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Abstract. Our aim is to show that the embedding of deterministic Runge-Kutta methods with higher order than necessary
order to achieve a weak order can enrich the properties of stochastic Runge-Kutta methods with respect to not only practical
errors but also stability. This will be done through the comparisons between our new schemes and an efficient weak second
order scheme with minimized error constant proposed by Debrabant and Rößler (2009).
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INTRODUCTION

We are concerned with weak second order explicit stochastic Runge-Kutta (SRK) methods for non-commutative
stochastic differential equations (SDEs). Among such methods, derivative-free methods are especially important
because they can numerically solve SDEs with less computational efforts, compared with other methods which need
derivatives.

In fact, weak second order and derivative-free methods have been recently studied by many researchers. Kloeden
and Platen [1, pp. 486–487] have proposed a derivative-free scheme of weak order two for non-commutative Itô SDEs.
Tocino and Vigo-Aguiar [2] have also proposed it as an example in their Runge-Kutta family. Komori [3] has proposed
a different scheme which is for non-commutative Stratonovich SDEs and which has an advantage that it can reduce
the random variables that need to be simulated. This scheme, however, still has a drawback that its computational costs
linearly depend on the dimension of the Wiener process for each diffusion coefficient. Rößler [4] or Debrabant and
Rößler [5] have proposed new schemes which overcome the drawback while keeping the advantage for Stratonovich
or Itô SDEs, respectively.

Komori and Burrage [6] have also proposed an efficient SRK scheme which overcomes the drawback by improving
the scheme in [3]. In addition, they have indicated that, even in a 10-dimensional Wiener process case, not only the
scheme in [6] but also the other one in [3] can perform much better than a scheme [4] in terms of computational costs.
The classical Runge-Kutta method is embedded in both methods [3, 6]. This fact motivates us.

In the present paper we consider embedding deterministic high order Runge-Kutta methods into weak second order
SRK methods proposed by Rößler [7] for non-commutative Itô SDEs. For these SRK methods, we will study their
stability properties and investigate their effectiveness in computation by numerical experiments.

PRELIMINARIES

Consider the autonomousd-dimensional Itô stochastic differential equation (SDE)

dy(t) = g0(y(t))dt +
m

∑
j=1

g j(y(t))dWj(t), t > 0, y(0) = x0, (1)

whereWj(t) is a scalar Wiener process andx0 is independent ofWj(t)−Wj(0) for t > 0. We assume a global Lipschitz
condition is satisfied such that the SDE has exactly one continuous global solution on the entire interval[0,∞) [8, p.

113]. For a given timeTend, let tn be an equidistant grid pointnh (n = 0,1, . . . ,M) with step sizeh
def= Tend/M < 1 (M



is a natural number) andyn a discrete approximation to the solutiony(tn) of (1). In addition, suppose that all moments
of the initial valuex0 exist and any component ofg j is sufficiently smooth, and define weak order in a usual way [1,
p. 327].

SRK METHOD

On the base of the SRK framework proposed by Rößler [7], we consider the following SRK method for (1):
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Ĥ

( j)
i

)
,

(2)

where theαi , β (ra)
i , A(rb)

ik , andB(rb)
ik (1≤ ra ≤ 4 and 0≤ rb ≤ 2) denote the parameters of the method and where
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the ∆W̃l (1 ≤ l ≤ m− 1) are independent two-point distributed random variables withP(∆W̃j = ±
√

h) = 1/2 and
the ∆Ŵj (1 ≤ j ≤ m) are independent three-point distributed random variables withP(∆Ŵj = ±

√
3h) = 1/6 and

P(∆Ŵj = 0) = 2/3 [1, p. 225].
Concerning (2), the following are remarkable:

• the stage numbers has to be at least 3 in order to achieve weak order two [7],

• theH(0)
i (1≤ i ≤ s−2) do not need the values ofgl for l ≥ 1,

• only B(r)
s−1,s−2 andB(r)

s,s−2 in theB(r)
ik (1≤ i ≤ s and 1≤ k≤ m) can be nonzero forr = 0,1 [5],

• without loss of generality, we can assume
s

∑
k=s−2

B(2)
s−2,k = 0, which leads toB(2)

s−2,k = 0 for k = s−2,s−1,sdue to

order conditions [5],
• from order conditions, we obtain

B(0)
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αs−1/δ1±
√γ1

2αs−1(αs−1 +αs)
if

γ1
def= αs−1αs

(
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)
≥ 0, (3)

whereδ1 = ±1.

MEAN SQUARE STABILITY

In order to study stability properties, let us deal with the scalar test SDE

dy(t) = λy(t)dt +
m

∑
j=1

σ jy(t)dw j(t), t > 0, y(0) = x0, (4)
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FIGURE 1. MS stability regions of SRK schemes form= 1

whereλ andσ j (1 ≤ j ≤ m) are real values and wherex0 6= 0 with probability 1. By applying (2) to (4), we obtain
yn+1 = Ryn and the amplification factorR contains random variables. To study stability properties for weak schemes,

thus, we need to investigate the MS-stability region{(p,q1,q2, . . . ,qm)|R̂≤ 1}, whereR̂(p,q1,q2, . . . ,qm) def= E[R2],
p

def= hλ , andq j
def= hσ2

j [9, 10]. Using order conditions and assumptions to simplifyR̂, we obtain

R̂(p,q1,q2, . . . ,qm)

=

(
1+ p

s

∑
i=1

αiQi−1(p)

)2

+
m

∑
j=1

q j

 1

2(B(1)
s−1,s−2)2

(
Q̂s−1(p)− Q̂s−2(p)

)
+

1+
1
2

p+
αsA

(0)
s,s−1(αs−1±δ1

√γ0)

2αs−1(αs−1 +αs)
p2

Q̂s−2(p)


+

1
2

m

∑
j=1

q2
j

(
Q̂s−2(p)

)2 +
1
2

m

∑
j=1

m

∑
l=1
l 6= j

q jql

B(2)
s−1,s−2Q̂s−2(p)+2B(2)

s−1,s−1Q̂s−1(p)

B(2)
s−1,s−2 +2B(2)

s−1,s−1

2

for (2). Here,

Q0(p) def= 1, Qi(p) def= 1+ p
i
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A(1)
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MS-stability regions of three schemes are given with dark-colored parts in Fig. 1. In the figure SRKF45 or SRKCL
denotes the SRK scheme in which the Fehlberg 4(5) [11, p. 177] or the classical Runge-Kutta scheme is embedded,
respectively. Note that all the three schemes satisfy (3), which is a critical restriction. The parts enclosed by the two
straight linesq1 =−2p andq1 = 0 indicate the region in which limt→∞ E[|y(t)|2] = 0 holds concerning (4) [10]. Thus,
light-colored parts indicate the region in which the test SDE is stable, but the SRK schemes are not. We can see that
the SRKF45 and SRKCL schemes are better than the DRI1 scheme in terms of MS-stability. Because we have chosen
parameter values such thatQ̂s−1(p) = Q̂s−2(p) = 1+ p/2 in the SRKCL scheme,̂R does not depend on anyq j when
p = −2.

NUMERICAL EXPERIMENTS

We apply numerical schemes to the following SDE [5]:

dy(t) = y(t)dt +
10

∑
j=1

σ j

√
y(t)+k jdw j(t), t > 0, y(0) = x0,
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FIGURE 2. Relative errors about the fourth moment att = 1.

where

σ1 =
1
10

, σ2 =
1
15

, σ3 =
1
20

, σ4 =
1
25

, σ5 =
1
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, σ6 =
1
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, σ7 =
1
20

,
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1
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, σ9 =
1
20
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25
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The fourth moment of its solution is given by

E
[
(X(t))4

]
=
(
74342479604283+1749302625065840et −24798885546415218e2t

−263952793100784216e3t +1531088033542529311e4t
)
/
(
124416×1013

)
whenx0 = 1 [6].

Using the Mersenne twister [12], we simulate 256×106 independent trajectories for a givenh. In this simulation,
let us compare the SRKCL and DRI1 schemes. Here, remember that the DRI1 scheme is a scheme with minimized
error constant and minimal stage number for weak order two. On the other hand, the SRKCL scheme is a four-stage
scheme. The results are indicated in Fig. 2. The solid or dash lines denote the SRKCL scheme or the DRI1 scheme,
respectively. In addition,Sa stands for the sum of the number of evaluations on the drift or diffusion coefficients and
the number of generated pseudo random numbers. In this experiment we can see that the SRKCL scheme is better than
the DRI1 scheme in terms of computational costs.
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