framing the signal into a distance

based grid, and identifying secondary reflections to calculate thickness.

The measurements begin with the firing of a short amplitude modulated 2MHz

burst, and recording its reflections for 4.096ms where measurements are repeated

at a sampling interval of 50ms. An arbitrary number of pulses (denoted as N) are

stacked together to form a frame. N is decided by the user depending on the number

of pulses to be processed. The frame is formed in such a way that each pixel is a

signal value, each vertical line from top to bottom is the recording of a single pulse,

and these are stacked consecutively from left to right. Each frame is treated as a 2-D
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Figure 3-9: Flowchart of thickness measurement
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grayscale image. Since the axes are aligned with respect to time, it does not always

scale linearly to distance. In order to reconstruct the physical scales, the data are

plotted on a distance scaled axes based on the vehicle’s navigation data and the angle

of the gimbals in later processing stages. The probe then enters a standby mode until

the beginning of the next pulse.

The process of finding thickness of Mn-crust from the recorded data consists of

four steps - filtering individual pulses, extracting signal boundaries, re-framing the

signal into a distance based grid, and identifying reflections to calculate thickness.

The pulse transmitted from the acoustic probe is a parametric wave whose shape

can be approximated into an exponentially decaying sine wave. By deconvolving this

signal with the reflected signal, the exact instants where the reflections happened

can be identified from the recorded signal. However deconvolution is highly sensitive

to noise and noise levels are very high in underwater measurements. Therefore, an

equivalent operation was performed by calculating the cross spectral density between

the two signals. The recorded signal was cropped using a moving rectangular window

and the cross spectral densities are calculated at regular intervals. An analysis of

the resultant spectrum reveal that the strongest components in the spectrum occur

around 200 kHz, the transmitted signal frequency, as shown in Fig. 3-10. The spectral

components that fall within the 3 dB bandwidth - which was identified to be between

70 kHz and 300 kHz - are selected and a filtered pulse is reconstructed by adding these

components to increase the signal to noise ratio.

The reconstructed signals are assembled into an image frame using the methodol-

ogy explained in section 3.3. This image is then filtered using a median image filter in

order to remove shot noise without blurring the image. In the frame, the reflections

from the crust are continuous regions having relatively high intensity values. They are

selected by thresholding the image using an adaptive threshold value. Otsu’s method

is used for calculating the threshold value Otsu (1979). The adaptive threshold will

ensure that variations in signal levels across different datasets arising due to changes

in the underwater environment and changes in the system tuning does not affect the

results. The resulting binary image will have several small disconnected peaks. In
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Figure 3-10: Cross correlation spectrum. The 3 dB bandwidth is highlighted

order to consider these into the signal region, a morphological closing operation is per-

formed using a rectangular kernel of 6 × 11 pixels. The top and bottom boundaries

of the signal region is then extracted as the first non-zero line with a minimum width

(a value of approximately 7.5mm was used) from the top and bottom of the image

respectively. Further processing focuses only in this region to find the reflections and

thickness.

The physical nature of Mn-crusts dictate a dependence on spatial scales and is

independent of temporal aspects such as the frequency of measurement or the speed

of AUV. Thus, for further processing, the signals are transformed into a spatial 2-D

frame. A point in 3-D space is identified for each of the pulses as the highest point

of the top line. The coordinates of these points are calculated using the localiza-

tion information of the AUV and the pose of the acoustic probe using a coordinate

transformation. A line is then traced through these points in 3-D space, which is

considered as the top surface of the Mn-crust. The distance along the this line is

calculated and is used as the horizontal coordinate for the frame. The trace distance

is sampled at uniform intervals of defined horizontal resolution (the authors used a

resolution of 0.01m, which is the approximate average physical distance between two

adjacent pulses). The vertical resolution was calculated using equation 3.12.
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𝑉𝑟𝑒𝑠 =
𝑥𝑠ℎ𝑖𝑓𝑡 · 𝜈𝑠𝑜𝑢𝑛𝑑

2 · 𝑓𝑠
(3.12)

where 𝜈𝑠𝑜𝑢𝑛𝑑 = 2932 m/s is the velocity of sound in Mn-crust Thornton et al.

(2009), 𝑥𝑠ℎ𝑖𝑓𝑡 is the width by which the window is shifted while calculating the cross-

correlation spectrum, and 𝑓𝑠 = 2 MHz is the rate of sampling of the measured signal.

Although this vertical resolution does not accurately describe all parts of the image

due to the change in speed of sound, it is valid throughout the region of interest of the

signal calculated in the previous step and thus can accurately describe the reflections

inside the crust.

The signals are plotted similar to the previous frame, left to right and top to bot-

tom, with the vertical axis of the frame compensated for each pulse separately based

on probe’s depth for each pulse. The horizontal location of each pulse is interpolated

using a one dimensional nearest neighbor interpolation using k-D trees. The result

is an image frame consisting of signal reflection intensities with physical locations to

scale, from which the reflections and therefore the thickness can be determined.

The image is then filtered using a 2D median filter for removing noise using a

square kernel of approximately 5mm size. The filtered image is then corrected for

attenuation, between the top and bottom boundaries of the signal’s region of interest.

Equation 3.13 shows the calculation performed.

𝛾𝑖
𝛼 [𝑧] =

⎧⎪⎪⎨⎪⎪⎩
𝛾𝑖 [𝑧] × 102𝛼𝑓 (𝑧−𝑧𝑡𝑜𝑝)/20 if 𝑧𝑡𝑜𝑝 ≤ 𝑧 ≤ 𝑧𝑏𝑜𝑡

𝛾𝑖 [𝑧] elsewhere

(3.13)

where 𝛾𝑖 [𝑧] denotes the pixel at vertical coordinate 𝑧 and horizontal coordinate

𝑖. The signal’s region of interest, as identified in step 11 is between 𝑧𝑡𝑜𝑝 and 𝑧𝑏𝑜𝑡.

𝛼𝑓 = 1.266dB/cm is the attenuation coefficient of Mn-crust at the measuring frequency,

calculated using the value measured in Thornton et al. (2009).

The final steps of calculation consists of identifying the lines corresponding to the

secondary reflections within the region of interest. The primary reflection is identified

as the top of the signal region.
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Figure 3-11: Topview of the seafloor showing the region from where acoustic reflec-
tions were obtained
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Figure 3-12: Representative figure showing acoustic thickness estimation. The reflec-
tions are arranged as an image aligned w.r.t. the top reflection. A cost function is
calculated for each potential thickness (see (3.14))

In the third step, the reflections are bundled together into a single image frame,

where each pixel represents the reflection intensity of a single point. The frame lies

along the trace of the acoustic ping on the seafloor as the horizontal axis and depth of

the respective point as the vertical axis. The signals are sampled into a uniform 2D

grid in order to eliminate dependency on temporal parameters such as the frequency of

measurement and the velocity of the AUV. A representative image is shown in Fig. 3-

12, where darker colours indicate stronger reflections. The image is filtered using a

median filter of about 5mm square kernel in order to reduce noise. The signals are

then corrected for attenuation in seawater within the signal region identified in step 2.
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Since the top surface have been identified as Mn-crust by the SVM classifier, a

secondary reflection is assumed to exist throughout the selected reflections and the

best candidate is selected using an integral function that calculates the strength of

reflections. The entire acoustic frame is denoted as Φ and an individual point in

the image as 𝜑𝑖
𝜏 , where 𝑖 denotes the X coordinate (ping number) and 𝜏 denotes the

Y coordinate (depth from seafloor). A cost function is calculated for each potential

thickness value of 𝜏 as shown in (3.14).

Γ𝜏 = −
∑︁
𝑖∈𝑋

|𝜑𝑖
𝜏 | (3.14)

where 𝜑𝑖
𝜏 is the point with highest intensity within a threshold distance to 𝜏 , for

each ping 𝑖. For example, in Fig. 3-12, the point directly above 𝜏 is used (𝜏 = 𝜏 − 1).

This is done to account for minor local variations of thickness within the layer. The

mean thickness is identified as the 𝜏 having the lowest cost Γ𝜏 and the secondary

layer, which is the crust-substrate interface, is calculated as 𝜑𝑖
𝜏 , for each ping 𝑖. Thus

the thickness becomes

𝑡𝑖 = 𝜏𝑖 (3.15)

This will result in a thickness value which is consistent over the range of several

meters, yet accommodates for the local, minor variations in crust thickness.

The proposed method is verified on the data collected over a patch of seafloor of

approximate length of 8.1m, a visual 3D reconstruction of which is shown in Fig. 3-11.

This data was collected during the BSA-032 dive using Boss-A. The initial processing

steps are shown in Fig. 3-13. The acoustic data collected is shown in Fig. 3-13a as a

colour-coded image frame. The values are scaled along a logarithmic axis with lighter

colours indicating a higher signal amplitude level. After filtering the individual pulses

and the signals are arranged into an image frame as shown in Fig. 3-13b.

The image is thresholded into a binary image followed by a morphological closing

operation resulting in Fig. 3-13c. The limits of the signal region are identified and are

shown in Fig. 3-13d overlaid on Fig. 3-13b. The top boundary is plotted as a blue line
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(a) Image frame consisting of 1800 recorded signals cropped to the region containing signals
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(b) Image after CSD and filtering
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(c) Image after thresholding and closing
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(d) Detected top and bottom boundaries of signal region, in blue and green colours respectively

Figure 3-13: Steps leading up to detection of the signal boundaries
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Figure 3-14: Integrated trace distance of the signal

and the bottom boundary is plotted as a green line. Tracing the top line in 3D space

result in Fig. 3-14. The traced line has a length of about 22m on a patch of about

8m distance; this behavior arises due to the gimbals which causes the acoustic beam

to move in a nonlinear fashion on the seafloor. The signals are then interpolated into

a distance based axes resulting in Fig. 3-15a; the horizontal resolution of the axes is

chosen to be 10mm and vertical resolution is calculated to be about 1.9mm.

After filtering and attenuation correction, in the image, within the limits identi-

fied in Fig. 3-13d, the potential secondary reflections are identified using progressive

probabilistic hough transform. The calculation used a minimum line length of 60 cm

and a maximum gap of 10 cm as parameters. These parameters ensured that long

lines are detected despite smaller gaps, while small inclusions that result in pulses

with ideal reflections are excluded. Optimal candidates for the secondary reflections

are identified based on the intensity of reflections and thickness values are calculated.

The estimated thickness values are shown in Fig. 3-15b.

The mean thickness of the crust in the region was calculated to be approximately

65mm, which is consistent with the observations made during the cruise. The thick-

ness values are plotted as a colour coded bar graph above the seafloor reconstruction
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(a) Image frame after interpolation into distance axes

(b) Estimated thickness values

Figure 3-15: Edge detection and thickness estimation

in Fig. 3-16. The figure shows that the detection is consistent with the coverage of

crust, with no reflections identified over sand section in the middle of the patch.

3.4 Data fusion and volumetric estimation

The thickness measurements made in the previous step lie along a zigzag line roughly

along the approximately 1.5m wide 3D map. While the whole 3D map is divided

into uniform sized cells, only about 7% of the cells would have a thickness calculated.

Since the thickness of Mn-crusts are assumed to be constant over the range of several

meters, the measured thickness value is extrapolated into all crust cells and the volume

of crust present in the area is calculated by integrating the crust cover. By using

a moving window technique, percentage coverage and mass coverage of crust are

calculated along regular intervals.

In order to extend the thickness measurements to all the mapped areas, extrap-

olation techniques are employed. For a cell 𝑖, a window of influence 𝐽𝑖 is defined as
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Figure 3-16: Colour coded output of thickness plotted over the 3D map

the set of all cells within a threshold distance 𝑑𝑡ℎ from the centre of 𝑖. The number of

cells in set 𝐽𝑖 is calculated to be 𝑁𝐽𝑖 and the number of crust cells is calculated to be

𝐶𝐽𝑖 . Assuming 𝐽𝑖 to be the set of all cells inside 𝐽𝑖 where a thickness measurement

is made, the thickness of the crust at 𝑖 is calculated as a weighted sum of thickness

values of 𝐽𝑖

𝑡𝑖 =

⎧⎪⎪⎨⎪⎪⎩
∑︀

𝑗∈𝐽𝑖
𝑤𝑗𝑡𝑗

𝐶𝐽𝑖

if 𝐶𝐽𝑖
> 0

0 otherwise
(3.16)

where 𝐶𝐽𝑖 is the number of crust cells within 𝐽𝑖. The weight 𝑤𝑗 of each measure-

ment 𝑡𝑗 is calculated as an inverse function of euclidean distance from cell 𝑗 to cell 𝑖

(𝑑𝑖𝑗).

𝑤𝑗 = 1 − 𝑑𝑖𝑗
𝑑𝑡ℎ

(3.17)

The local percentage coverage of exposed Mn-crust deposits (Ψ𝑖) about 𝑖 is calcu-

lated as
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Figure 3-17: Representative diagram of thickness extrapolation to all areas classified
as Mn-crust by the classifier
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Ψ𝑖 =
𝐶𝐽𝑖

𝑁𝐽𝑖

100 (3.18)

Using the density of Mn-crust (𝜌) calculated from samples collected in the area,

the local mass coverage per unit area of Mn-crust about 𝑖 can be calculated as

𝑀𝑖 =
𝜌
∑︀

𝑗∈𝐽𝑖 𝑡𝑗

𝑁𝐽𝑖

(3.19)

The window of influence 𝐽𝑖 is then moved to the next point where a thickness

measurement was taken and the calculations are repeated, to estimate the distribution

of crust along the entire mapped area.

3.5 Error analysis

In this section, the error in the measurement process is analysed in detail in order

to estimate an accuracy of the proposed method. The sources of error in the mea-

surements are propagated as systematic errors depending on the parameters in the

calculation.

The 3D mapping system has an 1-sigma uncertainty of 9.17% affecting the total

mapped area (𝛿𝐴). The thickness measurements are subject to a 6.1% variability (𝛿𝑡)

in the velocity of sound (2932 ± 179𝑚/𝑠) in Mn-crusts Thornton et al. (2013).

𝛿𝑡 = 6.1% (3.20)

The percentage cover has 10% uncertainty (𝛿Ψ) from classification (cross valida-

tion accuracy - see section 3.2).

𝛿Ψ = 10% (3.21)
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In calculating the total amount of Mn-crust present in the area, a 1.9% variability

in the density of crust (1920 ± 36 𝑘𝑔/𝑚3) is also considered Thornton et al. (2013)

(𝛿𝜌). Thus the total error in the mass of the Mn-crust becomes

𝛿𝑀 = 𝛿𝐴 + 𝛿𝑡 + 𝛿Ψ + 𝛿𝜌 = 27.2 %. (3.22)

Counter-intuitively, since the mass per unit area is calculated by the averaging

the thickness of kernels and multiplying by the density within the threshold region,

the error in area measurements do not have an influence.

𝛿Λ = 𝛿𝑡 + 𝛿Ψ + 𝛿𝜌 = 18 % (3.23)

3.6 Summary

This chapter described the methods developed for identifying crusts, calculating thick-

ness and extrapolating results to the entire mapped region. The implementation of

the methods on the field data collected and analyses will be described in the next

chapter.
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Chapter 4

Field Survey Results

Takuyo Daigo seamount is a guyot in the northwestern Pacific ocean, part of the

Marcus-Necker seamounts group and is known to have thick deposits of Mn-crusts Usui

et al. (2017). The southern slopes of Takuyo Daigo seamount was selected for the

field trials of the proposed system. This area is surveyed by researchers for the past

decade, several systems have been deployed and samples were collected. The CRC

system was used in 4 cruises conducted over 5 years from 2013 until 2017 and multiple

transects in a hectare scale region was surveyed at depths between 1350m and 1600m

below sea level.

This is the largest ever dataset collected of Mn-crusts in a multi-modal survey.

An overview of the the surveys and the data available is described in section 4.1. A

detailed analysis is described in the following sections. Finally, a statistical analysis

of the samples available from the area is compared with the results of the proposed

framework.

4.1 Overview of field surveys conducted

During the first cruise to the area, the system was mounted on ROV Hyper-Dolphin

to follow a continuous crust deposit. The remaining dives were done during the

latter cruises using the AUV Boss-A, and surveyed the seafloor following predefined

waypoints. A summary of the dives are shown in Table 4.1.
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Figure 4-1: Takuyo Daigo seamount is a guyot located in the northwestern Pacific
ocean.

Figure 4-2: Navigation transects of all the surveys done at the location.
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Figure 4-3: Two locations where the transects intersect are selected for inter-
comparison between AUV and ROV collected data (See Fig. 4-2 for the locations).
The blue outline shows the ROV transects and the red outline indicates the AUV
transects.

Table 4.1: Summary of field experiments conducted at Takuyo Daigo seamount in
the northwestern Pacific ocean.

Vehicle Number Lateral distance Observation Observation
of dives surveyed (m) speed (m/s) time (min)

Hyper-Dolphin (ROV) 1 3636 0.15 312
Boss-A (AUV) 5 7217 0.1 931
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4.2 Typical seafloors examples

Various types of seafloor and the variation in crust type and coverage The implemen-

tation of the proposed workflow on various types of seafloor observed during the dives

are shown in the following subsections. Section 4.2.1 describes the analysis of a con-

tinuous flat crust deposit. Section 4.2.2 describes a seafloor section with transitions

from sediment to nodules, followed by section 4.2.3 which describes a seafloor section

containing all seafloor types. Compiling results from all dives, section 4.3 describes

the regional distribution of Mn-crust in the surveyed region. Section 4.4 analyses the

results obtained in section 4.3 in detail and estimates the errors involved.

4.2.1 Continuous flat Mn-crust deposits

The steps in analysing a seafloor section to estimate crust distribution is shown in

Figs. 4-4 and 4-5. They show a seafloor section consisting of a flat continuous Mn-

crust layer which is about 6m in length and 1.5m in width. Fig. 4-4(a) shows the

top view of the 3D reconstruction with the red dots showing the locations of acoustic

measurements. Towards the right, a short vertical drop, seen in the reconstruction as

a white vertical strip, is present where the crust breaks off and the broken slabs can

be seen immediately afterwards. A small sediment section separated the two. The

acoustic reflections recorded by the probe are shown in Fig. 4-4(b). The seafloor is

classified into crusts, sediments or nodules using the algorithm presented in section 3.2

and the results are shown in Fig. 4-4(c). A breakage in the map can be seen near the

vertical drop, caused by the shadowing of the 3D map near the cliff. It can be observed

that, other than a small section in the middle, all the measurements are made over

Mn-crust. A thickness value is calculated for points (red dots in Fig. 4-4(a)) which lie

on kernels classified as crust as shown in Fig. 4-4(d). The horizontal axis of the plots

represents the distance corresponding to the trace of the acoustic measurements on

the seafloor. Due to the gimbals continuously orienting the acoustic probe so that the

pulse is normal to the seafloor, the trace of the measurement locations is significantly

longer than the length of the 3D reconstruction. The percentage cover calculated
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Intensity (au) -2.4 -1.3

(a)

(b)

Crust
Nodules
Sediment(c)

(d)

Figure 4-4: Steps in processing the data collected over a flat crust section. The crust
layer breaks towards the right and the broken pieces can be seen at the extreme right.
A short vertical drop and a small section of sediment separates the two. (a) Top view
of seafloor section with locations of acoustic measurements shown as dots. Due to the
gimbals continuously orienting the acoustic probe normal to the seafloor, the trace of
the measurements follows a zigzag pattern. (b) Acoustic signals recorded. (c) SVM
classification. (d) Estimated thickness values.
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(a)

(b)

Figure 4-5: (Continued from Fig. 4-4) In processing the data collected, coverage
estimates are calculated as described in section 3.4. Since the seafloor is mostly
continuous flat crust, the coverage is nearly full throughout, except where the slabs
have broken off from the flat crust layer. The horizontal axis denotes the interpolated
trace distance along the red dots and is significantly longer than the length of the
seafloor section. (a) Percentage coverage. (b) Mass coverage of crust.

using (3.18) is plotted in Fig. 4-5(a). The graph clearly shows the dip in coverage

in the middle due to the breakage of crust and a small sediment covered area in the

middle. The estimated mass coverage is shown in Fig. 4-5(b). Since the areas are

almost completely covered by crust, a high mass per unit area is present.

4.2.2 Sediment to nodules transition

Fig. 4-6 shows a roughly 12m section of the seafloor scanned using Boss-A and tran-

sitions from full sediment cover to full nodule cover. The acoustic signals also shows

a clear change from a weak top reflection in sediment covered areas to sharper re-

flections with change in the type of seafloor. Since no crust coverage is present, a

second reflection is not present in the graph and no thickness values were calculated.

However, in the beginning and middle areas of the acoustic reflections, a weak second

reflection can be seen. These reflections shows a buried layer, which was ignored
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Figure 4-6: A sediment section transitioning into a nodule section. Because no crust
kernels were found, thickness values are not calculated. (a) Top view of the 3D
reconstruction. The trace of acoustic measurements (see Fig. 4-4(a)) has been omitted
for clarity of visualisation. (b) SVM classifier output. Although, some edge artifacts
are visible misclassified as crust, they do not affect the final mass estimates. (c)
Acoustic signals recorded by the probe, showing no consistent layer of crust. The
image shows weak second layers of reflections in areas shown in boxes, presumably
from a buried layer of crust.

since the thickness of crusts, if present as a buried layer, cannot be calculated and no

visual confirmation can be made of the layer. It can be seen that some edge kernels

are misclassified as crust; this is due to the limitation of the color correction method

used in generating the 3D maps. In the presented example, this creates a 2.7% error

in the percentage cover estimates. However, since the acoustic data is collected along

the middle of the transect, which is classified correctly as sand/nodules, acoustic re-
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flections were discarded. Therefore, the error in thickness measurements and final

mass calculations are negligible.

4.2.3 Sediment covered flat Mn-crust near a ledge

Figs. 4-7 and 4-8 shows a nearly 12 meter section of the seafloor containing all types.

It is centred on a ledge of flat Mn-crust and partially covered by a layer of sediment.

Below the ledge, a thick layer of sediment is visible, followed by broken slabs of Mn-

crust. Since Mn-crusts are exposed partially, the coverage estimate oscillates between

near zero and 80%. Towards the left, the sparse and weak acoustic reflections indicate

a sand layer and a second layer becomes clearer where the crust is exposed. Towards

the right, the seafloor is covered in nodules and it shows in the acoustic reflections

as strong reflections, but with no secondary layer visible. To the left of the nodules,

where a sand section of about 0.8m is present, a secondary layer is visible in the

acoustic reflections; however, the type of the layer cannot be determined with the

proposed techniques.

4.3 Final results

The data collected from all the dives are analysed patch by patch as shown in the

previous sections and combined together to produce the final results. The measure-

ments are subsampled to 50 cm resolution for clear visualization. These results are

shown as Figs. 4-9, 4-10, and 4-11.

4.3.1 Percentage Cover of Mn-crust

Fig. 4-9 shows the percentage cover estimates for the entire mapped area. Since

the ROV was used to follow a crust layer, the results show a high percentage cover

throughout. These four transects, mapped during a single dive, are indicated using

green arrowheads. The remaining transects, mapped by AUV shows a varying land-

scape that can have anywhere between zero and one hundred percent crust coverage.
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(a)

(b)

Crust
Nodules
Sediment

(d)

(c)

Figure 4-7: Seafloor section containing a variety of types. Towards the left, the layer
of crust is partially covered by sediment and gets broken in the middle. Farther to
the right, the sections are covered by nodules. (a) Top view of seafloor section. (b)
Acoustic signals recorded by the probe. (c) SVM classification of the seafloor section.
(d) Thickness values estimated.
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(a)

(b)

Figure 4-8: Analysis results from the seafloor patch with different classes shown in
Fig. 4-7. (a) Percentage coverage of crust. (b) Mass coverage of crust. Towards the
left side, although it is nearly 100% covered by crust, the layers are thin and hence
the mass coverage is only about 75% of the maximum coverage expected in the area.

It can be seen that the lower sections of the seamount, which are also steeper, has a

high crust coverage. In some areas, the coverage is seen to vary rapidly. For example,

consider the section marked by F scanned by the AUV. The upper section has flat

continuous Mn-crust deposits, whereas the lower section, only 10m away, shows a sed-

iment covered seafloor. This high variability in the seafloor classes indicate the need

for a continuous measurement system in order to assess the crust volume accurately.

Two locations, indicated as A and B in Fig. 4-9, were identified for inter-comparison

between AUV and ROV collected data. A close-up view fo the intersections are shown

in Fig. 4-3. Crossing A is a sand covered crust area (exposed crust can be seen to

the right and top of the intersection) with some rocks. Crossing B is covered with

nodules of various sizes.
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Figure 4-9: Percentage cover of Mn-crust along mapped transects. The 4 ROV tran-
sects (shown by arrows) have a higher % cover as regions with exposed crusts were
followed manually by the ROV pilots, whereas the AUV used for all other transects
followed pre-planned trajectories. Crust coverage can vary rapidly such as in the area
marked by F; very different landscapes only 10m apart (3D maps shown in insets).
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Figure 4-10: Thickness of Mn-crust along mapped transects. The thickness is higher
in deeper and steeper sections of the seamount (left bottom area). The samples
collected from the visible area and the samples which are close to the mapped area
are shown as green and red triangles respectively.
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4.3.2 Thickness

The thickness values measured and the samples collected from the area are shown

in Fig. 4-10. The relative abundance of crust in the upper and lower sections of the

map and the lack of crust in the central regions is observed. Nevertheless, isolated

points of thickness can be seen in the central region which originates from single rocks

projecting out of the sediment or nodule covered regions. The thickness varies from

about 40mm to a maximum of 114mm, with a mean thickness of 69.6mm. A total

of 26 samples were collected by researchers in the past in the area covered in the

map. The locations of these samples are shown as green triangles. Although there is

no overlap between the samples collected and the surveyed regions, 7 samples from 5

locations are close to the mapped within 10 meters of the transect. These samples,

shown as red triangles are used for further analysis for comparing the results of the

present survey with sampling based methods. This is detailed in section 4.4.

4.3.3 Mass coverage

The final volumetric estimates are shown in Fig. 4-11, which shows the unit crust

coverage for every part of the mapped regions. The results vary from zero up to a

maximum of 204 kg/m2. As observed from Figs. 4-9 and 4-10, the lower, steeper

sections of the seamount contains maximum coverage of crusts, even though the

coverage can vary abruptly in a short range of a few tens of meters.

4.4 Analysis

Due to the harsh inaccessible nature of the deep sea environment, validating the

results is an extremely difficult task. Due to the inherent errors in acoustic localization

systems, which can be as high as 15m at the survey depths (assuming a 1% error), it

is difficult to visit precisely the same place multiple times. Any validation, therefore

must consider the localization error and the varying nature of Mn-crusts.
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Figure 4-11: Final volumetric coverage estimate along mapped transects. The results
vary from nil to 204 kg/m2, with the maximum crust coverage found in the steeper
lower sections of the mapped region.

63



Table 4.2: List and key specifications of the samples used to validate the proposed
method. All the samples are located within 10m of distance from the robotic survey
transects.

No. Date Thickness Dimensions Weight
collected (mm) (cm x cm x cm) (kg)

s1 2013.6.30 90 30x30x10 10.8
s2 2013.6.27 65 77x48x9 50
s3 2009.02.17 30 9x8x7 0.6
s4 2009.02.17 25 9x14x5 1.1
s5 2009.02.16 80 41x31x12 15
s6 2009.02.16 90 15x11x9 0.9
s7 2009.02.16 30 26x18x11 6.4

Since the operation of the acoustic probe has been validated using samples recov-

ered from the site in a laboratory environment Thornton et al. (2010), this research

only focuses on validating the results in the field. The primary method of validation

is the comparison of sample thicknesses with the nearest measurements; this is done

in section 4.4.1. A statistical comparison of the overall samples and overall measure-

ments is made in section 4.4.2. Finally, the assumption concerning the variability of

Mn-crust deposits is examined in the section 4.4.3.

4.4.1 Validation using samples collected

Using the samples collected within the survey area by other researchers during past

cruises, the results of the proposed method was validated. Although at no point,

the survey transects overlapped with the sampling locations, a total of 7 samples

were identified from 5 locations, which were reasonably close (less than 10m away)

from the robot transects. These were collected by scientists during previous cruises

(JAMSTEC 2009, 2011, 2012, 2013).

Table 4.2 lists all the samples and their specifications. These samples are compared

with the nearest thickness measurements as shown in Figs 4-12-4-16.

Sample s1 is shown in Fig. 4-12. This sample was collected from a point about 9m

away from the BSA31B dive, in the direction indicated by the red arrow. Top view
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1

Sample 1

Thickness measured

Top view

L:  9 m
t: 90 mm

Top view

30 cm

Figure 4-12: Validation using sample 1

of the 3D reconstruction of the nearest seafloor section is shown with the thickness

calculated by the proposed algorithm is plotted below. The locations of the thickness

measurements are plotted as green dots on the 3D map. A red horizontal line shows

the thickness of the sample for easy comparison. It can be seen that the sample

thickness is 90mm and falls within the range of thickness values measured by the

proposed system in the area.

Sample s2, collected from a sand covered crust region, is shown in Fig. 4-13. With

a thickness of 65mm, this is almost same as the thickness levels observed in the area.

Samples s3-s7 are also shown in the following figures. Despite being collected from a

variety of landscapes, and varying thicknesses, the match between the measurements

and the samples is clearly observable.
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2

Sample 2

Thickness measured

Top view

Side view

L:  10 m
t: 65 mm

30 cm

Figure 4-13: Validation using sample 2

3

Samples 3 & 4

Thickness measured

Top view

L:  10 m
t: 30 mm, 25mm

Figure 4-14: Validation using samples 3 and 4
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4

Samples 5 & 6

Thickness measured

Top view

L:  8 m
T: 80 mm, 90 mm

Figure 4-15: Validation using samples 5 and 6

5

Sample 7

Top view

L:  5 m
t: 30 mm

Thickness measured

Figure 4-16: Validation using sample 7
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Table 4.3: A summary of the estimated Mn-crust resources at Takuyo Daigo seamount
measured along a total transect length of 10.9 km (see Table 4.1 for survey details). An
uncertainty value is provided in the brackets for each of the estimates. The variability
of estimated values indicates the contrasting nature of the Mn-crust deposits. An
indicative estimate using only samples collected from the same area, shows that a
continuous in-situ survey is required to assess Mn-crusts with high accuracy.

Parameter Proposed method Samples
N=7

Mean Variability Mean Variability
(±𝜎) (±𝜎) (±𝜎) (±𝜎)

Total area mapped (𝑚2) 12,510 - - -
(±1150)

Percentage cover (%) 52.0 ±39.0 - -
(±5.20) (±3.90)

Thickness of crust (𝑚𝑚) 69.6 ±18.7 63.3 29.5
(±4.25) (±1.14) (23.9) (11.2)

Crust per unit area (𝑘𝑔/𝑚2) 69.6 ±59.7 63.2* 22.1*

(±12.5) (±10.7) (±31.4)* (±10.1)*

Amount of crust (t) 870 - 791* -
(±237) (±466)*

* Visual mapping data for area estimates is used to calculate this value.

4.4.2 Error analysis and validation of results

Accurate quantitative estimates of Mn-crust was obtained over large areas using the

instruments and methods described, showing an abundance of Mn-crust in the sur-

veyed region. A summarized description of the results along with the variability and

estimates of uncertainty for each measurement is provided in Table 4.3. The variabil-

ity is calculated as the one-sigma deviation from the mean value. The uncertainty is

estimated as the error in measurements on the mean and variability values.

The calculations of error levels was presented in section 3.5. It is estimated that

there is 870 tonnes of Mn-crust in the mapped area, with an uncertainty of 237 t. The

value of crust per unit area has an uncertainty of 18% and the calculations show the

amount of crust per unit area to be 69.6 kg/m2 with an uncertainty of 12.5 kg/m2.

However, particularly notable is the variability of 59.7(±10.7)𝑘𝑔/𝑚2, which is 85.8%

of the mean value. This value is consistent with the initial observation that crust
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deposits are highly variable and therefore require a continuous in-situ measurement

scheme to accurately map its distribution, such as the AUV survey conducted in the

present work.

A comparison of the results along with the estimate values made using only sam-

ples is included to show the advantages of the proposed method. Since a percentage

cover estimate cannot be calculated from ROV sampling dives, percentage cover es-

timates calculated in the previous step are used instead. Samples taken in an area

within a distance of 10 meters of the mapped region was considered, which show a

mean thickness of 63.3 mm with a standard deviation of 29.5 mm. A total of 7

samples are selected, which are collected from 5 locations as indicated in Fig. 4-10.

The limited number of samples constitute a large statistical error of 37.8% in sample

thickness measurements. It can be seen from Table 4.3 that the final estimated crust

mass per unit area and the total amount of crust in an area equal in size to the

mapped area has an uncertainty of 49.7% and 58.9% respectively, which is extremely

high and renders any estimates of crust distribution practically invalid. This arises

due to the high variation in crust coverage, with the percentage cover being 52.0 %

with a variability of 39.0 %. This information can be calculated only by doing a

detailed seafloor survey such as the present one.

In order to study the spatial distribution of Mn-crust over the scale of hundreds of

metres, crust per unit area and its variance for each transect (see Fig. 4-11 for transect

numbers) is compared in Fig. 4-17. These transects are roughly parallel in most places

and are spaced between 100 to 250m in the lower sections. The bar charts to the

right show estimates made by randomly selecting a fixed number points, equally from

each transect, to simulate sampling where the total number of points considered is

shown. The error bars indicate the systematic error for the full data, and the standard

deviation of 50 iterations for each random selection of point location. The systematic

error is not shown in the random point samples to illustrate the level of uncertainty

that would be expected if an equivalent number of samples was recovered. A larger

number of points provide a more representative estimate of the crust coverage where

the statistical error levels become comparable to the systematic errors in the proposed
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Figure 4-17: Mass coverage of each transect shown in Fig. 4-11 and its variability.
This is compared with a simulated sampling scenario, by randomly selecting points
from the surveyed data. Mean value and error for each dataset is written above the
bars. Variations among transects shows that extrapolating the results from a single
transect to the whole area can result in erroneous estimates. The error values indicate
that > 200 random samples are required for getting an accuracy comparable to the
proposed method.

method after 200 random points. Even with 200 locations sampled, which would take

approximately 8 days of bottom time for ROV sampling, the spatial variability still

influences the estimates (e.g transect iii), indicating further sampling is required to

capture the variability between adjascent transects. The variation in estimates among

transects indicates that extrapolating results from a single transect over the entire

mapped area can lead to highly inaccurate results. Multiple surveys at different

locations are required to accurately estimate crust coverage and volume.

The high presence of uncertainty in surveys based on sampling, as compared to

AUV surveys, arises due to the significantly smaller number of measurements. In

acoustic surveys from an AUV, there are over one million measurements and thus the

statistical error is negligible. Only the 6.1% systematic error, due to the variability
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Table 4.4: Divewise comparison of results. The variation in thickness and percentage
cover of crusts in the nearly parallel transects indicates the variable nature of the
distribution of Mn-crusts.

Transect Dive Length (m) Area (𝑚2) Thickness (mm) Percentage cover (%)
Ö number Ö Ö Mean Variability Mean Variability
i BSA31A 956 970 78.0 15.0 54.1 39.3
ii BSA31B 413 462 81.7 13.1 52.5 40.3
iii BSA32 722 921 78.0 15.0 42.0 38.7
iv BSA38 1523 1759 64.8 16.6 29.3 36.7
v BSA39 1934 2314 69.1 17.4 28.9 35.6
vi BSA40 1798 1286 59.9 19.8 33.0 34.6

in the speed of sound, needs to be considered. On the contrary, the thickness of

samples can be measured with high accuracy, making the systematic error almost zero.

Nevertheless, the statistical error is high and can be reduced only by increasing the

number of samples in the given area. However, in order to produce an uncertainty less

than the systematic error in the acoustic measurements, a minimum of 268 samples

have to be collected from the surveyed region. Since sampling using ROVs takes

approximately 40min to 1 h Usui et al. (2017), collecting so many representative

samples is practically unfeasible.

4.4.3 Local Variability of Mn-crust

In order to study the spatial distribution of Mn-crust over the scale of hundreds of

metres, the results from each dive is compared in Table 4.4. These transects are

roughly parallel in most places and are spaced between 100 to 250m in the lower

sections. It can be seen that the thickness varies a maximum of 17% from the average

thickness over the entire area; while the percentage cover shows high variations of upto

46%. This indicates that extrapolating results from a single transect over the entire

mapped area can lead to highly inaccurate results. Multiple surveys at difference

locations is required to accurately estimate crust coverage and volume.
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Figure 4-18: Comparison of results by transect. It shows that extrapolating results
from a single dive to a large region can be highly erroneous.

Figure 4-19: Results of the crust distribution values in the surveyed region.
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The results obtained can be expanded to larger areas using traditional methods

such as kriging (Cressie 1990) in order to compare results. However, this is beyond

the scope of the present topic.

4.5 Summary

This chapter described the results from applying the proposed method on the data

collected by the field surveys conducted.An analysis of the results indicated the scope

and necessity of continuous in-situ measurements for assessing the distribution of

Mn-crusts.
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Chapter 5

Conclusions and Future Work

In-situ measurements of the distribution of Mn-crust in hectare scale regions have been

performed using unmanned robots for the first time. Building upon previous works

for Mn-crust in-situ surveys, a scalable data processing framework and improved

algorithms made large data processing possible. By using machine learning tools to

analyze visual 3D maps to accurately identify exposed crusts and acoustic sub-bottom

sonar measurements to identify its thickness, the results are combined to calculate the

total mass and distribution of the Mn-crust available in the region. The measurements

were validated using samples collected from near the survey area, which showed a

comparable level of thickness values. The proposed method has several advantages

over sampling such as more and detailed measurements and continuity in output.

Also, sampling is inherently biased towards samples that are easy to collect, and do

not characterise regions with no samples, such as nodules, sediments and shallow

buried crusts.

The surveys utilized ROVs for following a crust deposit by manual steering and

AUVs using predetermined waypoint navigation. While the ROV dives showed high

crust coverage due to sample bias, the AUV dives were representative observations of

the distribution of Mn-crusts on the seafloor; which clearly showed the high variability

in the seafloor types. Further, the smooth, constant altitude navigation of AUV is

found to introduce less errors into the generation of 3D maps and thus improving

the classification of seafloor. Therefore in-situ acoustic measurements using an AUV
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and the proposed data processing framework presents a reliable technical approach

for surveying large hectare-scale areas for manganese crust volumetric distribution

surveys in a span of several days.

5.1 Major contributions of this thesis

� A method was developed for accurately estimating the continuous thickness of

Mn-crust deposits with millimetre resolution using in-situ surveys.

� Amethod was developed for fast and accurate classification of seafloor 3D colour

reconstructions. Accuracy levels of >90% was achieved by utilizing both the

bathymetric and colour information.

� This is the first attempt for creating high-resolution volumetric estimates of

Mn-crusts for hectare-scale areas.

� A framework was developed for processing large amounts of data to estimate

the amount and distribution of Mn-crusts.

� The observed results could capture the rapidly varying coverage of Mn-crusts.

This points to the need for a continuous in-situ survey for surveying and assess-

ing them accurately.

5.2 Research Impact

The International Seabed Authority has currently issued 4 survey licenses to Japan,

Korea, Russia and China for economic and technical assessment of Mn-crust exploita-

tion (ISBA 2018). A total area of 3000 km2 is assigned to each party. One-third of

this area has to be released after 5 years and a further one-third after 10 years. The

remaining area can be kept for exploitation. Different methods such as ship-board

multibeam surveys, towed video surveys and core drilling are used for surveys are

being used by the stakeholders for surveying (Joo et al. 2020, Du et al. 2018).
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The proposed method is part of the tools used by Japan Oil, Gas, and Min-

erals National Corporation (JOGMEC) for surveying Mn-crusts. JOGMEC is the

Japanese national agency in charge of the Mn-crust survey and exploitation on be-

half of the Japanese government. A press release regarding this is attached in the

appendix Institute of Industrial Science (2019).

It is worth noting that, following the example of this system and associated algo-

rithms, a similar acoustic probe was built by a Chinese team of researchers based on

the same principles and using some of the proposed algorithms Hong, Feng, Huang,

Wang & Xia (2019).

5.3 Limitations and Scope for Future Work

A limitation of the presented system is the inability to identify and quantify buried

crust below thick layers of sediment. Researchers have shown the presence of layers of

Mn-crust below sediment layers up to several metres thick. Since the current version

of acoustic probe can only be used upto 30 cm below the seafloor, while shallow layers

are visible, deeper layers of Mn-crust cannot be located. Furthermore, only exposed

crusts can be classified using the machine learning system as it only looks at the top

surface. Higher power acoustic probes, which in turn require bigger AUVs, are needed

to measure deeper into the sediment layer.

Another limitation of the work is that swath of 3D map is only 1.5m and hence

distribution is limited to this area. A better acoustic probe which can operate at

higher altitudes may be useful in this regard. An immediate advancement of this

dissertation work would be extending analyzing capabilities to wide area long range

maps. Scope for future work in this regard, is listed below:

� Use only acoustic data for classification or using a combination of both acoustic

and visual data for classification.

� Use long range 3D maps for extrapolating thickness

� Use of multi-robotic systems for wide area mapping
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� Use AI based methods for cleaning acoustic signals and better thickness esti-

mates

� Use multibeam backscatter and bathymetric data for seafloor classification in

the absence of visual data

� Use of autonomous deployment and recovery of robots, saving costs, labour

work and ship duration

� Create larger area estimates of Mn-crust distribution using traditional methods

such as kriging and compare the results

Furthermore, this method can be used as a template for extrapolating spatial

measurements using a visual or 3D bathymetric map as a basis. This can be used in

surveys of benthic colonies and biomass assessments, surveys of methane seeps and

hydrothermal vents, etc.

Marine surveys are in a transition phase; while technological capabilities were the

biggest bottlenecks in the past, significant progress has been made, and the quality

and quantity of data is becoming the new challenge - and hence the opportunity.

The proposed algorithm can be an effective step in discovering and extracting useful

information.

Figure 5-1 shows an illustration of the deep seafloor survey scenario as imagined by

the authors. From pointwise sampling using big bulky vehicles in the past, continuous

in-situ surveys using autonomous robots are gaining traction. As the coordination,

control and environmental comprehension capabilities of the robots improve, multi-

robot systems will become the choice of oceanographic studies. This thesis will be a

significant step in improving the comprehension skills - currently implemented offline,

but can be made online as computational capabilities improve. By collecting data

over larger areas using a wide variety of sensors mounted on multiple robots mapping

the seabed simultaneously, large areas can be surveyed in shorter time scales and

the resulting data can be analysed automatically to provide valuable information to

understand the deep sea environment.
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Figure 5-1: Past, present and future of deep sea surveys
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Appendix A

Robots

ROVs and AUVs are important tools for deep sea exploration Blidberg et al. (1991),

Capocci et al. (2017). In the initial stages of the present research, surveys were done

by mounting these sensors on a general purpose ROV, called Hyper-dolphin, described

in section A.2. Later, AUV Boss-A, described in section A.1, was developed for this

task and was used for collecting a major part of the data.

A.1 AUV Boss-A

Boss-A is an AUV developed for the dedicated task of surveying Mn-crust by the

Institute of Industrial Science at the University of Tokyo Nishida et al. (2016). It

is rated for 3000m, which is sufficient for surveying the upper sections of the crust

covered seamounts in the Pacific ocean.

Figure A-1 shows the various parts and their location within the AUV. The spec-

ifications of Boss-A are shown in Table A.1. The 3 systems - acoustic, visual and

navigation systems are marked. The navigation system runs on the main computer

of the AUV and is used for real-time control and navigation of the robot and after the

dive for post-processing sensor data. The robot uses drop weight ballasts for diving

and surfacing, thus conserving battery for the seafloor observation task. The AUV

communicates to the surface vessel using an acoustic link which relays critical mis-

sion control commands and status information. Also, the AUV can be localized from
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Visual mapping system

Acoustic system

Camera

Sheet laser
Navigation system
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Sub-bottom probe Double gimbal

LED panel

Figure A-1: Schematic representation of Boss-A surveying Mn-crust using visual and
acoustic sub-systems.

the mother ship using a Ultra Short BaseLine (USBL) device. This data provides a

real time one-way feedback to the researchers on the support vessel about the AUV’s

location.

An illustration of the mapping scenario and the position of various sensors are

shown in Fig. A-1. The AUV follows a preprogrammed path over the seafloor,

defined by waypoints, keeping an altitude of 1.5𝑚 ∼ 2𝑚. A Doppler Velocity Log

(DVL) is used for localizing the robot, assisted by a depth (pressure) sensor and an

Table A.1: Specifications of the platform (AUV Boss-A)

Dimensions 3.0m x 0.7m x 0.7m
Mass 600 kg
Velocity 1.0 kn (0.5m/s) - maximum

0.2 kn (0.1m/s) - observation
Depth rating 3000m
Endurance 7 h
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Figure A-2: The AUV BOSS-A being deployed at Takuyo Daigo seamount (Cruise
YK17-23C, November 2017, R/V Yokosuka)

Attitude Heading Reference System (AHRS). Critical controls of the robot, such as

aborting the mission and skipping of waypoints, is possible through an acoustic link

with the ship. The acoustic probe and a double gimbal that constitute the acoustic

system, a camera and a sheet laser that are the core components of the visual system

and the DVL for navigation are located at the bottom of the robot.

The robot has completed 58 dives in the ocean till date. A photo showing the

recovery after a dive is shown in Fig. A-2. For Mn-crust surveys, Boss-A moves

at a speed of 10 cm/s, which results in a 3D map with a longitudinal resolution of

about 3mm and thickness measurements with a longitudinal resolution of about 1 cm.

Every hour of operation records several tens of gigabytes of data.
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Figure A-3: Hyper-dolphin is a 3000m rated ROV owned by the Japan Agency for
Marine Earth Science and Technology. This ROV was used for sampling Mn-crusts
and for deploying the CRC system.

A.2 ROV Hyper-dolphin

ROV Hyper-dolphin, shown in Fig. A-3, was used for surveys of Mn-crusts in the

early stages of the survey (JAMSTEC n.d.). It is a 3000m rated ROV owned by

the Japan Agency for Marine Earth Science and Technology (JAMSTEC). Samples

were collected using a drill and the robotic arms mounted on the ROV during several

cruises (JAMSTEC 2009, 2011, 2012, 2013). These samples are used for validation of

the proposed algorithms in chapter 4. This, however has the disadvantage of collecting

samples which are easy to be snagged or broken.

The first version of the CRC system was mounted on the payload skid of Hyper-

dolphin and conducted surveys along a Mn-crust ridge in 2013 (JAMSTEC 2013).

This setup is shown in Fig. A-4. ROV has the advantage of real-time visual feedback

to the researchers on the mother ship. However, it suffers from the errors due to

manual piloting.
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Figure A-4: The sensors were mounted on the ROV using a payload skid shown.

A.3 ROV Kaiko

Kaiko is a 6500m rated ROV owned by JAMSTEC (Murashima et al. 2004). This

was also used for sampling Mn-crusts in locations as deep as 5500m; which were the

deepest Mn-crusts ever detected. However, only samples close to the CRC survey

locations is considered in the present research.
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Appendix B

Press Release

Copy of the press release from Institute of Industrial Science, The University of

Tokyo on the survey of Mn-crusts, which includes the proposed research, dated

2019 March 23 [url : https://www.iis.u-tokyo.ac.jp/ja/news/3079/].
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2019.03.29 プレスリリース

【記者発表】世界初の⼤規模調査！３台のロボットが連携し、海底３次元画像を取得 〜コバルト

リッチクラストの賦存状況の調査への貢献に期待〜

○発表者：

ソーントン ブレア（東京⼤学 ⽣産技術研究所 准教授）

○発表のポイント：

◆航⾏型AUV「AE2000f」とROVを⽤いて、海底面の連続的な⾼⾼度３次元画像マッピングを⾏い、海底面の形状、

底質、クラスト被覆状態、棲息⽣物などの情報を含むデータを、距離にして約７９km、面積にして１平⽅キロメート

ル分取得しました。

◆⼀部の領域では、クラスト賦存量調査を⽬的に開発されたホバリング型AUV「BOSS-A」を⽤いて、海底面の連続的

な低⾼度３次元画像マッピングおよびクラスト⾳響厚み計測を同時に⾏い、距離にして１８ .３km、面積約０ .０３平

⽅キロメートル分のデータを取得しました。

◆「BOSS-A」取得データの解析から、厚いクラストが連続的に分布すると推定された領域では、⾼⾼度３次元画像

マッピングを実施し、広域かつ詳細なマルチレゾリューショナルなデータを取得しました。今後、統合解析により広

範囲の正確なクラストの被覆率を算出することが期待されます。

○発表概要：

　東京⼤学 ⽣産技術研究所 ソーントン ブレア 准教授の研究チームは、独⽴⾏政法⼈ 石油天然ガス・⾦属鉱物資源機

構（JOGMEC）の委託（ ）を受け、コバルトリッチクラスト（以下、「クラスト」、 ）が分布する、

南鳥島南⻄の拓洋第５海⼭において、１平⽅キロメートルにおよぶ面積の海底面の３次元画像を、航⾏型とホバリン

グ型の２種類のAUV（Autonomous Underwater Vehicle:⾃律型海中ロボット（ ）およびROV（Remotely

Operated vehicle:  遠隔操作無⼈探査機（ ）を⽤いて、短期間のうちに効率的に取得しました。

　航⾏型AUV「AE2000f」（ ）に搭載した３次元画像マッピング装置（ ）、ホバリング型AUV「BOSS-

A」（ 、 ）およびクラスト厚み計測装置（ ）は、東京⼤学 ⽣産技術研究所が⽂部科学省の「海

洋資源の利⽤促進に向けた基盤ツール開発プログラム」において、クラスト賦存量の計測を⽬的として平成２０年度

から開発したもので、これまでも拓洋第５海⼭で調査を実施してきました。今回の調査で初めて⼤規模に実施し、⾮

注１ 注２

注３

注４

注５ 注６

注７ 注８ 注９



常に多くの３次元画像データとクラスト厚みの連続データを取得することができました。

　今回、面積にして１平⽅キロメートルにおよぶ、世界初の⼤規模な海底調査を達成したことで、クラストの被覆状

況を効率的に調査できる⼿法を実現したといえます。また、得られたデータは、拓洋第５海⼭のクラスト賦存量を正

確に推定するための基礎データになることが期待されます。

○発表内容：

　拓洋第５海⼭の水深９００ｍ〜１ ,５００ｍ程度の平頂部および肩部にかけての直線を主とする計画測線において、

２０１８年１１⽉１３⽇〜１２⽉４⽇の航海期間中（現場海域での調査実施期間：１１⽉１８⽇〜２９⽇）、⾼⾼度

３次元画像マッピング装置を搭載する航⾏型AUV「AE2000f」（昼間）とROV「QUASAR９（⽇本サルヴェージ株式

会社所有）」（夜間）を⽤いた海底面の広域連続計測調査（１０ｍ⾼度、計測幅１０ｍ、cm分解能）、および低⾼度

３次元画像マッピング装置と⾳響厚み計測装置を搭載するホバリング型AUV「BOSS-A」（昼間）を⽤いた海底面の詳

細連続計測調査（２ｍ⾼度、計測幅２ｍ、mm分解能）を実施しました。

　潜航回数は、「BOSS-A」は６回、「AE2000f」は５回、そしてROV「QUASAR9」は１１回です。

　３台のロボット全体で、距離にして１３８km（BOSS-A: １８ .３km、AE2000f:  ７１ .８km、ROV: ４７ .９km）、

面積にして約１平⽅キロメートル（BOSS-A:０ .０３平⽅キロメートル、AE2000f:  ０ .７平⽅キロメートル、ROV:

０ .３平⽅キロメートル）のデータを取得しました。

　海⼭の南⻄の肩部にかけての測線を航⾛した「BOSS-A」の調査では、現場での３次元画像マッピングの解析結果か

ら、計測場所ごとにクラスト分布の特徴に変化が⾒られました（ 、 ）。⾳響厚み計測装置のデータの

計測結果から、連続的なクラストの被覆及び厚みが分かりました（ ）。

　そこで、翌⽇の夜のROV調査では、クラストが被覆する箇所を調査するため、BOSS-Aの潜航測線と重なる測線を航

⾛させる調査計画を⽴てました。写真に⽰すように、ROVが取得した⾼度１０ｍからの３次元画像データ（ ）

は、BOSS-Aのデータ（ ）と重なる部分が⾒られます（ ）。今後、統合解析により、クラスト賦存量の

推定をより正確にすることが期待されます。

　また、BOSS-Aで撮られた画像に写っている⽣物はROVの画像にでもほぼ同じ位置に写っており、数時間・⽇ではほ

とんど動いていないことが分かります。このように、取得した３次元画像データは、クラストの厚みや被覆率を計測

できるだけでなく、海底面の詳細な形状、底質そして棲息⽣物などの多元的な情報を含んでおり、環境影響評価調査

などにも応⽤されることが期待されます。

○問い合わせ先：

図１ 図２

図３

図４

図５ 図６



東京⼤学 ⽣産技術研究所

特任研究員　杉松 治美（すぎまつ はるみ）

Tel：03-5452-6487 Fax：03-5452-6489

○⽤語解説：

注１）JOGMEC委託事業

　本調査は、２０１８年５⽉２５⽇にJOGMECが公募した委託事業「平成３０年度海洋鉱物資源調査に係るコバルト

リッチクラスト賦存状況調査」を受託し実施した。JOGMECは経済産業省の委託を受け、コバルトリッチクラストの

調査を実施している。

注２）コバルトリッチクラスト

　鉄とマンガンの酸化物からなる海水起源の化学堆積岩。学術的にはマンガンクラスト、鉄マンガンクラストと呼ば

れることが多い。海⼭や平頂海⼭などの海底において、数cm〜１０数cmの厚さで基盤をカバーしており、広い範囲

にわたって分布していることが知られている。コバルト（Co）、ニッケル、⽩⾦などを含んでいる。

注３）⾃律型海中ロボット（AUV：Autonomous Underwater Vehicle）

　動⼒源を持ち、プロペラなどを⽤いてあらかじめ決められたルートに沿って無索で全⾃動で海中を観測する装置。

注４）遠隔操作無⼈探査機（ROV：Remotely Operated vehicle）

　遠隔操縦式の探査機。ケーブルで探査機とオペレーションシステムがつながれており電⼒や各種指令を探査機に送

り、海底の映像などの情報をリアルタイムで陸上や⺟船に伝送する。

注５）AE2000f

　重量約３７０kgの中型航⾏型AUV。観測センサとして、⾼⾼度３次元画像マッピング装置を搭載する。

注６）３次元画像マッピング装置

　海底の３次元画像マッピングを⾏う計測装置。カメラ、シート状のレーザおよびフラッシュの組み合わせにより構

成され、AUVやROVに搭載して、ロボット側のナビゲーションセンサ情報により制御を⾏い、１ .５〜１０ｍ程度の⾼

度から海底面の⾼精度の３次元画像マップを作成することができる。ロボットにナビゲーションセンサが搭載されて

いいない場合には、別途つなげることが可能である。

注７）BOSS-A

　重量約６００kgの中型ホバリング型AUV。観測センサとして、クラストの⾳響厚み計測装置と低⾼度３次元画像

マッピング装置を搭載し、１ .５ｍ⾼度から全⾃動計測を⾏う。ペイロードスペースを広く取っているため、観測セン

サを⼊れ替えて別のセンサを搭載して別ミッションへの対応が可能である。

注８）ホバリング型AUV

　広範囲を⾼速で航⾏することをミッションとする航⾏型AUVと異なり、運動⾃由度が⾼く、定点保持・その場回

頭、その場での上下運動が可能なAUV。対象を詳細観測することを主要ミッションとする。

注９）クラスト厚み計測装置

　「BOSS-A」には、ジンバル制御を⾏う⾳響厚み計測装置が搭載されている。パラメトリック効果で発する



２００kHz（２次波）の⾳響ビームを⾼度１〜２mで海底面にビームの焦点を⾃動的に合わせる。ターゲットにあた

るビームの直径は２０mm程度で、海底下３０cmまでの内部構造を計測できる。ジンバル制御により超⾳波が海底面

に対して直⾓に⼊射するよう⾃動的に⾓度を制御する。

○添付資料：





図１　海⼭の南⻄の肩部を下るBOSS-Aの調査では、場所毎にクラスト分布の特徴に変化が⾒られる。

図２　BOSS-Aの計測測線と低⾼度３次元画像マッピングデータ。右図の枠で⽰すクラストが被覆する箇所について、

クラストの厚み計測データの値を⽰す（左上の右図）。

図３　図２の⾳響厚み計測データの拡⼤図、クラスト分布が連続する箇所（ロボットの計測時間軸に沿ったデータ表

⽰）の拡⼤図（上図）、⾳響厚みデータ（中図）、⾳響厚み計測解析結果（下図）、⾳響厚み計測結果では砂地とク

ラスト被覆部の差がはっきりと⽰される。



図４　BOSS-Aの調査と重なる測線を航⾛したROVの調査で取得したデータ。枠内に⽣物が写っている（図５、図６参

照）。



図５　BOSS-Aの調査で取得したデータのうち、クラストが連続的に被覆する箇所のデータ。



図６　図４と図５のデータはぴったりと重なる、また、両⽅の画像に写っている底⽣⽣物の位置はほとんど変わらな

い。
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Good judgment comes from experience, and a lot of that comes from bad

judgment.
-Will Rogers

The real voyage of discovery consists not in seeking new landscapes, but

in having new eyes.
-Marcel Proust

Now the words are over

and the pain they bring is gone.

Now you have gone to rest

in the arms of the Beloved.
-Rumi
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