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1 Introduction

In modern control technology, there has been a growing demand for multirate digital control to seek better

performance[15, 13]. Multirate control is suitable for systems having widely different time constants. Multiple

rates also naturally arise from practical hardware limitations such as allowable rates of sampling and hold

mechanisms in actuators, sensors and processors. In some situations, mulirate control has been found to be

superior to single-rate control. For example, simultaneous stabilization, pole assignment and strong stabi-

lization can be reduced to comparatively easy problems by introducing multirate input or generalized hold

functions[3, 14, 23]. The mechanism can relocate zeros[27]. A comprehensive list of abilities of multirate con-

trol is available in [2]. Although multi-rate possesses seemingly desirable features, advantage over single-rate

control is a matter of debate. For control scheme having different sampling and hold periods one another,

comparison of their performance is delicate. For instance, contribution of discrete zeros and poles, discrete

frequency response and discrete norm to systems behavior is not uniform since performance measures are not

based on the same time variable. Several people have pointed out that use of multirate control may result in

sensitivity and robustness difficulties[27, 7, 9]. Control signal may become highly irregular and control can

exhibit unacceptable intersample ripple[4]. Although performance of a multirate system is good in discrete

time, the performance can be seriously bad in continuous time at the same time. Clearly, intersample behavior

and continuous-time based measure are keys to a fair evaluation of performance and robustness. Capabilities

and limitations of multirate control depends on objectives. This paper does not include a long list of previous

contributions. Limitations and advantages of multirate control are explained rigorously in [2].

Deadbeat control is one of control problems which are not included in the survey [2]. This paper explores

the capability issue of multirate control though deadbeat servomechanism. To the best of the author’s knowl-

edge, the issue of comparison between multirate and single-rate has not been discussed deeply yet in the

literature of deadbeat control. Deadbeat control has been studied for more than four decades[5, 24, 22, 32].

Since single-rate deadbeat design sometimes results in serious ripple between sampling instants especially in

input-output or frequency domain approaches, ripple-free servomechanism has attracted much attention[8,

30, 28, 33, 12]. As for multirate design, several methods are available to cope with situations where periods of

sampling and hold are determined a priori by hardware or time scales of the plant[11]. Little is known about

how to exploit multiple periods for achieving better performance[2] in comparison to single-rate control.

This paper addresses the design problem of deadbeat state-feedback control by exploiting multirate input

mechanism. The system output is required to track a step reference signal with zero steady-state error in

finite time from any initial state. In contrast with previous studies typically in frequency domain, this paper

allows the initial state to be arbitrary. A state-space approach is developed for deadbeat, ripple-free deadbeat

and robust ripple-free deadbeat problems. Instead of looking at ‘the number of steps’ for settling, settling

‘time’ is employed to compare performance of multirate and single-rate control fairly. This paper first shows

that multirate input control can be superior to single-rate control in the deadbeat problem. Then, this paper

describes that the multirate mechanism sometimes exhibits oscillatory behavior of the manipulating input

and that causes intersample ripple. This contrasts with the fact that single-rate state-feedback design though

the state-space approach always results in ripple-free deadbeat. This paper shows how to remove the negative

effect of multirate input on the steady-state response, while the multirate system retains quick transient

response. Thereby, multirate control can be still better than single-rate control, taking account of ripple.

Finally, the paper develops a method of robustifying the ripple-free multirate control against continuous-time
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Figure 1: Multirate control for deadbeat servomechanism

model uncertainty and continuous-time disturbances. A parametrization of ripple-free deadbeat multirate

controllers having specified settling time is given and an optimization problem for solving the robustness

problem is formulated. All proofs are collected in Appendix.

2 Deadbeat servomechanism

2.1 Deadbeat tracking using multirate input

Consider an SISO continuous-time linear time-invariant system described by

ẋ(t) = Acx(t) + Bcu(t), x(t) ∈ Rn

y(t) = Ccx(t) (1)

The initial time is t = 0. The plant (1) is supposed to satisfy the following standard assumptions.

Assumption 1 The triplet (Ac, Bc, Cc) is controllable and observable.

Assumption 2 The continuous-time system (1) does not have zeros at the origin.

This paper focuses on the multirate input mechanism as follows:

x[k] = x(kNT ), y[k] = y(kNT ), k = 0, 1, 2, . . . (2)

u(t) = u[i], iT ≤ t ≤ (i + 1)T, i = 0, 1, 2, . . . (3)

where the sampling period for x(t) and y(t) is NT and the period of zero-order hold for u(t) is T > 0. The

positive integer N is called the input multiplicity. The control objective is to design multirate input control

which makes the output signal y to track a step reference yr with zero steady-state error in finite time. The

paper considers the state feedback configuration shown in figure 1 which has a discrete-time internal model

with period NT in the feedback loop. x The mappings L,K are linear operators satisfying

L : {x[k]} �→ {p[kN ], · · ·, p[(k + 1)N − 1]} (4)

K : {z[k]} �→ {q[kN ], · · ·, q[(k + 1)N − 1]} (5)

u[i] = p[i] + q[i], k, i = 0, 1, 2, . . . (6)
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which are time-invariant and static. In other words, there exist real row vectors Lj, Kj such that

p[kN + j − 1] = Ljx[k], j = 1, 2, . . . , N (7)

q[kN + j − 1] = Kjz[k] (8)

hold. Let yr(t) be a unit step signal and yr [k] denotes the discrete counterpart. The state variable of the

discrete internal model is denoted by z[k]. The deadbeat problem is stated formally as follows:

Find Lj and Kj , j = 1, . . . , N with which the system shown in figure 1 is internally stable and y[k] satisfies

y[k] = yr [k], ∀k ≥ τ, ∀x(0) ∈ Rn, ∀z[0] ∈ R (9)

for a finite integer τ ≥ 0.

The minimum integer τ satisfying (9) for all initial values x(0), z[0] is called the settling steps, which is

denoted by τd. The real number τc = τdNT is called the settling time. This paper attaches importance to the

settling time rather than the settling steps. We can compare performance of single-rate design and multirate

design fairly using the settling time.

2.2 Design of multirate feedback gain

Let û[k] be defined by

û[k] =




u[(k + 1)N − 1]
...

u[kN + 1]
u[kN ]


 (10)

which is the discrete-time lifted signal of u[k] [26, 29]．Then, the plant (1) can be represented as

x[k + 1] = ANx[k] + B̂û[k]
y[k] = Ĉx[k]

(11)

A = eAcT , B =
∫ T

0

eAcτdτBc, Ĉ = Cc

B̂ =
[

B AB · · · AN−1B
]

=
[

B̂1, · · · , B̂N

]

This system (11) is called the ‘lifted’ plant. If the triplet (Ac, Bc, Cc) is controllable and observable, (AN , B̂, Ĉ)

is also controllable and observable for almost all T > 0 [20]. Thus, we reasonably replace Assumption 1 by

the following.

Assumption 1’ The triplet (AN , B̂, Ĉ) is controllable and observable.

By using discrete signals of period NT , the closed-loop system in figure 1 is described as

x̃[k + 1] = Ãx̃[k] + B̃û[k] + d̃

y[k] = C̃x̃[k], û[k] = −Fx̃[k]
(12)

x̃[k] =
[

x[k]
z[k]

]
, d̃ =

[
0
yr

]

Ã =
[

AN 0
−Ĉ 1

]
, B̃ =

[
B̂
0

]
=
[

B̃1, · · · , B̃N

]

C̃ =
[

Ĉ 0
]
, F =

[
L K

]
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where L and K are lifted representations of L and K, respectively.

L =




L1

...
LN


 , K =




K1

...
KN


 (13)

This paper refers to F as the multirate feedback gain. Internal stability of the discrete-time system (12) is

equivalent to the internal stability of the multirate sampled-data system in figure 1 [20]. This equivalence and

the next lemma allow us to exploit the representation (12) for the deadbeat design.

Lemma 1 For any complex number z, (AN , B̂, Ĉ) satisfies

rank
[

zI − AN 0 B̂

Ĉ z − 1 0

]
= n + 1 (14)

The pair (Ã, B̃) is controllable regardless of N . Let nmax denote the controllability index of (Ã, B̃).

nmax = max{n1, n2, · · · , nN}
ni = min

{
j : ÃjB̃i ∈ span

[
B̃, ÃB̃, · · · , Ãj−1B̃, ÃjB̃1, · · · , ÃjB̃i−1

]}

Due to Lemma 1, we have

sN = n + 1, sr =
r∑

i=1

ni , r = 1, 2, . . ., N

Theorem 1 Given an arbitrarily integer N > 0, there exists a multirate feedback gain F which solves the

deadbeat problem with τd = nmax. Furthermore, the settling discrete time of x̃[k] cannot be less than nmax.

Proof of the theorem employs the theory of deadbeat control for MIMO discrete-time systems. Due to Lemma

1, there exists a non-singular matrix S which transforms (Ã, B̃) into the controllable canonical form (As, Bs),

which are consistent with

As = SÃS−1 , Bs = SB̃ (15)

As =




Ū1 0 · · · 0
a1

0 Ū2 · · · 0
a2

...
...

. . .
...

0 0 · · · ŪN

aN




,
ai ∈ R1×(n+1)

i = 1, 2, . . ., N

Bs =




0
1 b12 · · · b1N

0
0 1 b23 · · ·

...
0

0 · · · 0 1




=




0
b1

0
b2

...
0

bN



∈ R(n+1)×N

Ūi =




0 1 0

0 0 1
. . .

. . . . . .
0 1


 ∈ R(ni−1)×ni
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Let the feedback gain F be chosen as

F = GFsS, G =




b1

b2

...
bN




−1

, Fs =




a1

a2

...
aN


 (16)

Then, we have

(As − BsGFs)i = 0, ∀i ≥ nmax (17)

Due to the discrete-time internal model, the closed-loop system has the property

[
Ĉ 0

]
=
[

0 1
]
(I − Ã + B̃F )

This equation implies that y[k] fulfills the tracking requirement

y[∞] = yr

regardless of precise values of Ac, Bc, Cc, F whenever the closed-loop system is internally stable.

2.3 Settling time for deadbeat

We shall examine the setting time of the deadbeat servomechanism proposed by the multirate feedback gain

(16). From Theorem 1, settling time is nmaxNT . The smaller nmaxN is, the shorter settling time the system

has. Since rankB̃ < n + 1 holds obviously for all N , nmax = 1 cannot be fulfilled. To examine the possibility

of achieving nmax = 2, we focus on the matrix

V =
[

B̃ ÃB̃
]

(18)

The size of V is (n + 1) × 2N . The matrix has full-row rank only if

N ≥ (n + 1)/2 for n : odd
N ≥ (n + 2)/2 for n : even (19)

By assumption, (Ã, B̃) is controllable for any N . Taking the smallest N in (19), we obtain the following.

Theorem 2 There always exists a multirate feedback gain F solving the deadbeat problem and

(i) the settling time is (n + 1)T if n is odd.

(ii) the settling time is (n + 2)T if n is even.

Such a multirate feedback gain is obtained from F = GFsS together with (15) and (16), taking N = (n+1)/2

for odd n, or N = (n + 2)/2 for even n. Since the single-rate case N = 1 implies nmax = n + 1 and

nmaxN = n + 1, the following fact is straightforward from Theorem 2.

Corollary 1 The deadbeat problem can be solved by either of multirate control and single-rate control. Fur-

thermore, there exists a multirate controller which requires less number of sampling for accomplishing deadbeat

than single-rate controllers, and

(i) settling time is the same as that of single-rate when n is odd.

(ii) settling time is longer than that of single-rate by only T when n is even.
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3 Ripple-free deadbeat servomechanism

3.1 Design of ripple-free feedback gain

The method proposed in the previous section often allows the deadbeat response to have ripple between

sampling instants. The existence of ripple in a multirate control system is characterized by the continuous-

time behavior of control input.

Theorem 3 Suppose that a multirate control system posses deadbeat tracking response at sampling instants

for step input. The response does not exhibit ripple between sampling instants if and only if the steady-state

input u(t) takes a constant value.

In the single-rate case, continuous-time signal u(t) takes a constant value if and only if the discrete signal

u[k](= û[k]) with the period NT of sampler is constant. The steady-state u[k] =constant is necessary and

sufficient for ripple-free deadbeat tracking[28, 8, 25]. Thus, Theorem 3 is nothing but a natural extension

of this fact to the multirate input case. Consider again the control law given by (16). The steady-state of

discrete time signal u[i] is obtained from the lifted signal

ûs = −Fx̃[∞] = −F (I − Ã + B̃F )−1d̃ (20)

which is the steady-state of û[k]. It is obvious that the input u(t) becomes constant after completion of

deadbeat in the single-rate case. However, this is not the case for multirate control N > 1. Although the

steady-state u(t) repeats the same profile with period NT , the signal is unnecessarily constant all times. Too

see this point, let a matrix J be defined by

J =




1 −1 0 · · · 0

0 1
. . . . . .

...
...

. . . . . . −1 0
0 · · · 0 1 −1


 (21)

The feedback gain F proposed in the previous section yields a constant steady-state input if and only if

JGFs(I + As − BsGFs)S




0
...
0
1


 = 0 (22)

holds. In the process of obtaining (22), the properties

(I − Ã + B̃F )−1 =
∞∑

i=0

(Ã − B̃F )i

(Ã − B̃F )2 = 0 (23)

are applied to (20). The condition (22) relies directly only on the plant data (Ac, Bc, Cc) so that ripple usually

remains after deadbeat settling. The multirate control is the very technique which allows input signal to take

multiple values in one frame period NT in order to manage to achieve the design objective. In some situations,

it may cause undesirable oscillation, which is known as a serious drawback of multirate input control. The rest

of this paper demonstrates that the phenomenon is avoidable even if multirate control is required to performs

better than single-rate one. It is possible to exploit multirate mechanism to improve only transient response
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and we can completely remove the negative effect of multirate input on the steady-state response at the same

time.

It is assumed that the multirate feedback gain FM is designed to achieve the deadbeat response with

settling steps τd = 2.

Assumption 3 The multirate feedback matrix FM is a solution to the deadbeat problem, which satisfies (23)

and results in ripple between sampling instants.

The gain matrix FM can be always decomposed into FM = GFsS. The gain FM satisfying (23) allows ripple

if and only if (22) is violated. Because of the above assumption, we give up seeking 2NT deadbeat control.

Instead, we now consider ripple-free deadbeat with settling time 3NT . Recall that G and S are non-singular.

All multirate feedback gain matrices are parametrized by

F = GF̄sS = G(Fs − E)S (24)

where E ∈ RN×(n+1) is a free parameter. Restricting E to being in the form of

E =




0 · · · 0
...

. . .
... e

0 · · · 0
0 · · · 0 0


 , e ∈ R(N−1)×1 (25)

we have

(BsGE)2 = 0, E(As − BsGFs) = 0

Hence, the gain F̄s on the transformed coordinate satisfies

(As − BsGF̄s)3 = 0 (26)

The steady-state input (20) is calculated as

ûs =−GFs(I+As−BsGFs)(I+BsGE)ds+GEds (27)

ds = Sd̃ =




ds,1

...
ds,n+1


 (28)

By applying J to (27) again, the steady-state input is a constant signal if the column vector e satisfies

Φe = Λ (29)

where Λ and Φ are

Λ = JGFs(I + As − BsGFs)ds ∈ R(N−1)×1 (30)

Φ = J(I − GFs(I + As − BsGFs)Bs)GW ∈ R(N−1)×(N−1) (31)

W =
[

ds,n+1IN−1

0

]
∈ RN×(N−1) (32)

Therefore, the steady-state input can be made constant if Φ is invertible. The solution F to the ripple-free

deadbeat problem is obtained as the following multirate feedback gain:

F = GFrS = G

(
Fs −

[
0 Φ−1Λ
0 0

])
S (33)

The existence of Φ−1 establishes the following claim.
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Theorem 4 There always exists a multirate feedback gain F which solves the deadbeat problem with settling

time 3NT and the response is ripple-free for any X(0) and z(0).

3.2 Settling time for ripple-free deadbeat

Since the smallest N satisfying (19) is

N = (n + 1)/2 n : odd
N = (n + 2)/2 n : even (34)

we can prove the following by combining Theorem 4 and (34).

Corollary 2 There always exists a multirate feedback gain F solving the deadbeat problem and

(i) the settling time is 1.5(n + 1)T if n is odd.

(ii) the settling time is 1.5(n + 2)T if n is even.

In addition, the response is ripple-free for any initial state X(0) and z(0).

Now, the necessity of settling steps 3 for ripple-free deadbeat is explained briefly. If n is odd, the matrix E

in (24) must be zero to guarantee (As − BsGF̄s)2 = 0. Thus, Assumption 3 implies that ripple-free deadbeat

needs at least three steps for odd n. In the case of even n, the matrix E yielding deadbeat in two steps is not

unique. However, the response cannot be made ripple-free by using the degree of freedom. In fact, for plants

of order n > 2, ripple-free deadbeat control requires generically at least three steps for settling. To see this,

let l be the index for which nl = 1 holds(l is not unique). Other controllability indices are ni = 2 for all i �= l.

it can be easily verified that (As − BsGF̄s)2 = 0 holds if and only if E in (24) is in the form of

Eij =




ej if l and j ∈
N⋃

r=1
r �=l

{sr}

0 otherwise

E = [Eij ] =


 0

e
0


 = W̄ e, e ∈ R1×(n+1)

where e is a free row vector. Following an argument similar to (27-29) and using

E(As − BsGFs) = 0, EBsGE = 0

the gain F̄s = Fs − E is a solution of the ripple-free deadbeat with two steps settling if and only if

Ψeds = Λ ∈ R(N−1)×1 (35)

where

Ψ = J(I − GFsBs)GW̄

Assumption 3 implies Λ �= 0. Since eds is scalar, in general, the condition (35) cannot be fulfilled unless

N = 2.
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Table 1: Settling time for different sampling periods

sampler hold settling time
single rate T T (n + 1)T

multirate n: odd (n + 1)T/2 T (n + 1)T
n: even (n + 2)T/2 T (n + 2)T

ripple-free n: odd (n + 1)T/2 T 1.5(n + 1)T
multirate n: even (n + 2)T/2 T 1.5(n + 2)T

Table 2: Settling time for different hold periods

sampler hold settling time
single-rate T T (n + 1)T

multirate n: odd T 2T/(n + 1) 2T
n: even T 2T/(n + 2) 2T

ripple-free n: odd T 2T/(n + 1) 3T
multirate n: even T 2T/(n + 2) 3T

4 Comparison between multirate and single-rate design

This section compares multirate deadbeat design proposed in Section 2 and Section 3 with single-rate control.

Table 1 and table 2 are the summary of the comparison of settling time. Table 1 shows that the same or

almost the same settling time can be achieved with even slower sampling frequency by exploiting multirate

control appropriately, provided that the multirate and single-rate control have the same frequency of hold

devices. The ripple-free design in Section 3 requires slightly longer settling time than deadbeat design with

ripple. However, according to table 2, the multirate ripple-free design results in shorter settling time than

single-rate control if only hold frequency is chosen faster than the single-rate one without any change of

sampling frequency. It should be noted that in this paper, the settling time is defined as the worst-case value

over arbitrary initial conditions. The settling time may be shorter than those of table 1 and 2 if a particular

initial state is of interest (e.g. see [28] for the single-rate case and zero initial condition).

To illustrate the results in the tables numerically, we consider a continuous-time plant

ẋ(t) =


 2 −3 4

1 0 0
0 1 0


 x(t) +


 1

0
0


 u(t) (36)

y(t) =
[

0 0 1
]
x(t) (37)

and the input multiplicity is set N = 2. Figure 2 shows the output response y(t) of the closed-loop system

figure 1 for a unit step reference yr and initial condition x(0) = [ 3 0 −2 ]T，z(0) = 0. The dash-dot line

is the response of a multirate controller achieving the minimum value of settling steps described in Section 2.

The dashed line is of the ripple-free multirate design proposed in Section 3. The solid line is the response of a

single-rate controller having the same period of hold 0.5 as the other multirate controllers. Finally, the dotted

line is of a single-rate controller having the same sampling period 1.0 as the other multirate controllers.
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Figure 2: Step response: single-rate, multirate and ripple-free multirate designs

5 Robust ripple-free deadbeat control

5.1 Parametrization of ripple-free feedback controllers

This section considers the problem of robustification of multirate deadbeat control for disturbances and

uncertainties. The deadbeat design proposed in the previous section has exploited a degree of freedom in

deadbeat feedback gain to achieve ripple-free tracking. However, the 3NT deadbeat design has no parameters

that remain free for achieving additional robustness. Thus, we first seek a parametrization of ripple-free

deadbeat controllers having slightly longer settling time.

Consider the multirate feedback gain (24) again. By Assumption 3, FM achieves 2NT deadbeat and

nmax = 2. Suppose that N is selected as (34). Then, the property

ni = 2 ∀i∈ [1, N ] if n is odd
ni = 2 ∀i∈ [1, N − 1], nN = 1

or
ni = 2 ∀i∈ [1, N−2]∪ {N}, nN−1 = 1


 if n is even

follows immediately from the definition of Ã and B̃ and the controllability of (A, B). Without loss of generality,

nN = 2 is assumed for brevity in this section since nN = 2 is always met by changing the order of the last

two columns of B̂ and defining û accordingly if necessary. Note that Φ−1 always exists. Let the parameter E

be chosen as

E =




0 · · · 0
...

. . .
... ê1 ê2

0 · · · 0
0 · · · 0 0 0


 , ê1, ê2 ∈ R(N−1)×1 (38)

11



Since

EBsGE = 0, E(As − BsGFs)2 = 0

hold, the gain F̄s on the transformed coordinate satisfies

(As − BsGF̄s)4 = 0 (39)

We also obtain

(I − As − BsGF̄s)−1 = I+(As−BsGF̄s)+(As−BsGFs)BsGE+QE1 (40)

Q =




q1 0 · · · 0

0 q2
. . .

...
...

...
. . . 0

0 · · · 0 qN


 , qi =




1 for ni = 1[
1
1

]
for ni = 2

E1 =




0 · · · 0
...

. . .
... ê1

0 · · · 0
0 · · · 0 0




The steady-state input (20) is calculated as

ûs = −G{Fs ((I + As − BsGFs)(I + BsGE) + QE1) − E − E1}ds (41)

Define

ê =
[

ê1

ê2

]
∈ R2(N−1)×1 (42)

W1 =
[

ds,nIN−1 ds,n+1IN−1

0 0

]
∈ RN×2(N−1)

W2 =
[

ds,n+1IN−1 0
0 0

]
∈ RN×2(N−1)

The steady-state input is constant if and only if

0 = JG{Fs((I + As − BsGFs)(ds + BsGW1ê) + QW2ê) − (W1 + W2)ê} (43)

This equation is rewritten as

Φ̂ê = Λ (44)

holds where Φ̂ ∈ R(N−1)×2(N−1) is defined by

Φ̂ = JG((I − FsQ)W2 + (I − Fs(I + As − BsGFs)BsG)W1) (45)

Let Φ̂+ denote the Moore-Penrose inverse of Φ̂.

Lemma 2 There exists a vector ê such that (44) is satisfied . All solutions ê to (44) are given by

ê = Φ̂+Λ + (I2(N−1) − Φ̂+Φ̂)f (46)

where f is an arbitrary vector in R2(N−1).
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Define

Ψl1 =
[

IN−1 0
0 0

]
(I2(N−1) − Φ̂+Φ̂) ∈ RN×2(N−1)

Ψl2 =
[

0 IN−1

0 0

]
(I2(N−1) − Φ̂+Φ̂) ∈ RN×2(N−1)

Ψr1 =
[

0 · · · 0 1 0
] ∈ R1×(n+1)

Ψr2 =
[

0 · · · 0 0 1
] ∈ R1×(n+1)

Recall that GFrS is the multirate feedback gain achieving 3NT ripple-free deadbeat calculated from (33). A

parametrization of 4NT ripple-free deadbeat controllers is now obtained.

Theorem 5 All multirate feedback gains belonging to the set
{
F = GFpS : Fp = Fr − Ψl1fΨr1 − Ψl2fΨr2, f ∈ R2(N−1)

}
(47)

solve the deadbeat problem with settling time 4NT and the response is ripple-free for any initial state X(0),

z(0).

5.2 Robust stabilization

Consider an uncertain continuous-time plant having multiplicative input uncertainty shown in figure 3. The

uncertain plant consists of the nominal part

ẋ = Acx + Bcw + Bcu, v = u (48)

and an uncertain continuous-time system ∆ : v �→ w which is a time-varying operator which has finite L2

induced-norm. Using an appropriate small-gain argument, the robust stabilization against ∆ in terms of L2

signals is reduced to minimization of L2 induced-norm of the operator Tvw mapping w to v of the closed-loop

multirate system consisting of figure 1 and figure 3[18]. Minimization of L2 induced-norm implies improving

robustness against L2 disturbance. According to [31, 6, 21, 19], L2 induced-norm of Tvw is equal to H∞-norm

of the transfer function T̃vw(z). Here, T̃vw(z) is the transfer function from w̃ to ṽ of the following discrete-time

system.

x[k + 1] = ANx[k] + Bww̃[k] + B̂û[k]
ṽ[k] = Cvx[k] + Dww̃[k] + Duû[k]
y[k] = Ĉx[k], z[k + 1] = z[k] − y[k]

û[k] = −F

[
x[k]
z[k]

] (49)
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We can always construct appropriate matrices Bw , Cv, Dw and Du[19, 21]. Using x̃ = [xT , zT ]T , the above

system is rewritten as

x̃[k + 1] = Ãx̃[k] + B̃ww̃[k] + B̃û[k]
ṽ[k] = C̃vx̃[k] + Dww̃[k] + Duû[k]
û[k] = −Fx̃[k]

(50)

Applying the transformation matrix S to (50), we define

Bws = SB̃w , Cvs = C̃vS
−1 (51)

Consider a symmetric matrix

M =




−X (As−BsGFp)X Bws 0
∗ −X 0 X(Cvs−DuGFp)T

∗ ∗ −γI DT
w

∗ ∗ ∗ −γI




where Fp is given by (47). The symmetric matrix X ∈ R(n+1)×(n+1) is partitioned as

X =
[

X11 X12

XT
12 X22

]
, X11 ∈ R(n−1)×(n−1) (52)

The following characterizes the robust stabilization.

Theorem 6 If there exists a symmetric matrix X such that M < 0, then the multirate system shown in figure

1 is L2-stable for all ∆ having L2-induced norm less than or equal to 1/γ. Furthermore, M has the following

properties.

(i) M is jointly affine in X and γ.

(ii) M is jointly affine in X11, f and γ.

The smaller γ is, the more robustness the system has. The minimum value of γ satisfying M < 0 is called

the robustness level. Thus, the robust control design can be recast as the following convex minimization

programs.

Step 1 Set f = 0.

Step 2 Solve min
X

γ subject to M < 0.

Step 3 Solve min
f,X11

γ subject to M < 0.

The pair of Step 1 and 2 is exactly the calculation of robustness accomplished by 3NT ripple-free deadbeat

control. Step 3 modifies the feedback gain to improve the robustness level γ. To reduce γ further, we can

repeat the pair of Step 2 and 3 until the improvement of γ stops. This type of iterative techniques does not

guarantee to converge on local minimum[17]. In fact, local solutions are sometimes not satisfactory especially

when X and f are completely separated in minimization. However, the above method minimizes γ with respect

to X11 and f at the same time. The effectiveness of the iterative method has been observed in a number of

numerical examples and their results are very encouraging. For an illustration, consider (Ac, Bc, Cc) given

by (36-37) again. Deadbeat multirate feedback gains are designed with T = 0.5 and N = 2. The robustness

level achieved by three types of design is shown in table 3. For comparison, an approximate global minimum

is computed by gridding the two dimensional space of f in (47). The iterative method achieves robustness

level γ = 39.3 which seems almost the same as the exact global minimum. The convex optimization in Step

2 and 3 is computed using [10]. Although seeking precisely exact optima is out of scope of this paper, the
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Table 3: Robustness level: multirate control of (36-37)

design method settling time ripple min. γ

GFsS 2 yes 56.4
GFrS 3 no 47.0
iterative procedure 4 no 39.3
global min. in (47) 4 no 39.3

Table 4: Robustness level: single-rate and multirate designs for (53)

design method period settling ripple min. γ
sampler hold time

single-rate GFsS 2.25 2.25 13.5 no 52.2
multirate GFsS 2.25 0.75 4.50 yes 41.6
multirate GFrS 2.25 0.75 6.75 no 39.0
iterative procedure 2.25 0.75 9.00 no 31.5

reader can refer to [1, 16] and references therein for several techniques to solve the Bilinear Matrix Inequality

globally or locally efficiently.

Finally, an illustration of performance improvement of deadbeat using multirate control is given. Consider

the system (48) with

Ac =




−1 −2 1 −3 −3
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


 ,

Bc =
[

1 0 0 0 0
]T

Cc =
[

0 0 1 −1 −2
] (53)

By setting the input multiplicity N = 3, the multirate designs can yield shorter settling time than single-rate

control as shown in table 4. The result of robustness levels in table 4 shows that the robust multirate design

achieves the smallest vale of γ without any ripple.

6 Conclusions

In this paper, it has been shown that through the use of multirate input control it is possible to reduce

settling time of deadbeat servomechanism. In other words, multirate controllers can achieve almost the same

settling time with less frequent sampling than conventional single-rate control. Intersample ripple arising

from the multirate control has been also studied. Multirate mechanism sometimes resorts to periodic steady-

state input signal in order to manage to achieve quick deadbeat response. This paper has demonstrated that

we can design a multirate control law which exploits multirate input mechanism to improve only transient

response, maintaining ripple-free steady-state response at the same time. A parametrization of ripple-free

deadbeat feedback gains with specified settling time has been developed and the freedom is used to optimize

the robustness of the multirate system for continuous-time model uncertainty and disturbance.
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[12] Grasselli, O.M., Longhi, S., Tornambè, A., and Valigi, P., 1996, Robust ripple-free regulation and tracking

for parameter dependent sampled-data systems. IEEE Transactions on Automatic Control, 41, 1031-1037.

[13] Gu, Y., and Tomizuka, M., 1999, Multirate feedforward tracking control for plants with nonminimum

phase discrete time models. Proceedings of the American Control Conference, San Diego, CA, pp.4290-

4294.

[14] Hagiwara, T., Araki, M., and Soma, H., 1996, Simultaneous pole assignment by multi-structured multirate

sampled-data controllers - orthogonality consideration. International Journal of Robust and Nonlinear

Control, 6, 571-584.

[15] Hara, T., and Tomizuka, M., 1999, Performance enhancement of multirate controller for hard disk drives.

IEEE Transactions on Magnetics, 35, 898-903.

16



[16] Hassibi, A., How, J., and Boyd, S., 1999, A path following method for solving BMI problems in control.

Proceedings of the American Control Conference, San Diego, CA, pp.1385-1389.

[17] Helton, J.W., and Merino, O., 1997, Coordinate optimization for bi-convex matrix inequalities. Proceed-

ings of the 36th IEEE Conference on Decision and Control, San Diego, CA, pp.13-17.

[18] Ito, H., 1994, Stability and performance robustness in control system design. PhD thesis. Keio University,

Yokohama 223-8522, Japan.

[19] Ito, H., Chuman, T., Ohmori, H., and Sano, A., 1996, An approach to multirate control design with

multiple objectives. Proceedings of the 13th IFAC World Congress, Volume C, San Francisco, CA, pp.325-

330.

[20] Ito, H., and Ohmori, H., and Sano, A., 1994, Stability analysis of multirate sampled-data control systems.

IMA Journal of Mathematical Control and Information, 11, 341-354.

[21] Ito, H., Ohmori, H., and Sano, A., 1995, A subsystem design approach to continuous-time performance of

decentralized multirate sampled-data systems. International Journal of Systems Science, 26, 1263–1287.

[22] Kabamba, P.T., 1987, Control of linear systems using generalized sampled-data hold functions. IEEE

Transactions on Automatic Control, 32, 772-783.

[23] Kabamba, P.T., and Yang, C., 1991, Simultaneous controller design for linear time-invariant systems.

IEEE Transactions on Automatic Control, 36, 106-111.

[24] Kalman, R.E., and Bertram, J.E., 1959, General synthesis procedure for computer control of single-loop

and multiloop linear systems(An optimal sampling system). AIEE Transactions, 78, Pt. II, 602-609.

[25] Katoh, H., and Funahashi, Y., 1996, Continuous-time deadbeat control for sampled-data systems. IEEE

Transactions on Automatic Control, 41, 1478-1481.

[26] Meyer, D.G., 1990, A new class of shift-varying operators, their shift-invariant equivalents, and multirate

digital systems. IEEE Transactions on Automatic Control, 35, 429-433.

[27] Moore, K.L., Bhattacharyya, S.P., and Dahleh, M., 1993, Capabilities and limitations of multirate control

schemes. Automatica, 29, 941-951.

[28] Nobuyama, E., 1993, Parametrization of all ripple-free deadbeat controllers. Systems & Control Letters,

21, 217-224.

[29] Ravi, R., Khargonekar, P.P., Minto, K.D., and Nett, C.N., 1990, Controller parametrization for time-

varying multirate plants. IEEE Transactions on Automatic Control, 35, 1259-1262.

[30] Urikura, S., and Nagata, A., 1987, Ripple-free deadbeat control for sampled-data system. IEEE Trans-

actions on Automatic Control, 32, 474-482.

[31] Voulgaris, P.G., and Bamieh, B., 1993, Optimal H∞ and H2 control of hybrid multirate systems. System

and Control Letters, 20, 249-261.

17



[32] Yamada, M., Riadh Z., and Funahashi, Y., 1999, Deadbeat control system with time-varying uncertainty:

minimization of worst case steady-state tracking error. International Journal of Control, 72, 141-149.

[33] Yamamoto, Y., 1994, A function space approach to sampled data control systems and tracking problems.

IEEE Transactions on Automatic Control, 39, 703-713.

Appendix

Proof of Lemma 1: We first define

M =
[

In − AN B̂

Ĉ 0

]
(A1)

Basic equations of the transition matrix give us

eAcNT − I =
∫ NT

0

eAcτdτAc

AN−1B + · · ·+ AB + B =
∫ NT

0

eAcτdτBc

The second equation follows from AiB =
∫ T

0
eAc(iT+τ)dτBc. Combining the above two equations, we obtain

[
eAcNT − I B̂

Cc 0

]



I 0
0 1
...

...
0 1


 =

[ ∫ NT

0
eAcτdτ 0
0 1

] [
Ac Bc

Cc 0

]

Assumption 2 guarantees the second matrix on the right hand side(RHS) non-singular. The first matrix on

RHS is non-singular. Hence, the first matrix on the left hand side has full-row rank. From definitions of A

and Ĉ, M has full-row rank. Finally, Equation (14) is straightforward from Assumption 1’.

Proof of Theorem 1: Suppose that x̃[∞] is the steady-state of x̃. Then, the tracking error obeys the

following stable difference equation

x̃[k + 1]− x̃[∞] = S−1(As − BsGFs)S(x̃[k]− x̃[∞]) (A2)

Hence, for any x̃[0], the state x̃[k] reaches

x̃[∞] = (I − Ã + B̃F )−1d̃

in finite time k = nmax. It is verified from (A2) that the minimum of the settling steps over all initial states

x̃[0] cannot be less than nmax for any F . Finally, the equation

C̃x̃[∞] =
[

Ĉ 0
]
(I − Ã + B̃F )−1d̃ =

[
0 1

]
d̃ = yr

proves the deadbeat tracking of y[k].

Proof of Theorem 3: (i) Sufficiency: Suppose that the system has reached the steady-state at sampling

instants and steady-state values are

x[k] = xs, û[k] = ûs =




us

...
us


 , ∀k ≥ τd
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which satisfy

xs = ANxs + B̂ûs

Then, we have

0 = (AN − I)xs + B̂ûs =
∫ NT

0

eAcτdτ (Acxs + Bcûs)

Since
∫ NT

0
eAcτdτ = eAcNT − I is non-singular, we obtain

Acxs + Bcûs = 0

For 0 ≤ m < 1, the state trajectory is calculated as

x((k + m)NT ) = eAcmNT xs +
∫ mNT

0

eAcτdτBcus

= xs +
∫ mNT

0

eAcτdτ (Acxs + Bcus)

= xs

(ii) Necessity: The claim is proved for N = 2. Other general cases can be proved in the same manner.

Suppose k ≥ τd. Through simple calculation, we obtain

x(2(k + m)T ) = eAc2mT xs +
[

0
∫ 2mT

0
eAcτdτBc

]
ûs

= Â(m)xs + B̂(m)ûs

for 0 ≤ m < 0.5. The vectors xs and ûs are the steady-state values satisfying

xs = ANxs + B̂ûs, ûs =
[

us1

us2

]

The ripple-free response means that x(2(k + m)T ) = xs for all m. Thus, we have

0 = (AN − Â(m))xs + (B̂ − B̂(m))ûs

=
∫ 2T

2mT

eAcτdτ (Acxs + Bcus1) +
∫ T

0

eAcτdτBc(−us1 + us2) (A3)

for 0 ≤ m < 0.5. The controllability of (AN , B) guarantees that the vector B =
∫ T

0 eAcτdτBc is not zero.

Since ripple-free deadbeat requires ẋ = Acxs + Bcus1 = 0, (A3) implies us1 = us2.

Lemma A1

rank
[

I − As

−aN

]
= n + 1 (A4)

Proof : Recall that the matrix S transforming (Ã, B̃) into (As, Bs) is given as

S =




h1

h1Ã

h1Ã
n1−1

...
hN

hN Ã

hN ÃnN−1
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The row-vector hi is the s th
i row of H−1, where H ∈ R(n+1)×(n+1) consists of n + 1 linearly independent

vectors selected appropriately from the controllability matrix of (Ã, B̃). Let H be partitioned as

H =
[

H11 H12

H21 H22

]
, H11 ∈ Rn×n

Note that H11 is obtained by permuting columns of

[
B AB · · · An−1B

]

Since (A, B) is controllable by Assumption 1’, H11 is non-singular. Thus, non-singularity of H implies

0 �= H22 − H21H
−1
11 H12 ∈ R

Due to

hN =
[

hN,1 · · · hN,n (H22−H21H
−1
11 H12)−1

]

and the definition of Ã, we obtain

hN Ãk




0
...
0
1


 �= 0, ∀k ≥ 0 (A5)

Regarding the matrix in (A4), we have
[

S−1 0
0 1

] [
I − As

−aN

]
S =

[
I − Ã
−aNS

]
= Ξ

From AsS = SÃ it follows that

aNS = hN ÃnN

Thus, we have

Ξ =


 I − AN 0

Ĉ 0
− hN ÃnN




Finally, we obtain rankΞ = n + 1 from (A5).

Lemma A2

rank


 I − As Bs




1
...
1




 = n + 1 (A6)

Proof : Recall that

[
AN − I B̂

Cc 0

]



I 0
0 1
...

...
0 1


 =

[ ∫NT

0
eAcτdτ 0
0 1

] [
Ac Bc

Cc 0

]
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It is clearly seen that the right hand side of the above equation is non-singular. This implies that the matrix

S−1


 I−As Bs




1
...
1





[

S 0
0 1

]
=


 I−Ã B̃




1
...
1






has rank n + 1.

Proof of Theorem 4: It suffices to show

det Φ �= 0 (A7)

Define a square matrix Ω as

Ω = JGW ∈ R(N−1)×(N−1)

Non-singularity of Ω follows from definitions of J , G and W . Rewrite Φ as

Φ = J(I − GFs(I − As + BsGFs)−1Bs)GW

= Ω(I − Ω−1GFs(I − As + BsGFs)−1BsGW )

= ΩΘ (A8)

The square matrix Θ satisfies

det Θa = det(I − As + BsGFs) det Θ (A9)

where Θa is defined as

Θa =
[

I − As + BsGFs BsGW
Ω−1JGFs I

]

Here, det Θa can be decomposed into

det Θa = det
[

I − As + BsGFs BsG
WΩ−1JGFs I

]

= det
[

I − As BsG
(WΩ−1JG − I)Fs I

]
det
[

I 0
Fs I

]
(A10)

The matrix WΩ−1JG − I is calculated as

WΩ−1JG− I =
[

0 η
0 −1

]
∈ RN×N

with an vector η ∈ RN−1:

η = G−1
11


G12 −




1
...
1




 , G =

[
G11 G12

0 1

]

Combining (A8), (A9) and (A10), the claim (A7) holds if and only if det Θb �= 0 is true, where

Θb =


 I − As BsG[

η
−1

]
aN I
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Using

G

[
η
−1

]
= −




1
...
1




the condition det Θb �= 0 is identical with

det




I − As Bs




1
...
1




−aN 1


 �= 0

Furthermore, this is equivalent to

rank
[

I − As

−aN

]
= n + 1 (A11)

since we have Lemma A2 and rank(I − As) = n. Finally, Lemma A1 guarantees (A11). This completes the

proof.

Proof of Lemma 2: Due to Theorem 4, the vector

ê =
[

0
Φ−1Λ

]
(A12)

is a solution to (44). The rest of the lemma is proved immediately using elementary linear Algebra.

Proof of Theorem 5: Since ê of (A12) belongs to (46), there exists a vector fa satisfying

Φ̂+Λ =
[

0
Φ−1Λ

]
− (I2(N−1) − Φ̂+Φ̂)fa

Thus, the set (46) of ê is equivalently represented as

ê =
[

0
Φ−1Λ

]
+ (I2(N−1) − Φ̂+Φ̂)f

with an arbitrary vector f in R2(N−1). From (38) and (42), the matrix E is computed as

E =
[

IN−1 0
0 0

]
êΨr1 +

[
0 IN−1

0 0

]
êΨr2

=
[

Φ−1Λ
0

]
Ψr2 + Ψl1fΨr1 + Ψl2fΨr2 (A13)

Combining (A13) and (33), we obtain (47).

Proof of Theorem 6: The first part is straightforward from the standard Linear Matrix Inequality for

discrete-time H∞ control and a small-gain argument. The rest of the theorem follows from the definition of

M , (47) and

Ψr,iX = Ψr,i

[
0 X12

XT
12 X22

]
, i = 1, 2
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