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Abstract. Our aim is to derive explicit Runge-Kutta schemes for Stratonovich stochastic differential equations with a multi-
dimensional Wiener process, which are of weak order 2 and which have large stability regions. This has been achieved by the
use of a technique in Chebyshev methods for ordinary differential equations. In this talk, large stability regions of our schemes
will be shown. Concerning convergence order and stability properties, the schemes will be tested in numerical experiments.

INTRODUCTION

While it has been customary to treat the numerical solution of stiff ordinary differential equations (ODEs) by implicit
methods, there is a class of explicit methods with extended stability regions that are well suited to solving stiff problems
whose eigenvalues lie near the negative real axis. Such problems include parabolic partial differential equations when
solved by the method of lines.

An original contribution was by van der Houwen and Sommeijer [1] who constructeds-stage explicit Runge-Kutta
(RK) methods whose stability functions are shifted Chebyshev polynomialsTs(1+z/s2). These have stability intervals
along the negative real axis[−2s2,0]. The corresponding RK methods satisfy a three term recurrence relation which
make them efficient to implement, but their drawback is that they are of order 1. Lebedev [2, 3] and Medovikov [4]
constructed high order methods by computing the zeros of the optimal stability polynomials for maximal stability. But,
the method is sensitive to the ordering of these zeros and there is no recurrence relationship.

Abdulle and Medovikov [5] developed a new strategy to construct Chebyshev methods with nearly optimal stability
domain of order two. These methods are based on a weighted orthogonal polynomial and so the numerical methods
satisfy a three-term recurrence relationship. In this case the stability interval is[−ls,0] wherels ≈ 0.81s2.

One of the drawbacks with Chebyshev methods is that the stability region can collapse tos−1 single points on the
negative real axis due to the mini-max property of Chebyshev polynomials. Accordingly, we require the modulus of
the stability polynomial to be bounded by a damping factorη < 1. The stability interval shrinks slightly but a strip
around the negative real axis is included in stability region. Withη = 0.95, ls≈ 0.81s2 for the second order Chebyshev
methods.

In the case of stochastic differential equations (SDEs) the issues are much more complex. Nevertheless, Abdulle and
Cirilli [6] have developed a family of explicit Runge-Kutta Chebyshev methods with extended mean square stability
regions. These methods have strong order 0.5 and weak order 1 for non-commutative Stratonovich SDEs. They reduce
to the first order Chebyshev methods when there is no noise. Such an approach is important because there are very few
good numerical methods for solving stiff SDEs.

In general it is difficult to construct semi-implicit or implicit methods, especially high order methods for stiff SDEs
[7, 8, 9], but if the stiffness is mild, we can still hope to construct effective explicit SRK methods for such SDEs.
Fortunately, in addition, Komori [10] and Rößler [11] have succeeded in deriving SRK methods of weak order 2 for
non-commutative SDEs, whose structure is suitable to naturally combine RK methods for ODEs.

In this talk, we shall put all these ideas together. We will construct a family ofs-stage SRK methods with weak order
2 for a multi-dimensional Wiener process and with extended mean square stability regions. The method will reduce to
the second order Chebyshev methods of Abdulle and Medovikov [5] when the noise terms are set to zero.



CHEBYSHEV METHODS FOR ODES

Consider the autonomousN-dimensional ODEs given by

y′(t) = f (y(t)), y(t0) = y0. (1)

The class ofs-stage RK methods for solving (1) is

yn+1 = yn +h
s

∑
j=1

b j f (Y( j)), Y(i) = yn +h
s

∑
j=1

ai j f (Y( j)) (2)

(1≤ i ≤ s). A RK method is explicit ifai j = 0 (i ≤ j).

When we define thatb>
def= [b1 b2 · · · bs], A is as×s matrix (ai j ) ande

def= [1 1 · · · 1]> and apply (2) to the linear,
scalar test problem

y′(t) = λy, ℜ(λ ) ≤ 0, (3)

we have
yn+1 = R(hλ )yn, where R(z) def= 1+zb>(I −Az)−1e.

HereR is called the stability function and for explicit methodsR(z) is a polynomial of at most degrees, namely

R(z) = 1+
s

∑
j=1

zjb>A j−1e.

The stability region of (2) is{z | |R(z)| ≤ 1}.
Suppose now we require

Rs(z) = 1+z+
1
2

z2 +
s

∑
j=3

α jsz
j (α js

′s are constants)

such that
|Rs(z)| ≤ 1 for z∈ [−ls,0], ls as large as possible.

Riha [12] showed that for a givenssuch polynomials exist and are unique. Abdulle and Medovikov [5] relaxed optimal
stability and constructed approximations to these optimal stability polynomials using orthogonal polynomials such that

Rs(x) = w(x)Ps−2(x),

where if we write
w(x) def= w̄(as+x/ds), Pj(x)

def= P̄j(as+x/ds),
w̄(x) is of degree two with complex zeros and satisfied ¯w(as) = 1, then the orthogonal polynomials̄P0(x),
P̄1(x), . . . , P̄s−2(x) are orthogonal with respect to the weight function ¯w2(x)/

√
1−x2 on [−1,1], P̄0(as) = P̄1(as) =

· · · P̄s−2(as) = 1, and satisfy a three-term recurrence relation. This leads to the method

K0
def= yn, K1

def= yn +hµ1 f (K0), K j
def= hµ j f (K j−1)+(θ j +1)K j−1−θ jK j−2 ( j = 2,3, . . . ,s−2),

Ks−1
def= Ks−2 +hσs f (Ks−2), K∗

s
def= Ks−1 +hσs f (Ks−1),

Ks
def= K∗

s −hσs(1− τs/σ2
s )
(

f (Ks−1)− f (Ks−2)
)
, yn+1 = Ks.

(4)

The computation ofKs−1, K∗
s can be viewed as a finishing procedure. When (4) is applied to (3), then

K j = Pj(z)yn ( j = 0, . . . ,s−2), Ks = w(z)Ks−2, yn+1 = Rs(z)yn,

where
w(z) = 1+2σsz+ τsz

2

and

P0(z) = 1, P1(z) = 1+ µ1z, Pj(z) = (µ jz+θ j +1)Pj−1(z)−θ jPj−2(z), j = 2,3, . . . ,s−2.

The value forls depends on what damping (4) has. Away fromz= 0 it is appropriate to require

|Rs(z)| ≤ η < 1, z≤−ε (ε : small positive parameter)

and a number of authors setη = 0.95. In this casels ≈ 0.81s2 (rather than 0.82s2 with η = 1).



METHODS FOR SDES

Consider now the autonomousN-dimensional SDEs given by

dy =
d

∑
j=0

g j(y)◦dw j(t) y(t0) = y0

which we will assume is in Stratonovich form. Herew0(t) = t and thew j(t), j = 1,2, . . . ,d are independent Wiener
processes. For solving this, let us consider the following SRK framework [10, 11]:

Y(0,0)
i = hg0

(
yn +

(
α(0)

i

)>
Y(0,0) +

(
α(2)

i

)> d

∑
j=1

Y( j, j)

)
,

Y( j, j)
i = ζ ( j, j)

i g j

yn +
(

α(1)
i

)>
Y(0,0) +

(
α(3)

i

)>
Y( j, j) +

(
α(4)

i

)> d

∑
l=1
l 6= j

Y(l ,l)

 , j = 1,2, . . . ,d,

Y( j,l)
i = ζ ( j,l)

i gl

yn +
(

α(5)
i

)>
Y(0,0) +

(
α(6)

i

)>
∑

m=1
m6=l

Y(l ,m)

 , j 6= l , j, l = 1,2, . . . ,d,

yn+1 = yn +b>0 Y(0,0) +b>1
d

∑
j=1

Y( j, j) +b>2
d

∑
l=1

Y(k(l),l),

(5)

wherek(l) is a value in{1,2, . . . , l −1, l +1, . . . ,m}.
In order to construct weak order 2 methods theζ ( j,l) are chosen as follows:

ζ ( j,l)
i =


∆wl ( j = l),
∆w j∆w̃l/

√
h (l > j > 0 andi = s−2),

−∆w̃ j∆wl/
√

h ( j > l > 0 andi = s−2),√
h ( j 6= l andi 6= s−2),

where the∆w̃l are independent 2 point discrete random variables withP(∆w̃ j = ±
√

h) = 1/2 and the∆w j are
independent 3 point discrete random variables withP(∆w j = ±

√
3h) = 1/6 andP(∆w j = 0) = 2/3. In addition,

we suppose

b2,i = 0 (i < s−2), α(6)
iaib

= 0 (ia, ib < s−2 or ia ≤ ib)

to make the number of nonzero roles concerning stochastic parts as small as possible. Since (4) is embedded in (5)

when there is no noise,α(0)
i (1≤ i ≤ s) andb0 are given by the Chebyshev formulation in (4).

MEAN SQUARE STABILITY

We now apply our method to the linear, scalar multiplicative noise problem

dy = λydt +
d

∑
j=1

λ jy◦dw j(t),

whereλ j , j = 0,1, . . . ,d are real values. Because of the structure we can easily see that

Y(0,0)
j = Pj−1(hλ )y0, j = 1,2, . . . ,s−3.
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FIGURE 1. MS stability regions of SRK schemes for somes, d andη

We now compute successivelyY(0,0)
i ,Y( j, j)

i ,Y( j,l)
i for i = s−2,s−1,s andyn+1, using the order conditions to try and

get a simple form for these expressions. Once we have found the form

yn+1 = Ryn,

the MS stability function is given by
R̂= E[R2].

R̂ in fact will be a function of p
def= hλ , q j

def= hλ 2
j , j = 1,2, . . . ,d. The MS stability region of a scheme is

{(p,q1,q2, . . . ,qd)|R̂≤ 1}. For examples, MS stability regions of our schemes are given with dark-colored parts in
Figure 1, whereas the parts enclosed by the two straight linesq1 = −p andq1 = 0 indicate the region in which the test
SDE is stable in mean square. Concerning the importance of MS stability in weak schemes, for example, see [13].
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