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Abstract

Octacalcium phosphate (OCP) is a key precursor of biological apatite in hard tissues with 

excellent osteoconductive and biodegradable properties for bone regeneration. OCP spherical 

granules are expected to be useful as drug delivery carriers, since OCP has high specific 

surface area. Although there have been some reports of OCP sphere preparation, methods for 

preparing pure OCP spheres are limited. The objective of this study is the preparation of 

spherical granules of pure OCP and assessment of their in vitro biodegradation in 

physiological conditions. We successfully prepared spherical pure OCP granules with a size 

of ~500 µm without any organic additives by simple immersion of α-tricalcium phosphate 

spherical granules in pH 5.0 acetate buffered solutions at 60°C. The granules had core-shell 

structure composed of OCP crystals different particle size. The spherical granules showed 

20%–40% in vitro degradation in physiological conditions, however the phase transition of 

OCP was not significantly observed. 

Keywords: Pure OCP sphere, -TCP, Acetate buffer treatment, in vitro biodegradation 
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1. Introduction

Octacalcium phosphate (OCP: Ca8(HPO4)2(PO4)4·5H2O) has attracted significant 

interest as a bone substitute because of excellent tissue response. Its osteoconductivity is 

greatly advanced compared with that of hydroxyapatite (HAp: Ca10(PO4)6(OH)2), a common 

bone substitute used in clinical practice. Based on its structural similarity to HAp and its 

significantly higher solubility and its detection in several calcified tissues, OCP is thought to 

be involved in the first stages of the tissue biomineralization [1,2]. OCP is a metastable phase 

of calcium phosphate replaced by new bone through bone remodeling [3,4]. Metastable 

phases may be fabricated under the following conditions: (1) the solubility of the precursor is 

higher than that of the metastable phase and (2) the fabrication of the metastable product 

occurs more rapidly than its transformation to the most stable phase.

OCP is hydrolyzed in aqueous solution and is converted into HAp, while OCP can be 

obtained by hydrolysis of α-tricalcium phosphate (α-TCP: α-Ca3(PO4)2) [5]. α-TCP can also 

hydrolyze directly to calcium deficient HAp, depending on the reaction conditions [6]. The 

interest in the chemical nature of the possible products of α-TCP hydrolysis, has led to its 

increasing use in calcium phosphate bioactive bone cements [7,8].

OCP shows excellent biomedical properties and some clinical trial has recently started 

[9-12]. The present drawback of OCP is difficulty to obtain large single component structures 

as it easily decomposes under sintering conditions [13-16]. Teshima et al. [17] prepared 

spherical composites of OCP and agarose using a hydrogel method. Murakami et al. prepared 

OCP granules by grinding dried OCP cake using a pestle and mortar [18]. The size of the 

granules was controlled by sieving, but their shape was not controlled. Recently, Ioku et 

al.[19] reported the preparation of porous OCP spheres using 10 mass % gelatin as a base 

slurry, followed by sintering. The granules were quite large in size, around 1.0 mm in 

diameter, and the phase obtained was a mixture of HAp and OCP. 
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In this study, spherical granules of pure OCP were prepared from α-TCP in the 

absence of any supporting polymer or polymeric slurry. Spherical granules are advantageous 

from a practical perspective because they can be easily applied at bone-defect sites using a 

catheter owing to their fluidity. We therefore aimed to make spheres of OCP that could be 

used as a drug delivery system and for bone defect implantation.

2. Materials and methods:

α-TCP powder (α-TCP-B, Taihei Chem. Inc., Osaka, Japan) was used as obtained. 

Physiological saline with pH 5.4 was purchased from Otsuka Pharmaceutical Company, 

Japan. The other reagents were purchased from Wako Pure Chemical Industries, Ltd., Japan. 

Ultrapure water (prepared using a Direct-Q, Nihon Millipore K.K., Tokyo, Japan) was used 

for the experiments. 

2.1 Preparation of α-TCP granules: 

The water-in-oil (W/O) emulsion method was used to prepare α-TCP spherical 

granules. An -TCP suspension was prepared by adding an equal ratio (weight to volume) of 

α-TCP powder to ultrapure water. The suspension was then added dropwise to a 1000-mL 

glass beaker containing vegetable oil at 60°C using a pipette. The vegetable oil was stirred 

continuously at 500 rpm at 60°C for 2 h to allow the α-TCP suspension to set into spherical 

granules. The granules were then left in the oil to sediment at the bottom. The spherical 

granules were collected by filtering the oil followed by washing with acetone to remove 

excess oil, and then dried overnight at ambient temperature. The dried spherical granules 

were sintered at 1300°C for 3 h and then sieved to obtain α-TCP spherical granules with a 

diameter of ~500 µm.
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2.2 Acetate buffer treatment of -TCP granules: 

The obtained α-TCP spherical granules (0.10 g) were added to a polypropylene tube 

containing 20 mL of 0.2 M acetic acid–sodium acetate buffer solution, pH 5.0, at 60±1.0°C, 

and the tube was placed in an incubator with continuous shaking for 6 h. Subsequently, the 

granules were collected, washed with ultrapure water, and dried.

2.3 Material characterization:

The surface morphology changes of the samples were characterized using a scanning 

electron microscope (SEM; S-3500N; Hitachi Co., Tokyo, Japan), an energy dispersive X-ray 

analyzer (EDX; EX-400; Horiba Co., Kyoto, Japan), an X-ray diffractometer (XRD; 

MXP3V; Mac Science Ltd., Yokohama, Japan), and a Fourier-transform infrared 

spectrometer (FT-IR, FT/IR-6100, JASCO Co., Tokyo, Japan). For FT-IR, the samples were 

ground and mixed with KBr powder at a mass ratio of 1:100 then a thin film was prepared by 

uniaxially pressing the mixture. For the TEM examinations, the powdered OCP flakes were 

separated in ethanol solution using ultrasonic vibration, and then picked up with TEM copper 

grids (STEM Cu 100P (#09-1002), Nisshin EM Co., Ltd., Tokyo, Japan) coated with 

amorphous carbon film, without a thinning process. The examinations were conducted in the 

TEM system (TEM, H-9000 NAR, Hitachi Ltd., Tokyo, Japan) with a maximum acceleration 

voltage of 250 kV. 2.4. The apparent porosity of the prepared OCP spheres were measured 

according to Archimedes’ principle. A porous sample with a dry weight W1 was filled with 

water in a beaker in vacuo. Measured weight of the water-filled sample in water and air was 

denoted as W2 and W3, respectively. The apparent porosity can be calculated as follows:

Apparent Porosity (%) = (W3−W1)/(W3−W2)×100                 (1)

2.4 Assessment of in vitro biodegradation:
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The OCP spheres of 500 mg were incubated in 20 mL of phosphate buffered saline 

(PBS) or physiological saline at 37°C for various time periods. PBS with ion concentration of 

10 mM PO4
3−, 137 mM Na+, 2.7 mM K+ and pH 7.4 was prepared in the laboratory. 

OCP degradation was monitored by measuring the dry weight loss over time. At least 

four samples at each time point were used to obtain the weight loss curve. Experiments were 

carried out under sterile conditions to prevent bacterial and fungal contamination.

3. Results and Discussion:

Figure 1 shows SEM images of the surfaces of the prepared α-TCP spheres before and 

after immersion in acetate buffer solutions for 6 h. The obtained spheres were ~500 μm in 

diameter. After immersion, the smooth surface morphology was completely converted into 

aggregated plate-like particles around 5–10 μm in length.

Figure 2 shows SEM images of the pits formed on the α-TCP spheres after immersion 

in acetate buffer solutions for 6 h. Both the top surface and the inside were composed of the 

plate-like particles, and that the former is more densely packed and composed of smaller 

particles than the latter. It is thought that the dense shell was constructed on the top surface 

by rapid reaction of α-TCP with buffer solution, while its diffusion into the inside of the 

granule was suppressed, resulting in slow crystal growth of OCP with larger particle size. 

Figure 3 shows XRD patterns of α-TCP spheres after immersion in acetate buffer 

solutions for various time periods. Only diffraction peaks attributed to α-TCP (JCPDS card 

9–348) were observed before the immersion. OCP peaks (PDF# 26-1056) appeared after 1 h 

and those of α-TCP were no longer detected after 3 h. Subsequently, the intensity of the OCP 

peaks increased. Although many diffraction peaks of the OCP and HAp patterns overlap, a 

peak around 11° is only observed for HA, therefore, as no peaks in that position were 
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observed for the sphere immersed for 6 h, it is thought to be composed of pure OCP. 

Additionally, calcium hydrogen phosphate dihydrate, which can be formed from -TCP in 

acidic conditions, was not detected, indicating that α-TCP was directly hydrolyzed to OCP.

It is noted that pure OCP spheres can be obtained using the present technique with the 

porosity of 37±3%. It has been reported that the coexistence of organic polymers such as 

poly-L-glutamate and polyacrylate inhibits the transformation of amorphous calcium 

phosphate into HAp [20]; therefore not using organic polymers may enhance the conversion 

into OCP. XRD did not reveal significant amounts of other residual phases in the obtained 

spheres. The components of -TCP are the same as those of OCP: Ca2+ and PO4
3−. Therefore, 

incorporation of other ions can be suppressed for this technique, unlike for the technique 

using calcium sulfate as a precursor [21]. This method also allows for the production of pure 

OCP blocks. 

Figure 4 shows FT-IR spectra of the synthesized α-TCP granules before and after 

immersion in acetate buffer. No other foreign peaks were detected. After immersion, bands 

derived from PO4
3− groups (560–600 and 1030–1090 cm−1) were clearly visible. The 

assignment of the absorption peaks of OCP was based on a previous report [22]. In pure 

OCP, absorption peaks at 1193, ~1120, ~1034, 601, and 560 cm−1 were assigned to the OH in 

plane-bending mode of HPO4 in the hydrated layer, HPO4 stretching mode, PO4 stretching 

mode, PO4 bending mode, and PO4 bending mode, respectively.

Figure 5 (a) shows the TEM dark-field image of OCP obtained from -TCP. OCP 

particles were found to have plate-shaped morphology with smooth edges. Figure 5(b) shows 

the electron diffraction pattern of the white circled region in Fig. 5 (a). Similar electron 

diffraction patterns were also obtained from other crystallites of OCP. The spots were 

assigned to the 110 and 001 planes based on the consideration that these assignments indicate 
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plane spacings of 0.94 and 0.68 nm, respectively; and these are consistent with reported 

values, d110 (0.938 nm) and d001 (0.683 nm) [23–24]. Moreover, the line through the 001 

and center spots and the line through the 110 and center spots crossed with an angle of 90.3°, 

and this is consistent with the fact that the calculated angle between the (110) and (001) 

planes of OCP is 90.32°. The images revealed that the long axis direction of the starting 

material of OCP was [001]. 

As a preliminary model of the bioabsorption of the obtained OCP spheres at an 

injection site, degradation was monitored in vitro by measuring the dry weight of the samples 

as a function of incubation time in physiological saline (pH 5.4) and PBS (pH 7.4) (Fig. 6). 

Approximately 20% weight loss was observed in the case of physiological saline after up to 

21 days. In contrast, the weight loss was around 40% at 21 days of PBS incubation. 

Figure 7 shows SEM images of the OCP spheres before and after immersion in saline 

solution and PBS. Images of the crushed sample are also given to show the morphological 

changes inside the spheres. The surface morphology of the top surface became smoother as 

the immersion time increased, while the morphology of the crushed spheres was almost the 

same. Additionally, the spherical shape was maintained even after 14 days. These results 

suggest that degradation of the spheres occurs mainly at the surface. The Ca/P molar ratio of 

pure OCP before immersion was 1.33, while that after immersion in physiological saline and 

PBS for 14 days was 1.62 and 1.63, respectively. It was also confirmed by XRD that no 

phase transition of OCP was observed even after soaking in PBS for 21 days (Data not 

shown). Figure 8 shows a histogram of the particle size distribution of the spheres treated 

with acetate buffer for 6 h before and after immersion in physiological saline (pH 5.4) and 

PBS (pH 7.4) solutions at 37°C for 21 days. The distribution shifted to smaller sizes after 

immersion, indicating that the spheres are partially dissolved in physiological conditions. 
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Although there are no reports of in vitro degradation of OCP, Persson et al. [25] 

recently reported the long-term in vitro degradation of brushite cement in water, PBS, and 

serum solution. They observed that specimens in PBS showed the highest degradation rate, 

which agrees with the results of our study. However, we observed higher degradation rates, 

both in PBS (13.3%/week) and physiological saline solution (6.7%/week), than they reported 

(0.22–0.37%/week). Grover et al. [26] reported a sharp contrast between the total mass loss 

of β-TCP cement aged in bovine serum (57 wt%) compared with that aged in PBS (16 wt%) 

over 90 days. The observed degradation was much higher than the theoretical solubility 

estimated from the solubility product of OCP (pKsp = 48 - 49) [27]. Judging from the result in 

Fig. 7 that morphology of the spheres was changed after the immersion, not only chemical 

dissolution but also detachment of the constituent particles may occur. In summary, 

degradation behavior depends on numerous factors including the porosity, formation of an 

outer layer, object volume, phase composition, and degradation media. 

It can be seen in Figs. 6–7 and from the Ca/P ratio results that the spheres were 

partially degraded in physiological conditions, but that phase transition of OCP did not 

significantly occur, except at the top surface. Recently, Ban et al. [28] also reported that OCP 

did not transform to HA in simulated body fluid (SBF) with ion concentrations approximately 

equal to those of human blood plasma. Yokoi et al. [29] reported that OCP did not transform 

to HAp and that further OCP formation occurred on OCP crystals in SBF. Although HAp is a 

more stable crystal phase than OCP in SBF, the crystal growth of OCP proceeded differently. 

These phenomena were theoretically explained by Liu et al. [30]. They conducted a 

theoretical analysis of calcium phosphate precipitation in SBF, revealing that the nucleation 

rate of OCP is substantially higher than that of HAp, while HAp is thermodynamically more 

stable than OCP in SBF. Because of the kinetically slow HAp nucleation, the crystal growth 
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of OCP was thought to occur preferentially. Our results are in accordance with the above 

reports.  

4. Conclusions:

Spherical pure OCP granules with porosity of 37% were prepared by phase transition 

of α-TCP granules in acidic conditions. Interestingly, they exhibited a kind of core-shell 

structure. It is expected that ability of drug delivery can be appropriately controlled by the 

thickness of the shell. They showed in vitro degradation of 20%–40% in physiological 

conditions while maintaining their spherical shape. The spheres have potential uses as 

components of bioabsorbable injectable pastes and as pure OCP blocks for bone substitutes.
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Figure Captions

Figure 1: SEM images of the prepared spheres (a), (b), and (c) before and (d), (e), and (f) 
after immersion in acetate buffer for 6 h, at different magnification.

Figure 2: SEM images of a whole sphere and pit after immersion in acetate buffer for 6 h. (b) 
and (c) correspond to the areas indicated in (a).

Figure 3: Powder XRD patterns of the spheres after immersion in acetate buffer for various 
time periods.

Figure 4: FT-IR spectra of the spheres after immersion in acetate buffer for 6 h.

Figure 5: TEM image (a) and electron diffraction pattern (b) of the spheres after immersion 
in acetate buffer for 6 h. (b) is with the [110] plane axis of the circled region in (a).

Figure 6: In vitro degradation of spheres treated with acetate buffer for 6 h in physiological 
saline (pH 5.4) and phosphate buffered saline (pH 7.4) solutions at 37°C for various time 
periods (n=4).

Figure 7: SEM images of spheres treated with acetate buffer for 6 h in physiological saline 
(pH 5.4) and phosphate buffered saline (pH 7.4) solutions at 37°C for various time periods.

Figure 8: Histograms of the particle size distribution of spheres treated with acetate buffer 
for 6 h before and after immersion in physiological saline (pH 5.4) and phosphate buffered 
saline (pH 7.4) solutions at 37°C for 21 days.
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