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Abstract

In the present article we deal with parameter estimation about truncated
data� which are of a variety of truncated time�a� truncated data are
of a truncated time b�� a� truncated data are of a truncated time b�
and so on� We show some conditions to get the maximum likelihood
estimations in the two cases� in one of which the truncated data are
given as data values and in the other of which the truncated data are
given as grouped data that is� each expresses the number of the data
fall into a subinterval�� Here� it is supposed that all the data are subject
to an exponential distribution�



� Introduction

We are concerned with a problem to predict what situation will happen respecting the
failure of industrial products after they were shipped� As one of such practical examples�
we suppose that inferior goods were shipped being mixed in the group of normal ones
and some of those have been returned by now� Then� our purpose is to infer how many
inferior goods leave on the market without being returned in order to decide to recall all
goods or not� The following is the setting for our problems� Products were shipped at
intervals of � and s times in total� and the investigation of the number of the returned
products has been continued for T after the �st shipment�

In the present article we deal with two cases� one of which is the grouped and truncated
data case and the other of which is the truncated data case� and state a condition to obtain
a maximum likelihood estimator MLE� in each case� provided that failure time obeys an
exponential distribution�

� Grouped and Truncated Data Case

Divide the shipping interval � into g non�overlapping subintervals of length t�g� and

denote by r
�i�
j the number of the products broken in the subinterval between j � ����g

and j��g on the ith shipment� Figure � indicates the aspect of the occurrence of failure
during the observing period�
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Figure �� The aspect of the occurrence of failure on each shipment

Next� suppose that T may be expressed as ���g with some positive integer � �
s � ��g � ��� then we obtain Fig� � by rearranging the data on Fig� � in order of the
length of passed time since products were shipped�

We assume that time t� which has passed by a product led to failure since its shipment�
obeys a distribution whose density function ft� �� depending on �� Then� the logarithmic
likelihood function about data on Fig� � is the following�
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Let us consider a case� where ft� �� in �� is the density function of an exponential
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Figure �� The occurrence of failure versus passed time

distribution� that is� ce�ct� Here� c � �� is a parameter� Setting
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In connection with this� the following lemma holds�

Lemma ��� We set
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According to Lemma ���� the right hand above is a strictly decreasing function of c � ��
if �i � �t� Since
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Lemma ��� The function
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we set ux�
def
� ��x�ex� ��x� and investigate this� By di�erentiating ux� up to twice

we get
u�x� � �� x�ex � �� u��x� � �xex�

From these equations� u��x� � � for x � � and u��� � �� thus u�x� � �� In analogy�
u�x� � � for x � � and u�� � �� thus ux� � �� Consequently� hx� is strictly decreasing
in ����� Therefore� gc� is a strictly decreasing function� �

� Truncated Data Case

In Sec� � we discussed the case in which given data were only the number r
�i�
j of products

broken in the subinterval between j � ����g and j��g for each j on the ith shipment� In
this section we devote ourselves to the case in which failure time is given as data�
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Fig� �� Fig� � indicates the aspect of the occurrence of failure arranged in order of the
length of passed time after each shipping�

The logarithmic likelihood function about data on Fig� � is de�ned by

lnLt��
def
�

sX
i��

���i���gX
j��

r
�i�
jX

k��

ln

�����
����

ft
�i�j�
k � ��Z T��i����

�
ft� ��dt

�����
���� � ��

�



� � T � s� ��� T � � T
HH
��

passed
timethe �st

shipment
t
���
� t

���
� � � � t���g � � � t

���
�T��s������ g

�

� � � t
���
�T���� g

�

� � � t
���
T� g

�

the �nd
shipment

t
���
� t

���
� � � � t���g � � � t

���
�T��s������ g

�

� � � t
���
�T���� g

�

���
���

���
���

���
���

���
���

the sth
shipment

t
�s�
� t

�s�
� � � � t�s�g � � � t

�s�
�T��s������ g

�

Figure �� The occurrence of failure versus passed time

Let us consider of a case� where ft� �� in �� is the density function of an exponential
distribution� Setting
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In connection with this� the following lemma holds�
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According to Lemma ���� the function in f g on the right hand above is a strictly decreasing
for c � ���
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Lemma ��� The function
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Proof� By di�erentiating vc� we obtain
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Using Maclaurin expansion of ex� we can easily show that f g part on the right hand is
negative� Thus� vc� is a strictly decreasing function in ����� �

� Summary

In the present paper we stated the conditions under which MLEs may be given for grouped
and truncated data or truncated data when shipment is performed in several times�

Deemer ��� gave a similar condition in the case where products are shipped only one
time� Let Tr be the truncated time� �t the average failure time of broken products� Then�

MLE exists if � � �t �
�

�
Tr� and MLE does not exist if �t �

�

�
Tr�

Comparing this with the results in Sec� � or Sec� �� we explain about them� The

expression
�

N

sX
i��

ni�i is the average truncated time because that ni and �i are the total

number of broken products and the truncated time on the ith shipment� respectively� If
tj�� � tj

�
is chosen as the representative value of failure time in the subinterval� �ta means

an approximate value to the average failure time� On the other hand �ta is the average
failure time on all the shipments since �t�i� is the average failure time on the ith shipment�
Summarizing the things above� we can say as follows� If we replace the truncated time
in Deember�s result with the average one � we obtain the result in Sec� �� Besides the
truncated time� if we replace the average failure time with the approximate value� we
obtain the result in Sec� ��
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