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Abstract

In the present article we deal with parameter estimation about truncated
data, which are of a variety of truncated time—a; truncated data are
of a truncated time by, ao truncated data are of a truncated time b,
and so on. We show some conditions to get the maximum likelihood
estimations in the two cases, in one of which the truncated data are
given as data values and in the other of which the truncated data are
given as grouped data (that is, each expresses the number of the data
fall into a subinterval). Here, it is supposed that all the data are subject
to an exponential distribution.



1 Introduction

We are concerned with a problem to predict what situation will happen respecting the
failure of industrial products after they were shipped. As one of such practical examples,
we suppose that inferior goods were shipped being mixed in the group of normal ones
and some of those have been returned by now. Then, our purpose is to infer how many
inferior goods leave on the market without being returned in order to decide to recall all
goods or not. The following is the setting for our problems: Products were shipped at
intervals of 7 and s times in total, and the investigation of the number of the returned
products has been continued for 7" after the 1st shipment.

In the present article we deal with two cases, one of which is the grouped and truncated
data case and the other of which is the truncated data case, and state a condition to obtain
a maximum likelihood estimator (MLE) in each case, provided that failure time obeys an
exponential distribution.

2 Grouped and Truncated Data Case

Divide the shipping interval 7 into g non-overlapping subintervals of length t/g, and
denote by rj(-z) the number of the products broken in the subinterval between (j — 1)7/g
and j7/g on the ith shipment. Figure 1 indicates the aspect of the occurrence of failure
during the observing period.
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Figure 1: The aspect of the occurrence of failure on each shipment

Next, suppose that 7" may be expressed as n7/g with some positive integer n (>
(s —1)g + 1), then we obtain Fig. 2 by rearranging the data on Fig. 1 in order of the
length of passed time since products were shipped.

We assume that time ¢, which has passed by a product led to failure since its shipment,
obeys a distribution whose density function f(¢; @) depending on 6. Then, the logarithmic
likelihood function about data on Fig. 2 is the following:
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Let us consider a case, where f(¢;0) in (1) is the density function of an exponential
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Figure 2: The occurrence of failure versus passed time

distribution, that is, ce . Here, ¢ (> 0) is a parameter. Setting
At /g, dEf JAt, T e (¢ — 1),

we obtain
s n—(i-l)g
In Ly (c) > rj(-z) {—ctj,l +1In (1 - e’CAt) —In (1 - e’”i)} . (2)
1=1 j=1

In connection with this, the following lemma holds.
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According to Lemma 2.2, the right hand above is a strictly decreasing function of ¢ (> 0)
if ; > At. Since
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In addition, (¢) is continuous. Consequently, there exists a solution ¢ = ¢y (> 0)
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Lemma 2.2 The function
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we set u(z) & (2—z)e® — (2+ ) and investigate this. By differentiating u(z) up to twice
we get
u'(z) = (1—x)e” — 1, u'(z) = —ze®.

From these equations, u"(z) < 0 for x > 0 and «'(0) = 0, thus u'(z) < 0. In analogy,
u'(z) < 0for x > 0 and u(0) = 0, thus u(z) < 0. Consequently, h(z) is strictly decreasing
n (0,00). Therefore, g(c) is a strictly decreasing function. O

3 Truncated Data Case

In Sec. 2 we discussed the case in which given data were only the number 7" ) of products

broken in the subinterval between (j — 1)7/g and j7/g for each j on the zth shipment. In

this section we devote ourselves to the case in which failure time is given as data.
Denote by t,(:’j) (k=1,2,... (i)) failure time of r(i) products broken in the subinterval

S0, 900 s
J
Fig. 2, Fig. 3 indicates the aspect of the occurrence of failure arranged in order of the

length of passed time after each shipping.
The logarithmic likelihood function about data on Fig. 3 is defined by

between (j —1)7/g and j7/g on the ith shipment, and set t
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Figure 3: The occurrence of failure versus passed time

Let us consider of a case, where f(¢;0) in (3) is the density function of an exponential
distribution. Setting
—(i—1 r
ﬂz) déf iﬂ (ZZ )9
ni 31 k=1
we obtain
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In connection with this, the following lemma holds.
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In addition, Tt(c) is continuous. Consequently, there exists a solution ¢ = ¢y (> 0)
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Lemma 3.2 The function

strictly increases in (0, 00). u
Proof. By differentiating v(c) we obtain
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v'(c) =

Using Maclaurin expansion of e*, we can easily show that { } part on the right hand is
negative. Thus, v(c) is a strictly decreasing function in (0, 00). O

4 Summary

In the present paper we stated the conditions under which MLEs may be given for grouped

and truncated data or truncated data when shipment is performed in several times.
Deemer [1] gave a similar condition in the case where products are shipped only one

time: Let T}, be the truncated time, ¢ the average failure time of broken products. Then,

_ 1 __ 1
MLE exists if 0 < t < §TT, and MLE does not exist if ¢ > §Tr.

Comparing this with the results in Sec. 2 or Sec. 3, we explain about them. The
S

expression N an is the average truncated time because that n; and 7; are the total
i=1
number of broken products and the truncated time on the ¢th shipment, respectively. If
tj—l + tj
2 . . . re .
an approximate value to the average failure time. On the other hand ¢, is the average
failure time on all the shipments since £#*) is the average failure time on the 7th shipment.
Summarizing the things above, we can say as follows: If we replace the truncated time
in Deember’s result with the average one , we obtain the result in Sec. 3. Besides the
truncated time, if we replace the average failure time with the approximate value, we

obtain the result in Sec. 2.

is chosen as the representative value of failure time in the subinterval, ¢, means
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