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Abstract. In this paper, stochastic orthogonal Runge-Kutta Chebyshev methods are dealt with for strong approximations to
solutions of Itô stochastic differential equations (SDEs). Recently, strong first order methods for non-commutative Itô SDEs
have been proposed by the present authors. It is known that when the number of stages is large, the methods have very large
stability domains in mean square (MS) for a scalar linear test equation. On the other hand, Buckwar and Sickenberger (2012)
have recently proposed MS stability analyses for systems of Itô SDEs. Our aim is to investigate MS stability properties of
these methods and other existing numerical schemes by their approach.
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INTRODUCTION

We are concerned with stochastic Runge-Kutta (SRK) methods for strong approximations to solutions of non-
commutative Itô stochastic differential equations (SDEs). Among them, explicit and derivative-free SRK methods
are very important due to low computational costs especially when nonlinear SDEs are considered and the dimension
of them is not small. We can typically give the following disadvantages about other methods:

• implicit or drift-implicit SRK methods [1, 2, 3, 4] can lead to solving a large nonlinear system of equations if the
drift coefficient of SDEs is nonlinear,

• numerical methods which need derivatives [5] have to spend much effort to calculate them as the number of the
diffusion coefficients becomes large when they are nonlinear.

In general, however, explicit methods have another problem caused by numerical stability. For stiff SDEs, explicit
methods have usually to spend much computational efforts due to a very small step size required for stability. This
leads to unnecessary computational costs if you do not need such high accuracy that the step size offers. In order
to overcome the problem, Abdulle and Li [6] have developed a family of explicit stochastic orthogonal Runge-Kutta
Chebyshev (SROCK) methods with extended mean square (MS) stability regions. The methods are of strong order a
half for non-commutative Itô SDEs, whereas they reduce to the first order Chebyshev methods when they are applied
to ordinary differential equations (ODEs). The approaches developed by them are very important because they make it
possible for us to stabilize explicit SRK methods. In fact, Komori and Burrage [7] have successfully derived SROCK
methods by stabilizing SRK methods in an SRK family proposed by Rößler [8]. In [7], MS stability regions have been
investigated for the methods and other existing methods, based on a scalar homogeneous autonomous test stochastic
differential equation (SDE) [9, p. 138].

Differently from the case of ODEs, however, the scalar test SDE is not always enough to investigate stability for a
multi-dimensional homogeneous autonomous equation [10]. Thus, very recently some researchers have proposed or
started to use multi-dimensional test SDEs [10, 11, 12]. These facts motivate us. In order to investigate MS stability
properties of the methods, we will adopt a two-dimensional test SDE with non-commutative noise terms proposed by
Buckwar and Sickenberger [11].



SROCK METHODS

Consider the autonomousd-dimensional SDE

dyyy(t) = fff (yyy(t))dt +
m

∑
j=1

ggg j(yyy(t))dWj(t), t > 0, yyy(0) = yyy0, (1)

where theWj(t) (1≤ j ≤ m) are independent Wiener processes andyyy0 is independent ofWj(t)−Wj(0) for t > 0. If a
global Lipschitz condition is satisfied, the SDE has exactly one continuous global solution on the entire interval[0,∞)
[9, p. 113]. For a given timeTend, let tn be an equidistant grid pointnh (n= 0,1, . . . ,M) with step sizeh

def= Tend/M < 1
(M is a natural number) and letyyyn be a discrete approximation to the solutionyyy(tn) of (1).

For (1), let us consider a simpler version [7] of the SRK methods proposed by Rößler [8], that is,

HHH(0)
ia

= yyyn +
ia−1

∑
ib=1

A(0)
iaib

hfff
(
HHH(0)

ib

)
, HHH( j)

s−2 = yyyn +
s

∑
ib=1

A(1)
s−2,ib

hfff
(
HHH(0)

ib

)
,

HHH( j)
s−1 = yyyn +

s

∑
ib=1

A(1)
s−1,ib

hfff
(
HHH(0)

ib

)
+

m

∑
l=1

B(1)
s−1,s−2ζ̃ (l , j)gggl

(
HHH(l)

s−2

)
,

HHH( j)
s = yyyn +

s

∑
ib=1

A(1)
s,ib

hfff
(
HHH(0)

ib

)
+

m

∑
l=1

B(1)
s,s−2ζ̃ (l , j)gggl

(
HHH(l)

s−2

)
,

yyyn+1 = yyyn +
s

∑
i=1

αihfff
(
HHH(0)

i

)
+

s

∑
i=s−2

m

∑
j=1

(
β (1)

i ∆Wj +β (2)
i

√
h
)

ggg j

(
HHH( j)

i

)
,

(2)

where
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for j 6= l . If we want to achieve strong order one by (2), parametersβ (1)
s−1, β (1)

s , β (2)
s−2, β (2)

s−1 andβ (2)
s are automatically

determined by free parametersβ (1)
s−2, B(1)

s−1,s−2 andB(1)
s,s−2 because of order conditions [7].

When we construct SROCK methods, parametersA(0)
iaib

andαi are determined by the Chebyshev formulation. If we
embed the first order Chebyshev method [6] with a damping factorη1 into (2), these parameters are given as follows:
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for i = 2,3, . . . ,sandTk(x) is the Chebyshev polynomial of degreek. On the other hand, if we embed the second order
Chebyshev method [13] with a damping factorη2 into (2), the parameters are given as follows:
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whereτs, θs, µ̃1, µ̃i andκ̃i (2≤ i ≤ s) depend onη2 and are sought by some numerical algorithm [13]. For a givens
we will call (2) an SROCKD1 method or SROCKD2 method corresponding to (3) or (4), and for alls we will assume
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MS STABILITY ANALYSIS FOR MULTI-DIMENSIONAL LINEAR SDES

Let us consider

dyyy(t) = Fyyy(t)dt +
m

∑
j=1

G jyyy(t)dWj(t), t > 0, yyy(0) = yyy0, (5)

whereF andG j (1≤ j ≤ m) are real-valued square matrices of sized. This has the zero solutionyyy(t)≡000 whenyyy0 = 000
with probability one (w. p. 1). We call it the equilibrium position. By applying (2) to (5), we have
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andC, D j andVjl stand ford× d matrices. Clearly, it has the equilibrium positionyyyn ≡ 000 with yyy0 = 000 (w. p. 1).
In order to investigate the asymptotic MS stability of the equilibrium position for numerical methods, Buckwar and

Sickenberger [11] have introduced the MS stability matrix of numerical methods:R̂RRs
def= E[RRRs⊗RRRs]. Here,⊗ stands for

the Kronecker product. From (7), we obtain
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As a test SDE, Buckwar and Sickenberger [11] have proposed a non-commutative SDE. In (5), it has
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]
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for real valuesλ , σ1 andσ2. For the SDE, the eigenvalues of the MS stability matrix of the SROCKD1 methods are
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(double sign in same order). We have obtained this result with the help of a symbolic computing package,Mathematica.

Thus, the spectral radius ofR̂RRs, say,ρ(R̂RRs) is v(0)
D1 + v(1+)

D1 . If and only if ρ(R̂RRs) < 1, the equilibrium position of (6)
is asymptotically MS stable, whereas if and only if 2p+ q1 + q2 < 0, the equilibrium position of the test SDE is
asymptotically MS stable [11].

Similarly, the eigenvalues of the MS stability matrix of the SROCKD2 methods are
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(double sign in same order). In this case, thus,ρ(R̂RRs) is v(0)
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D2 .
Let us plot the MS stability domains of the methods, that is,{(p,q1,q2)|ρ(R̂RRs) < 1}. They are given with colored

parts in Fig. 1. The parts enclosed by mesh indicate the domain in which 2p+q1 +q2 < 0 is satisfied. We can see that
all the methods have large stability domains, although near the origin the stability domains of the SROCKD1 methods
become slightly smaller than the domain in which 2p+ q1 + q2 < 0 is satisfied. In the talk, we will also show other
results for methods including other existing schemes and will give numerical experiments.



q1

p

q2

s= 3, η1 = 4.3

q1

p

q2

s= 6, η1 = 8.1

q1

p

q2

s= 9, η1 = 10.9

q1

p

q2

s= 3, η2 = 0.40

q1

p

q2

s= 6, η2 = 0.325

q1

p

q2

s= 9, η2 = 0.30

FIGURE 1. MS stability domain of the SROCKD1 methods (top) and the SROCKD2 methods (bottom)
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