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1 Introduction

Backstepping methods for the design of robustly stabilizing controllers for uncertain nonlinear sys-

tems have been evolving over the past several years. Early results in [1, 2, 3] extended the break-

through [4] in nonlinear adaptive control to a class of strict-feedback systems with nonlinear time-

varying uncertainties[5]. More recently, these designs have been re�ned in the context of an inverse

optimal robust control problem in which the resulting controller is optimal with respect to some cost

functional belonging to a speci�ed class [6, 7, 8, 9]. A primary bene�t of achieving inverse optimality

is that, for an appropriately chosen class of cost functionals, it can guarantee additional robustness

with respect to certain types of input uncertainties not taken explicitly into account in the robust

controller design [10, 7]. The inverse optimal design represents an attractive alternative to the gen-

erally infeasible approach of directly computing an optimal controller with respect to a pre-speci�ed

cost functional by solving a Hamilton-Jacobi-Bellman (HJB) or Hamilton-Jacobi-Isaacs (HJI) partial

di�erential equation.

A drawback of these inverse optimal backstepping designs is that they do not necessarily provide

the same local performance achieved by linear controllers constructed for the linearized system using

modern robust control methods such as H1. Ideally one would attempt to design the nonlinear

controller not only to achieve global robustness but also to recover the local linear performance. One

such design was presented in [8]; here the controllers guarantee local L2-disturbance attenuation of

level  as well as global inverse optimality and input-to-state stability (ISS). The local property is

achieved by forcing the inverse optimal cost functional to agree locally with a pre-speci�ed H1-type

cost for the linearized system. However, the parameter  is not given a global interpretation in [8];

the global robustness property is simply stated as input-to-state stability with no reference to .

In this paper we consider a global robust stabilization problem in which the parameter  plays

both a local and global role in describing the allowable \size" of the structured uncertainty. In this

context global input-to-state stability becomes just a special case of global robustness with respect to

a particular class of structured uncertainty. We �rst generalize the class of cost functionals employed

in [8] in the de�nition of inverse optimality to reect this new global role of the parameter . We

then show that for uncertain nonlinear systems in strict feedback form, we can always achieve such

extended inverse optimality through the use of generalized state-dependent (SD) scaling. This notion

of generalized SD scaling is an extension of the SD scaling developed for robust nonlinear control in

[11, 12, 13, 14]. The control system obtained through our generalized SD scaling design is guaranteed

to have a global robustness property with respect to structured uncertainty with size described by

the parameter . Furthermore, the inverse optimal control law can always be designed such that its

linearization is identical to a linear optimal control law for the linearized system with respect to a

prescribed cost functional (again parameterized by ). By incorporating the parameter  into our

de�nition of global robust stability, we achieve a seamless integration of the three desired properties of

our nonlinear design: local optimality, global inverse optimality, and global robust stability. Finally, it

is worth noting that the generalized SD scaling approach to inverse optimal backstepping is a natural

extension of the idea of scaling designs popular in linear robust control theory.
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2 Motivation and problem statement

We consider a nonlinear plant with control input u and disturbance w of the form

_x = f(x) + f1(x)w + f2(x)u (1)

where f , f1 and f2 are su�ciently smooth vector �elds on Rn with f(0) = 0, f1(0) = 0 and f2(0) = 0.

An optimal control problem for (1) is described by a cost functional

Jopt = min
u

max
w

Z 1

0
L(x;w; u)dt (2)

where L is a smooth function satisfying L(0; 0; 0) = 0. The Hamilton-Jacobi(HJ) equation for this

optimal control problem is written somewhat informally as

min
u

max
w

h
L(x;w; u) + _V (x;w; u)

i
= 0; V (0) = 0 (3)

with a smooth positive semi-de�nite function V (x). For an appropriate choice of L(x;w; u), the

solution V will lead to a control law u(x) which provides optimality, stability, and robustness with

respect to the disturbance w.

The disturbance w in (1) usually represents uncertainty arising from various locations in the control

system. To specify the location and structure of the uncertainty, the robust control paradigm depicted

Fig.1 is popular. The system � is an uncertainty and K is a state-feedback controller. The system G

not only describes a nominal plant, but also includes information about how the uncertainty a�ects the

nominal plant such as geometrical locations and types of nonlinearities where uncertain parameters

are present. This uncertainty structure is described by the input map in G at w and the output map

in G at z. The principal problem of robust control for the uncertain system is to construct a controller

K achieving global robust stability:

Global robust stability

If the closed-loop system is globally stable in the presence of every � belonging to a given family

of admissible uncertainties, the system is said to be globally robustly stable.

The structure of the uncertainty de�nes the set of disturbances w in (1), (2) and (3). It is well known

that such a robust control design usually comes at the price of solving a Hamilton-Jacobi partial

di�erential equation (3) with an appropriate function L. Such a task is generally not feasible.

This infeasibility of solving HJ equations motivated the development of the inverse optimality

direction in robust nonlinear control [6]. Roughly speaking, an inverse optimal design is an optimal

design in which the choice for the function L is left open:

Global inverse optimality

If there exist a function L such that (3) has a positive de�nite and radially unbounded solution

V (x) on Rn, then the control u achieving minimum of (3) is said to be globally inverse optimal.

Inverse optimality exploits the fact that an HJ equation with a �xed function L is only a su�cient

condition for achieving robustness. The inverse optimal design seeks a particular solution to an

appropriate class of HJ equations which lead to desired robustness of a system by using L as a

design parameter. It is important to remember that the inverse approach enables us to design robust

controllers without solving HJ equations directly, provided the function L is chosen from an appropriate

class.
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According to Lyapunov's �rst method, we can achieve stability robustness in Fig.1 at least locally

by using a linearized description of the system. Fortunately, an HJ equation for a linearized system

reduces to an algebraic Riccati equation which can be solved easily and e�ciently. The optimal

controller directly guarantees the stability robustness in Fig.1 for linear G and families of � including

memoryless and dynamic, structured and unstructured uncertainties. Thus, for achieving robustness

at least locally, the following property is desirable:

Local optimality

Suppose that a function L is given a priori so that it describes desired stability robustness. If

the linearization of a control law u at x = 0 is an optimal control associated a value function

which solves the linear version of (3) (i.e., Riccati equation), the control law u is said to be

locally optimal.

However, a controller that performs well on a linearized model may drastically reduce the stability

region of the actual nonlinear system. Local optimality by itself is not su�cient for inherently nonlinear

systems.

If maximization with respect to w is dropped in the global inverse optimal design, then global

optimality does not necessarily imply global robust stability. For example, consider the following

choice for L which is a natural generalization of LQ optimal control:

L = q(x) + r(x)u2; q(x) � 0; q(0) = 0; r(x) > 0 8x 2 Rn (4)

with optimality described by

Jopt = min
u

Z 1

0
L(x;w; u)dt subject to w � 0 (5)

instead of (2). A global inverse optimal controller with respect to (5) may exhibit robustness properties

in the sense of stability margins [10], but it generally only guarantees stability robustness with respect

to certain types of input uncertainties. In fact, in general the optimal controller does not achieve

robustness for the disturbance w as speci�ed in Fig.1. In contrast, for the same function L in (4),

global optimality in terms of (2) implies robust stability of the system in Fig.1 because Jopt < 1

implies x(t) ! 0 as t ! 1. It is known that robust stabilizability of the system with the family

of memoryless uncertainties � is equivalent to the existence of a robust control Lyapunov function

(rclf). In fact, it has been shown in [6] that every rclf solves an HJ equation associated with the cost

functional (2) and the inverse optimal control law is given in terms of the rclf. The inverse optimal

control in [6] thus takes robust stability into account. However, the relationship between the global

optimality achieved and robust stabilization of the linearized system is not clear. Indeed, in general,

the globally inverse optimal control law is not locally optimal.

Another candidate for the function L in (2) for inverse optimal control is as follows:

L = q(x) + r(x)u2 � 2w2; q(x) � 0; q(0) = 0; r(x) > 0 8x 2 Rn (6)

Because this L is a natural generalization of linear H1 optimal control, it has been shown in [8] that

the associated globally inverse optimal controllers can be locally H1 optimal for a class of nonlinear

systems. However, because of the negative term in L, global inverse optimality does not necessarily

assure global robust stability in the presence of the disturbance w. In [7], a terminal penalty is
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introduced which excludes this possibility of destabilizing inverse optimal controllers:

Jopt = min
u

max
w

(
lim
T!1

"
E(x(T )) +

Z T

0
q(x) + r2(x)u

2 � r1(x)w
2dt

#)
(7)

q(x) � 0; q(0) = 0; r1(x) � 0; r2(x) > 0; 8x 2 Rn

Here, E is a positive de�nite radially unbounded function. It was proved in [7] that for a class

of input-to-output stabilizable systems, input-to-output stability can be achieved in the presence of

input unmodeled uncertainty. However, this type of global stability is guaranteed for a certain class of

unstructured input uncertainties which in general does not conform to the location/structure speci�ed

in Fig.1. Furthermore, the inverse optimal control in [7] is not guaranteed to be locally optimal.

The purpose of this paper is to develop a backstepping procedure which meets all the three objec-

tives simultaneously: global inverse optimality, local optimality, and global robust stability. For this

purpose, an appropriate choice of L will given by generalized state-dependent scaling.

3 De�nitions

Consider the uncertain nonlinear system � described by

� : _x = A(x)x+B(x)w +G(x)u : (8)

where dimensions of signals are x(t) 2 Rn, u(t) 2 R1, w(t) 2 Rp. Functions A(x), B(x) and G(x) are

assumed to be su�ciently smooth. We make the following structural assumptions on these matrices.

First, we assume that A, B and G can be written in the form

A(x)=

2
66666664

a11(x) a12(x) 0 � � � � � � 0
a21(x) a22(x) a23(x) 0 0...

...
...

. . .
. . .

......
...

...
. . . 0

an�1;1(x) an�1;2(x) � � � � � � an�1;n(x)
an1(x) an2(x) � � � � � � � � � ann(x)

3
77777775

(9)

B(x)=

2
664
B11(x) 0 � � � 0
B21(x) B22(x)

. . .
......

...
. . . 0

Bn1(x) Bn2(x) � � � Bnn(x)

3
775; G(x)=

2
664

0...
0

an;n+1(x)

3
775 : (10)

Each scalar-valued function aij is required to satisfy

aij(x) = aij(x1; x2; � � � ; xi); 1� i�n; 1�j� i+ 1 (11)

ai;i+1(x1; x2; � � � ; xi) 6= 0; 1 � i � n (12)

for all x 2 Rn. The dimension for the matrix B(x) is Bij(x) 2 R
1�pi and p =

Pn
i=1 pi, pi � 0. Its

dependence on x is

Bij(x) = Bij(x1; x2; � � � ; xi); 1 � i � n; 1 � j � i : (13)

De�nition 1 Given a positive semi-de�nite, radially unbounded, C1 function V (x) and a positive

scalar-valued function r(x), the control law

u(x) = �
1

2
r�1(LGV )

T (14)

is globally inverse optimal with disturbance level  when
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(i) The equilibrium x = 0 of � is globally asymptotically stabilized by (14) when w � 0.

(ii) There exist a scalar-valued function q(x) and a Rp�p-valued function �(x) such that

LAxV +
1

42
LBV�

�1(LBV )
T�

1

4
LGV r

�1(LGV )
T+ q = 0 (15)

q(x) � 0; r(x) > 0; �(x) = �T (x) > 0; 8x2Rn :

The control law (14) with a solution to (15) minimizes the worst-case value of the cost functional

J(u;w) =

Z 1

0

h
q(x) + r(x)u2 � 2wT�(x)w

i
dt (16)

subject to the disturbance w over all stabilizing control laws, i.e., minumaxw2L2
J(u;w) is achieved.

The function V (x) is the optimal value function[15, 16]. The disturbance penalty in the cost functional

(16) was refereed to as state-dependent weighting in [7]. It has been proved that if (8) is input-to-

state stabilizable, then the inverse optimal problem is solvable with respect to (16)[7]. Note that the

function V (x) satisfying the Hamilton-Jacobi-Isaacs(HJI) equation (15) is positive de�nite if q(x) � 0

implies x � 0. In the cost functional (16), since � can absorb , the roll of  is not clear in De�nition

1. The meaning of  in connection with robustness will be discussed in Section 7. When p = 0, the

inverse optimal control de�ned in De�nition 1 reduces to the inverse optimality without disturbance

[6, 10].

We now consider Jacobian linearization of � as follows:

_x = Alx+Blwl +Glul (17)

Al =
@f

@x

����
x=0

= A(0); Bl = B(0); Gl = G(0) : (18)

We assume that Ql = QT
l > 0, rl > 0 and �l = �T

l > 0. Then, since (Al; Gl) is controllable by our

assumptions on A(x) and G(x), there exists a positive number � such that

AT
l Pl+PlAl+Pl

�
1

2
Bl�

�1BT
l �Glr

�1
l GT

l

�
Pl+Ql=0 (19)

has a unique solution Pl = P T
l > 0 for  > � and the control law

ul = �r�1l GT
l Plx (20)

stabilizes the linear system (17). The control law (20) with the solution Pl > 0 to the Riccati equation

(19) achieves minul maxwl2L2
Jl(ul; wl) for the cost functional

Jl(ul; wl) =

Z 1

0

h
xTQlx+ rlu

2
l � 2wT

l �lwl

i
dt (21)

over all stabilizing control laws ul. Here, Vl(x) = xTPlx is the optimal value function.

De�nition 2 Suppose that Ql = QT
l > 0, rl > 0 and �l = �T

l > 0 are given and  is chosen as

 > �. The control law (14) is said to be locally optimal and globally inverse optimal with disturbance

level  if

(i) the control (14) is globally inverse optimal with disturbance level .

6



(ii) the Jacobian linearized control law

u = �
1

2
r�1(0)GT (0)

@2V

@x2

�����
x=0

x (22)

stabilizes the linear system (17) and achieves minumaxw2L2
Jl(u;w).

(iii) q(x) � 0, r(x) > 0 and �(x) = �T (x) > 0 satisfy

2Ql =
@2q(x)

@x2

�����
x=0

; rl = r(0); �l = �(0) (23)

If �(x) is restricted to an identity matrix for all x 2 Rn, the above de�nition reduces to the local

optimality and global inverse optimality de�ned in [8].

Without loss of generality, �l = �(0) is assumed to be a diagonal matrix throughout this paper.

In fact, we can always replace any �l > 0 with an identity matrix as follows. Decompose �l into

�l = W TW with a lower triangular matrix W by using the Cholesky factorization. By de�ning

�wl =Wwl, the wl-term in (21) becomes 2wT
l �lwl = 2 �wT

l �wl. Since W is lower triangular, B(x)W�1

is again in the block lower triangular form of (10). Consider the inverse optimal problem of

J(u; �w) =

Z 1

0

h
q(x) + r(x)u2 � 2 �wT ��(x) �w

i
dt (24)

for the system in which B(x)w of � is replaced with B(x)W�1 �w. This problem is the same as the

inverse optimal de�ned with (16) for the original system � with respect to �(x) =W T ��(x)W , while

in the optimal control with respect to (24), we have ��(0) =W�T�(0)W�1 = Ip as desired.

4 Global inverse optimality via generalized SD scaling

We now consider the following weighting functions for the cost J in (16):

q(x) = xT �CT (x)��(x) �C(x)x+ xT �Q(x)x (25)

r(x) = �U (x); �(x) = �T (x) (26)

��(x)>0; �Q(x)= �QT (x) > 0; �U (x)>0; �(x)>0; 8x2Rn

The matrix �C(x) 2 Rq�n is a prescribed function and it is assumed to have the form

�C(x)=

2
664
C11(x) 0 � � � 0
C21(x) C22(x)

. . .
......

...
. . . 0

Cn1(x) Cn2(x) � � � Cnn(x)

3
775 ; Cij(x)=Cij(x1; x2; ���; xi)

1� i�n; 1�j� i
(27)

for su�ciently smooth functions Cij(x) 2 Rqi�1, qi � 0 and q =
Pn

i=1 qi. The matrices ��(x) and

�(x) are parameters to be used for achieving the inverse optimality of De�nition 1. The matrices are

assumed to consist of scalar-valued functions �i(x) and �i(x), i = 1; 2; : : : ; n with

��(x)=block-diag[�1(x)Iq1 ; �2(x)Iqn ; � � � ; �n(x)Iqn ] (28)

�(x)=block-diag[�1(x)Ip1 ; �2(x)Iqn ; � � � ; �n(x)Ipn ] : (29)
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Here, Iqi denotes a qi � qi identity matrix. Each �i or �i is a function of x of the form

�i(x)=�i(x1; x2;���; xi); �i(x)=�i(x1; x2;���; xi); 1� i�n

The scalar-valued function �U is also a parameter to be chosen in the inverse optimal design and its

dependence on x is

�U (x) = �U (x1; x2; � � � ; xn) :

We assume that

�i(x) > 0; �i(x) > 0; 8i; �U (x) > 0; 8x 2 Rn :

Substituting the above parameters into (16), the cost function J(u;w) becomes

J(u;w) =

Z 1

0

h
zT�(x)z + xT �Q(x)x� 2wT�(x)w

i
dt (30)

with an augmented system

�a :

�
_x = A(x)x+B(x)w +G(x)u
z = C(x)x+Hu

; (31)

where

C(x)=

2
666664

C11(x) 0 � � � 0
C21(x) C22(x)

. . .
......

...
. . . 0

Cn1(x) Cn2(x) � � � Cnn(x)
0 0 0 0

3
777775 ; H=

2
666664

0
0
...
0
1

3
777775 (32)

�(x) = block-diag[��(x); �U (x)] : (33)

The cost functional (30) can be rewritten as

J(u;w) =

Z 1

0

"
nX
i=1

(�i(x)z
T
i zi � 2�i(x)w

T
i wi) + xT �Q(x)x+ �U (x)u

2

#
dt (34)

where w and z are partitioned as

w=[wT
1 ; ���; w

T
n ]

T ; wi2R
pi ; z=[zT1 ; ���; z

T
n ; u]

T ; zi2R
qi :

When we choose �i = �i for i = 1; 2; : : : ; n in (34), the parameter �i(x) becomes the state-dependent(SD)

scaling [12]. Therefore, in this paper, we call (�(x);�(x)) the generalized state-dependent scaling for

inverse optimal control.

Let x[k] denote the states x1 through xk.

x[k] =
�
x1 x2 � � � xk

�T
We consider a di�eomorphism � = S(x)x between x 2 Rn and � 2 Rn. Let S�1(x) denote the inverse

map of the di�eomorphism and choose

S�1(x) =

2
66666664

1 0 0 0 � � � 0
s1(x) 1 0 0 � � � 0
d21 s2(x) 1 0

. . . 0
d31 d32 s3(x) 1

. . . 0...
...

. . .
. . .

. . .
...

dn�1;1 � � � � � � dn�1;n�2 sn�1(x) 1

3
77777775
; (35)
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where the smooth scalar functions s1(x1); s2(x[2]); � � �, sn�1(x[n�1]) are to be determined in a recursive

manner from s1 through sn�1. Each function si depends only on the state components x1 through xi.

The other scalar constants dij , 2 � i � n� 1, 1 � j � i� 1, are any real numbers. Then, S(x) is

S(x) =

2
6666664

1 0 0 � � � 0
41 1 0 � � � 0

42 42 1
. . .

...
...

...
. . .

. . . 0
4n�1 � � � � � � 4n�1 1

3
7777775

where 4j denotes any function depending only on s1 through sj. This di�eomorphism S(x) is the

same as the one in [6] and [14] if we take dij = 0. The time-derivative of � is

_� =

�
@S

@x1
x;

@S

@x2
x; � � � ;

@S

@xn
x

�
_x+ S(x) _x = T (x) _x : (36)

with a smooth function T (x):

T (x) =

2
6666664

1 0 0 � � � 0
?1;1 1 0 � � � 0

?2;2 ?2;2 1
. . .

...
...

...
. . .

. . . 0
?n�1;n�1 � � � � � � ?n�1;n�1 1

3
7777775
:

The entries ?i;j depend only on the states x1 through xi and the functions s1 through sj and their

partial derivatives. We now consider a state-feedback law

u(x) = sn(x[n])�n (37)

where sn is another smooth function yet to be determined. Then, the closed-loop system consisting

of (31) and the state-feedback law becomes

�cl :

(
_� = T

�
ÂŜ�+Bw

�
z = ĈŜ�

(38)

Ŝ :=

�
S�1

0 � � � 0 sn

�
; Â := [A G] ; Ĉ := [C H] :

Theorem 1 Suppose that P = diag[P1; P2; � � � ; Pn] is a constant diagonal matrix and

M(x) :=

2
64Ŝ

T ÂTT TP + PTÂŜ �1PTB ŜT ĈT�
�1BTT TP �� 0

�ĈŜ 0 ��

3
75<0 (39)

P > 0 (40)

are satis�ed for all x 2 Rn, Then, the nonlinear system � is globally asymptotically stabilized by the

state-feedback law u = sn�n and

J(u;w; T ) =

Z T

0

h
zT�(x)z + xT �Q(x)x� 2wT�(x)w

i
dt

� V (x(0)) � V (x(T )) (41)
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is achieved for all w 2 L2[0; T ] and for all T � 0 with

�Q(x) = �ST (ŜT ÂTT TP + PTÂŜ +
1

2
PTB��1BTT TP + ŜT ĈT�ĈŜ)S > 0; 8x 2 Rn (42)

V (x) = xTSTPSx (43)

In addition, if sn = �Pnan;n+1=�U is satis�ed for all x 2 Rn, the state-feedback law

u = �
1

2
r�1(LGV )

T = sn�n (44)

is globally inverse optimal with disturbance level . The optimality is achieved with respect to the cost

functional (16) for

q(x) = xT �CT (x)��(x) �C(x)x+ xT �Qx; 8x 2 Rn (45)

r(x) = �U (x) > 0; 8x 2 Rn (46)

�(x) = �T (x) > 0; 8x 2 Rn : (47)

such that P , �(x) and �(x) satisfy (39).

Proof : De�ne a positive de�nite function V (x) : Rn ! [0;1) by

V (x) = �TP� : (48)

which is radially unbounded function of x since S is globally di�eomorphic. The time-derivative of V

along the trajectories of the closed-loop system (38) satis�es

d

dt
V (x) = 2�TPT

�
ÂŜ�+Bw

�
(49)

From M(x) < 0 and � = Sx it follows that the system (38) with w � 0 satis�es

d

dt
V (x) = �T (PTÂŜ + ŜT ÂTT TP )� < 0; 8x 2 Rn n f0g :

Hence, the system (38) is globally asymptotically stable. Now, using the Schur complement formula

twice for M < 0 in (39), we obtain

ŜT ÂTT TP + PTÂŜ +
1

2
PTB��1BTT TP + ŜT ĈT�ĈŜ < 0 :

De�ne �Q as in (42). Then �Q(x) > 0 holds for all x 2 Rn. From (49) we have,

d

dt
V (x) + zT�z + xT �Qx� 2wT�w =

�
�
w

�T "
ŜT ÂTT TP + PTÂŜ + S�T �QS�1 PTB

BTT TP 0

# �
�
w

�
+

�
�
w

�T "
0 ŜT ĈT

Ip 0

# �
�2� 0
0 �

� "
0 Ip
ĈŜ 0

# �
�
w

�
: (50)

More simply, we write (50) as

d

dt
V (x) + zT�z + xT �Qx� 2wT�w =

�
�
w

�T
M̂

�
�
w

�
=

�
�
w

�T "
M̂11 M̂12

M̂T
12 M̂22

# �
�
w

�
: (51)

Note that

M̂22 = �2� < 0; M̂11 � M̂12M̂
�1
22 M̂

T
12 = 0

10



hold for all x 2 Rn, where (42) was used. Applying the non-strict inequality version of Schur comple-

ment formula to M̂ , we can prove that M̂ � 0 and

d

dt
V (x) + zT�z + xT �Qx� 2wT�w � 0; 8x 2 Rn (52)

Integrating (52) from t = 0 to t = T , we obtain (41). Furthermore, it is easily seen that

ŜT ÂTT TP + PTÂŜ = S�TATT TP + PTAS�1 +

2
6664
0 � � � 0 0
...
. . .

...
...

0 � � � 0 0
0 � � � 0 2Pnan;n+1sn

3
7775

ŜT ĈT�ĈŜ = S�T �CT �� �CS�1 +

2
6664
0 � � � 0 0
...
. . .

...
...

0 � � � 0 0
0 � � � 0 �Us

2
n

3
7775 ; PTGGTT TP =

2
6664
0 � � � 0 0
...
. . .

...
...

0 � � � 0 0
0 � � � 0 P 2

na
2
n;n+1

3
7775 :

If sn = �Pnan;n+1=�U is satis�ed, we have 2Pnan;n+1sn+�Us
2
n = �P 2

na
2
n;n+1=�U so that the inequality

(42) becomes

S�TATT TP + PTAS�1 + PT

�
1

2
B��1BT �

1

�U
GGT

�
T TP + S�T �CT �� �CS�1 = �S�T �QS�1 :

Using

@V

@x
= 2xTSTPT; � = Sx (53)

we arrive at

�xT �Q(x)x = LAxV +
1

42
LBV�

�1(LBV )
T �

1

4
LGV �

�1
U (LGV )

T + xT �CT �� �Cx < 0; 8x 2 Rn n f0g :

Finally, (53) together with sn = �Pnan;n+1=�U yields

�
1

2
��1U (LGV )

T = ���1U GTT TP� = sn�n

This completes the proof.

Using (42), the function q(x) for the global optimality is alternatively represented by

q(x) = �xT
�
2STPTA+ STPT

�
1

2
B��1BT �

1

�U
GGT

�
T TPS

�
x > 0; 8x 2 Rn n f0g : (54)

5 Inverse optimal backstepping

We �rst investigate the recursive structure of the inequality (39). We de�ne

P[k] =
k

diag
i=1

Pi; 1 � k � n

We de�ne system matrices for the �rst k states by

Â[k](x[k]) =

2
666664

a11 a12 0 � � � � � � 0
a21 a22 a23 0 � � � 0...

...
...

. . .
. . .

...
ak�1;1 ak�1;2 � � � � � � ak�1;k 0
ak1 ak2 � � � � � � akk ak;k+1

3
777775 ; B[k](x[k]) =

2
664
B11 0 � � � 0
B21 B22

. . .
......

...
. . . 0

Bk1 Bk2 � � � Bkk

3
775

11



for 1 � k � n. We also de�ne

Ĉ[k](x[k]) =

2
664
C11 0 � � � 0
C21 C22

. . .
......

...
. . . 0

Ck1 Ck2 � � � Ckk

3
775 ; 1 � k � n� 1

Ĉ[n](x[n]) = Ĉ(x)

:

In a similar manner, the functions S[k], S
�1
[k] and T[k] are de�ned as k � k upper left parts of S, S�1

and T , respectively. Let Ŝ[k] denote

Ŝ[k](x[k]) =

2
66666664

1 0 0 � � � 0
s1 1 0 � � � 0
d21 s2 1

. . . 0...
...

. . .
. . .

...
dk�1;1 � � � dk�1;k�2 sk�1 1
dk;1 � � � dk;k�2 dk;k�1 sk

3
77777775
:

Here, we use dn;j = 0 for 1 � j � n� 1 so that Ŝ[n](x[n]) = Ŝ(x). We next de�ne

�[k](x[k])=block-diag[�1Iq1 ; �2Iq2 ; � � � ; �kIqk ]

1 � k � n� 1; �[n](x[n]) = �(x)

�[k](x[k])=block-diag[�1Ip1 ; �2Ip2 ; � � � ; �kIpk ]; 1 � k � n :

Here, �[k](x[k]) 2 R(qk+lk)�(qk+lk) and �[k](x[k]) 2 Rpk�pk . The integer li is de�ned by ln = 1 and

lk = 0 for 1 � k � n� 1. We also de�ne the matrix M[k](x[k]) by adding subscript [k] to every matrix

in (39). Due to the structure of S(x) and �a, we can prove the following.

Theorem 2 Suppose 2 � k � n. M[k](x[k]) < 0 is equivalent to"
M[k�1](x[k�1]) �k(x[k])

�T
k (x[k]) 	k(x[k])

#
< 0 ; (55)

where �k depends only on �k, �k, (Pk�1; Pk) and (s1; � � � ; sk�1) and their partial derivatives. If k < n,

the symmetric matrix 	k depends only on �k, �k, Pk and sk. 	n depends only on �n, �n, �U , Pn and

sn.

Proof : We �rst recall that

P[k] =

�
P[k�1] 0

0 Pk

�
; T[k](x[k�1]) =

�
T[k�1](x[k�2]) 0

?k�1;k�1 1

�
; Ŝ[k](x[k]) =

2
6666664

Ŝ[k�1](x[k�1])

0
...
0
1

dk;1 � � � dk;k�1 sk

3
7777775

Â[k](x[k]) =

"
Â[k�1](x[k�1]) 0

?k;0 ak;k+1

#
; B[k](x[k]) =

�
B[k�1](x[k�1]) 0

?k;0 Bkk

�
; 2 � k � n

Ĉ[k](x[k]) =

"
Ĉ[k�1](x[k�1]) 0

?k;0 0

#
; �[k](x[k]) =

�
�[k�1](x[k�1]) 0

0 �k

�
; 2 � k � n� 1

Ĉ[n](x[n]) =

2
64 Ĉ[n�1](x[n�1]) 0

?n;0 0
0 1

3
75 ; �[n](x[n]) =

2
4 �[n�1](x[n�1]) 0 0

0 �n 0
0 0 �U

3
5

�[k](x[k]) =

�
�[k�1](x[k�1]) 0

0 �k

�
; 2 � k � n :

12



Using the following structures

P[k]T[k](x[k�1]) =

�
P[k�1]T[k�1](x[k�2]) 0

Pk?k�1;k�1 Pk

�
; Â[k]Ŝ[k] =

2
6666664
Â[k�1](x[k�1])Ŝ[k�1](x[k�1])

0
...
0

ak�1;k
?k;k�1 akk + ak;k+1sk

3
7777775

we have

P[k]T[k](x[k�1])Â[k](x[k])Ŝ[k](x[k]) =2
4 P[k�1]T[k�1](x[k�2])Â[k�1](x[k�1])Ŝ[k�1](x[k�1])

0
Pk�1ak�1;k

Pk?k;k�1 Pk(akk + ak;k+1sk + ?k�1;k�1)

3
5

P[k]T[k](x[k�1])B[k](x[k]) =�
P[k�1]T[k�1](x[k�2])B[k�1](x[k�1]) 0

?k;k�1 PkBkk

�
:

In the same manner, from

Ĉ[k](x[k])Ŝ[k](x[k]) =

2
6664 Ĉ[k�1](x[k�1])Ŝ[k�1](x[k�1])

0
...
0

?k;k�1 Ckk

3
7775 ;

Ĉ[n](x[n])Ŝ[n](x[n]) =

2
6666664
Ĉ[n�1](x[n�1])Ŝ[n�1](x[n�1])

0
...
0

?n;n�1 Cnn

0 sn

3
7777775
;

we obtain

�[k](x[k])Ĉ[k](x[k])Ŝ[k](x[k]) =

2
6664 �[k�1](x[k�1])Ĉ[k�1](x[k�1])Ŝ[k�1](x[k�1])

0
...
0

�k?k;k�1 �kCkk

3
7775

�[n](x[n])Ĉ[n](x[n])Ŝ[n](x[n]) =

2
6666664
�[n�1](x[n�1])Ĉ[n�1](x[n�1])Ŝ[n�1](x[n�1])

0
...
0

�n?n;n�1 �nCnn

0 �Unsn

3
7777775
:

Now, consider a non-singular matrix:

Qk =

2
66666664

Ik�1 0 0 0 0 0
0 0 0 I1 0 0
0 Ip̂ 0 0 0 0
0 0 0 0 Ipk 0
0 0 Iq̂ 0 0 0
0 0 0 0 0 Iqk+lk

3
77777775
;
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where Ik denotes a k � k identity matrix and p̂ :=
Pk�1

i=1 pi, q̂ :=
Pk�1

i=1 qi. Multiplying M[k] by the

nonsingular matrix from both the sides, we obtain

QT
kM[k](x[k])Qk =

"
M[k�1](x[k�1]) �k(x[k])

�T
k (x[k]) 	k(x[k])

#
:

Here, the matrices �k and �k are

�k(x[k]) =

2
66664
?k;k�1 0 ?k;k�1�k
?k;k�1 0 0
0...
0

0 0

3
77775

�n(x[n]) =

2
66664
?n;n�1 0 ?n;n�1�n 0
?n;n�1 0 0 0
0...
0

0 0 0

3
77775

	k(x[k]) =

2
4 2Pk(akk + ak;k+1sk + ?k�1;k�1) 

�1PkBkk CT
kk�k

� ��kIpk 0
� � ��kIqk

3
5

	n(x[n]) =

2
664
2Pn(ann + an;n+1sn + ?n�1;n�1) 

�1PnBnn CT
nn�n sn�U

� ��nIpn 0 0
� � ��nIqn 0
� � � ��U

3
775 :

The claims are obvious from the above matrices.

Next, let Jk 2 R
1�1, Ek 2 R

1�(pk+qk+lk) and Fk 2 R
(pk+qk+lk)�(pk+qk+lk) be de�ned with

	k(x[k])� �T
k (x[k])M

�1
[k�1](x[k�1])�k(x[k])=

�
Jk Ek

ET
k Fk

�
(56)

for 2 � k � n. In the k = 1 case, M[1] = 	1(x1) holds with

	1(x1) =

�
J1(x1) E1(x1)
ET
1 (x1) F1(x1)

�
(57)

The matrices Jk, Ek and Fk are obtained as follows:

Jk(x[k]) = 2Pk(akk + ak;k+1sk) +}k;k�1; 2 � k � n

Ek =

�
Ek1 for 1 � k � n� 1�

Ek1 Ek2
�

for k = n

Ek1=
�
�1PkBkk }k;k�1�k

�
; 2�k�n; En2=sn�U

Fk =

8<
:

Fk1 for 1 � k � n� 1�
Fk1 0
0 Fk2

�
for k = n

Fk1=

�
��kIpk 0

0 ��kIqk � �2kFk3

�
; 2�k�n; Fn2 = ��U ;

Fk3 =

2
664
?k;k�1
0...
0

3
775
T

M�1
[k�1]

2
664
?k;k�1
0...
0

3
775 ; 2 � k � n

J1(x1) = 2Pk(a11 + a1;2s1)
E11 =

�
�1P1B11 CT

11�1
� ; F11 =

�
��1Ip1 0

0 ��1Iq1

�
;
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where }i;j denotes any function depending only on (x[i]; P[i]), �[j] and (s1; � � � ; sj) and their partial

derivatives. Using the Schur complement of (56) and (57), we have the following.

Corollary 1 Let 1 � k � n. Assume that M[k�1](x[k�1]) < 0 is satis�ed for all x[k�1] 2 Rk�1 if

k 6= 1. Then, M[k](x[k]) < 0 holds for all x[k] 2 R
k if and only if

(i) 1 � k � n� 1 Case:

Jk < 0 for pk + qk = 0

Fk1 < 0; Jk �Ek1F
�1
k1 E

T
1k < 0 for pk + qk 6= 0

(ii) k = n Case:

Fn2 < 0; Jn �En2F
�1
n2 E

T
n2 < 0 for pn + qn = 0

Fn1 < 0; Fn2 < 0; Jn �En2F
�1
n2 E

T
n2 �En1F

�1
n1 E

T
1n < 0 for pn + qn 6= 0

are satis�ed for all x[k] 2 R
k.

Theorem 2 and Corollary 1 tell us that we can decide (�k; sk) and �U recursively from k = 1 through

k = n in order to try to make M(x) negative.

Theorem 3 Let 1 � k � n and pk + qk 6= 0. Assume that M[k�1](x[k�1]) < 0 holds for all x[k�1] 2

Rk�1 if k 6= 1. The function �k(x[k]) is assumed to be an arbitrary function satisfying

�k(x[k]) > 0; 8x[k] 2 R
k : (58)

Then, there always exist a scalar-valued smooth function �k(x[k]) such that for any such �k(x[k]),

�k(x[k]) > 0; Fk1(x[k]) < 0 (59)

are satis�ed for all x[k] 2 R
k.

Proof : If k = 1, (59) is satis�ed for any functions �1(x1) > 0 and �1(x1) > 0. We prove the claim

for k � 2. Suppose that x[k] is a vector belonging to Rk. The inequalities (59) at the point x[k] are

written as

�k > 0; �kIqk + �2kFk3 > 0: (60)

These two inequalities are independent of �k. The second inequality in (60) is implied by

��min(Fk3)�k < 1 : (61)

Here, �min(�) denotes the minimum eigenvalue of a matrix. Since M[k�1] < 0 implies Fk3 � 0, there

exists �k > 0 satisfying (60). All entries of Fk3 are smooth functions de�ned on Rk so that �min(Fk3)

is a continuous function of x[k]. Hence, there exists a smooth function �k(x[k]) such that inequalities

in (60) are satis�ed for all x[k] 2 R
k and for any �k(x[k]) > 0.

Theorem 4 Let 1 � k � n. Assume that M[k�1](x[k�1]) < 0 holds for all x[k�1] 2 R
k�1 if k 6= 1.

(i) k < n & pk + qk 6= 0 Case: There always exists a scalar-valued smooth function sk(x[k]) such that

Jk(x[k])�Ek1(x[k])F
�1
k1 (x[k])E

T
1k(x[k]) < 0 (62)
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is satis�ed for all x[k] 2 R
k.

(ii) k < n & pk + qk = 0 Case: There always exists a scalar-valued smooth function sk(x[k]) such that

Jk(x[k]) < 0 (63)

is satis�ed for all x[k] 2 R
k.

(iii) k = n & pn + qn 6= 0 Case: There always exist scalar-valued smooth functions �U (x[n]) and

sn(x[n]) such that

�U (x[n]) > 0; Fn2(x[n]) < 0 (64)

Jn(x[n])�En2(x[n])F
�1
n2 (x[n])E

T
n2(x[n])�En1(x[n])F

�1
n1 (x[n])E

T
1n(x[n]) < 0 (65)

are satis�ed for all x[n] 2 R
n. Furthermore, a solution sn is given by

sn(x[n]) =
�Pnan;n+1

�U
(66)

(iv) k = n & pn + qn = 0 Case: There always exist scalar-valued smooth functions �U (x[n]) and

sn(x[n]) such that

�U (x[n]) > 0; Fn2(x[n]) < 0 (67)

Jn(x[n])�En2(x[n])F
�1
n2 (x[n])E

T
n2(x[n]) < 0 (68)

are satis�ed for all x[n] 2 R
n. Furthermore, a solution sn is given by (66).

Proof : (iii) The inequality Fn2 < 0 is obvious if �U > 0. The inequality (65) at a point x[n] 2 R
n is

2Pnan;n+1sn +}n;n�1 + �Us
2
n �En1F

�1
n1 E

T
1n < 0 :

We rewrite the above as

�Us
2
n + 2Pnan;n+1sn + P 2

n� < 0 ; (69)

where a scalar-valued function �(x[n]) de�ned on Rn is independent of sn and �U . This inequality

(69) has a solution sn 2 R at x[n] if and only if

��U < a2n;n+1 : (70)

Note that a2n;n+1(x[n]) 6= 0 for all x[n] 2 R
n by assumption. Hence, there exists �U > 0 satisfying (70)

at x[n]. Since an;n+1 and � are smooth functions de�ned on Rn, there exist smooth functions �U (x[n])

and sn(x[n]) such that (64) and (65) are satis�ed for all x[n] 2 R
n. Finally, a solution sn to (69) is

(66).

(i) The inequality (62) becomes

2Pkak;k+1sk + P 2
k� < 0 : (71)

This linear inequality always has a solution sk 2 R for each x[k] in R
k. Smoothness of functions

appearing in the inequality guarantees the existence of a smooth function sk(x[k]).

(iv) The inequality (68) is written as

2Pnan;n+1sn +}n;n�1 + �Us
2
n < 0 :

This equality is in the form of (69). Hence, the rest of the proof is the same as the (iii) case.

(ii) The inequality (63) becomes (71) with an appropriate function �. The existence of sk(x[k]) is

proved as in the (i) case.
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Theorems 3 and 4 have shown that we can always choose appropriate parameters (�k; �k; sk) and �U

recursively from k = 1 through k = n such that M(x) is negative. Moreover, the control gain can be

selected as sn = �Pnan;n+1=�U . By combining these results with Theorem 1, we obtain the following

theorem.

Theorem 5 Consider the nonlinear system �. For any  > 0, there always exists a control law in the

form of (14) with a positive de�nite solution V (x) to (15) such that the control law is globally inverse

optimal with disturbance level . Furthermore, in the inverse optimal design, the function �(x) can

be any function satisfying (58).

Although global inverse optimality can be achieved for any  > 0, this does not imply that we can

make the e�ect of disturbance w arbitrarily small. Recall the cost function (16) and the concept of

inverse optimal control. Since q(x) and r(x) are free, we can reduce the cost J(u;w) by choosing q(x)

and r(x) small; moreover, the function �(x) can remove the e�ect of . It is, however, interesting

that we can achieve global inverse optimality even if we �x �(x). The freedom of the parameter �(x)

in the inverse optimal design will be exploited to achieve robustness of the resulting state-feedback

system in Section 7. By using Theorems 3 and 4, we can construct �k, �k, sk and �U recursively from

k = 1 through k = n. The feedback control law is obtained by (66) and global inverse optimality with

disturbance level  is achieved.

6 Local optimality

Although Theorem 5 guarantees that the backstepping procedure proposed in Section 5 achieves

global inverse optimality, it does not assure local optimality. In this section, we show that we can use

backstepping to achieve local optimality as well as global inverse optimality. Such a result was �rst

obtained in [8], but here we illustrate how to incorporate the free parameter �(x).

Consider the function

xT �CT (x)��(x) �C(x)x (72)

as a candidate for q(x) in the cost functional (16) for the nonlinear system �. Here, we suppose that
�C(x) has the triangular structure (27) as �C(x). The function ��(x) is a diagonal matrix as (28) and
��(x) > 0 for all x 2 Rn. Note that any function xTQ(x)x with Q(x) = QT (x) > 0 always has the

representation (72). In fact, to obtain (72) we can apply the Cholesky factorization to Q = UTU with

a lower triangular matrix U . We now de�ne Ql = QT
l > 0 by

Ql = �CT (0)��(0) �C(0); ��l = ��(0) :

For r(x) and �(x) in (16), we de�ne

rl = r(0); �l = �(0) = diag[�l1; �l2; � � � ; �ln] :

We use the following matrices:

��l = diag[�l1; �l2; � � � ; �ln]; �l = block-diag[��l; rl] :

Let � be any small number satisfying 1� � > 0. We choose �C(x) and �Cl as

�C(x) = (1� �)1=2 �C(x); �Cl = �C(0) :
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The matrix Ĉ(x) de�ned in (38) becomes

Ĉ(x) =

� �C(x)
0

H

�
:

Let Pl = P T
l > 0 be the unique solution to (19). Using the Cholesky factorization, we can decompose

Pl as Pl = STl PSl with

Sl=

2
666664

1 0 0 � � � 0
� 1 0

. . .
...

� � 1
. . .

......
. . .

. . .
... 0

� � � � � � � � 1

3
777775 ; P =diag[P1; P2; � � � ; Pn] > 0 ;

where � denotes any real constant and Pi, i = 1; 2; � � � ; n are scalar positive numbers. This factoriza-

tion of Pl is the same as the one used in [8]. Note that the inverse of Sl has the same structure as Sl.

We write it as

S�1l =

2
666664

1 0 0 � � � 0
c1 1 0

. . .
...

e21 c2 1
. . .

......
. . .

. . .
... 0

en�1;1 � � � en�1;n�2 cn�1 1

3
777775 ; (73)

where ci and eij , 2 � i � n� 1, 1 � j � i� 1, are appropriate real numbers. Then, we can prove the

following.

Theorem 6 Suppose that Pl = P T
l > 0 is the solution to (19). Then, the set of parameters

si(0) = ci; 1 � i � n� 1 (74)

sn(0) = �r�1l Pnan;n+1(0) (75)

�i(0) = �li; 1 � i � n (76)

�U (0) = rl (77)

�i(0) = �li; 1 � i � n (78)

dij = eij ; 2 � i � n� 1; 1 � j � i� 1 (79)

solves (39) at x = 0 and the linear optimal law is represented by ul = �r�1l GTPlx = sn(0)S(0)x.

Proof : Rearrange (19) as

�AT
l Pl + Pl �Al +

1

2
PlBl�

�1
l BT

l Pl +Ql = 0 (80)

�Al = Al �
1

2
Gr�1l GTPl :

Note here that

r�1l GTPl = r�1l GT
l S

T
l PSl =

h
0 � � � 0 r�1l Pnan;n+1(0)

i
Sl : (81)

De�ne the following matrices:

Ŝl =

"
S�1l

0 � � � 0 �r�1l Pnan;n+1(0)

#
; Âl = [Al Gl] ;
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Then, (80) is identical with

ŜTl Â
T
l S

T
l P + PSlÂlŜl +

1

2
PSlBl�

�1
l BT

l S
T
l P + ŜTl Ĉ

T
l �lĈlŜl + �S�Tl QlS

�1
l = 0 :

Using the Schur complement formula for the above equation, we arrive at

Ml :=

2
64 Ŝ

T
l Â

T
l S

T
l P + PSlÂlŜl 

�1PSlBl Ŝ
T
l Ĉ

T
l �l

�1BT
l S

T
l P ��l 0

�lĈlŜl 0 ��l

3
75 < 0 :

The choice of parameters (74)-(79) implies

S�1(0) = S�1l ; S(0) = Sl; T�1(0) = Sl; Ŝ(0) = Ŝl :

Since we also have

Âl = Â(0); Bl = B(0); Ĉl = Ĉ(0) ;

M(0) =Ml holds. Finally, using (81) the linear optimal control law (20) is obtained as

ul = �r�1l GT
l Plx =

h
0 � � � 0 �r�1l Pnan;n+1(0)

i
Slx :

This theorem implies that sk(0), �k(0), �k(0) and �U (0) given in (74)-(78) solve the inequalities in

Corollary 1 at x[k] = 0. Each parameter in (74)-(78) is one of the solutions in Theorems 3 and 4. Note

that

sn(0) = �r�1l Pnan;n+1(0) = �Pnan;n+1(0)=�U (82)

does not contradict the solution sn(x[n]) given in Theorem 4. In other words, the requirements (74)-

(78) at x = 0 can be always met in each step of backstepping in Section 5. Therefore, we arrive at

the following statement.

Theorem 7 Consider the nonlinear system �. Suppose that Ql = QT
l > 0, rl > 0 and a diagonal

matrix �l > 0 are given and that Pl = P T
l > 0 is the solution to (19). Then there always exists a

control law in the form of (14) with a positive de�nite solution V (x) to (15) such that the control law

is locally optimal and globally inverse optimal with disturbance level . The functions q(x) and r(x)

in (15) satisfy

q(x) > (1� �)xT �CT (x)��(x) �C(x)x; 8x 2 Rn n f0g (83)

r(x) = �U (x) : (84)

Furthermore, in the inverse optimal design, the function �(x) can be any function satisfying (58) and

�(0) = �l.

Proof : Since the choice of parameters (74)-(79) is one solution of Theorem 5, the control law (14)

with the parameters satisfying (74)-(79) is globally inverse optimal with disturbance attenuation level

. Since we have

�
1

2
r�1(0)GT (0)

@2V

@x2

�����
x=0

x = �r�1l GT
l S

T
l PSlx = �r�1l GT

l Px = ul ;
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the Jacobian linearized control (22) stabilizes the linear system (17) and achieves minul maxwl2L2
Jl(ul; wl).

Furthermore, according to (54) and (46), the weighting functions of (15) satisfy

@2q

@x2

�����
x=0

= �2

�
AT
l S

T
l PSl + STl PSlAl + STl PSl

�
1

2
Bl�

�1
l BT

l �
1

�U
GlG

T
l

�
STl PSl

�

= �2

�
AT
l Pl + PlAl + Pl

�
1

2
Bl�

�1
l BT

l �
1

�U
GlG

T
l

�
Pl

�
r(0) = �U (0)

at x = 0. Then, Equation (19) and (77) imply

@2q

@x2

�����
x=0

= 2Ql; r(0) = rl:

Finally, from (42) we obtain

� �Q = ATT TPS + STPTA+ STPT

�
1

2
B��1BT �

1

�U
GGT

�
T TPS + �CT �� �C

= ATT TPS + STPTA+ STPT

�
1

2
B��1BT �

1

�U
GGT

�
T TPS + �CT �� �C � � �CT �� �C

= Q̂� � �CT �� �C < 0; 8x 2 Rn

with an appropriate function Q̂(x) = Q̂T (x). Due to (45), the function q(x) of (15) is given by

q(x) = xT �CT (x)��(x) �C(x)x+ xT �Qx

= xT �CT (x)��(x) �C(x)x� xT Q̂x

> (1� �)xT �CT (x)��(x) �C(x)x; 8x 2 Rn n f0g

This theorem includes the result in [8] as a special case with �(x) = Ip. Equations (83) and (84)

give useful information about the cost functional which is actually minimized by the inverse optimal

design.

The backstepping procedure for local optimal and global inverse optimal control is summarized as

follows:

Step 1 Let P1 be any positive number. If p1 + q1 6= 0, choose a function �1(x1) > 0 satisfying (76).

Let �1 > 0 be any function satisfying (78). Calculate a solution s1(x1) to (71) under the constraint

(74).

Step k Let Pk be any positive number. If pk + qk 6= 0, choose a function �k(x[k]) > 0 such that (61)

and (76) hold. Let �k > 0 be any function satisfying (78). Calculate a solution sk(x[k]) to (71)

under the constraint (74).

Step n Let Pn be any positive number. If pn + qn 6= 0, choose a function �n(x[n]) > 0 such that (61)

and (76) hold. Let �n > 0 be any function satisfying (78). Find a function �U > 0 satisfying (70)

and (77). Choose sn(x[n]) as (66).
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By performing the above procedure recursively from k = 1 through k = n, the state-feedback controller

u = sn(x[n])�n is locally optimal and globally inverse optimal with disturbance level . If another

solution sn to (65) is chosen instead of the particular solution (66), the control law u = sn(x[n])�n is

neither locally optimal nor globally inverse optimal. However, it still globally asymptotically stabilizes

� and the nonlinear control law u and the linearized control law ul achieve

J(u;w; T ) � V (x(0)) � V (x(T )); 8w 2 L2[0; T ]

Jl(ul; wl; T ) � Vl(x(0)) � Vl(x(T )); 8wl2L2[0; T ]

for all T � 0, respectively.

7 Global robust stability via inverse optimal control

In the previous sections, we considered the cost function J(u;w) in (16) for global inverse optimal

control. The motivation of introducing the w-term into the cost functional was to achieve some

robustness against disturbances and uncertainty. Indeed, both our design and the one in [8] guarantee

local robustness of level  because the controllers locally solve the disturbance attenuation problem.

However, the role  plays in describing global robust stability has not yet been characterized. Recall

that q(x), r(x) and �(x) are free parameters in the inverse optimal design. Since �(x) can absorb , it

seems that  does not have any meaning for global robustness. In the class of inverse optimal designs

where the function �(x) is restricted to �(x) = Ip as in [8], the level  might not be meaningful either

since small r(x) and q(x) can make J(u;w) small. In this section, we reexamine the particular cost

function

J(u;w) =

Z 1

0

"
nX
i=1

(�i(x)z
T
i zi � 2�i(x)w

T
i wi) + xT �Q(x)x+ �U (x)u

2

#
dt; �Q(x)>0; 8x 2 Rn (85)

with respect to which global inverse optimality is achieved in previous sections. Here, (�i; �i), i =

1; 2; : : : ; n are called the generalized SD scaling. This section shows that the global inverse optimal

control with such scaling indeed achieves global robustness against a class of disturbances w whose

sizes are prescribed by .

Consider the static uncertain system �� : z 7! w given by

wi = h�i
(t; zi); i 2 L � f1; 2; : : : ; ng

0 = h�i
(t; 0); 8t � 0 ;

where h�i
is de�ned on R+�R

qi . The uncertain system consisting of �a in (31) and the uncertainty

�� is depicted by Fig.2. Here, zL and wL are signals made of all entries zi and wi whose indexes i

belong to the set L. Signals z�L and w�L consist of remaining entries of z and w.

wL=

�
wi...

�
; zL=

�
zi...

�
; w�L=

�
wk...

�
; z�L=

�
zk...

�
i 2 L; k 2 f1; 2; � � � ; ng n L :

If we look at the cost (85) with �i � �i, i = 1; 2; : : : ; n, then light weighting of z means light weighting

of w. The cost J cannot be made small any more by simply letting q(x) be small or letting �(x) be

large. Furthermore, the scaling � can no longer absorb , so  may retain some meaning in describing

the allowable size of the uncertainty. Indeed, the generalized scaling (�i; �i) in (85) reduces to the SD

scaling[12] in the case of �i = �i, and the following can be proved[11, 12]:
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Theorem 8 Suppose that the control law (14) is globally inverse optimal with disturbance level  with

respect to the cost (85) with �i � �i for all i 2 L � f1; 2; : : : ; ng. Then, the system (�a;��) in Fig.2

controlled by the state-feedback law (14) is globally uniformly asymptotically stable for any uncertainty

�� satisfying

kwik � kzik; 8t 2 R ;8i 2 L : (86)

Furthermore, the control law (14) achieves

Z T

0

2
4 X
i2f1;2;���;ngnL

(�i(x)z
T
i zi � 2�i(x)w

T
i wi) + xT �Q(x)x+ �U (x)u

2

3
5 dt � V (x(0))�V (x(T )); 8w2L2[0; T ]

for all T � 0 and for any uncertainty �� satisfying (86).

As shown in Theorems 3 and 4, we can always choose �i(x) � �i(x) for i = 1; 2; : : : ; n in the back-

stepping design of global inverse optimal controllers. It is important to note that, unlike our notion

of global optimality, global robustness is not de�ned here in the inverse sense|the uncertainty struc-

ture is prescribed as part of the system through B(x) and C(x) in (31) and is not free to be chosen

during the control design. Thus to guarantee such prescribed global robust stability, it is crucial to

allow the parameter �(x) in the cost functional (16) to vary with the state x so that we may achieve

�i(x) � �i(x).

The type of global robust stability achieved in [8] is input-to-state stability (ISS) with respect to

the disturbance w. One can easily verify that if the mapping

x 7! xT
�CT (x)��(x) �C(x) + �Q(x)

k�(x)k
x (87)

is radially unbounded, then the generalized SD scaling design also yields a closed-loop system which is

ISS with respect to w. Thus one can view ISS in this context as a consequence of robust stability for

a special class of output matrices �C and scaling matrices �� and �. Moreover, if we allow the output

matrix �C to be freely chosen as part of the scaling design, then it is always possible to render the

mapping (87) radially unbounded.

Theorem 9 Consider the nonlinear system � in (8). Suppose that Ql = QT
l > 0, rl > 0 and a

diagonal matrix �l > 0 are given and that Pl = P T
l > 0 is the solution to (19). Then there always

exist a control law in the form of (14) with a positive de�nite solution V (x) to (15) and a matrix
�C(x) 2 Rn�n

�C(x)=

2
6664
C11(x[1]) 0 � � � 0

C21(x[2]) C22(x[2])
. . .

...
...

...
. . . 0

Cn1(x[n]) Cn2(x)[n] � � � Cnn(x[n])

3
7775 (88)

with smooth functions Cij(x) 2 R such that the control law is locally optimal and globally inverse

optimal with disturbance level  and the resulting closed-loop system is ISS.

Proof : Let a row vector �Ck(x[k]) 2 R
1�k be

�Ck(x[k])=
�
Ck1(x[k]) Ck2(x[k]) � � � Ckk(x[k])

�
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for 1 � k � n. By assumption, there exist a positive number � and a constant matrix �C(0) in the

form of (88) such that

Ml :=M(0) < ��I (89)

holds. We �rst show that M(x) < ��I can be achieved for all x 2 Rn with a constant � > 0 by

choosing �k > 0, �k > 0 and �U > 0 appropriately under the conditions (74)-(78). Assume that for

k 6= 1, M[k�1](x[k�1]) < ��I is satis�ed for all x[k�1] 2 R
k�1. According to proofs of Theorem 3 and

4,

M[k](x[k]) < ��I; 8x[k] 2 R
k

is achieved if and only if

��k + � < 0 (90)�
��k + � < 0 : k = 1

��k � �2kFk3 + � < 0; �k > 0 : 2 � k � n
(91)

�
2Pkak;k+1sk + P 2

k� < 0 : 1 � k � n� 1
�Us

2
n + 2Pnan;n+1sn + P 2

n� < 0; �U > 0 : k = n
(92)

are satis�ed for all x[k] 2 Rk. In the k � n � 1 case, there always exists a smooth function sk

satisfying (92). As for the k = n case, since a smooth function �U > 0 can be always chosen such that

(�+ �P�2
n )�U < a2n;n+1 is satis�ed, (66) is a solution to (92) for such �U . Due to (89), these functions

can be chosen such that (74)-(78) are satis�ed. Obviously, a positive constant �k(x[k]) = �k(0) is a

solution to (90). For (91), the existence of a smooth function �1 is straightforward. Since (89) is

assumed, a solution �k(0) > 0 to (91) at x[k] = 0 exists. This implies that 1 + 4Fk3(0)
2� > 0 holds.

Recall that Fk3 is represented by

Fk3(x[k]) =

2
664
ŜT[k�1]

�CT
k

0...
0

3
775
T

M�1
[k�1]

2
664
ŜT[k�1]

�CT
k

0...
0

3
775

Thus, a smooth function �C(x[k]) can be chosen such that Fk3(0) = Fk3(x[k]) for all x[k] 2 R
k. This

implies that the constant �k(x[k]) = �k(0) > 0 solves (91) for all x[k] 2 R
k. Hence, M(x) < ��I is

proved to be achieved for all x 2 Rn with a constant � > 0. Now, M(x) < ��I is equivalent to

ŜT ÂTT TP + PTÂŜ +
1

2
PTB(�� �I)�1BTT TP + ŜT ĈT�(�� �I)�1Ĉ�Ŝ + �I < 0 :

Let ~Q(x) > 0 be de�ned with

�S�T ~QS�1 = ŜT ÂTT TP + PTÂŜ +
1

2
PTB(�� �I)�1BTT TP + ŜT ĈT�(�� �I)�1Ĉ�Ŝ + �I :

Using the argument similar to (50)-(52), we obtain

d

dt
V (x) + zT�(�� �I)�1�z + xT ~Qx+ ��T�� 2wT (�� �I)w � 0; 8x 2 Rn :

Since M(x) < ��I implies ��+ �I < 0, we arrive at

d

dt
V (x) � ���T�+ 2wT (�� �I)w; 8x 2 Rn :

Since � is a constant matrix satisfying ��+ �I < 0, from the global di�eomorphism S(x) it follows

that the closed-loop system is ISS.
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We therefore recover the ISS robustness result of [8] as a special case of our global robustness result.

In fact, the scaling factors �� and � can be chosen as constants in this case and we achieve global

robustness with respect to dynamic as well as memoryless uncertainty[11, 12]. For the more general

case in which the output matrix �C is �xed as part of the uncertainty structure (a case not considered

in [8]), the ISS property can be checked by simply examining the mapping (87).

8 Example

We �rst consider the following nonlinear system from [8]:

� :

�
_x1 = x21 + x2 + wp

_x2 = u
(93)

with the cost functional

J(u;wp) =

Z 1

0
(q(x) + r(x)u2 � 2w2

p)dt;  = 5 : (94)

Let �l denote the Jacobian linearization of �. The cost functional for this linear system is chosen as

Jl(ul; wpl) =

Z 1

0
(x21 + x22 + u2l � 2w2

pl)dt;  = 5 : (95)

For the local optimality of the global inverse optimal control, we assume that

1

2

@2q(x)

@x2

�����
x=0

= Ql = I2; r(0) = rl = 1 : (96)

In this setting, Ezal et al. [8] have obtained a control law

u =

�
�1:78(1 + �(x))(0:6x1 + x2 + x21) if �(x) � 0
�1:78(0:6x1 + x2 + x21) if �(x) < 0

(97)

�(x) = 1:8x1 + 1:05x21

which is locally optimal and globally inverse optimal. For convenience we will refer to (97) as Ezal's

control law.

The generalized SD scaling design developed in this paper allows us to restrict the cost functional

(94) for � to a more speci�c one:

J(u;w) =

Z 1

0
(�1(x1)x

2
1 + �2(x)x

2
2 + �U (x)u

2 � 2w2
p + q̂(x))dt;  = 5 (98)

�1(x1) > 0; �2(x) > 0; �U (x) > 0; 8x 2 R2

q̂(x) > ��(�1(x1)x
2
1 + �2(x)x

2
2); 8x 2 R

2 n f0g

q̂(0) = 0;
@q̂(x)

@x

����
x=0

= 0;
@2q̂(x)

@x2

�����
x=0

= 0

for a su�ciently small 1� � > 0. By simply forcing (�1; �2; �U ) to satisfy

�1(0) = 1; �2(0) = 1; �U (0) = 1 ; (99)

the function (98) recovers the cost (95) for the linear system. The inverse optimal cost (98) resembles

the linear optimal cost (95) in having a quadratic-like form in x1 and x2. We choose � = 0:1. The

solution to Riccati equation (19) with Ql = I2 and rl = 1 is calculated as Pl = STl PSl, where

P =

�
1:183 0
0 1:781

�
; Sl =

�
1 0

�0:597 1

��1
:
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We now design a global inverse optimal control law. We de�ne �C(x) = (0:9)1=2I2 and �l = I3. To

realize the cost (98), we �x � as �(x) = 1. We carry out the inverse optimal backstepping in Section

6 with the constraints

s1(0)=�0:597; s2(0)=�1:781; �1(0)=�2(0)=�U (0)=1

for local optimality. The feedback law is obtained as

u = [�s2s1 s2]x; s1(x1)=�x1�0:597; s2(x)=�11:134((x1+0:1)
2+0:15) (100)

The generalized scaling parameters are selected as

�1(x1) = 1; �2(x) =
0:26

(x1 + 0:4)2 + 0:1
; �U (x) =

0:16

(x1 + 0:1)2 + 0:15

For brevity, we call (100) the generalized scaling law. The growth order of the generalized scaling

law (100) is like x41 which is the same as Ezal's law (97). In Fig.3(a), solid lines represent the state

response of the system � driven by the generalized scaling law. Dashed lines are the state x(t) for

Ezal's law. The response is computed with wp � 0 and x(0) = [�0:2 1]T . The performance of the two

control laws is almost the same. As shown in Fig.3(b), the control input signals u of both control laws

are also almost identical. Dotted lines are for the nonlinear system � controlled by the linear optimal

law. Thus both the generalized scaling law and Ezal's control law have desirable properties as global

inverse optimal controls with linear optimality.

We next consider the same nonlinear system � in the presence of an uncertainty:

�
_x1 = x21 + x2 + wp

_x2 = u+�(x)x1
;
j�(x)j < �(1� �)1=2

8x 2 R2; � = 2:5
(101)

with a su�ciently small 1� � > 0. We decompose (101) into a nominal part � and an uncertain part

�� as follows:

� :

8><
>:

_x1 = x21 + x2 + wp

_x2 = u+ d�1=2w�

z� = d1=2x1

; �� : w� = �(x)z� (102)

The positive number d will be chosen later. According to Theorem 8, we can achieve robust stability

against the uncertainty �(x) if we modify the cost functional (98) for global inverse optimal control

as follows:

J(u;wp; w�)=

Z 1

0
(�1(x1)x

2
1 + �2(x)x

2
2 + �U (x)u

2 � 2w2
p + �2(x)z

2
� � ��2�2(x)w

2
� + q̂(x))dt (103)

=5

where

�1(x1) > 0; �2(x) > 0; �U (x) > 0; 8x 2 R2

q̂(x)>��((1 + d)�1(x1)x
2
1 + �2(x)x

2
2); 8x2R

2 n f0g;

q̂(0) = 0;
@q̂(x)

@x

����
x=0

= 0;
@2q̂(x)

@x2

�����
x=0

= 0 :
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The cost functional (103) is equivalently represented in the state-dependent scaling form as

J(u;w) =

Z 1

0

h
zT�z � wT�w + q̂(x)

i
dt (104)

� =

� �� 0
0 �U

�
; �� =

�
�1 0
0 �2I2

�
; � =

�
1 0
0 �2

�

q̂(x) > ��zT�z; 8x 2 Rn n f0g; q̂(0) = 0

for the augmented system

�a :

8><
>:

_x1 = x21 + x2 + �1wp

_x2 = u+ ��1d�1=2w�

z� = d1=2x1

; w=

�
wp

w�

�
; z=

2
664
x1
x2
z�
u

3
775 : (105)

Let �al denote the Jacobian linearization of (105). We now choose the cost functional for �al by

substituting �1(0) = �2(0) = �U (0) = 1 and q̂(0) = 0 into (104):

Jl(ul; wl) =

Z 1

0

h
zT�lz � wT�lw

i
dt; �l=I4; �l=I2 (106)

Note that this linear optimal control is a solution to the problem of robustly stabilizing (�l;��) and

achieving

Jl(ul; wpl) =

Z 1

0
(x21 + x22 + u2l � 2w2

pl)dt � V (x(0)) : (107)

with a positive de�nite function V (x) = xTPlx for any disturbance wp and any admissible uncertainty

�(x). Here, �l denotes the Jacobian linearization of the nonlinear nominal system � in (102). The

constant d is nothing but a scaling factor for robust linear control. Because the linear optimal control

problem does not have a solution with d = 1, we take d = 25. Then, the solution Pl to Riccati equation

(19) is

Pl = STl PSl; P =

�
10:55 0
0 5:076

�
; Sl=

�
1 0

�1:558 1

��1
:

We now solve the inverse optimal problem for the nonlinear system � with respect to (104). We choose

� = 0:02. The inverse optimal backstepping is performed under the constraints

s1(0)=�1:558; s2(0)=�5:076; �1(0)=�2(0)=�U (0)=1 :

The feedback law is found as u = [�s2s1 s2]x with

s1(x1)=�x1�1:558; s2(x)=�83:35((x1+0:03)
2+0:06) (108)

The SD scaling parameters are obtained as

�1(x1) = 1; �2(x) =
24:25

(x1 + 1:5)2 + 22
; �U (x) =

0:0609

(x1 + 0:03)2 + 0:06

The scaling control law (108) not only robustly stabilizes (�;��), but also it achieves the disturbance

attenuation described by

J(u;w) =

Z 1

0
((1� �(1 + d))(�1(x1)x

2
1 + �2(x)x

2
2) + u2 � 2w2

p)dt � V (x(0)) (109)
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with V (x) = xTSTPSx for any disturbance wp and any admissible uncertainty �(x). Figure 4(a)

depicts state trajectories x(t) of the system � driven by the SD scaling control law (108) in the case

of x(0) = [�0:2 1]T and wp � 0. Solid lines represent the state response in the presence of the

uncertainty �(x) = 2. Dashed lines are the state response in the absence of uncertainty. The response

for �(x) = 2 is almost identical to the uncertainty-free case. The input signals required to stabilize

the system against �(x) are shown in Fig.4(b). We see that the SD scaling law (108) uses more control

e�ort than that shown in Fig.3(b). This is to be expected because the control law (108) guarantees

the robustness of global asymptotic stability against the uncertainty �(x).
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Figure 3: Response of nominal control system.
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Figure 4: Response with SD scaling control law.
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