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Abstract

It is well known that the numerical solution of stiff stochastic ordinary dif-
ferential equations leads to a step size reduction when explicit methods are
used. This has led to a plethora of implicit or semi-implicit methods with a
wide variety of stability properties. However, for stiff stochastic problems in
which the eigenvalues of a drift term lie near the negative real axis, such as
those arising from stochastic partial differential equations, explicit methods
with extended stability regions can be very effective. In the present pa-
per our aim is to derive explicit Runge-Kutta schemes for non-commutative
Stratonovich stochastic differential equations, which are of weak order two
and which have large stability regions. This will be achieved by the use of a
technique in Chebyshev methods for ordinary differential equations.
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1. Introduction

While it has been customary to treat the numerical solution of stiff or-
dinary differential equations (ODEs) by implicit methods, there is a class
of explicit methods with extended stability regions that are well suited to
solving stiff problems whose eigenvalues lie near the negative real axis. Such
problems include parabolic partial differential equations when solved by the
method of lines.

An original contribution is by van der Houwen and Sommeijer [1] who
have constructed explicit s-stage Runge-Kutta (RK) methods whose stabil-
ity functions are shifted Chebyshev polynomials Ts(1 + z/s2). These have
stability intervals along the negative real axis [−2s2, 0]. The corresponding
RK methods satisfy a three term recurrence relation which make them effi-
cient to implement, but their drawback is that they are of order one. Lebedev
[2, 3] and Medovikov [4] have constructed high order methods by computing
the zeros of the optimal stability polynomials for maximal stability. But, the
method is sensitive to the ordering of these zeros and there is no recurrence
relationship.

Abdulle and Medovikov [5] have developed a new strategy to construct
second order Chebyshev methods with nearly optimal stability domain. These
methods are based on a weighted orthogonal polynomial and so the numerical
methods satisfy a three-term recurrence relationship. In this case the stabil-
ity interval is [−ls, 0] where ls ≈ 0.82s2. These ideas have been extended by
Abdulle [6] who constructed a family of s-stage damped Chebyshev methods
of order four that possess nearly optimal stability along the negative real axis
and a three-term recurrence relationship. For these methods, ls ≈ 0.35s2.

One of the drawbacks with Chebyshev methods is that the stability region
can collapse to s−1 single points on the negative real axis due to the mini-max
property of Chebyshev polynomials. Accordingly, we require the modulus of
the stability polynomial to be bounded by a damping factor η < 1. The
stability interval shrinks slightly but a strip around the negative real axis is
included in stability region. With η = 0.95, ls ≈ 0.81s2 for the second order
Chebyshev methods.

In the case of stochastic differential equations (SDEs) the issues are much
more complex. Nevertheless, Abdulle and Cirilli [7] have developed a family
of explicit stochastic orthogonal Runge-Kutta Chebyshev (SROCK) methods
with extended mean square (MS) stability regions. These methods are of
weak order one for non-commutative Stratonovich SDEs. They reduce to
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the first order Chebyshev methods when there is no noise. Such an approach
is important because there are very few good numerical methods for solving
stiff SDEs.

We are concerned with weak second order stochastic Runge-Kutta (SRK)
methods, especially derivative-free ones, for non-commutative SDEs. Kloe-
den and Platen [8, pp. 486–487] have proposed a derivative-free scheme of
weak order two for non-commutative Itô SDEs. Tocino and Vigo-Aguiar
[9] have also proposed it as an example in their Runge-Kutta family. Ko-
mori [10] has proposed a different scheme for non-commutative Stratonovich
SDEs, which has an advantage that it can reduce the random variables that
need to be simulated. This scheme, however, still has a drawback in that
its computational costs linearly depend on the dimension of the Wiener pro-
cess for each diffusion coefficient. Rößler [11] and Debrabant and Rößler
[12] have proposed new schemes which overcome the drawback while keeping
the advantage for Stratonovich or Itô SDEs. Komori and Burrage [13] have
also proposed an efficient SRK scheme which overcomes the drawback by
improving the scheme in [10].

Abdulle and Cirilli’s approach is important because it is difficult to con-
struct implicit or drift-implicit methods of weak order two for stiff SDEs
[8, 14, 15]. In the present paper we shall put all these ideas together. We
will construct a family of s-stage SRK methods of weak order two for non-
commutative Stratonovich SDEs and with extended mean square stability
regions. The method will reduce to the second order Chebyshev methods of
Abdulle and Medovikov [5] when the noise terms are set to zero. In Section
2 we will give some background material on Chebyshev methods for ODEs.
In Section 3 we will give background material on SDEs. In Section 4 we
will give a framework of SRK methods, while in Section 5 we will derive our
new class of methods based on the stability analysis. Section 6 will present
numerical results and Section 7 our conclusions.

2. Chebyshev methods for ODEs

Consider the autonomous N -dimensional ODEs given by

y′(t) = f(y(t)), t > 0, y(0) = y0. (1)

The class of s-stage RK methods for solving (1) is

Y i = yn + h
s∑

j=1

aijf(Y j) (1 ≤ i ≤ s), yn+1 = yn + h
s∑

j=1

bjf(Y j). (2)

3



For an equidistant grid point tn
def
= nh (n = 1, 2, . . . , M) with step size h (M

is a natural number), yn denotes a discrete approximation to the solution
y(tn) of (1). A RK method is explicit if aij = 0 (i ≤ j).

Denote by A a s × s matrix [aij] and define b
def
= [b1 b2 · · · bs]

> and

e
def
= [1 1 · · · 1]>. When we apply (2) to the linear, scalar test problem

y′(t) = λy(t), t > 0, <(λ) ≤ 0, y(0) = y0, (3)

we have yn+1 = R(hλ)yn where

R(z)
def
= 1 + zb>(I − Az)−1e. (4)

Here R is called the stability function and for explicit methods R(z) is a
polynomial of degree s at most, namely

R(z) = 1 +
s∑

j=1

zjb>Aj−1e. (5)

The stability region of (2) is S
def
= {z | |R(z)| ≤ 1}. A method whose

stability domain contains the whole left half of the complex plane is said to
be A-stable, but such methods are by necessity implicit.

Van der Houwen and Sommeijer [1] constructed RK methods of order one
that have maximal stability along the negative real axis, namely [−2s2, 0].
These methods have stability polynomial given by

R(z) = Ts(1 + z/s2), (6)

where Tn(x) is the Chebyshev polynomial of degree n defined by Tn(cos θ)
def
=

cos(nθ) or by the three term recurrence relation

T0(x)
def
= 1, T1(x)

def
= x, Tj(x)

def
= 2xTj−1(x) − Tj−2(x), j ≥ 2.

The corresponding RK method whose stability function is given by (6) is

K0
def
= yn, K1

def
= yn +

h

s2
f(K0),

Kj
def
= 2

h

s2
f(Kj−1) + 2Kj−1 − Kj−2 (2 ≤ j ≤ s), yn+1 = Ks.

(7)
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Figure 1: Stability region for s = 5 and η1 = 0, 0.05

One of the drawbacks associated with this family of methods is that the
stability region reduces to a single point at s − 1 intermediate points in
[−2s2, 0]. This can be overcome by introducing a damping parameter η1 that
allows a strip around the negative real axis to be included in the stability
domain at a cost of a slightly shortening of the stability interval. This can
be achieved by setting

Rs(z) =
Ts(ω0 + ω1z)

Ts(ω0)
, ω0

def
= 1 + η1/s

2, ω1
def
=

Ts(ω0)

T ′(s)(ω0)
. (8)

See Figure 1.
The corresponding RK method can be written as a three term recurrence

relation

K0
def
= yn, K1

def
= yn + h

ω1

ω0

f(K0),

Kj
def
= 2

Tj−1(ω0)

Tj(ω0)
(hω1f(Kj−1) + ω0Kj−1) −

Tj−2(ω0)

Tj(ω0)
Kj−2 (2 ≤ j ≤ s), (9)

yn+1 = Ks.

Despite giving more robust stability regions, these methods are still of
order one only. Suppose now we require

Rs(z) = 1 + z +
1

2
z2 +

s∑
j=3

αsjz
j
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such that |Rs(z)| ≤ 1 for z ∈ [−ls, 0] for ls as large as possible. Riha [16]
showed that for a given s such polynomials uniquely exist, satisfy an equal
ripple property on s−1 points and have exactly two complex zeros. Lebedev
[17] gave analytic expressions in terms of elliptic integrals. Abdulle and
Medovikov [5] relaxed optimal stability and constructed approximations to
these optimal stability polynomials using orthogonal polynomials such that

Rs(x) = w(x)Ps−2(x), where if we write w(x)
def
= w̄(as + x/ds), Pj(x)

def
=

P̄j(as + x/ds), and w̄(x) is of degree two with complex zeros and satisfied
w̄(as) = 1, then the orthogonal polynomials P̄0(x), P̄1(x), . . . , P̄s−2(x) are
orthogonal with respect to the weight function w̄2(x)/

√
1 − x2 on [−1, 1],

P̄0(as) = P̄1(as) = · · · P̄s−2(as) = 1, and satisfy a three-term recurrence
relation. This leads to the method

K0
def
= yn, K1

def
= yn + hµ1f(K0),

Kj
def
= hµjf(Kj−1) + (θj + 1)Kj−1 − θjKj−2 (2 ≤ j ≤ s − 2),

Ks−1
def
= Ks−2 + hσsf(Ks−2), K∗

s
def
= Ks−1 + hσsf(Ks−1),

Ks
def
= K∗

s − hσs(1 − τs/σ
2
s)(f(Ks−1) − f(Ks−2)), yn+1 = Ks.

(10)

The computation of Ks−1, K∗
s can be viewed as a finishing procedure.

When (10) is applied to (3), then

Kj = Pj(z)yn (0 ≤ j ≤ s − 2), Ks = w(z)Ks−2, yn+1 = Rs(z)yn,

where
w(z) = 1 + 2σsz + τsz

2 (11)

and

P0(z) = 1, P1(z) = 1 + µ1z,
Pj(z) = (µjz + θj + 1)Pj−1(z) − θjPj−2(z) (2 ≤ j ≤ s − 2).

(12)

If the zeros of w are αs + iβs and αs − iβs, then

σs =
as − αs

ds ((as − αs)2 + β2
s )

, τs =
1

d2
s ((as − αs)2 + β2

s )
, ds =

ls
1 + as

.

The value of ls depends on what damping (10) has. Away from z = 0
it is appropriate to require |Rs(z)| ≤ η2 < 1 for z ≤ −ε (ε : small positive
parameter) and a number of authors set η2 = 0.95. In this case the value
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Table 1: Zeros of w(x) and parameters
s αs βs as ds σs τs

5 0.876008 0.138447 1.009632 9.48582 0.380486 0.300179
10 0.968456 3.399721D-2 1.001578 39.7252 0.370095 0.281274
20 0.992172 8.455313D-3 1.000433 160.722 0.367831 0.277039
50 0.998801 1.342920D-3 1.000114 1011.69 0.367929 0.276983
100 0.999704 3.355449D-4 1.000032 4049.18 0.367908 0.277012

of ls is approximately equal to 0.81s2 (rather than 0.82s2 for η2 = 1), and
Abdulle and Medovikov [5] have given the values in Table 1.

Finally, we can determine the values of µj and θj by inserting two different
nonzero values, say r1 and r2, into z in (12) and solving

(µjri + θj + 1)Pj−1(ri) − θjPj−2(ri) = Pj(ri), i = 1, 2

under the assumption that the system is non-singular.
Abdulle [6] extended this idea in the obvious way to construct Chebyshev

methods of order four, but we do not extend on this analysis since our SRK
methods reduce to the methods of order two in the no noise case.

3. Methods for SDEs

Consider now the autonomous N -dimensional Stratonovich SDE

dy(t) = g0(y(t))dt +
d∑

j=1

gj(y(t)) ◦ dWj(t), t > 0, y(0) = x0. (13)

Here, the Wj(t), j = 1, 2, . . . , d are independent Wiener processes and x0

is independent of Wj(t) − Wj(0) for t > 0. We assume a global Lipschitz
condition is satisfied such that the SDE has exactly one continuous global
solution on the entire interval [0,∞) [18, p. 113]. In addition, suppose
that all moments of the initial value x0 exist and any component of gj is
sufficiently smooth [8, p. 474].

When discrete approximations yn are given by a scheme, we say that
the scheme is of weak (global) order q if there exists a constant CF not
depending on h such that |E[F (yM)] − E[F (y(T ))]| ≤ CF hq with T = Mh
and h sufficiently small and for all functions F : Rn 7→ R that are 2(q + 1)
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times continuously differentiable and for which all partial derivatives have
polynomial growth [8, p. 327].

For example, if (13) is transformed into the Itô SDE, then the simplest
numerical method for simulating it is the Euler-Maruyama (EM) method
given by

yn+1 = yn + hg̃0(yn) +
d∑

j=1

∆W
(n)
j gj(yn), (14)

where g̃0(y)
def
= g0(y) + 1

2

∑d
j=1 g′

j(y)gj(y) and ∆W
(n)
j

def
= Wj(tn + h) −

Wj(tn) ∼ N(0, h) =
√

hN(0, 1). Note that N(m, v) denotes the normal
distribution with mean m and variance v. The EM method is known to be
of weak order one [8, p. 457].

As with the deterministic case, the quality of a stochastic method can be
partly characterised by its stability region, associated with the scalar linear
test equation

dy(t) = λy(t)dt +
d∑

j=1

σjy(t) ◦ dWj(t), t > 0, y(0) = x0, (15)

where λ, σ1, . . . , σd ∈ C and where x0 6= 0 with probability one (w. p. 1).
The solution is y(t) = exp(λt +

∑d
j=1 σjWj(t))x0 [8, p. 158] and it is MS

stable (limt→∞ E[|y(t)|2] = 0) if <(λ) +
∑d

j=1(<(σj))
2 < 0 [19].

If an SRK method is applied to (15),

E[|yn+1|2] = R̂(hλ,
√

hσ1, . . . ,
√

hσd)E[|yn|2],

where R is a multinomial in hλ and
√

hσj (j = 1, 2, . . . , d) if the method is
explicit. Analogous to the deterministic case, the MS stability region of a
method is defined as S = {(hλ,

√
hσ1, . . . ,

√
hσd) : R̂(hλ,

√
hσ1, . . . ,

√
hσd) ≤

1}. For example, if λ and σ1 are real values when d = 1 and (15) is trans-
formed into the Itô SDE, for the EM method we have

R̂(hλ,
√

hσ1) = |1 + a|2 + |b|2,

where a
def
= hλ + 1

2
hσ2

1 and b
def
=

√
hσ1. In the (a, b) plane, thus, the stability

region is simply represented by a circle of radius 1 centred on (−1, 0) [20].
In general, it is difficult to construct methods that can cope with stiff

SDEs. Very recently, one effective approach has been proposed by Abdulle
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and Cirilli [7] who derived a family of explicit s-stage SROCK methods with
extended MS stability regions. By making the number of stages large, stiff
problems can be effectively solved without resource to the linear algebra
overheads associated with implicit or drift-implicit methods. When there is
no noise, these methods reduce to the Chebyshev RK methods of order one
(either undamped or damped). However, the drawbacks of these SROCK
methods is that they are of weak order one. We extend these ideas to con-
struct a family of s-stage SROCK2 methods that are of weak order two for
non-commutative Stratonovich SDEs and that reduce to the family of second
order Chebyshev methods (ROCK2) presented in [5].

4. A general SRK framework

For solving (13), we consider the following framework [13]:

Y
(0,0)
i = hg0

(
yn + α

(0)
i

>
Y (0,0) + α

(2)
i

>
d∑

j=1

Y (j,j)

)
,

Y
(j,j)
i = ζ

(j,j)
i gj

yn + α
(1)
i

>
Y (0,0) + α

(3)
i

>
Y (j,j) +α

(4)
i

>
d∑

l=1
l 6=j

Y (l,l)

 ,

Y
(j,l)
i = ζ

(j,l)
i gl

yn + α
(5)
i

>
Y (0,0) + α

(6)
i

>
d∑

m=1
m6=l

Y (l,m)

 ,

yn+1 = yn + b>
0 Y (0,0) + b>

1

d∑
j=1

Y (j,j) + b>
2

d∑
l=1

Y (k(l),l)

(16)

for i = 1, 2, . . . , s and l 6= j (j, l = 1, 2, . . . , d). Here, the k(l) is a value in

{1, 2, . . . , l − 1, l + 1, . . . , d}, the α
(ra)
i (0 ≤ ra ≤ 6) and brb

(rb = 0, 1, 2) are

column vectors of length s and the ζ
(j,l)
i is a random variable independent of

yn. Note that we have made the interpretation simpler by assuming a scalar
problem to avoid tensor notations.

In order to construct weak second order methods the ζ
(j,l)
i are chosen as
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follows [11, 10, 13]:

ζ
(j,l)
i =


∆Ŵl (j = l),

∆Ŵj∆W̃l/
√

h (l > j > 0 and i = s − 2),

−∆W̃j∆Ŵl/
√

h (j > l > 0 and i = s − 2),√
h (j 6= l and i 6= s − 2),

(17)

where the ∆W̃l are independent two-point distributed random variables with
P (∆W̃j = ±

√
h) = 1/2 and the ∆Ŵj are independent three-point distributed

random variables with P (∆Ŵj = ±
√

3h) = 1/6 and P (∆Ŵj = 0) = 2/3 [8,
p. 225]. In the sequel, we will make the number of nonzero roles concern-
ing the stochastic parts as small as possible. For this, in addition to the
assumption for ζ

(j,l)
i we suppose

α
(6)
i,ia

= 0 (i, ia < s − 2 or i ≤ ia), b2,ia = 0 (ia < s − 2) (18)

for elements of α
(6)
i (1 ≤ i ≤ s) and b2. Moreover, we define

A(ra) def
=
[
α

(ra)
1 α

(ra)
2 · · · α

(ra)
s

]>
, c(ra) def

= A(ra)e,

C(ra) def
= diag

(
c
(ra)
1 , c

(ra)
2 , . . . , c

(ra)
s

)
for ra = 0, 1, . . . , 6. With these conditions we give, for completeness, the
weak second order conditions for the scalar Wiener process case and for the
completely general multi-dimensional Wiener process case [13]: for the scalar
Wiener process case (d = 1)

1. b>
0 e = 1, 2. b>

0 c(0) = 1/2, 3. b>
0 c(2) = 1/2,

4. b>
0 C(2)c(2) = 1/2, 5. b>

0 A(2)c(3) = 1/4, 6. b>
1 e = 1,

7. b>
1 c(1) = 1/2, 8. b>

1 c(3) = 1/2, 9. b>
1 A(3)c(1) = 1/4,

10. b>
1 A(1)c(2) = 0, 11. b>

1 C(1)c(3) = 1/4, 12. b>
1 A(3)c(3) = 1/6,

13. b>
1 A(3)A(3)c(3) = 1/24, 14. b>

1 A(3)C(3)c(3) = 1/12, 15. b>
1 C(3)c(3) = 1/3,

16. b>
1 C(3)A(3)c(3) = 1/8, 17. b>

1 C(3)C(3)c(3) = 1/4,

additionally for the multi-dimensional Wiener process case (d > 1)

18. b>
1 c(4) = 1/2, 19. b>

1 C(4)A(4)c(4) = 0, 20. b>
1 C(4)c(4) = 1/2,

21. b>
1 A(3)A(4)c(3) = 1/8, 22. b>

1 A(4)A(4)c(4) = 0, 23. b>
1 A(4)A(3)c(4) = 0,

24. b>
1 A(3)C(4)c(4) = 1/4, 25. b>

1 A(4)C(3)c(4) = 0, 26. b>
1 A(3)c(4) = 1/4,
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27. b>
1 C(3)A(4)c(3) = 1/8, 28. b>

1 C(4)A(3)c(4) = 1/4, 29. b>
1 A(4)c(3) = 1/4,

30. b>
1 C(3)C(4)c(4) = 1/4, 31. b>

1 A(4)c(4) = 0, 32. b>
1 C(3)c(4) = 1/4,

33. b2,s−2 = 0, 34. b>
2 e = 0, 35. b>

2 c(5) = 0,

36. α
(6)
s,s−1 = 0, 37. b>

2 c(6) = 1/2, 38. b>
2 C(6)c(6) = 0.

Since ROCK2 methods are embedded in (16) when there is no noise, A(0)

and b0 are given by the Chebyshev formulation in (10). We now assume that
the A(ra) takes the partitioned form[

0
A

(ra)
1 A

(ra)
2

]
for ra = 1, 2, . . . , 6, where the big zero denotes a (s − 4) × s zero matrix

and where A
(ra)
1 or A

(ra)
2 denotes a (s − 4) × (s − 4) or 4 × 4 square matrix,

respectively. Similarly, we assume that b>
rb

takes the form[
0>

s−4 ∗ ∗ ∗ ∗
]

for rb = 1, 2. Here, 0s−4 denotes a zero column vector of length s − 4,
whereas ∗ denotes, possibly, a nonzero element. In fact, for A(6) and b2 we
have already taken

A
(6)
1 =


0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0

 , A
(6)
2 =


0 0 0 0
0 0 0 0
0 ∗ 0 0
0 ∗ ∗ 0

 ,

b>
2 =

[
0>

s−4 0 ∗ ∗ ∗
]
.

If we want to make the number of nonzero roles in A(ra) as small as
possible for ra = 2, 3, 4, we can assume

A
(ra)
1 =


0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0

 , A
(ra)
2 =


0 0 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 .

Then, there is a unique solution [21] so that

A
(3)
2 =


0 0 0 0

2/3 0 0 0
1/12 1/4 0 0
−5/4 1/4 2 0

 , A
(4)
2 =


0 0 0 0
0 0 0 0

1/4 3/4 0 0
1/4 3/4 0 0

 ,
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b>
1 =

[
0>

s−4 1/8 3/8 3/8 1/8
]
.

Finally, in order to achieve good stability properties, we will assume

A
(1)
1 =


∗ ∗ · · · ∗
∗ ∗ · · · ∗
∗ ∗ · · · ∗
∗ ∗ · · · ∗

 , A
(1)
2 =


∗ 0 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0


as well as

A
(5)
1 =


0 0 0 0

α
(0)
s−2,1 α

(0)
s−2,2 · · · α

(0)
s−2,s−4

α
(0)
s−2,1 α

(0)
s−2,2 · · · α

(0)
s−2,s−4

α
(0)
s−2,1 α

(0)
s−2,2 · · · α

(0)
s−2,s−4

 , A
(5)
2 =


0 0 0 0

α
(0)
s−2,s−3 0 0 0

α
(0)
s−2,s−3 0 0 0

α
(0)
s−2,s−3 0 0 0

 .

It is remarkable that Condition 35 is automatically satisfied from Conditions
33, 34 and the assumptions on b2 and A(5).

5. MS stability analysis

Let us apply our SROCK2 method to (15) and for simplicity assume that
λ, σ1, . . . , σd are real values in the sequel. Because of the structure we can
easily see that

Y
(0,0)
i = Pi−1(hλ)y0 (1 ≤ i ≤ s − 3).

We now compute successively Y
(0,0)
i , Y

(j,j)
i , Y

(j,l)
i for i = s − 2, s − 1, s and

yn+1, using the order conditions to get a simple form for these expressions.
Once we have found the form yn+1 = Ryn, the MS stability function is given
by

R̂ = E[R2].

Here, R̂ will be a function of p
def
= hλ, qj

def
= hσ2

j (1 ≤ j ≤ d).

5.1. How to determine α
(1)
i and α

(2)
i

In order to determine the vector values of α
(1)
i and α

(2)
i when s−3 ≤ i ≤ s,

let us begin with the scalar Wiener process case. By applying (16) to (15)
when d = 1, we obtain

R = R(p, ∆Ŵ1, σ1)

=
(
1 + 2σsp + τsp

2
)
Ps−2(p) + ∆Ŵ1σ1

(
β10 + β11p + β12p

2 + β13p
3
)

+(∆Ŵ1σ1)
2
(
β20 + β21p + β22p

2
)

+ (∆Ŵ1σ1)
3 (β30 + β31p) + (∆Ŵ1σ1)

4β40,

12



and thus

R̂ = R̂(p, q1)

=
(
1 + 2σsp + τsp

2
)2

(Ps−2(p))2

+ q1

{
2
(
β20 + β21p + β22p

2
) (

1 + 2σsp + τsp
2
)
Ps−2(p)

+
(
β10 + β11p + β12p

2 + β13p
3
)2}

+3q2
1

{
2β40

(
1 + 2σsp + τsp

2
)
Ps−2(p) +

(
β20 + β21p + β22p

2
)2

+2
(
β10 + β11p + β12p

2 + β13p
3
)
(β30 + β31p)

}
+9q3

1

{
2
(
β20 + β21p + β22p

2
)
β40 + (β30 + β31p)2}+ 27q4

1β
2
40,

(19)

where, for example,

β13
def
= b0,sα

(0)
s,s−1α

(0)
s−1,s−2α

(2)
s−2,s−3Qs−3(p), Qs−3(p)

def
= 1+

s−3∑
j=1

α
(1)
s−3,jpPj−1(p).

The others are given in Appendix A.
In order to make Qs−3(p) a shifted orthogonal polynomial whose degree

is as large as possible, let us assume

α
(1)
s−3,ia

= α
(0)
s−2,ia

(1 ≤ ia ≤ s − 3). (20)

Then, we have Qs−3(p) = Ps−3(p) because of the equation:

Pi−1(p) = 1 +
i−1∑
ia=1

α
(0)
i,ia

pPia−1(p) (1 ≤ i ≤ s − 1),

which is obtained from the assumption on A(0). Similarly, let us assume

α
(1)
s−2,ia

= α
(0)
s−1,ia

, α
(1)
s−1,ia

= α
(1)
s,ia

= α
(0)
s−2,ia

(1 ≤ ia ≤ s − 3),

α
(2)
s−1,s−2 = α

(2)
s−2,s−3.

(21)

Then, β10+β11p+β12p
2+β13p

3, β20+β21p+β22p
2 and β30+β31p are expressed

by shifted polynomials Ps−3(p) or Ps−2(p) multiplied by a polynomial of p
with degree two at most. For details, see Appendix B.

In fact, β10 + β11p + β12p
2 + β13p

3 has terms p2Ps−3(p) and p2Ps−2(p),
whereas β20 + β21p + β22p

2 has a term p2Ps−3(p). In order to make the
coefficient of p2Ps−3(p) vanish in the latter, let us assume for s ≥ 4

α
(2)
s,s−1 = −

α
(0)
s,s−1α

(2)
s−1,s−2α

(3)
s−2,s−3

α
(1)
s−1,s−2α

(2)
s−2,s−3 − α

(3)
s−1,s−2α

(0)
s−1,s−2

. (22)

13



Further, in order to make the absolute values of the coefficients of p2Ps−3(p)
and p2Ps−2(p) small in β10 + β11p + β12p

2 + β13p
3, let us assume

α
(2)
s−2,s−3 =

b0,s−2 −
√

b0,s−2 (b0,s−1 + b0,s) γ1

b0,s−2(γ1 + 1)
(23)

when b0,s−2 (b0,s−1 + b0,s) γ1 ≥ 0 where γ1
def
= 2 (b0,s−2 + b0,s−1 + b0,s) − 1. For

details, see Appendix B.
After all, from (22) and the system of the order conditions in the scalar

Wiener process case, we obtain a final solution for α
(1)
i and α

(2)
i (s− 3 ≤ i ≤

s):

α
(1)
s−1,s−2 = 1 − 1

2

(
3c

(0)
s−2 + c

(0)
s−1 − α

(0)
s−1,s−2

)
,

α
(1)
s,s−2 = −

2(b0,s−1 + b0,s)α
(2)
s−2,s−3γ3

(γ1 + 1)α
(2)
s−2,s−3 − 1

+ 1 − 1

2

(
c
(0)
s−2 + 3c

(0)
s−1 − 3α

(0)
s−1,s−2

)
,

α
(1)
s,s−1 = −

2(b0,s−1 + b0,s)α
(2)
s−2,s−3γ3

(γ1 + 1)α
(2)
s−2,s−3 − 1

, α
(2)
s−1,s−3 =

1 − (γ1 + 1)α
(2)
s−2,s−3

2 (b0,s−1 + b0,s)
,

α
(2)
s,s−3 =

1 − 2b0,s−2α
(2)
s−2,s−3

2 (b0,s−1 + b0,s)
−

3 − 8b0,s−1α
(2)
s−2,s−3

8b0,s

+
4α

(0)
s,s−1α

(2)
s−2,s−3

3γ2

,

α
(2)
s,s−2 =

3 − 8b0,s−1α
(2)
s−2,s−3

8b0,s

+
4α

(0)
s,s−1α

(2)
s−2,s−3

3γ2

, α
(2)
s,s−1 = −

8α
(0)
s,s−1α

(2)
s−2,s−3

3γ2

under the assumptions (20), (21) and (23), where

γ2
def
= 2

(
2 − 3c

(0)
s−2 − c

(0)
s−1 + α

(0)
s−1,s−2

)
α

(2)
s−2,s−3 − α

(0)
s−1,s−2,

γ3
def
= 4 − 5c

(0)
s−2 − 3c

(0)
s−1 + 3α

(0)
s−1,s−2.

For details, see Appendix C.
By applying Abdulle’s parameter values1 to this solution, we obtain Fig-

ure 2. The solid, dash or dotted line means the behaviour of β10 + β11p +
β12p

2 + β13p
3, β20 + β21p + β22p

2 or β30 + β31p, respectively. On the other
hand, since β40 is very small, it is omitted. Here, note that η2 = 0.95.

1Readers can get them from a fortran code “rock2.f” in
http://www.unige.ch/˜hairer/software.html.
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Figure 2: Behaviour of β10 + β11p + β12p
2 + β13p

3, β20 + β21p + β22p
2 or β30 + β31p

5.2. The multi-dimensional Wiener process case

In this subsection let us deal with the multi-dimensional Wiener process
case. By applying (16) to (15) and by using Condition 33 and the assumption
on A(5), we obtain

R = R
(
p, {∆Ŵj}d

j=1, {∆W̃l}d
l=2, {σj}d

j=1

)
=
(
1 + 2σsp + τsp

2
)
Ps−2(p)+

d∑
j=1

Gj

and thus

R̂ = R̂(p, {qj}d
j=1)

=
(
1 + 2σsp + τsp

2
)2

(Ps−2(p))2

+2
(
1 + 2σsp + τsp

2
)
Ps−2(p)

×


m∑

j=1

qj

(
β20 + β21p + β22p

2
)

+ 3
d∑

j=1

q2
j β40 +

d∑
j=1

qj

d∑
l=1
l 6=j

qlδ220


+

d∑
j=1

E
[
G2

j

]
+ 2

d−1∑
j=1

d∑
l=j+1

E [GjGl] ,

(24)

where δ220 and Gj are given in Appendix A.
Our b1, A(3) and A(4) satisfy Conditions 18–32 [10, 21]. In addition, as

we have said, A(5) satisfies Condition 35. Thus, all we need to do is to seek a
solution for Conditions 34, 37 and 38 under the Conditions 33 and 36. From
these, we have

α
(6)
s,s−2 =

1

4b2,s

, α
(6)
s−1,s−2 = − 1

4b2,s

, b2,s−1 = −b2,s.
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Figure 3: MS stability region of the SROCK2 schemes for some s, d and η2

Here, note that R̂ in (24) does not depend on the free parameters b2,s.

Finally, we show MS-stability regions, in which R̂ < 1. In general, how-
ever, such a region lies in the d + 1-dimensional space with respect to p and
qj (1 ≤ j ≤ d). For this, let us assume q1 = q2 = · · · = qd and denote
d × q1 by q̃. Then, in Figure 3 a dark-colored part indicates an MS-stability
region, whereas the part enclosed by the two straight lines q̃ = −p and q̃ = 0
indicates the region in which the test SDE is stable in mean square. It is
remarkable that s = 4 is the minimum stage number because our SROCK2
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methods are of weak order two [10, 21].

6. Numerical experiments

In the previous section we have derived the SROCK2 methods, which have
the free parameters b2,s. Now let us set it at 1 and confirm its performance
in two numerical experiments.

The first experiment comes from the last example in [12]. That is, we
apply numerical schemes to the following SDE:

dy(t) =

(
y(t) − 1

4

10∑
j=1

σ2
j

)
dt +

10∑
j=1

σj

√
y(t) + kj ◦ dwj(t), y(0) = x0,

(25)
where

σ1 = k4 = k9 =
1

10
, σ2 = σ8 =

1

15
, σ3 = σ7 = σ9 = k5 = k10 =

1

20
,

σ4 = σ6 = σ10 =
1

25
, σ5 =

1

40
, k1 = k6 =

1

2
, k2 = k7 =

1

4
, k3 = k8 =

1

5
.

The fourth moment of its solution is given by

E [(X(t))4] = (74342479604283 + 1749302625065840et − 24798885546415218e2t

−263952793100784216e3t + 1531088033542529311e4t)
/ (124416 × 1013)

when x0 = 1 (w. p. 1) [13]. We simulate 64 × 106 independent trajectories
for a given h. In Monte Carlo simulation for SDEs, statistical independence
properties in pseudo random numbers are very important [22]. In addition,
their period needs to be very long. For this, we use the Mersenne twister
[23]. By it, for example, we generate a pseudo random number for ∆W̃l/

√
h

which takes ±1.
The results are indicated in Fig. 4. The solid, dash or dotted lines denote

the SROCK2 scheme with four stages (η2 = 0.375), the SROCK scheme with
three stages [7] or the RS1 scheme [11], respectively. The RS1 scheme is of
weak order two and is computationally efficient. That is, only the SROCK
scheme is of weak order one. In addition, Sa stands for the sum of the
number of evaluations on the drift or diffusion coefficients and the number
of generated pseudo random numbers. We can see that the SROCK2 scheme
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Figure 4: Relative errors about the fourth moment at t = 1. (Solid: SROCK2, dash:
SROCK, dotted: RS1.)

shows good performance not only with respect to relative errors, but also in
terms of the computational costs.

The second experiment comes from the following heat equation with noise:

du(t, x) = (D∆u(t, x))dt + ku(t, x) ◦ dw1(t), (t, x) ∈ [0, T ]× [0, 1], (26)

which was dealt with in [7]. Here, ∆ is the Laplacian operator, D is the
diffusion coefficient, and k is a noise parameter.

Let us suppose that u(0, x) = 1 as an initial condition and u(t, 0) =
∂u(t,x)

∂x
|x=1 = 0 as mixed boundary conditions, and set D = k = 1 for simplic-

ity. If we discretize the space interval by N+1 equidistant points xia (0 ≤ ia ≤
N) and define a vector-valued function by y(t)

def
= [u(t, x1) u(t, x2) · · · u(t, xN)]>,

then we obtain

dy(t) = Ay(t)dt + y(t) ◦ dw1(t), y(0) = [1 1 · · · 1]> (w. p. 1) (27)

by applying the central difference scheme to (26) and by using the relationship
u(t, xN−1) = u(t, xN+1) from the boundary conditions, where

A
def
= N2


−2 1 01 −2 1

. . . . . . . . .

1 −2 1
0 2 −2

 .

It is known that the eigenvalues of A are distributed around the negative real
axis in the interval (−4N2, 0) [7]. Thus, remark that normal explicit SRK
schemes need a very small step size for stability when N is large.

18



-4-5-6
-2

-4

-6

-8

-10

-12

log2 h

lo
g

2
|re

la
ti

ve
er

ro
r|

37 38 39 40
-2

-4

-6

-8

-10

-12

log2 Sa

lo
g

2
|re

la
ti

ve
er

ro
r|

Figure 5: Relative errors about the variance at t = 1. (Solid: SROCK2, dash: SROCK.)

Because (27) is linear, we can get a system of ODEs with respect to the
mean and variance of y(t). In fact, they are given by dE[y(t)]/dt = ÃE[y(t)]
and

dΦ

dt
(t) = ÃΦ(t) + Φ(t)Ã> + Φ(t) + E[y(t)](E[y(t)])>,

where

Ã
def
= A+

1

2
diag(1, 1, . . . , 1), Φ(t) = E

[
(y(t) − E[y(t)])(y(t) − E[y(t)])>

]
.

Some results are indicated in Fig. 5. Because y(t) is a vector, the Eu-
clidean norm has been used. In order to obtain the results, 64×106 indepen-
dent trajectories have been simulated for a given h. The solid or dash lines
denote the SROCK2 scheme with 104 stages (η2 = 0.285) or the SROCK
scheme (of weak order one) with 100 stages [7], respectively. Both schemes
solve the SDE without reducing the step size too much, but our weak second
order scheme is clearly superior.

On the other hand, in the RS1 scheme the step size has to be reduced
significantly. That is, it can not solve the SDE numerically stably for h = 2−i

(1 ≤ i ≤ 14). Results for h = 2−15 are given in Table 2.

Table 2: Results by the RS1 scheme about the variance at t = 1.
log2 h num of trajectories log2 Sa log2 |relative error|
−15 32 × 105 39.7796 −8.47558

After all, the RS1 scheme spends much computational efforts due to a
very small step size required for stability, and can not spare them to reduce
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statistical errors at a magnitude of log2 Sa. Furthermore, the SROCK scheme
does not need a very small step size, but it suffers from low convergence order.
Thus, we can see again that the SROCK2 scheme has good performance not
only with respect to relative errors, but also in terms of the computational
costs.

7. Conclusions

We have derived explicit s-stage SROCK2 schemes of weak order two
for non-commutative Stratonovich SDEs. The SROCK2 schemes have the
following features.

• The schemes have large MS stability regions along the negative real
axis because they are equivalent to the ROCK2 schemes with a small
η2 < 1 when they are applied to ODEs and their parameter values are
carefully chosen for stability.

• The schemes are based on efficient SRK methods [13], and are efficient
in terms of not only the number of generated pseudo random numbers
but also the number of evaluations on the diffusion coefficients.

In the numerical experiments we have confirmed advantages which come
from these facts. In the first experiment where the SDE has a 10-dimensional
Wiener process, our schemes’ efficiency in computational costs have been
clearly shown in comparison with the SROCK and RS1 schemes. The sec-
ond experiment has highlighted the advantages of the SROCK2 schemes in
accuracy and stability. That is, whereas the RS1 scheme or the SROCK
scheme has suffered from poor stability properties or low convergence order
respectively, our schemes have shown high performance in accuracy, compu-
tational costs and stability.

Finally, the following should be also remarked:

• Although the stability region of our schemes is large along the negative
real axis, it is not so wide, compared with that of the SROCK schemes
[7].

• For Itô SDEs a different version of SROCK schemes exists [24]. An
extension of our present approach for Itô SDEs is a future work.
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Appendix A. Some notations

Notations in (19) are defined as follows:

Qi(p)
def
= 1 +

i−1∑
j=1

α
(1)
ij pPj−1(p) (s − 2 ≤ i ≤ s),

β10
def
=

s∑
i=s−3

b1,iQi(p), β11
def
=

s∑
i=s−2

i−1∑
j=s−3

b0,iα
(2)
ij Qj(p),

β12
def
=

s∑
i=s−1

i−1∑
j=s−2

j−1∑
k=s−3

b0,iα
(0)
ij α

(2)
jk Qk(p), β20

def
=

s∑
i=s−2

i−1∑
j=s−3

b1,iα
(3)
ij Qj(p),

β21
def
=

s∑
i=s−1

i−1∑
j=s−2

j−1∑
k=s−3

(
b0,iα

(2)
ij α

(3)
jk + b1,iα

(1)
ij α

(2)
jk

)
Qk(p),

β22
def
=
(
b1,sα

(1)
s,s−1α

(0)
s−1,s−2α

(2)
s−2,s−3 + b0,sα

(0)
s,s−1α

(2)
s−1,s−2α

(3)
s−2,s−3

+b0,sα
(2)
s,s−1α

(1)
s−1,s−2α

(2)
s−2,s−3

)
Qs−3(p),

β30
def
=

s∑
i=s−1

i−1∑
j=s−2

j−1∑
k=s−3

b1,iα
(3)
ij α

(3)
jk Qk(p),

β31
def
=
(
b0,sα

(2)
s,s−1α

(3)
s−1,s−2α

(3)
s−2,s−3 + b1,sα

(1)
s,s−1α

(2)
s−1,s−2α

(3)
s−2,s−3

+b1,sα
(3)
s,s−1α

(1)
s−1,s−2α

(2)
s−2,s−3

)
Qs−3(p),

β40
def
= b1,sα

(3)
s,s−1α

(3)
s−1,s−2α

(3)
s−2,s−3Qs−3(p).
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Notations in (24) are defined as follows:

Gj
def
= ∆Ŵjσj

(
β10 + β11p + β12p

2 + β13p
3
)

+ (∆Ŵjσj)
2
(
β20 + β21p + β22p

2
)

+(∆Ŵjσj)
3 (β30 + β31p) + (∆Ŵjσj)

4β40

+∆Ŵjσj

d∑
l=1
l 6=j

[
∆Ŵlσl

(
δ110 + δ111p + δ112p

2
)

+ (∆Ŵlσl)
2 (δ120 + δ121p)

]

+(∆Ŵjσj)
2

d∑
l=1
l 6=j

[
∆Ŵlσl (δ210 + δ211p) + (∆Ŵlσl)

2δ220

]
,

δ110
def
=

s∑
i=s−1

s−2∑
j=s−3

b1,iα
(4)
ij Qj(p),

δ111
def
=

s∑
i=s−1

i−1∑
j=s−2

j−1∑
k=s−3

b1,iα
(1)
ij α

(2)
jk Qk(p) + b0,sα

(2)
s,s−1

s−2∑
i=s−3

α
(4)
s−1,iQi(p),

δ112
def
=
(
b1,sα

(1)
s,s−1α

(0)
s−1,s−2 + b0,sα

(2)
s,s−1α

(1)
s−1,s−2

)
α

(2)
s−2,s−3Qs−3(p),

δ120
def
=

(
s∑

i=s−1

b1,iα
(4)
i,s−2

)
α

(3)
s−2,s−3Qs−3(p),

δ121
def
=
(
b1,sα

(1)
s,s−1α

(2)
s−1,s−2 + b0,sα

(2)
s,s−1α

(4)
s−1,s−2

)
α

(3)
s−2,s−3Qs−3(p),

δ210
def
= b1,sα

(3)
s,s−1

s−2∑
i=s−3

α
(4)
s−1,iQi(p), δ211

def
= b1,sα

(3)
s,s−1α

(1)
s−1,s−2α

(2)
s−2,s−3Qs−3(p),

δ220
def
= b1,sα

(3)
s,s−1α

(4)
s−1,s−2α

(3)
s−2,s−3Qs−3(p).

Appendix B. Some expressions

From (20) and (21), we obtain

β10 + β11p + β12p
2 + β13p

3
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=

 s∑
i=s−3
i6=s−2

b1,i +

(
−b1,s−2α

(0)
s−1,s−2 +

s∑
i=s−1

b1,iα
(1)
i,s−2

+
s∑

i=s−2

b0,iα
(2)
i,s−3 + b0,sα

(2)
s,s−1

)
p

+b0,s

(
s−1∑

i=s−2

α
(0)
s,i α

(2)
i,s−3 + α

(2)
s,s−1α

(1)
s−1,s−2

− α
(2)
s,s−2α

(0)
s−1,s−2

)
p2

Ps−3(p)

+

[
b1,s−2 +

(
b1,sα

(1)
s,s−1 +

s∑
i=s−1

b0,iα
(2)
i,s−2

)
p

+ b0,sα
(0)
s,s−1α

(2)
s−2,s−3p

2

]
Ps−2(p),

β20 + β21p + β22p
2

=

{
s∑

i=s−2

b1,iα
(3)
i,s−3 + b1,sα

(3)
s,s−1

+

[
−

s∑
i=s−1

b1,iα
(3)
i,s−2α

(0)
s−1,s−2 + b1,sα

(3)
s,s−1α

(1)
s−1,s−2

+
s∑

i=s−1

i−1∑
j=s−2

(
b1,iα

(1)
i,j α

(2)
j,s−3 + b0,iα

(2)
i,j α

(3)
j,s−3

)]
p

+b0,s

[
α

(0)
s,s−1α

(2)
s−1,s−2α

(3)
s−2,s−3 + α

(2)
s,s−1α

(1)
s−1,s−2α

(2)
s−2,s−3

−α
(2)
s,s−1α

(3)
s−1,s−2α

(0)
s−1,s−2

]
p2

}
Ps−3(p),

β30 + β31p
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=

[
s∑

i=s−1

i−1∑
j=s−2

b1,iα
(3)
i,j α

(3)
j,s−3

+
(
b1,sα

(1)
s,s−1α

(2)
s−1,s−2α

(3)
s−2,s−3 + b1,sα

(3)
s,s−1α

(1)
s−1,s−2α

(2)
s−2,s−3

+b0,sα
(2)
s,s−1α

(3)
s−1,s−2α

(3)
s−2,s−3 − b1,sα

(3)
s,s−1α

(3)
s−1,s−2α

(0)
s−1,s−2

)
p

]
×Ps−3(p) + b1,sα

(3)
s,s−1α

(3)
s−1,s−2Ps−2(p).

Appendix C. How to solve the order conditions

Let us solve the system of the order conditions for the scalar Wiener
process case. Since A(0), A(3), b0 and b1 are given, we can solve it as follows
[21]:

1) From Conditions 7 and 9, seek c
(1)
s−1 and c

(1)
s . Then, Condition 11 is

automatically satisfied.

2) From Conditions 3 and 4, seek seek c
(2)
s−1 and c

(2)
s .

3) Substitute the results in 2) into Condition 10, and seek α
(1)
s,s−2.

4) Substitute the results in 2) into Condition 5, and seek α
(2)
s,s−2.

Noting that

−4b0,s−2

(
s∑

i=s−2

b0,i

)(
α

(2)
s−2,s−3

)2

+ 4b0,s−2α
(2)
s−2,s−3 + 2

s∑
i=s−1

b0,i − 1 = 0

because of (23), thus, we have

c
(1)
s−1 = 1 − 1

2

(
c
(1)
s−3 + c

(1)
s−2

)
, c(1)

s = 1 +
1

2

(
c
(1)
s−3 − 3c

(1)
s−2

)
,

c
(2)
s−1 =

1 − 2b0,s−2α
(2)
s−2,s−3

2 (b0,s−1 + b0,s)
, c(2)

s =
1 − 2b0,s−2α

(2)
s−2,s−3

2 (b0,s−1 + b0,s)
,

α
(1)
s,s−2 = −

α
(1)
s,s−1

2 (b0,s−1 + b0,s) α
(2)
s−2,s−3

+
b0,s−2α

(1)
s,s−1 − 3 (b0,s−1 + b0,s) α

(1)
s−1,s−2

b0,s−1 + b0,s

,

α
(2)
s,s−2 =

3 − 8b0,s−1α
(2)
s−1,s−2 − 4b0,sα

(2)
s,s−1

8b0,s

.

From A(3), (20), (21) and the equations above, we can obtain the final solution

for α
(1)
i and α

(2)
i (s − 3 ≤ i ≤ s) in Subsection 5.1.

24



References

[1] P. van der Houwen, B. Sommeijer, On the internal stability of explicit
m-stage Runge-Kutta methods for large m-values, Z. Angew. Math.
Mech. 60 (1980) 479–485.

[2] V. Lebedev, A new method for determining the roots of polynomials
of least deviation on a segment with weight and subject to additional
conditions. Part I, Russian J. Numer. Anal. Math. Modelling 8 (1993)
195–222.

[3] V. Lebedev, A new method for determining the roots of polynomials
of least deviation on a segment with weight and subject to additional
conditions. Part II, Russian J. Numer. Anal. Math. Modelling 8 (1993)
397–426.

[4] A. Medovikov, High order explicit methods for parabolic equations, BIT
38 (1998) 372–390.

[5] A. Abdulle, A. Medovikov, Second order Chebyshev methods based on
orthogonal polynomials, Numer. Math. 90 (2001) 1–18.

[6] A. Abdulle, Fourth order Chebyshev methods with recurrence relation,
SIAM J. Sci. Comput. 23 (2002) 2041–2054.

[7] A. Abdulle, S. Cirilli, S-ROCK: Chebyshev methods for stiff stochastic
differential equations, SIAM J. Sci. Comput. 30 (2008) 997–1014.

[8] P. Kloeden, E. Platen, Numerical Solution of Stochastic Differential
Equations, Springer-Verlag, New York, 1999. Corrected 3rd printing.

[9] A. Tocino, J. Vigo-Aguiar, Weak second order conditions for stochastic
Runge-Kutta methods, SIAM J. Sci. Comput. 24 (2002) 507–523.

[10] Y. Komori, Weak second-order stochastic Runge-Kutta methods for
non-commutative stochastic differential equations, J. Comput. Appl.
Math. 206 (2007) 158–173.
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