
ISSN 1344-8803, CSSE-9 May 8, 2000

E�ects of Nonsynchronism on Multirate Sampled-Data

Systems: Lp Worst-Case Performance,

Robustness and Computation{ x

Hiroshi Ito
yz

yDepartment of Control Engineering and Science, Kyushu Institute of Technology
680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
Phone: (+81)948-29-7717, Fax: (+81)948-29-7709

E-mail: hiroshi@ces.kyutech.ac.jp

Abstract: This paper focuses on multi-rate sample-data control with nonsynchronous de-
centralized controllers whose sampler-and-hold elements in di�erent stations update their
state independently of each other. Phases of discrete-time events in decentralized control
stations are di�erent because of digital control with multiple processors although each con-
troller in a station is a synchronous single-rate sampled-data controller. The paper analyzes
the e�ect of the nonsynchronous phase distribution on Lp worst-case performance and sta-
bility. New representations of the nonsynchronous sample-data system are presented for
analyzing and computing performance degradation caused by the nonsynchronism. The
method of analysis is further modi�ed to propose an approach to design of Lp-induced
norm suboptimal nonsynchronous multi-rate controllers. Some results on stability and
performance robustness for the nonsynchronous closed-loop systems are developed. Fur-
thermore, it is shown that the worst-case performance measure is a continuous function of
the phase shift provided that anti-aliasing �lters are located appropriately. Slight pertur-
bation of the phase only results in a slight degradation or improvement of the closed-loop
performance. The analysis of the continuity property enables us to estimate how robust
the performance is against the phase perturbation.

Keywords: nonsynchronism, multirate sampled-data control, continuity, decentralized con-
trol, stability, robustness

{ Technical Report in Computer Science and Systems Engineering, Log Number CSSE-9, ISSN 1344-8803. c2000

Kyushu Institute of Technology
x The �rst version of the paper was completed by March 14, 1997. The current version of the paper was completed by

November 7, 1997. The current version of the paper was presented at Control Workshop for Japanese Young Researchers,

OVTA, Chiba, Japan on November 8-9, 1997, also at The 3rd FUCOTT Workshop, Fukuoka Garden Palace, Fukuoka,

Japan on January 26-28, 1998.
z Author for correspondence

1



1 Introduction

This paper focuses on multi-rate sampled-data control operating with �xed time intervals of sampling

and holding. There are two types of asynchronous mechanism:

� The continuous-time plant is controlled by a single centralized controller. The ratios of sample

and hold periods of all the constituent schedules are irrational. The controller is aperiodic itself

and so is the closed-loop : Aperiodicity

� The continuous-time plant is controlled by multiple digital controllers. The overall controller

consists of individually synchronous sub-controllers whose phases of discrete-time events are

independent of each other. The closed-loop system may be periodic although the discrete-time

events at di�erent channels may never occur simultaneously : Phase distribution

The former type of sampled-data control excludes standard linear shift-invariant(LSI) discrete-time

controllers, while the controller in the latter case consists of individually standard LSI discrete-time

systems. The implementation of the former type aperiodic controller is considerably di�cult. The

latter situation is a realistic case of the asynchronous control which practical engineers often confront.

Since distributed(decentralized in other words) multiple processors are introduced in practice to deal

with large-scale systems in view of high reliability with low cost[25], this paper focuses on the latter

situation de�ned with phase lags and delays of sampling and holding events in di�erent stations.

Kalman and Bertram[20] referred to this type of asynchronism as nonsynchronism

Several results of asynchronous systems concerned with nominal stability [23] and LQG control

[28] have been proposed, whereas no results on robust control of asynchronous sampled-data systems

appear to be available except a result of H1 control in [24]. In [24], dual-rate sampled-data control is

considered and their focus is aperiodicity. The controller is aperiodic so that it is not a pure discrete-

time system described by di�erence equations. The standpoint of [24] is di�erent from this paper.

As is stated above, this paper focuses on phase lags of distributed controllers and the controllers are

supposed to be individually standard discrete-time systems.

The feature of this paper is that a worst-case performance measure is de�ned in terms of continuous-

time signals. For asynchronous multirate systems, stability and performance analysis based on

continuous-time signals is very important since signals operates with di�erent periods and di�erent

phases. Besides the continuous time-variable, there is no time-variable which gives a fair judgment for

every signal and appreciate the e�ectiveness of asynchronous multirate control correctly. This stand-

point of using continuous-time performance measures is similar to recent research on synchronous

sampled-data control, to name a few, [4, 19, 31, 1, 10, 32, 29, 5]. To the author's knowledge, the study

of multirate control began in 1950s (see [20] and references therein). Some samples of related recent

developments are [2, 9, 6, 18, 8, 29, 5, 16] and references therein. However, analyzing nonsynchronism

in terms of continuous-time based worst-case performance measures is a new feature in the multirate

control literature.

In this paper, some basic characteristics of the nonsynchronous controller will be investigated with

the worst-case performance measure. It will be shown that the degradation of the performance only

depends on the relative phase lag among control stations if the multirate system is periodic. More-

over, the worst-case performance remains unchanged even if the starting time of the continuous-time

constituents(i.e., plant, disturbance and reference signal) and that of digital controller are not syn-

chronized. The analysis of degradation of the worst-case performance and internal stability is here
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solved by introducing a delay-advance representation of the nonsynchronous sampled-data system.

Roughly speaking, if the overall multirate controller is periodic, an exact solution to the nonsyn-

chronous analysis problem can be obtained by solving a discrete-time H1 control problem in lifted

signal spaces. Examples are presented to illustrate the results and to show that the nonsynchronism

sometimes improves the Lp worst-case performance. This paper also analyzes continuity of the closed-

loop performance of the nonsynchronous system as a function of the phase shift in individual stations.

It will be shown that a slight variation of the phase only results in a slight degradation of the closed-

loop performance and we can estimate how robust the performance is against the phase perturbation.

Modifying the delay-advance equivalent used in the analysis, an approach to nonsynchronous multi-

rate controller design for the Lp disturbance attenuation will be proposed. Some robustness results

for nonsynchronous multirate systems will be also developed.

For notational simplicity, this paper assumes that each sub-controller is single-rate, while the overall

controller is multirate. All results of this paper can be easily modi�ed to deal with the individually

multirate case.

Notation used in this paper is standard[7, 30]. Z+ denotes the set of nonnegative integer. Let

` denote the space of one-sided sequences de�ned on Z+. For p 2 [0;1], `p is the Banach space of

p-summable sequences in `. Lp denotes the Banach space of all Lebesgue measurable functions on

[0;1) which are p-integrable. The extended space of Lp is denoted by Lp;e. PT denotes the truncation

operator

PT f(t) :=

�
f(t) t < T
0 t � T

for T 2 [0;1) and f 2 Lp;e. An operator H : Lp;e ! Lp;e is called causal if H satis�es PTH = PTHPT

for all T � 0. For f 2 Lp;e and � � 0, D� denotes the time-delay linear operator on Lp:

D�f(t) :=

�
0; 0 � t < �
f(t� �); t � �

:

For a negative real number � < 0, D� represents the time-advance operator on Lp:

D�u(t) := u(t� �); t � 0 :

Note that D� is not causal for � < 0. An operator H : Lp;e ! Lp;e is called T -periodic for T > 0 if H

satis�es HDT = DTH. The operator H is time-invariant if H satis�es HDT = DTH for all T � 0.

For m 2 Z+ and f 2 `, Sm denotes the mth-forward shift operator on `:

�mf(k) :=

�
0 0 � k � m� 1
f(k �m) k � m

:

In the m < 0 case, �m denotes the mth-backward shift operator:

�mf(k) := f(k �m); k 2 Z+ :

The backward shift is not a causal operator. Let Rn denote the truncation operator on ` de�ned as

Rnf(k) :=

�
f(k) 0 � k � n� 1
0 n � k

for n 2 Z+ and f 2 `. An operator H : ` ! ` is called causal if H satis�es RnH = RnHRn for

all n 2 Z+. It is strictly causal if Rn+1H = Rn+1HRn holds. H is said to be shift-invariant if H
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Figure 1: Nonsynchronous multirate sampled-data control.

satis�es H�m = �mH for all m 2 Z+. Given a Banach space X, kxkX denotes the norm of x in

X. For an operator H from X to Y , kHkY=X denotes the Y=X-induced norm. PC denotes piecewise

continuous-time functions on [0;1). F`(�; �) denotes lower linear fractional transformation. A �nite

dimensional linear time-invariant(FDLTI) system is said to be strictly proper if its transfer function

is strictly proper. The transfer function of an FDLTI system G and its state space realization are

denoted in the compact form of G =

�
A B
C D

�
. When this compact form is used, the equal sign =

not only denotes equivalence of transfer functions but also means equivalence of state space solutions.

We will use �= for equalities of transfer functions. diag[K1;K2;K3] denotes a block-diagonal matrix

with matrix entries K1;K2;K3.

2 Nonsynchronous multirate control system

Consider the multirate sampled-data system with multiple controllers shown in Fig.1 , which is denoted

by �[G;HKS]. Here, w is the exogenous input, z is the controlled output, and both signals are

continuous-time. u = [uT1 ; u
T
2 ; � � � ; u

T
q ]

T is the control input, y = [yT1 ; y
T
2 ; � � � ; y

T
q ]

T is the measurement

output, and both signals are discrete-time. G denotes the plant that is a �nite dimensional, linear

time-invariant(FDLTI), continuous-time system. The signals uc i and yc i; i = 1; 2; : : : ; q are continuous-

time. The integer q � 1 denotes the number of input-output channels for decentralized control. Let

G be described as

G :

8<
:

_xG = AxG +B1w +B2uc
z = C1xG +D11w +D12uc
yc = C2xG :

(1)

in the state space. We assume that (A;B2) is stabilizable and that (C2; A) is detectable. The overall

controller HKS consists of q sub-controllers:

HKS := diag[H1K1S1;H2K2S2; � � � ;HqKqSq] : (2)

Each control station HiKiSi operates with an independent clock. The relative timing between the

sample processes will be called \phase". Let �i denote the phase. Then, the nonsynchronous discrete-

time events are represented by

S := diag[S1;S2; � � � ;Sq] (3)
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yi=Siyc i ; yi(k) = yc i(kTi + �i); i = 1; 2; :::; q

H := diag[H1;H2; � � � ;Hq] ; uc i=Hiui (4)

uc i(kTi + �i + t)=ui(k); 0<t�Ti; i=1; 2; :::; q ;

where Si's are samplers and Hi's are zero-order hold elements. We suppose �Ti < �i < Ti for

i = 1; 2; : : : ; q. The overall controller HKS is multirate. Note that the nonsynchronous multirate

controller HKS is not periodic if all Ti=Tj , i; j = 1; 2; : : : ; q are not rational numbers. The sampler

and hold of each individual control station HiKiSi is synchronized itself so that the controller Ki is

an FDLSI system as follows:

Ki :

�
xKi(k + 1) = AKixKi(k) +BKiyi(k)
ui(k) = CKixKi(k) +DKiyi(k); k 2 Z+

(5)

The state variable of the overall controller HKS is de�ned by xK(k) := [xTK1(k); x
T
K2(k); � � � ; x

T
Kq(k)]

T .

The system �[G;HKS] is called internally stable if there exist positive real constants �G, �K , �G

and �K such that the associated unforced system satis�es

kxG(t)k � kX(0)k�Ge
��Gt;8t � 0 (6)

kxK(k)k � kX(0)k�Ke
��Kk;8k 2 Z+ (7)

for any initial state X(0) := [xTG(0); x
T
K(0)]

T . It can be shown that the system is internally stable

if and only if it is stable in terms of exponential convergence of the state transition matrix de�ned

for the linear system with jumps[27]. This paper adopts the de�nition of (6) and (7) since for the

closed-loop system consisting of an LTI system and LSI systems the de�nition matches with intuitive

interpretation of stability in practical engineering. For p 2 [1;1], the worst-case performance of the

asynchronous system �[G;HKS] is de�ned in terms of Lp-induced norm of the linear operator Tzw

mapping w to z with the starting time t = 0 under the zero initial condition X(0) = 0:

kTzwkLp=Lp= sup
w2Lp;w 6=0

kzkp
kwkp

; xG(0)=0; xK(0)=0: (8)

Given a scalar  > 0, the system �[G;HKS] is said to have Lp disturbance attenuation  if the

following conditions are satis�ed: (i) It is internally stable, (ii) kTzwkLp=Lp < .

3 Delay-advance representation and phase-invariance properties

This section develops a delay-advance equivalent representation of nonsynchronous sampled-data sys-

tems. The equivalent representation method is used successfully to characterize the worst-case per-

formance with the nonsynchronism.

Consider a single-channel sampled-data system �[G;H�KS� ] shown in Fig.2. We assume that the

starting time of the system is t = 0. The system is de�ned with a sampler S� and a hold element H�

whose starting times of discrete-time events are delayed for � :

y = S�yc; y(k) = yc(kT + �); k 2 Z+

uc = H�u;

�
uc(t) = 0; 0 � t � �
uc(kT + � + t) = u(k); 0 < t � T

where 0 � � . Then, it is obvious that

S� = S0D�� ; H� = D�H
0; 0 � � (9)
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Figure 2: Single-channel sampled-data system.

hold, where S0 and H0 are sample and hold elements without any delays. In the case of � < 0, S�

and H� are de�ned as

y=S�yc;

�
y(k)=0 k = 0; 1; 2; : : : ; n� 1
y(k)=yc(kT + �); k = n; n+ 1; : : :

uc=H
�u;

�
uc(t)=u(n� 1); 0 < t � � + nT
uc(kT+�+t)=u(k); 0 < t � T; k = n; n+ 1; : : :

:

where n is the smallest integer such that �� � nT . Then, it is not di�cult to show

S� =S0D�� ; Lp;e \ PC 7! `; � < 0 (10)

H� =D�H
0=D� (I � P�� )H

0; ` 7! Lp;e; � < 0: (11)

We will utilize the following properties of nonlinear operators.

Lemma 1 Let H be an operator on Lp. It satis�es

kD�HD��kLp=Lp = kHkLp=Lp ; 8� > 0 (12)

In contrast, Equation (12) does not hold for negative � in general unless H is time-invariant.

Lemma 2 Let H be a periodic operator on Lp. Then,

kH(I � P�)kLp=Lp = kHkLp=Lp ; 8� > 0 : (13)

Time-invariant operators also satis�es (13).

Consider the single-channel system �[G;H�KS� ] in Fig.2 again. From (9),(10) and (11), the

sampled-data controller can be written as

H�KS� = D�H
0KS0D�� : (14)

This controller has the following properties.

Lemma 3 IfK is a causal operator on `, H�KS� is a causal operator on Lp;e\PC for all � 2 (�1;1).

Lemma 4 Suppose that K is a causal shift-invariant operator on `. Then,

H�KS�DT = DTH
�KS� ; � � 0

H�KS�DT (I � P� ) = DTH
�KS� ; � > 0 :
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It is interesting to note that the sampled-data controller H�KS� is not precisely periodic unless � � 0.

Now, we consider Lp worst-case performance of the system �[G;H�KS� ] shown in Fig.2. The

system is said to have a causal solution if there exists a unique causal operator mapping w to (z; uc)

on Lp;e. Henceforth this section assumes that the system has the causal solution. It can be veri�ed

straightforwardly that the existence of such a causal solution guarantees the existence of a unique

causal map between w to (z; uc; yc) on Lp;e. This assumption always holds if every Ki is strictly

causal. The rest of this section will only focus on the linear operator of the closed loop de�ned with

zero initial conditions. Stability will be considered in the following sections.

Let Tzw(T; �) = F`(G;H
�KS� ) denote the operator from w to z in Fig.2 with zero state variables

at the initial time t = 0. We can prove the following lemma.

Lemma 5 Consider the sampled-data system �[G;H�KS� ] with zero state conditions at the starting

time t = 0. Suppose that the system has a causal solution. Then,

Tzw(T; �)(I � P�) = F`(G(I � P�);H
�KS� )

holds for all � � 0 and � 2 (�1;1).

Theorem 1 Suppose that the system �[G;H�KS� ] with zero state conditions at the starting time

t = 0 has a causal solution. Then, Tzw(T; �) is T -periodic for all � 2 (�1; T ).

Using Lemmas and theorems provided in the above, the following theorem is derived.

Theorem 2 Consider �[G;H�KS� ] and �[G;H0KS0] in Fig.2 with zero state conditions at the start-

ing time t = 0. If each system has a causal solution,

kTzw(T; �)kLp=Lp = kTzw(T; 0)kLp=Lp

holds for all � 2 (�1; T ).

Next, let us consider the multi-channel nonsynchronous multirate sampled-data control system

�[G;HKS] shown in Fig.1. Here, we assume q = 2 for notational simplicity and the two-channel

system is depicted by Fig.3, which is denoted by �[G;H�1;�2KS�1;�2 ]. The controller K consists of two

sub-controllers:

K := diag[K1;K2]
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where each controller Ki; i = 1; 2 is FDLSI. The multirate sampler S and the hold element H are

S�1;�2 := diag[S�1 ;S�2 ]; H�1;�2 := diag[H�1 ;H�2 ] :

The sampling and holding interval of S�1 and H�1 is T1. The interval of S
�2 and H�2 is T2. Due to (9),

(10) and (11), the system �[G;H�1;�2KS�1;�2 ] is equivalent to a system with delay-advance operators

shown in Fig.4 for any initial condition of state variables. Using this equivalent system, the following

results are obtained.

Lemma 6 Suppose that every Ki is a causal shift-invariant operator on `. Then,

H�1;�2KS�1;�2DTC
�P = DTCH

�1;�2KS�1;�2

�P :=

�
I � P�1 0

0 I � P�2

�

are satis�ed for all �i 2 (�1;1), i = 1; 2 if T1=T2 is a rational number. Here, TC denotes the least

common multiple among Ti, i = 1; 2.

The closed-loop operator between w and z in �[G;H�1;�2KS�1;�2 ] with zero initial conditions at t = 0

is denoted by

Tzw(T1; �1; T2; �2) := F`(G;H
�1;�2KS�1;�2) : (15)

The following Lemma can be derived in the same manner as Lemma 5.

Lemma 7 Consider the two-channel sampled-data system �[G;H�1;�2KS�1;�2 ] with zero state condi-

tions at the starting time t = 0. Suppose that the system has a causal solution. Then,

Tzw(T1; �1; T2; �2)(I � P�) = F`(G �P ;H�1;�2KS�1;�2)

�P :=

2
4 I � P� 0 0

0 I � P�1 0
0 0 I � P�2

3
5

holds for all � � 0, 0 � �i � � and �i 2 (�1;1), i = 1; 2.

The proof of the next theorem is based on Lemma 6, which is similar to Theorem 1.

Theorem 3 Suppose that the system �[G;H�1;�2KS�1;�2 ] with zero state conditions at the starting

time t = 0 has a causal solution. If T1=T2 is a rational number, then Tzw(T1; �1; T2; �2) is TC-periodic

for all �i 2 (�1; Ti), i = 1; 2.
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The main result in this section is the following.

Theorem 4 Consider the two-channel multirate sampled-data control systems �[G;H�1;�2KS�1;�2 ]

and �[G;H�1+�;�2+�KS�1+�;�2+� ] in Fig.3 with zero state conditions at the starting time t = 0. Suppose

that each system has a causal solution. If T1=T2 is a rational number, then

kTzw(T1; �1; T2; �2)kLp=Lp = kTzw(T1; �1 + �; T2; �2 + �)kLp=Lp

holds for all triplet (�1; �2; �) satisfying �Ti � �i < Ti and �Ti � �i + � < Ti, i = 1; 2.

For any q > 2, properties similar to Theorem 4 can be also derived straightforwardly; further details

are omitted for the sake of brevity. Theorem 4 shows that only relative phase di�erence changes

the performance of nonsynchronous multi-channel systems while absolute values of the phases do

not. In addition, the theorem says that the worst-case performance remains unchanged even if the

starting time of the continuous-time constituents(i.e., plant, disturbance and reference signal) and

that of digital controller are not synchronized. The following corollary summarizes some of typical

characteristics extracted from Theorem 4.

Corollary 1 Suppose that the two-channel multirate sampled-data control system �[G;H�1;�2KS�1;�2 ]

in Fig.3 has a causal solution for zero state conditions at the starting time t = 0. We assume T1=T2

to be a rational number and de�ne Tmin := minfT1; T2g. Then, the following are satis�ed.

(i) Relative phase dependence

kTzw(T1; �1; T2; �2)kLp=Lp = kTzw(T1; 0; T2; �2��1)kLp=Lp ; �Ti � �i < Ti; i = 1; 2; �T2 � �2��1 < T2

(ii) Planar symmetry

kTzw(T1; �; T2; 0)kLp=Lp = kTzw(T1; 0; T2;��)kLp=Lp ; �Tmin < � < Tmin

(iii) Parallel translation (Periodicity)

kTzw(T1;��; T2; 0)kLp=Lp = kTzw(T1; Tmin��; T2; 0)kLp=Lp ; �Tmin < � < Tmin; �T1 � Tmin�� < T1

These properties are not only important to understand the e�ects of nonsynchronism on the multirate

sampled-data system, but also very useful since these properties suggest that we only have to compute

the performance in an interval of just one parameter �1 or �2 instead of the whole range of two

parameters �1, �2 and their combinations.

4 State-space representation of nonsynchronous systems

This section develops state-space representation of nonsynchronous systems. It will be shown that the

new representation is useful for assessing stability and performance of nonsynchronous systems.

First, we considers the single-channel sampled-data system shown in Fig.2. We shall derive a

state-space realization of the nonsynchronous sampled-data controller H�KS� . Suppose that the

discrete-time controller K is described in the state space as

K :

�
xK(k + 1) = AKxK(k) +BKy(k)
u(k) = CKxK(k) +DKy(k); k 2 Z+ :

(16)
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From (9),(10) and (11),

H�KS� = D�H
0KS0D�� : (17)

holds. Let us de�ne a discrete-time lifting operator Wn : `! `:

f̂ =Wnf =

8>><
>>:
2
664

f(0)
f(1)
...

f(n� 1)

3
775 ;
2
664

f(n)
f(n+ 1)

...
f(2n� 1)

3
775 ; � � � ;

9>>=
>>; (18)

for a given positive integer n and f = ff(k)g1k=0 2 `. De�ne a fast sampler and a fast holding operator

as follows:

y = SFx; y(k) = x(kT=n); k 2 Z+

w = HFv; w(kT=n+ t) = v(k); 0 < t � T=n

for y; v 2 ` and x;w 2 Lp \ PC. Using the lifting operator Wn we have

H0KS0 = HFW
�1
n

2
664
I
I
...
I

3
775K

n columnsz }| {�
I 0 � � � 0

�
WnSF : (19)

Since any integer m satis�es

SFDmT=n = �mSF ; DmT=nHF = HF�m; (20)

we obtain

DmT=nH
0KS0D�mT=n = HF�mW

�1
n

2
664
I
I
...
I

3
775K �

I 0 � � � 0
�
Wn��mSF

= HFW
�1
n �̂m

2
664
I
I
...
I

3
775K �

I 0 � � � 0
�
�̂�mWnSF ; (21)

where �̂m and �̂�m are shift operators on discrete-time lifted spaces de�ned by

�̂m :=Wn�mW
�1
n ; �̂�m :=Wn��mW

�1
n :

Suppose that �=T is a rational number.

� > 0 case : We can �nd integers n > m > 0 satisfying � = Tm=n. A state-space realization of

the shift operator �̂1 : ûS 7! ŷS is

xS(k + 1) =

n columnsz }| {�
0 � � � 0 I

�
ûS(k); xS(0) = 0

ŷS(k) =

2
66664
I
0
...
...
0

3
77775xS(k) +

2
666664
0 0 � � � � � � 0

I 0
. . .

...

0 I
. . .

. . .
...

...
. . .

. . . 0 0
0 � � � 0 I 0

3
777775 ûS(k)

10



so that the m-th right-shift operator is described in the state space by �̂m = (�̂1)
m with the state x�m

and x�m(0) = 0. From the state space descriptions of K and �̂m, we obtain

�̂m

2
664
I
I
...
I

3
775K �

I 0 � � � 0
�
�̂�m =

2
6666666664

0 � � � 0
...

. . .
...

0 � � � 0

I
...
I

Im 0

0
I
...
I

3
7777777775
�
AK BK

CK DK

� h m timesz }| {
0 � � � 0 I 0 � � � 0

i

= Fl+Ka+Fr+; x�m(0) = 0;8xK(0) (22)

Fl+ :=

2
6664

Im 0

0 � � � 0 I
...

. . .
...

...
0 � � � 0 I

3
7775 ; Fr+ :=

�
I 0 0
0 � � � 0| {z }
m columns

0 0 � � � 0
I 0 � � � 0

�
;

where Im denotes the m�m(blocks) identity. Ka+ is de�ned in the state space by

Ka+ :=

2
66666664

0 � � � 0 CK 0 DK
...

. . .
...

... 0
...

0 � � � 0 CK 0 DK

0 � � � 0 AK 0 BK

Im 0 0 0
0 � � � 0 CK 0 DK

3
77777775

(23)

with the state variable xKa+ = [xT�m; x
T
K ]

T .

� < 0 case : With integers �n < m < 0 satisfying � = Tm=n, we have

�̂m

2
664
I
I
...
I

3
775K �

I 0 � � � 0
�
�̂�m = �̂m

2
6664
I
I
...
I

3
7775
2
66664
AK BK 0 0 0 � � � 0 0 � � � 0
0 0 � � � 0 0 � � � 0 I 0 0
...

...
. . .

... 0 � � � 0 0
... 0

0 0 � � � 0 0 � � � 0 0 0 I
CK DK 0 0 0 � � � 0 � � � 0 0

3
77775
9=
; (�m) rows

= Fl�Ka�Fr�; x�m(0) = 0;8xK(0) (24)

Fl� :=

2
66666664

I 0
...

...
I 0
0 I
...

...
0 I

9=
; (�m) 's

3
77777775

Fr� :=

�
I 0 � � � 0 0 � � � 0
0 0 � � � 0 I(�m)

�
:

The system Ka� is de�ned in the state space by

Ka� :=

2
6666664

AK BK 0 0 0 0 � � � 0
0 0 � � � 0 0 I 0 0
...

...
. . .

...
... 0

. . . 0
0 0 � � � 0 0 0 0 I
CK DK 0 0 0 0 � � � 0

CKAK CKBK 0 0 0 DK 0 0

3
7777775

9=
;(�m) rows (25)

with the state variable xKa� = [xTK ; x
T
�m]

T .

The input-output property of H�KS� is obviously identical with that of HFW
�1
n Fl+Ka+Fr+WnSF

(or HFW
�1
n Fl�Ka�Fr�WnSF for � < 0). Because of the additional state variable x�m, the equiv-

alence of internal stability of the closed-loop system de�ned with H�KS� and the closed-loop with

11



HFW
�1
n Fl+Ka+Fr+WnSF (or HFW

�1
n Fl�Ka�Fr�WnSF ) is not straightforward consequence unless

x�m(0) is restricted to be zero. We, however, can prove the following.

Theorem 5 Suppose that �=T is a rational number. The system �[G;H�KS� ] in Fig.2 is internally

stable if and only if

�[G;HFW
�1
n Fl�Ka�Fr�WnSF ] with the state variable x(t)

where

�
Fl� := Fl+; Ka� := Ka+; Fr� := Fr+; x = [xTG; x

T
�m; x

T
K ]

T for � > 0
Fl� := Fl�; Ka� := Ka�; Fr� := Fr�; x = [xTG; x

T
K ; x

T
�m]

T for � < 0

is internally stable in terms of 8x�m(0), 8xK(0), 8xG(0). Moreover, if x�m(0) is restricted to zero, the

state transition (xG(t); xK(k)) of both the systems are identical for the same w and (xG(0); xK(0)).

Hence, we obtain the following theorem.

Theorem 6 Suppose that �=T is a rational number. Given a scalar  > 0, the system �[G;H�KS� ]

in Fig.2 has Lp disturbance attenuation  if and only if �[G;HFW
�1
n Fl�Ka�Fr�WnSF ] has L

p dis-

turbance attenuation .

This theorem is very useful for solving analysis problems. In fact, the Lp disturbance attenuation  of

�[G;HFW
�1
n Fl�Ka�Fr�WnSF ] can be easily assessed by using [29, 5, 16, 14]. It should be noted that

to obtain the least dimensional input/output spaces involved in the computation, we should choose n

and m such that they are coprime.

Next, consider the two-channel nonsynchronous sampled-data control system shown in Fig.3 de-

�ned with the multirate sampler S�i and hold H�i , i = 1; 2. Let �K be

�K := diag[HF1W
�1
n1 Fl1Ka1Fr1Wn1SF1;HF2W

�1
n2 Fl2Ka2Fr2Wn2SF2]

where HFi; Fli;Kai; Fri and SFi are de�ned appropriately as HF ; Fl�;Ka�; Fr� and SF in Theorem

6 for each i. Now, the main result of this section is given by the following , which can be derived

straightforwardly from Theorem 6.

Theorem 7 Suppose that �i=Ti is a rational number for all i = 1; 2 and that integers mi and ni satisfy

�i = Timi=ni and ni > 0 for every i. Given a scalar  > 0, the system �[G;H�1;�2KS�1;�2 ] in Fig.3

has Lp disturbance attenuation  if and only if �[G; �K] has Lp disturbance attenuation .

Several methods of assessing Lp disturbance attenuation of �[G; �K] is readily available in [29, 5, 16, 14].

Theorem 6 and Theorem 7 restrict the phase �i to a number for which �i=Ti is rational. Section 8 of

this paper focuses on the irrational case.

5 Examples

Consider the nonsynchronous multirate sampled-data control of the continuous-time plant G:

P =

2
664

1 0:2 1 0
0:1 �10 0:2 1
�1 1 0 0
0:1 �7 0 0

3
775 ; G =

�
V P
V P

�
;

V =

�
V1 0
0 V2

�
; V1=

10(s+ 2)

(s+ 0:2)(s + 10)
; V2=

10(s+ 20)

(s+ 2)(s+ 10)
;

12



Table 1: L2-induced norm vs. phase (�1; �2)

Delay �0:375 �0:25 �0:125 0 +0:125 +0:25 +0:375

(�1; 0) 66.5 67.8 67.0 64.1 66.5 67.8 67.0
(0; �2) 67.0 67.8 66.6 64.1 67.0 67.8 66.6

Table 2: L2-induced norm vs. phase (�1; �2)

Delay �0:45 �0:3 �0:15 0 +0:15 +0:3 +0:45

(�1; 0) 10.2 9.4 10.2 13.2 10.2 9.4 10.2
(0; �2) 10.2 9.4 10.2 13.2 10.2 9.4 10.2

which represents an L2 worst-case minimization problem of the sensitivity at the output of P . Table 1

shows the result of L2-induced norm analysis of the closed-loop system with the two-channel multirate

controller K given by

K =

�
K1 0
0 K2

�
; T1 = 1; T2 = 0:5; K1 =

4:5

(z + 0:5)
; K2 =

�0:7

z � 0:01
:

All the resulting closed-loop systems are internally stable. It can be seen that in Table 1, the L2-

induced norms for various �i are obtained in the order of Theorem 4.

Next, consider the continuous-time plant G given by

G =

2
66664
0:2 0:2 �1 �1 �2
0:1 �1 1 0:1 0:3
1 �2 0 0 0
�1 0:8 0 0 0
0:5 �0:5 0 0 0

3
77775 :

The two-channel controller is chosen as

T1 = T2 = 0:6; K1 =
�2

z + 0:5
; K2 =

0:2

z + 0:1
:

The L2-induced norms are shown in Table 2. Every sampled-data controller internally stabilizes the

closed-loop. The table shows that the phase shift not only degrades the performance but also improves

it.

Figure.5 (Fig.6) is an illustration of degradation (improvement) of the performance computed

in the �rst example (the second example, respectively). The computation was performed only at a

�nite number of rational relative phases. Nevertheless, owing to the results in the next section, it

is reasonable to draw a continuous curve as shown in Fig.5 and 6 if the rational numbers picked are

su�ciently dense.

6 Worst-case performance design

We shall derive another type of the state-space equivalents for nonsynchronous systems which have the

less number of state variables and we shall deal with the controller synthesis problem in this section.

13
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To design nonsynchronous controllers by using Theorem 6 or Theorem 7, one might �rst �nd Ka+

or Ka�, then K is extracted from Ka+ or Ka�. However, in general, Ka+ and Ka� does not have

the desired structure in the state space to extract K. This is why Theorem 6 and Theorem 7 are not

suitable for controller design. To overcome this di�culty, we will develop input-output equivalents of

Ka+ and Ka�.

� > 0 case : Suppose that integers n > m > 0 satisfy � = Tm=n. Using the state transformation

matrix

T =

2
664

I 0 0 0
�I I 0 0
0 �I I 0
0 0 0 I

3
775

and removing uncontrollable state variables we have

Ka+
�=

2
6666664

0 CK 0 DK

0 AK 0 BK

I 0
...

...
I 0

0 0
...

...
0 0

9=
;m times

0 CK 0 DK

3
7777775 =

2
664
I 0
...

...
I 0
0 I

3
775

9=
;m times

�
z�1I
I

�
K
�
0 I

�
: (26)

Here, z�1 denotes the z-transform of the unit delay.

� < 0 case : Suppose that integers �n < m < 0 satisfy � = Tm=n. Removing unobservable

14



state variables, we obtain

Ka�
�=

(�m) columnsz }| {2
664

AK BK 0 0 � � � 0
0 0 0 I 0 0
CK DK 0 0 � � � 0

CKAK CKBK 0 DK 0 0

3
775 =

�
z�1I
I

�
K
�
0 I

� " 0
0

(�m) columnsz }| {
0 � � � 0
I 0 0

#
: (27)

Since uncontrollable modes and unobservable modes removed are stable, Theorem 5 yields the

following.

Theorem 8 Suppose that �=T is a rational number. De�ne

� for � > 0

Fl := Fl+

2
664
I 0
...

...
I 0
0 I

3
775

m times
9=
; �

z�1I
I

�
; Fr :=

�
0 I

�
Fr+ (28)

� for � < 0

Fl := Fl�

�
z�1I
I

�
; Fr :=

�
0 I

�" 0
0

(�m) columnsz }| {
0 � � � 0
I 0 0

#
Fr� (29)

� for � = 0

Fl :=

2
4 I

...
I

3
5 ; Fr :=

�
I 0 � � � 0

�
: (30)

Given a scalar  > 0, the system �[G;H�KS� ] in Fig.2 has Lp disturbance attenuation  if and only

if �[G;HFW
�1
n FlKFrWnSF ] has L

p disturbance attenuation . Moreover, if the initial state of z�1

in Fl is restricted to zero, the state transition (xG(t); xK(k)) of both the systems are identical for the

same w and (xG(0); xK(0)).

One advantage of using Theorem 8 is that the theorem only adds one state variable associated with

z�1 to the original system for obtaining the equivalent. This is a contrast to Theorem 6 which requires

additional m state variables. This is a great improvement in computation since dimensions of Riccati

equations involved in the analysis and synthesis are equal to the size of the state vector. Another

advantage of Theorem 8 is that the transformed system is amenable to proposing a controller design

method. Now de�ne the hybrid plant including the fast sampler and hold:

Gh :=

�
I 0
0 FrWnSF

�
G

�
I 0
0 HFW

�1
n Fl

�
: (31)

In the p = 2 case, the following theorem is obtained.

Theorem 9 Suppose that �=T is a rational number. Given a scalar  > 0, the sampled-data system

�[G;HFW
�1
n FlKFrWnSF ] has L

2 disturbance attenuation  if and only if �[Ĝ;K] has `2 disturbance

attenuation , where Ĝ is the discrete-time worst-case equivalent of Gh.

Theorem 9 is proved easily using Theorem 8 and results shown in [29, 5, 16, 14]. The transformed

system Ĝ can be computed directly from Gh (see [29, 5, 16, 14] for details). Note that Ĝ is dependent

on . Since K is a standard FDLSI controller (without causality constraints[29, 5]), the solution K

can be obtained as a standard solution to discrete-time H1 control of Ĝ.
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Figure 7: Stability and performance robustness.

Consider the two-channel nonsynchronous sampled-data control system in Fig.3 again. Let ~K be

de�ned by

~K := diag[HF1W
�1
n1 Fl1K1Fr1Wn1SF1;HF2W

�1
n2 Fl2K2Fr2Wn2SF2]

where HFi; Fli; Fri and SFi are de�ned appropriately as HF ; Fl; Fr and SF in Theorem 8 for each i.

The following can be derived in the same way as Theorem 8.

Theorem 10 Suppose that �i=Ti is rational for all i = 1; 2 and that integers mi and ni satisfy �i =

Timi=ni and ni > 0 for every i. Given a scalar  > 0, the system �[G;H�1;�2KS�1;�2 ] in Fig.3 has Lp

disturbance attenuation  if and only if �[G; ~K] has Lp disturbance attenuation .

Again, the discrete-time worst-case equivalent Ĝ is computed using [29, 16, 14] when Ti=Tj is rational

for all i; j = 1; 2; : : : ; q. If Ti=Tj are rational, the integers mi and ni can be chosen as

ni = Ti=TD; mi = �i=TD; i = 1; 2; : : : ; q (32)

where TD is the greatest common divisor among fTig and f�ig. A desired controller K can be obtained

as a decentralized control solution to a popular problem of discrete-time H1 control of �[Ĝ;K] (e.g.

[16, 17] and references therein). Note again that each controller Ki is a standard FDLSI controller

without causality constraints.

7 Nonsynchronous robustness analysis

This section tackles stability and performance robustness of nonsynchronous multirate sampled-data

systems.

Consider the nonsynchronous system shown in Fig.1. Making use of a result in [15], we can prove

the following.

Lemma 8 Suppose that that all the Ti=Tj and �i=Ti, i; j = 1; : : : ; q are rational numbers. If the

nonsynchronous sampled-data system �[G;HKS] shown in Fig.1 is internally stable, there exists a

unique causal linear operator Tzw and it is bounded on Lp for all p 2 [1;1].

Consider the uncertain nonsynchronous multirate sampled-data system shown in Fig.7(a). The system

� belongs to

B�PTV := f� : linear; TC -periodic; causal; k�kLp=Lp < 1=g ;
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where TC is a positive real number.

De�nition 1 The system shown in Fig.7(a) is said to be robustly Lp stable with respect to B�PTV

if the mapping from [fT1 ; f
T
2 ]

T to [eT1 ; e
T
2 ]

T is bounded on Lp �Lp for all � 2 B�PTV .

With the aid of Lemma 8 and Theorem 10, the next theorem is obtained.

Theorem 11 Suppose that all the Ti=Tj and �i=Ti, i; j = 1; : : : ; q are rational numbers and TC denotes

the least common multiple among fTig. Assume that �[G;HKS] is internally stable. Then, the

nonsynchronous system shown in Fig.7(a) is robustly L2 stable with respect to B�PTV if and only

if �[G;HKS] has L2 disturbance attenuation less than or equal to . If � is FDLTI and if it is

stabilizable and detectable in the state space, the robust L2 stability implies internal stability.

The above theorem states that the Lp disturbance attenuation is su�cient for robust Lp stabilization.

It can be claimed that whatever the uncertain system is, the su�ciency is straightforward from the

small-gain theorem. However, it should be noted that Theorem 11 demonstrates that the input-output

stability guarantees the internal stability even in the nonsynchronous case if the sample-and-hold

schedule is periodic.

Another uncertain system is shown in Fig.7(b). Here, � belongs to B�TV :

B�TV := f� : Linear, causal; k�kLp=Lp < 1=g :

De�nition 2 The system shown in Fig.7(b) is said to achieve robust Lp performance with respect

to B�TV if the system is robustly Lp stable and if the operator from w1 to z1 has Lp disturbance

attenuation less than or equal to  for all � 2 B�TV .

The following statement is true even if Ti=Tj and �i=Ti, i; j = 1; : : : ; q are not rational numbers.

Theorem 12 Suppose that the nonsynchronous system �[G;HKS] has a unique causal linear operator

Tzw on Lp. Then, the system shown in Fig.7(b) achieves robust Lp performance with respect to B�TV

if �[G;HKS] has Lp disturbance attenuation less than or equal to .

Note that this theorem allows Ti=Tj and �i=Ti to be irrational numbers so that the system is no longer

periodic. Therefore, to prove the robust performance, we cannot use the argument of the equiva-

lence between the stability and performance robustness on which Khammash [21] and Sivashankar

and Khargonekar[26] rely for dealing with periodic synchronous systems. In fact, for periodic non-

synchronous systems, Theorem 11 enables us to establish the equivalence between the stability and

performance robustness, while Theorem 12 does not establish the equivalence.

8 Continuity properties of closed-loop performance

Consider the two-channel sampled-data system depicted in Fig.3. We suppose that the continuous-

time plant G is described by (1) in the state space. In this section, the performance of the closed-

loop system �[G;H�1;�2KS�1;�2 ] is measured by kTzw(T1; �1; T2; �2)kLp=Lp for p 2 [1;1]. This section

analyzes continuity of the closed-loop performance as a function of the phase shift �i. Is the closed-loop

measure is a continuous function of an open-loop change caused by the phase variation? In other words,

the question is whether or not the closed-loop performance of a nonsynchronous sampled-data system

can be always approximated to any degree of accuracy by that of the same sampled-data system having
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a slight di�erent phase. If it is discontinuous, the slight variation of the phase may cause a signi�cant

degradation of the closed-loop performance. If it has the continuity property, there will be only a

slight deviation and we can estimate how robust the performance is against the phase perturbation.

Another advantage of having the continuity is that a reasonable approximation of the performance of

a system de�ned with irrational phase shift can be obtained by analyzing rationally-shifted systems

belonging to an appropriately small neighborhood of the irrational system.

8.1 Phase Perturbation Operators

This subsection presents the key lemma in this section and collects properties pertinent to the input-

output operators representing phase perturbation in sampling and holding operators. These pertur-

bation operators in themselves will be shown to be unbounded. However, preceded or followed by a

low-pass �lter, they are bounded and well-behaved as functions of the phase � .

Consider the following sampled-data controller of the phase � :

H�KS� ; �T < � < T : (33)

A sampled-data controller de�ned with the phase shift � is represented by

H�+�KS�+� ; �T < � + � < T; (34)

where � is the di�erence of phases of these two controllers. From (9), (10) and (11), we have

H�+�KS�+� = D�H
�KS�D�� : (35)

The di�erence of two hold operators of these controllers is denoted by

�O := H�+� �H� = (D� � I)H� ; �T < � + � < T (36)

which maps ` to PC. In the same manner, the di�erence of two sampling operators mapping PC to ` is

�I := S�+� � S� = S� (D�� � I); �T < � + � < T (37)

Note that these phase perturbation operators �I and �O satisfy �I = 0 and �O = 0 if � = 0. The

sampled-data controller having the phase � + � is written as

H�+�KS�+� = (H� +�O)K(S� +�I): (38)

This equation is depicted by a block diagram shown in Fig.8. Before moving on to continuity properties

of �I and �O, we need the following lemmas.

Lemma 9 For �T < � < 0, it holds that S� (D�� � I) = �1S
T+� (D�� � I).

Lemma 10 Let H be an operator mapping `p to Lp, p 2 [1;1]. Suppose that there exists a positive

number � such that H�1 = D�H holds. Then, H satis�es

kH(I �Rn)kLp=`p = kHkLp=`p ; n 2 Z+ :

Lemma 11 Suppose that �T < � < 0 and � � 0. Let F be a time-invariant operator on Lp;e. Then,

kF (D� � I)H�kLp=`p = kF (D� � I)HT+�kLp=`p ; p 2 [0;1] :
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In the rest of this subsection, we focus on functions kS� (D�� � I)FkLp=`p , kF (D� � I)H�kLp=`p and

their continuity as functions of �. Here, F represents the identity I or any time-invariant operator to

be speci�ed later on. For this purpose, Lemma 9 and Lemma 11 suggest that properties of S� and

H� in the �T < � < 0 case is obtained precisely by using the properties of ST+� and HT+� with

0 � T + � < T . In addition, it should be noted that this approach of replacing � can be applied to

the � < 0 case of kF (D� � I)H�kLp=`p although Lemma 11 assumes � � 0. As it will be described,

this is successful since continuity properties are obtained as functions which are independent of � .

The following lemma clari�es the continuity property of �O with respect to �.

Lemma 12 For any p 2 [1;1), the linear operator (D� � I)H� is Lp=`p-induced norm bounded for

all � 2 (�T � �; T � �). For each p 2 [1;1), there exists a positive number � for any positive number

� such that k(D� � I)H�kLp=`p < � holds for all � 2 (��; �).

The situation with p =1 is more delicate.

Lemma 13 The linear operator (D��I)H
� is L1=`1-induced norm bounded for all � 2 (�T��; T �

�). For every positive number �, there exists no positive number � guaranteeing k(D��I)H
�kL1=`1 < �

for all � 2 (��; �).

In the p =1 case, followed by a low-pass �lter, the operator �O has a continuity property.

Lemma 14 Suppose that the system F is FDLTI, strictly proper and stable. The linear operator

F (D� � I)H� is L1=`1-induced norm bounded for all � 2 (�T � �; T � �). For any positive number

�, there exists a positive number � such that kF (D� � I)H�kL1=`1 < � holds for all � 2 (��; �),

The next result shows that the situation with the sampler is more complicated.

Lemma 15 Restrict the domain of the linear operator S� (D�� � I) : PC! ` to PC \ Lp. Then,

sup
u2PC\Lp;u6=0

kS� (D�� � I)uk`p

kukLp
� 1; p 2 [1;1]

holds for all � but � = 0.

In order to guarantee the continuity of the phase perturbation operator with respect to the phase

variation, we introduce a low-pass �lter preceding the sampling operator. However, by contrast with

the phase perturbation of hold operators, the behavior in the p = 1 case is completely di�erent from

the other cases.
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Lemma 16 Suppose that the system F is FDLTI, strictly proper and stable. The linear operator

S� (D�� � I)F is `p=Lp-induced norm bounded for all � 2 (�T � �; T � �) and for every p 2 [1;1].

Moreover, for each p 2 (1;1], there exists a positive number � for any positive number � such that

kS� (D�� � I)Fk`p=Lp < � holds. for all � 2 (��; �).

Here, it should be noted that for the p = 1 case, the existence of � was not proved in lemma 16. In

fact, the following shows that the operator is not a continuous function of � around zero unless the

roll-o� rate of the �lter F is large enough.

Lemma 17 Let the system F be a �rst-order delay described by the transfer function F (s) = b=(s�a),

a < 0. Assume that � 6= 0. Then, there exists a real constant � > 0 such that

sup
u2L1;u 6=0

kS� (D�� � I)Fuk`1

kukL1
� �

holds independently of �.

The continuity property can be recovered if the gain of the �lter F falls at not less than 40dB/decade.

Lemma 18 Suppose that the system F1 is causal, FDLTI and stable and that it has relative degree

more than or equal to 2. The linear operator S� (D�� � I)F1 is `1=L1-induced norm bounded for all

� 2 (�T � �; T � �). Moreover, for any positive number �, there exists a positive number � such that

kS� (D�� � I)F1k`1=L1 < � holds for all � 2 (��; �).

8.2 Continuity of closed-loop measure

Consider the two-channel sampled-data system �[G;H�1;�2KS�1;�2 ] shown in Fig.3. Subdivide G into

a new block matrix form as �
z
yc

�
=

�
G11 G12

G21 G22

� �
w
uc

�
:

Since the continuous-time plant G is supposed to be described by (1), the LTI operator G can be

always decomposed as

G =

�
I 0
0 F

�
E; E =

�
E11 E12

E21 E22

�
: (39)

The size of Eij is the same as that of Gij. Here, F is an FDLTI strictly proper system and it has the

form of

F =

�
F1 0
0 F2

�
:

Each system Fi is square in size, which is compatible with the measurement output yci of G. The

system Fi is considered as an anti-aliasing low-pass �lter of any order with any bandwidth. Then, the

system �[G;H�1;�2KS�1;�2 ] is identical with �[E;H�1 ;�2KS�1;�2F ] shown in Fig.9 since

Tzw(T1; �1; T2; �2) = F`(G;H
�1;�2KS�1;�2) = F`(E;H

�1;�2KS�1;�2F ) :

In the rest of this subsection, we assume that �i=Ti and Ti=Tj are rational numbers for every i; j = 1; 2.

Lemma 19 Suppose that the multirate system �[G;H�1;�2KS�1;�2 ] is internally stable. Consider the

system �[E;H�1;�2KS�1;�2F ] in Fig 9, where G is decomposed as (39). Then, the mapping from

[wT ; hT ; gT ; fT ; dT ]T to [zT ; vTc ; u
T
c ; y

T ; uT ]T is a bounded linear operator on Lp �Lp � `p � `p.
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Figure 9: Stability of hybrid system

The main result of this section establishes the continuity property of the closed-loop performance as

a function of the phase.

Theorem 13 Consider the two-channel sampled-data system �[G;H�1;�2KS�1;�2 ] in Fig.3. Suppose

that �[G;H�1;�2KS�1;�2 ] is internally stable and that F in (39) is stable and strictly proper. Let

p be an arbitrary number in (1;1). Then, given any � > 0, there exist �1; �2 > 0 such that the

system has a unique causal operator Tzw(T1; �1 + �1; T2; �2 + �2) mapping from w to z on Lp and

kTzw(T1; �1+�1; T2; �2+�2)�Tzw(T1; �1; T2; �2)kLp=Lp < � holds for all �1 2 (��1; �1) and �2 2 (��2; �2).

Now, as k�I;ik`1=L1 is not a continuous function of � around zero, using an anti-aliasing �lter with an

appropriate roll-o� rate we can prove the continuity of the closed-loop measure Tzw in terms of the

L1-induced norm. The proof of the following theorem requires Lemma 18 instead of Lemma 16. The

rest of the proof is the same as Theorem 13.

Theorem 14 Consider the two-channel sampled-data system �[G;H�1;�2KS�1;�2 ] in Fig.3. Suppose

that �[G;H�1;�2KS�1;�2 ] is internally stable and that F in (39) is a stable system whose transfer

function has relative degree more than or equal to 2. Then, there exist �1; �2 > 0 such that the

system has a unique causal operator Tzw(T1; �1 + �1; T2; �2 + �2) mapping from w to z on L1 and

kTzw(T1; �1+�1; T2; �2+�2)�Tzw(T1; �1; T2; �2)kL1=L1 < � holds for all �1 2 (��1; �1) and �2 2 (��2; �2).

In the L1 case, as described in Lemma 13, k�O;ikL1=`1 is independent of �. To obtain the continuity

of kTzwkL1=L1 with respect to �, the operator �O;i should be followed by a low pass �lter. We assume

that the LTI operator G is given by

G =

�
I 0
0 F

�
E

�
I 0
0 Q

�
: (40)

Here, Q is an FDLTI strictly proper system and without loss of generality, the operator has the

block-diagonal form

Q =

�
Q1 0
0 Q2

�
:

Each operator Qi is square in size, which is compatible with the control input uci of G. Making use

of Lemma 14, we can prove the following.

Theorem 15 Consider the two-channel sampled-data system �[G;H�1;�2KS�1;�2 ] in Fig.3. Suppose

that �[G;H�1;�2KS�1;�2 ] is internally stable and that F and Q in (40) are stable and strictly proper.

Then, there exist �1; �2 > 0 such that the system has a unique causal operator Tzw(T1; �1+�1; T2; �2+�2)

mapping from w to z on L1 and kTzw(T1; �1 + �1; T2; �2 + �2) � Tzw(T1; �1; T2; �2)kL1=L1 < � holds

for all �1 2 (��1; �1) and �2 2 (��2; �2).
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9 Concluding remarks

This paper has shown that the Lp worst-case performance of nonsynchronous multirate sampled-

data systems can be computed exactly whenever the phase lag �i and the sampling period Ti are

rationally related. Since the set of rational numbers is dense in (�1;1), in any case, an irrational

relative phase �i=Ti can always be approximated to any degree of accuracy by a rational number.

However, the relationship between the Lp performance and the rational approximation needed further

theoretical study. For this purpose, the paper has succeeded in proving that the performance measure

is a continuous function of the phase shift. Therefore, a reasonable approximation of the performance

of a system operating with irrational phase shift can be obtained by analyzing a rationally-shifted

system belonging to a su�ciently small neighborhood of the irrational system. We can also estimate

how robust the performance is against the phase perturbation. This paper has also developed an

approach to the problem of nonsynchronous multirate controller design.

An important feature of the analysis and synthesis in this paper is that each controller is restricted

to be a standard synchronous FDLSI system. The paper has not enlarged the class of controllers to

include genuine aperiodic controllers since engineers hardly implement a genuine aperiodic controller

in a decentralized control station on purpose although the overall decentralized controller may not be

synchronized.

Finnally, the author makes some comments on the design approach presented in Section 6. As

mentioned in the section, the approach is not directly applicable to the systems in which �i=Ti is

an irrational number. Nevertheless, given any degree of accuracy, there exists a tractable system

de�ned with rational �i=Ti such that the solution to the performance design of the rational system

yields a controller that achieves almost the same performance for the irrrational �i=Ti in terms of the

Lp-induced norm. Explicit bounds for the accuracy can be obtained by making use of the results in

Section 8. Furthermore, the robustness result in Section 7 tells us that the controller obtained using

the rational approximation of �i=Ti guarantees almost the same level of stability and performance

robustness of the actual system operating with irrational �i=Ti as the approximated system achieves

in the design procedure.
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Proof of Lemma 1

Since w = D��D�w holds for all w 2 Lp, we have fw : w 2 Lpg = fD�� �w : �w 2 Lpg and kD�� �wkLp �
k �wkLp ; 8 �w 2 Lp holds. Therefore, the Lp sequence of the worst-case input signal for the gain of HD�� can
be constructed by �w� = D�w

�, where w� is the worst-case signal for H . Then, Equation (12) follows from
kD�zkLp = kzkLp; 8z 2 L

p.

Proof of Lemma 2

Suppose H is T -periodic. Then, DnTH = HDnT holds for all n 2 Z+. From (I � PnT )DnT = DnT , we obtain

kH(I � PnT )kLp=Lp � sup
v

kH(I � PnT )DnT vkLp

kDnT vkLp

= sup
v

kHDnTvkLp

kDnT vkLp

= sup
v

kDnTHvkLp

kDnT vkLp

= sup
v

kHvkLp

kvkLp
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for all n 2 Z+. Now suppose 0 � � � �. By using kvk � k(I � P�)vkLp and

f(I � P�)v : v 2 L
pg � f(I � P�)w : w 2 Lpg;

it is shown that

kH(I � P�)kLp=Lp � sup
v

kH(I � P�)vkLp

k(I � P�)vkLp
� sup

w

kH(I � P�)wkLp

k(I � P�)wkLp
= sup

w

kH(I � P�)wkLp

kwkLp

hold. Hence, the operator H satis�es

kHkLp=Lp � kH(I � PnT )kLp=Lp � kH(I � P� )kLp=Lp � kHkLp=Lp

for 0 � � � nT and for all n 2 Z+. This completes the proof.

Proof of Lemma 3

It can be veri�ed that PnTH
0 = H0Rn holds for any n 2 Z+. On the other hand, the sampler satis�es

S0P� = RnS
0, where n is the smallest integer satisfying � � nT . Since

P�H
0KS0P� = P�PnTH

0KRnS
0

= P�H
0RnKRnS

0

= P�H
0RnKS

0

= P�H
0KS0 ;

the operator H0KS0 is causal in continuous time. We also have

P�D�H
0KS0D��P� = D�P���H

0KS0P���D�� = D�P���H
0KS0D�� = P�D�H

0KS0D�� :

Hence, H�KS� = D�H
0KS0D�� proves the claim.

Proof of Lemma 4

First, H0KS0 is T -periodic since

DTH
0KS0 = H0�1KS

0 = H0K�1S
0 = H0KS0DT :

Next, let H := H0KS0. For � > 0, from (9) we have

DTH
�KS� = DTD�HD�� = D�DTHD�� = D�HDTD�� = D�HD��DT (I � P� ) :

When � � 0, (10) and (11) yield

DTD�HD�� = D�DT (I � P�� )HD�� = D�DTHD�� �D�DTP��HP��D��

since H is causal by Lemma 3. Hence, we obtain DTD�HD�� = D�HD��DT for � > 0.

Proof of Lemma 5

Given a causal operator H on Lp;e, (I � P�)H(I � P�) = H(I � P�) holds for any � � 0. Since it is assumed
that the closed-loop �[G;H�KS� ] with X(0) = 0 has a causal solution on Lp;e as a mapping from w to (z; uc),
uc(t) = ((I � P�)uc)(t); 8t 2 [0;1) is satis�ed for all � 2 (�1;1). Hence, the claim is proved.

Proof of Theorem 1

Since �[G;H�KS� ] with X(0) = 0 has a causal operator between w and (z; uc),

Tzw(T; �)DT = F`(G; (I � PT )H
�KS� )DT : (41)

Subdivide G into a new block matrix form as�
z
yc

�
=

�
G11 G12

G21 G22

��
w
uc

�
:
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Let H := H�KS� . Using (41) we obtain

Tzw(T; �)DT = G11DT +G12(I � (I � PT )HG22)
�1(I � PT )HG21DT :

First, suppose � � 0. Then, from Lemma 4 and (I � PT )DT = DT it follows that

(I � (I � PT )HG22)
�1DT = (I �DTD�T (I � PT )HG22)

�1DT

= DT (I �D�T (I � PT )DTHG22)
�1

= DT (I �HG22)
�1 :

Thus, using (I � PT )DT = DT again, we obtain

Tzw(T; �)DT = DTG11 +G12DT (I �HG22)
�1HG21 = DTTzw(T; �) :

Next, suppose 0 < � < T . By assumption, �[G;H�KS� ] with X(0) = 0 has a causal mapping from w to yc, so
that

Tzw(T; �)DT = F`(G; (I � PT )H
�KS� (I � PT+� ))DT : (42)

Making use of Lemma 4 and (I � PT )DT = DT ,

(I � (I � PT )H(I � PT+� )G22)
�1DT = DT (I �D�T (I � PT )H(I � PT+� )G22DT )

�1

= DT (I �D�T (I � PT )HDT (I � P� )G22)
�1

= DT (I �D�T (I � PT )DTHG22)
�1

= DT (I �HG22)
�1 :

Finally, it follows from (42) that

Tzw(T; �)DT = G11DT +G12(I � (I � PT )H(I � PT+� )G22)
�1(I � PT )H(I � PT+� )G21DT

= DTG11 +G12(I � (I � PT )H(I � PT+� )G22)
�1(I � PT )DTHG21

= DTTzw(T; �) :

Proof of Theorem 2

Due to (9), (10) and (11), for all � , we have

F`(G;H
�KS� ) = F`(GD1;H

0KS0); GD1 :=

�
I 0
0 D��

�
G

�
I 0
0 D�

�
:

(i) � < 0 Case
Due to Lemma 1,

kF`(GD1;H
0KS0)kLp=Lp = kD��F`(GD1;H

0KS0)D�kLp=Lp

is true for all � < 0. Now, the closed-loop map is rewritten as

D��F`(GD1;H
0KS0)D� = F`(D��GD� ;H

0KS0):

Then, it can be shown that

D��GD� = D��GD� (I � P�� ) = GD��D� (I � P�� ) = G(I � P�� ):

Therefore, we have

kF`(GD1;H
0KS0)kLp=Lp = kF`(G(I � P�� );H

0KS0)kLp=Lp :

Finally, we obtain

kF`(GD1;H
0KS0)kLp=Lp = kF`(G;H

0KS0)kLp=Lp :
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by applying Lemma 5, Theorem 1 and Lemma 2.
(ii) � � 0 Case
Due to periodicity guaranteed by Theorem 1, Lemma 2 implies

kF`(GD1;H
0KS0)kLp=Lp = kF`(GD1;H

0KS0)(I � P� )kLp=Lp

for all � � 0. Since G is time-invariant,�
I 0
0 D��

�
G

�
I � P� 0

0 D�

�
=

�
I 0
0 D��

�
GD�

�
D�� (I � P� ) 0

0 I

�

=

�
I 0
0 D��

�
D�G

�
D�� 0
0 I

�

=

�
D� 0
0 I

�
G

�
D�� 0
0 I

�
:

From this equivalence it follows

kF`(GD1;H
0KS0)kLp=Lp = kD�F`(G;H

0KS0)D��kLp=Lp = kF`(G;H
0KS0)kLp=Lp :

Here, Lemma 1 is used to obtain the last equation. This completes the proof.

Proof of Lemma 6

Let Mi be an integer satisfying TC =MiTi. Then, as obtained in Lemma 4, we can prove

H�iKiS
�iDMiTi = DMiTiH

�iKiS
�i ; �i � 0

H�iKiS
�iDMiTi(I � P�i) = DMiTiH

�iKiS
�i ; �i > 0 :

for each i = 1; 2. Combining these equations, the required equation is obtained.

Proof of Theorem 4

It su�ces to prove the claim for �1 > 0, �2 � 0 and � � 0. The other cases of (�1; �2) are straightforward from
the following argument and the � < 0 case can be proved by replacing �i with �i � �. Suppose �1 > 0, �2 � 0
and � � 0. According to (9), (10) and (11),

Tzw(T1; �1; T2; �2) = F`(GD1;H
0;0KS0;0)

holds, where GD1 is de�ned by

GD1 :=

"
I 0 0
0 D��1 0
0 0 D��2

#
G

"
I 0 0
0 D�1 0
0 0 D�2

#
:

Lemma 1 is applied to obtain

kF`(GD1;H
0;0KS0;0)kLp=Lp = kF`(GD2;H

0;0KS0;0)kLp=Lp ;

where GD2 is given by

GD2 :=

"
D� 0 0
0 D��1 0
0 0 D��2

#
G

"
D�� 0 0
0 D�1 0
0 0 D�2

#
:

This operator GD2 can be rewritten as follows:

GD2 =

"
I 0 0
0 D��1�� 0
0 0 D��2��

#
GD�

"
D�� 0 0
0 D�1 0
0 0 D�2

#

=

"
I 0 0
0 D��1�� 0
0 0 D��2��

#
G

"
I � P� 0 0

0 D�1+� 0
0 0 (I � P�)D�2+�

#
:
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Thus, using (9), (10) and (11) we have

F`(GD2;H
0;0KS0;0) = F`(GD3;H

�1+�;�2+�KS�1+�;�2+�)

where GD3 is

GD3 := G

"
I � P� 0 0

0 I 0
0 0 I � P�

#
:

Now, by assumption, �[G;H�1+�;�2+�KS�1+�;�2+�] has a causal solution, so that

F`(GD3;H
�1+�;�2+�KS�1+�;�2+�) = Tzw(T1; �1 + �; T2; �2 + �)(I � P�)

holds by Lemma 7. Recalling that T1=T2 is rational, Theorem 3 shows that Tzw(T1; �1+�; T2; �2+�) is periodic.
Therefore, it follows from Lemma 2 that

kTzw(T1; �1 + �; T2; �2 + �)(I � P�)kLp=Lp = kTzw(T1; �1 + �; T2; �2 + �)kLp=Lp :

This completes the proof.

Proof of Corollary 1

(i) The equivalence is obtained by substituting � = ��1 into Theorem 4.
(ii) Let �1 = � , �2 = 0 and � = �� . Then, Theorem 4 proves the equation.
(iii) Owing to the equivalence proved in (ii), it su�ces to prove

kTzw(T1; 0; T2; �)kLp=Lp = kTzw(T1; Tmin��; T2; 0)kLp=Lp :

Let TC denote the least common multiple among Ti, i = 1; 2. From �T1 � Tmin�� < T1 and Theorem 3 it
follows that Tzw(T1; Tmin��; T2; 0) is TC-periodic. Then, Lemma 2 is used to obtain

kTzw(T1; Tmin��; T2; 0)kLp=Lp = kTzw(T1; Tmin��; T2; 0)(I � PTC�� )kLp=Lp :

Now, using the initial condition X(0) = 0, it is not di�cult to verify that

kTzw(T1; Tmin��; T2; 0)(I � PTC�� )kLp=Lp = kTzw(T1; 0; T2; �)kLp=Lp :

holds. This proves the claim.

Proof of Theorem 5

(i) � > 0 case
By construction,

H�KS� = HFW
�1
n Fl+Ka+Fr+WnSF ; x�m(0) = 0;8xK(0)

is satis�ed and the state transition of K on both sides are identical. Then, it is obvious that �[G;H�KS� ] is
internally stable in terms of x = [xTG; x

T
K ]

T if �[G;HFW
�1
n Fl+Ka+Fr+WnSF ] is internally stable in terms of

x = [xTG; x
T
�m; x

T
K ]

T . Conversely, exponential convergence of xK and xG implies that x�m is also exponentially
convergent since it can be shown that the additional state satis�es

x�m(k + 1) =

2
6664

CKxK(k) +DKC2xG(kT + mT
n )

CKxK(k) +DKC2XG(kT + mT
n )

...
CKxK(k) +DKC2XG(kT + mT

n )

3
7775 ; 8k 2 Z+ n f0g :

(i) � < 0 case
In this case, the state x�m can be represented by

x�m(k + 1) =

2
6664
C2x(kT + (n�m)T

n )
...

C2x(kT + (n�2)T
n )

C2x(kT + (n�1)T
n )

3
7775 ; 8k 2 Z+ n f0g :

Then, the claim can be proved in the same way as � > 0 case.
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Proof of Theorem 6

It follows directly from Theorem 5 and the input-output equivalence betweenHFW
�1
n FlKFrWnSF andH�KS� .

Proof of Theorem 8

Equation (26) and Equation (27) show that the Lp worst-case performance of �[G;H�KS� ] is the same as
that of �[G;HFW

�1
n FlKFrWnSF ]. According to Theorem 5, internal stability of �[G;H�KS� ] is equivalent

to that of �[G;HFW
�1
n Fl�Ka�Fr�WnSF ]. Since �[G;HFW

�1
n Fl�Ka�Fr�WnSF ] is multirate sampled-data

control system without any phase lags and leads, internal stability of the control system remains unchanged
if uncontrollable modes and unobservable modes removed from the LSI controller are stable[15]. Furthermore,
since the modes removed correspond to x�m, the state transitions of the two systems are proved to be the same.

Proof of Lemma 8

The internal stability of �[G;HKS] implies that the equivalent representation �[G; ~K] in Theorem 10 is also
internally stable. According to [15], the internal stability guarantees the uniqueness and boundedness of Tzw =
F`(G; ~K) .

Proof of Theorem 11

By proper scaling, we can always take  = 1.
(i) Su�ciency for robust Lp stability: According to Lemma 8, the assumption of internal stability implies
that the operator from w to z is Lp induced-norm bounded. From the small-gain theorem it follows that
kF`(G;HKS)kLp=Lp � 1 is su�cient for the L2-boundedness of the linear map from [fT1 ; f

T
2 ]

T to [eT1 ; e
T
2 ]
T for

any � 2 B�PTV .
(ii) Necessity for robust L2 stability: Assume that there holds kF`(G;HKS)kL2=L2 > 1. From Theorem 10, it

is equivalent to kF`(G; ~K)kL2=L2 > 1. Following an idea in [26], it can be shown that there exist contractive
linear operators U : `2 ! L2 and V : L2 ! `2 such that

kV F`(G; ~K)Uk`2=`2 > 1 (43)

holds, and the operators are in the form of

U : `2s ! L2; (Uf)(t) := (Ufj)(t� jTD) for jTD < t � (j + 1)TD (44)

V : L2 ! `2r; (Vz)(j) := V zj�1 for j � 0; (Vz)(0) := 0 ; (45)

where U and V are linear operators:

U : Rs ! L2[0; TD]; V : L2[0; TD]! Rr (46)

An important thing which is di�erent from the single-rate case shown in [26] is that we here consider a mul-
tirate system, VF`(G; ~K)U is not an LSI, but a linear TC=TD-periodic operator mapping `2 ! `2. Hence, we
introduce a discrete-time lifting operator WTC=TD which stacks up its input sequence every TC=TD points, and

WTC=TDVF`(G;
~K)UW�1

TC=TD
becomes shift-invariant. Since WTC=TD is bijective isometory, (43) is equivalent to

kWTC=TDVF`(G;
~K)UW�1

TC=TD
k`2=`2 > 1 : (47)

Then, there is an FDLSI and strictly-causal system �Nd satisfying k�Ndk`2=`2 < 1 and destabilizing the pair

(WTC=TDVF`(G;
~K)UW�1

TC=TD
,�Nd) in feedback. Actually, one can �nd a strictly-causal destabilizer by using

the technique in [3] and using the bilinear transformation. A biproper FDLSI system ��(z) is found as a

destabilizing admissible perturbation with respect to �1M for M := WTC=TDVF`(G;
~K)UW�1

TC=TD
. Then, set

�Nd := ���1, which becomes a strictly proper destabilizer of M and k�Ndk`2=`2 < 1 holds. Now de�ne

�d := W�1
TC=TD

�NdWTC=TD which is a causal and TC=TD-periodic linear operator which meets k�dk`2=`2 < 1.

Then, the feedback connection of VF`(G; ~K)U and �d is not stable in the sense of an `2 input-output property.
Now put � := U�dV in Fig.7(a). Since V and U are contractive, k�kLp=Lp < 1 is clear. From the de�nition of
U and V in (44) and (45), it follows that � is TC-periodic, and � belongs to B�PTV . Furthermore, it is easy
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Figure 10: Equivalent problems.

to see that V and U are bounded and bijective when their inputs and outputs are restricted to spaces which
the destabilizing signals constructed above belong to. Therefore, we conclude that if kF`(G;HKS)kL2=L2 > 1,
there is an uncertainty � in B�PTV such that the operator from [fT1 ; f

T
2 ]

T to [eT1 ; e
T
2 ]
T is not L2-induced norm

bounded.
(iii) Su�ciency for robust internal stability: It su�ces to prove that robust L2 stability of the system shown
in Fig.7(a) implies internal stability. First, rewrite the system as shown in Fig.10(a). Here, the system (G;�)
has a realization with the state (xG; xd) in the state-space, where xd is the state of �. Keeping in mind
kF`(G;HKS)kL2=L2 � 1, the uncertain system (G;�) is input-output stabilizable by a continuous-time con-
troller Kc because of the existence of Kc satisfying kF`(G;Kc)k1 � 1 (see also [22]). Since each of state-space
realizations G and � is stabilizable and detectable, the input-output stabilizability and �nite-dimensionality
of (G;�) and Kc imply the realizations of (G;�) is stabilizable and detectable from uc and yc. Now, apply-
ing Theorem 10 to �[(G;�);HKS], the nonsynchronous system in Fig.10(a) is transformed into the system
shown in Fig.10(b), which preserves internal stability and kF`((G;�);HKS)kL2=L2 = kF`((G;�); ~K)kL2=L2 .
Here, note that the direct feedthrough matrix of the linear map (G;�) from [fT1 ; f

T
2 ; u

T
c ]
T to yc is zero. Then,

L2-hybrid stability (see [15, 4] for de�nition) of the system in Fig.10(b) is equivalent to robust L2 stability of
Fig.7(a). Due to Theorem 4.1 in [15] and Theorem 10, the system in Fig.10(b) is L2-hybrid stable if and only
if it is internally stable. Hence, the system in Fig.7(a) is robustly internally stable since the state of (G;�) is
(xG; xd).

Proof of Theorem 12

Making use of proper scaling, it su�ces to prove the claim for  = 1. Clearly, the small gain theorem proves
that the system shown in Fig.7(b) is robustly Lp stable with respect to B�TV . Let w = [wT

1 ; w
T
2 ]

T and
z = [zT1 ; z

T
2 ]

T . The Lp disturbance attenuation less than or equal to 1 is equivalent to

sup
w 2 Lp

(kzkp
Lp
� ~pkwkp

Lp
) � 0 (48)

for ~ � 1. Noticing that

k�z2k
p
Lp
�kz2k

p
Lp
�0; 8z22L

p; 8� 2 B�TV :

and w2 = �z2, for p 2 [1;1) we obtain

kzkp
Lp
� ~pkwkp

Lp
= kz1k

p
Lp

+ kz2k
p
Lp
� ~pkw1k

p
Lp
� ~pkw2k

p
Lp
� kz1k

p
Lp
�~pkw1k

p
Lp
+ (1�~p)kz2k

p
Lp

for all w1 2 L
p. From (48) it follows that for ~ � 1,

0 � kzkp
Lp
� ~pkwkp

Lp
� kz1k

p
Lp
� ~pkw1k

p
Lp

:

For the p =1 case,

0 � kzkL1 � ~kwkL1 � kz1kL1�~maxfkw1kL1 ; kz2kL1g � kz1kL1 � ~kw1kL1 :

This completes the proof.

Proof of Lemma 9

By T > 0, � < 0 and (10), it can be shown that S� = S0D�� = S0D�(T+�)DT = ST+�DT . Since S
T+�DT =

�1S
T+� holds for �T < � , we have S� = �1S

T+� which proves the claim.
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Proof of Lemma 10

The proof is similar to that of Lemma 2. Thus it is omitted.

Proof of Lemma 11

From Equation (11), T > 0 and � < 0, we obtain H� = D�H
0 = D�TDT+�H

0 = D�TH
T+� . It is straightfor-

ward to verify that D�TH
T+� (I �R1) = HT+���1. Hence, we have

F (D� � I)H� (I �R1) = F (D� � I)HT+���1 : (49)

Since DTH
� = H��1 holds, time-invariance of F results in F (D� � I)H��1 = DTF (D� � I)H� for � � 0.

Finally, due to Lemma 10 and (49), we have

kF (D� � I)H�kLp=`p = kF (D� � I)H� (I �R1)kLp=`p = kF (D� � I)HT+�kLp=`p :

Proof of Lemma 12

We �rst assume v � 0 and � � 0. Let p 2 [0;1). For any u 2 `p, de�ne m := (D� � I)H�u. Then, the function
m(t) is

m(t) =

8><
>:

u(0) � < t � � + �
u(k)� u(k � 1) kT + � < t � kT + � + �; k = 1; 2; : : :
0 kT + � + � < t � (k + 1)T + �; k 2 Z+

0 0 � t � � :

Thus, using the H�older's inequality, we obtain

kmkLp =

(
�ju(0)jp + �

1X
k=1

ju(k)� u(k � 1)jp

)1=p

� �1=p

(
ju(0)jp + 2p�1

1X
k=1

(ju(k)jp + ju(k � 1)jp)

)1=p

� 2�1=pkuk`p :

Hence, taking � < (�=2)p, we have

k(D� � I)H�kLp=`p < � : (50)

Lemma 11 implies that even in the � < 0 case, (50) is guaranteed to be satis�ed since the radius (�=2)p is
independent of � . Finally, replacing � with � �� in the above argument it is proved easily that �(�=2)p < � < 0
implies (50).

Proof of Lemma 13

Since kH�ukL1 = kuk`1 hold for any u 2 `1, it follows from kD� � IkL1=L1 � 2 that k(D� � I)H�ukL1 �

2kuk`1. It is straightforward to see that uw 2 `1 de�ned by uw(k) = (�1)k, k 2 Z+ achieves k(D� �
I)H�uwkL1 = 2kuwk`1 for � 6= 0 . Hence, the induced norm is 2, which does not depends on �.

Proof of Lemma 14

Assume that � � 0 and � � 0. Suppose u 2 `1. By Lemma 13, m := (D�� I)H�u is in L1. Since F is a stable
FDLTI system, y = F (D� � I)H�u is also in L1. Let f(t); t � 0 denote the impulse response of F . Then, we

have y(t) =
R t
0
f(t� �)m(�)d�. Since m(t) = 0 for 0 � t � � and for kT + � +� < t � (k+1)T + � with k 2 Z+,

y(t) =

N(t)X
i=0

Z iT+�+�

iT+�

f(t� �)m(�)d�;

where N(t) is the largest integer satisfying N(t) � (t � � � �)=T . Noting that there exist a < 0 and b > 0
satisfying jf(t)j � beat for all t � 0, for t � 0, (k � 1)T + � + � � t < kT + � + � and k 2 Z+, we obtain

jy(t)j �

kX
i=0

f̂(k � i)

Z iT+�+�

iT+�

jm(�)jd� ; f̂(k) := bea(k+1)T :
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Now, de�ne

v(i) :=

Z iT+�+�

iT+�

jm(�)jd�; i 2 Z+ ; �y(k) :=
kX
i=0

f̂(k � i)v(i); k 2 Z+:

Since obviously f̂ is in `1 and since kvk`1 � �kmkL1 holds, �y(k) satis�es

k�yk`1 � kf̂k`1kvk`1 � �kf̂k`1kmkL1

From kykL1 � k�yk`1 and Lemma 13 it follows that

kyk`1 � 2�kf̂k`1kuk`1 (51)

holds. This prove the claim for the case of � � 0 and � � 0. Since 2�kf̂k`1 in (51) is independent of � 2 [0; T ),
Lemma 11 guarantees (51) to be satis�ed for � 2 (�T; 0). Finally, again Equation (51) is independent of � ,
replacing � with � � �, it is straightforward to verify that the � < 0 case results in the same as the � > 0 case.

Proof of Lemma 15

Suppose that � > 0 and � � 0. Consider the function u(t) de�ned by

u(t) =

( �
2�k

h

�1=p
if kT + � � t < kT + � + h; k 2 Z+

0 otherwise ;

where h is an arbitrary positive number satisfying h < maxf�; 1g. Here, u belongs to PC and kukLp = 21=p.
Then, kS� (D�� � I)uk`p = (2=h)1=p holds for all p 2 [1;1]. Hence,

kS� (D�� � I)uk`p

kukLp
= (1=h)1=p � 1 (52)

For the case of � < 0, we can trace the above argument again if replacing � with � � �. Moreover, in the � < 0
case, accordingly to Lemma 9, the signal u achieving (52) is constructed by replacing S� with ST+� , where
0 < T + � < T holds.

Proof of Lemma 16

We assume �rst that � � 0 and 0 � � < T . Suppose that p is an integer belonging to [1;1]. For u 2 Lp,
de�ne the function �y(t) by �y := (D�� � I)Fu. Let f(t) denote the impulse response of F . Then, the sequence
fy(k)g1k=0 de�ned by y := S� (D�� � I)Fu is expressed as

y(k) =

Z kT+�+�

0

f(kT + � + � � �)u(�)d� �

Z kT+�

0

f(kT + � � �)u(�)d� (53)

= Y1(k) + Y2(k); k 2 Z+ : (54)

where Y1(k) and Y2(k) are

Y1(k) :=

Z kT+�+�

kT+�

f(kT + � + � � �)u(�)d�; k 2 Z+ (55)

Y2(k) :=

Z kT+�

0

(f(kT + � + � � �)� f(kT + � � �))u(�)d�; k 2 Z+ : (56)

We also de�ne

Y21(k) :=

k�1X
i=0

Z (i+1)T

iT

(f(kT + � + � � �)� f(kT + � � �))u(�)d�; k 2 Z+ (57)

Y22(k) :=

Z kT+�

kT

(f(kT + � + � � �)� f(kT + � � �))u(�)d�; k 2 Z+ : (58)
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which are consistent with

Y2(k) = Y21(k) + Y22(k) : (59)

(i) The p = 1 case : Since F is FDLTI, strictly proper and stable, the system admits a state space representation
(Af ; Bf ; Cf ; 0) and its impulse response is f(t) = Cf e

Af tBf , t � 0. It is clear that jf(t)j � kCfkkBfkke
Af tk �

beat; t � 0 holds with a < 0 and b > 0. Then

jY1(k)j �

Z �

0

bea(���)ju(kT + � + �)jd� � b

Z �

0

ju(kT + � + �)jd�; k 2 Z+ : (60)

We have kY1k`1 =
P1

k=0 jY1(k)j � bkukL1 . On the other hand, by de�ning

�f(k) := sup
t2[kT;(k+1)T )

jf(t+ � + �)� f(t+ �)j; k 2 Z+ ;

the sequence Y21(k) satis�es

jY21(k)j �

k�1X
i=0

�f(k � i� 1)v(i) ; v(i) :=

Z (i+1)T

iT

ju(�)jd� ; i 2 Z+ : (61)

Note that kvk`1 = kukL1 holds and that v belongs to `1. From

f(t+ � + �)� f(t+ �) = Cfe
Af (t+�)(eAf � � I)Bf

it follows that there exists a real number c such that c < a < 0 and

jf(t+ � + �)� f(t+ �)j � bea(t+�)(1� ec�) :

Hence, �f(k) � bea(kT+�)(1� ec�). Here, �f1 is in `1 since

k �fk`1 �
bea� (1� ec�)

1� eaT
<1 ; � > 0 :

Thus, v and �f are in `1. Their convolution also lies in `1. Moreover, kY21k`1 � k �fk`1kvk`1 = k �fk`1kukL1 . As
for Y22(k),

jY22(k)j � sup
t2[0;�)

jf(t+ �)� f(t)j

Z kT+�

kT

ju(�)jd� = b(1� ec�)

Z kT+�

kT

ju(�)jd� ; k 2 Z+ (62)

The last inequality implies kY22k`1 � b(1� ec�)kukL1 . Recalling (54) and (59), we obtain

kyk`1 �M1(�)kukL1 (63)

M1(�) := b

�
1 + (1� ec�)

�
1

1� eaT
+ 1

��
<1; � > 0 :

Here, lim�!+0M1(�) = b. Furthermore, M1(�) > 0 is a monotonically increasing function of � and it is also
uniformly continuous.
(ii) The p = 1 case : From (60), we obtain jY1(k)j � �bkukL1 and kY1k`1 � �bkukL1 for � > 0. By
Equation (61), it is easy to see that kY21k`1 � Tk �fk`1kukL1 for � > 0 since kvk`1 � TkukL1. Moreover,
Equation (62) implies kY22k`1 � b(1� ec�)�kukL1 for � > 0. Hence,

kyk`1 �M1(�)kukL1 (64)

M1(�) := b

�
� + (1� ec�)

�
T

1� eaT
+ T

��
<1 ; � > 0 :

Thus, lim�!+0M1(�) = 0 and M1(�) > 0 is a monotonically increasing and uniformly continuous function of
�.
(iii) The 1 < p <1 case : For any u 2 `p, the hold operator H� has the property that kH�ukLp = T 1=pkuk`p.
Then, kH�S� (D�� � I)FkLp=Lp = T 1=pkS� (D�� � I)Fk`p=Lp . From inequalities (63) and (64), S� (D�� � I)F
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is a linear operator mapping L1 to L1 and L1 to L1. By using the H�older's inequality for linear operators on
Lp, we obtain

kH�S� (D�� � I)FkLp=Lp � (TM1(�))
1=p(M1(�))

1=q ;
1

p
+

1

q
= 1 :

Hence,

kS� (D�� � I)Fk`p=Lp �Mp(�) ;

where Mp(�) is obtained as

Mp(�) := (M1(�))
1=p(M1(�))

1=q <1;
1

p
+

1

q
= 1 :

Obviously, for 1 < p < 1, Mp(�) is a uniformly continuous function of � > 0 and lim�!+0Mp(�) = 0. Also,
Mp(�) > 0 is a monotonically increasing function of �.

Hence, the proof is completed for the case of � � 0 and � � 0. Now, since every Mp(�) obtained for
p 2 [1;1] is a function independent of � , Lemma 9 allows us to use the same Mp(�) for � < 0. Furthermore,
replacing � with � � � in the above argument, the independence of � guarantees continuity and monotonicity
properties of Mp(j�j) to be satis�ed for � < 0. This completes the proof.

Proof of Lemma 17

Suppose � > 0 and � � 0. Consider the function u(t), t � 0 de�ned by

u(t) =

�
1 � � t < � + �
0 otherwise :

From Equation (53) and f(t) = beat, we obtain

y(0) =

Z �

0

f(� � �)d� =
b

a
(ea� � 1)

y(k) =

Z �

0

f(kT + � � �)d� �

Z �

0

f(kT � �)d� =
b

a
(ea� � 1)ekaT (1� e�a�); k = 1; 2; 3; : : : :

Now, it is straightforward to verify that

kyk`1 = L1(�)kukL1 (65)

where L1(�) is de�ned by

L1(�) :=
jbj(1 + ea(T��) � 2eaT )

1� eaT
�
(ea� � 1)

a�
; � > 0 :

Now, note that (ea� � 1)=a� � ea�=2 for � 2 R. Then,

1 > L1(�) � jbj(1 + ea(T��) � 2eaT )
ea�=2

1� eaT
> 0; � 2 (0;1) :

Thus, for all 0 < � < T , L1(�) satis�es L1(�) > jbjeaT=2 > 0. Taking � = jbjeaT=2 proves the inequality claimed.
If � < 0, replacing � with � � �, we can trace the above argument. Moreover, in the � < 0 case, accordingly to
Lemma 9, the signal u achieving (65) is constructed by replacing S� with ST+� , where 0 < T + � < T .

Proof of Lemma 18

We assume that T > � � 0 and � � 0 hold. Let F1(s) denote the transfer function of the system F1. Then, by
assumption, it is possible to decompose F1 as F1(s) =

b
s�aQ(s) with a < 0. Here, Q is a stable FDLTI system

and its transfer function Q(s) is strictly proper. For n 2 L1, de�ne the function u(t) by u := Qn. Then, u is
a continuous function in L1 [7]. The impulse response of F (s) = b=(s� a) is f(t) = beat; t � 0. The sequence
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fy(k)g1k=0 de�ned by y := S� (D�� � I)Fu is represented by y(k) = Y1(k) + Y21(k) + Y22(k) for k 2 Z+, where
Y1(k), Y21(k), Y22(k) are de�ned as in (55), (57) and (58). Now, Y1(k) is rewritten as

Y1(k) :=

Z �

0

bea(���)u(kT + � + �)d�; k 2 Z+ : (66)

Since u is a continuous function of t, applying the �rst mean value theorem to (66), there exists a real number
�k 2 (0; �) such that Y1(k) = �bea(���k)u(kT + � +�k) for every k 2 Z+. Then, we have jY1(k)j � �jbjju(kT +
� + �k)j, k 2 Z+. By de�ning the sequence �u(k) = u(kT + � + �k) , k 2 Z+,

kY1k`1 � �jbjk�uk`1 : (67)

Let q(t) denote the impulse response of Q. Obviously, q is 2 L1. Then, the signal �u is

�u(k) =

k�1X
i=0

Z (i+1)T

iT

q(kT + �k � �)n(�)d� +

Z kT+�k

kT

q(kT + �k � �)n(�)d� :

for k 2 Z+. It is clear that there exist aq < 0 and bq > 0 such that jq(t)j � bqe
aqt for all t � 0. Hence, we

obtain.

j�u(k)j �

k�1X
i=0

�q(k � i� 1)j

Z (i+1)T

iT

jn(�)jd� + �q(0)

Z kT+�k

kT

jn(�)jd� ; k 2 Z+;

where �q(k) := bqe
kaqT and �q 2 `1. Thus,

k�uk`1 � k�qk`1k�nk`1 + bqknkL1 ; �n(i) :=

Z (i+1)T

iT

jn(�)jd�; i 2 Z+ :

It follows from k�nk`1 = knkL1 that k�uk`1 � (k�qk`1 + bq)knkL1 . Apply this inequality to (67) to get

kY1k`1 � �jbj(k�qk`1 + bq)knkL1 : (68)

Recalling kukL1 � kqkL1knkL1 and tracing the proof of Lemma 16, Y21(k) is bounded as

kY21k`1 �
jbjea� (1� ea�)

1� eaT
kqkL1knkL1 (69)

and Y22(k) satis�es

kY22k`1 � jbj(1� ea�)kqkL1knkL1 : (70)

Combining (68), (69) and (70), we obtain

kyk`1 � N1(�)knkL1 (71)

N1(�) := jbj

�
�(k�qk`1 + bq) + (1� ea�)

�
1

1� eaT
+ 1

�
kqkL1

�
<1; � > 0:

Here, lim�!+0N1(�) = 0 and N1(�) is a monotonically increasing function of �. The function is also uniformly
continuous so that there exists a positive number � which achieves the required property in the case of � � 0
and � � 0.

Noting that N1(�) obtained is independent of � , by Lemma 9, N1(�) is valid for � < 0 in (71). Furthermore,
the independence of � allow us to replace � with � � � in the above argument to obtain the same function
N1(j�j) for � < 0.

Proof of Lemma 19

De�ne

H :=

2
64

0 I 0
0 0 I
I 0 0
0 0 F

3
75
"
0 0 I
0 E11 E12

I E22 E22

# "
0 I 0 0
I 0 0 0
0 0 I I

#
:

Then, the system �[E;H�1;�2KS�1;�2F ] is equivalent to �[H;H�1;�2KS�1;�2 ] in Fig.11. Since F is stable,
�[H;H�1;�2KS�1;�2 ] is internally stable by the assumption. Now apply Theorem 5 to �[H;H�1;�2KS�1;�2 ]. By
Theorem 4.1 in [15], it is easy to see that �[H;H�1;�2KS�1;�2 ] is Lp hybrid stable, which proves the claim.
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Figure 11: Equivalent system

Proof of Theorem 13

The sampled-data controllers with anti-aliasing �lters are given by

H�1+�1K1S
�1+�1F1 = (H�1 +�O;1)K(S�1F1 +�I;1)

H�2+�2K2S
�2+�2F2 = (H�2 +�O;2)K(S�2F2 +�I;2);

where �O;i and �I;i; i = 1; 2 are phase perturbation operators de�ned by

�I;i := (S�i+�i � S�i)Fi; �Ti < �i + �i < Ti; i = 1; 2

�O;i := H�i+�i �H�i � Ti < �i + �i < Ti; i = 1; 2 :

Let

M :=

�
M11 M12

M21 M22

�

=

2
4 F`(E;H

�KS�F ) E12(I �H
�KS�FE22)

�1[I H�K]�
KS�F
I

�
(I �E22H

�KS�F )�1E21

�
0 K
0 0

�
+

�
KS�F

I

�
E22(I �H

�KS�FE22)
�1[I H�K]

3
5 :

This operator M represents the mapping from [wT ; gT ; fT ]T to [zT ; uT ; vTc ]
T of �[E;H�1;�2KS�1;�2F ] in Fig.9.

By the assumption of internal stability of �[G;H�1;�2KS�1;�2 ], Lemma 19 guarantees that M is a bounded
causal operator from Lp �Lp � `p to Lp � `p �Lp. Then, it is easy to see that the closed-loop operators from
w to z of �[G;H�1;�2KS�1;�2 ] are given by

Tzw(T1; �1; T2; �2) = F`(E;H
�KS�F ) = F`(M; 0) (72)

Tzw(T1; �1 + �1; T2; �2 + �2) = F`(E;H
�1+�1;�2+�2KS�1+�1;�2+�2F ) = F`(M;�) (73)

Here, the perturbation � is de�ned by

� :=

2
64

�O;1 0 0 0
0 �O;2 0 0
0 0 �I;1 0
0 0 0 �I;2

3
75 : `p � `p �Lp �Lp ! Lp �Lp � `p � `p

Due to Lemma 12 and Lemma 16, � is bounded and for any given � > 0, there exist �1; �2 > 0 such that k�k < �
holds for all j�1j 2 [0; �1). and for all j�2j 2 [0; �2). Therefore, the boundedness of M22 guarantees the existence
of �1; �2 > 0 satisfying k�k < 1=kM22k for all j�ij 2 [0; �i); i = 1; 2. If kM22�k < 1 is satis�ed for M22� on the
Banach space `p�`p�Lp�Lp, (I�M22�)

�1 exists and it is expressed in the form (I�M22�)
�1 =

P1

j=0(M22�)
j

. Thus

k(I �M22�)
�1k �

1X
j=0

k(M22�)
jk �

1

1� kM22�k
:

SinceM11, M12 and M12 are bounded, k�k < 1=kM22k and Equation (73) show that Tzw(T1; �1+�1; T2; �2+�2)
is bounded on Lp. On the other hand, from (72) and (73) it follows that

Tzw(T1; �1 + �1; T2; �2 + �2)� Tzw(T1; �1; T2; �2) =M12�(I �M22�)
�1M21 :
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Then, we have

kTzw(T1; �1 + �1; T2; �2 + �2)� Tzw(T1; �1; T2; �2)k � kM12k
k�k

1� kM22kk�k
kM21k :

Therefore, there exist �1; �2 > 0 satisfying

k�k < min

�
1

kM22k
;

�

kM12kkM21k+ �kM22k

�
:

for which

kTzw(T1; �1 + �1; T2; �2 + �2)� Tzw(T1; �1; T2; �2)kLp=Lp < �

holds. This completes the proof.
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